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REFLECTOR THEORY

To derive the main features of reflector theory, we will
start with an infinite slab pile, that is, a slab which is infinitely
high of infinitexbreadth but has a thickness which is flnlte The pile
equation

NE (.li_:_)cjo

has a solution in this case of
?:Acosﬁw!}: X .

Here ¢ is equal to nv and x runs in the direction of the finite
dimension. The origin has been placed at the center of the slab and

we can easily find the crltlcal dimension of the slab by flndlng the
point at which the cos = 0. This is when
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that is to say, that the critical thickness is ¥ A58 . If now a layer
of dead graphite is placed on each side of the slab, some of the neutrons
which formerly escaped will be reflected back into the pile. The »re-
production of the pile, which ran before, will be raised and it becomes
evident that our thickness is now greater than is necessary. It is
possible, consecuently, to decrease the dimension of the active part by
ing such reflectors around the pile. .To fiud out how much saving
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can be effected of active material, we will investigate this slab pile
under a very simplified theory.

If we consider that all neutrons are slow in the pile equation,
then M2 is merely 12: that is, the thermal diffusion area when the
reflector is around the pile. The eguation which governs in the active
portion is the same as before and its solution is the same as before.
Now, however, the boundary condition at the edges of the active pile is
no longer that the neutron distribution should go to zero. This obtains
at the edge of the reflector instead. At the edge of the active pile,
the condition is that ¥ is continuous and that the flux which is A ¢!
is continuous. If we designate with a subscript i those gquantities
approprilate to the active portion, or interior, and the subscript e those
appropriate to the reflector, or exterior, the boundary conditions may
be written )

991 2.993

2390 = A

QOutside, that is in the reflector, a diffusion equation applies and
since there is no reproduction this is the eguation '

2
1y o ff —
?e e/Le - 0 °

The solution of this equation is a hyperbolic function. If we suppose
that the edge of the reflector is at a distance £ + T from the center
(£ = % thickness of the active pile and T the thickness of the reflecﬁor),
we may write

¢, = B sinh <.:‘e_nl..-_?_i.)
Le

for the solution in the reflector on the right. It may now be seen
that this does vanish at the outer boundary of the reflector. Applying
the conditions at the boundary of the active portion and the reflector,
we obtain

it

Acos (£VYZg)

B sinh (T/Lg)
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From these the constants A and B may be eliminated and the following
equation results:

-(if—i,)-_- L cot 2774

S tanh(L‘)
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at the boundary. This quantity is the linear extrapolation distance,
thal 1s to say, bhe distance beyond the end of the active piie at wiilch
the curve'for_?'inside comes down to zero if its extrapolation is a
straight line. The equation itself may be solved for £ which is then
the 3 thickness of material needed for the reaction to go and gives

The gquantity in the square brackets is very small, as may be seen as
follows. The tanh (T /Le) is less than 1. ;ai/g, is a small number and
the »<= is so small, we only wish it were bigrer, that its product
times L, is never large. C(onsequently, the cot=L may be expanded in
series. The series for small x is

' 4_1 ..» X
Cob 7 X T e x4 ceroos .
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The first term in 4 we note is just equal to the old-value of the critical
% thickness. The further terms are the saving if we define f = {, - £

: fom . -~ “3
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o ChN = T, tanh(-w — S ceaesoos N
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The first term of this expansion is identical with the linear extrapolation.
The other terms bring in the effect of the finite size of the pile, that
is to say, of the curvature of the neutron distribution inside the pile.
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These higher terms are very small and even under rather radical
assumptions would not for a graphite plant give an effect greater than
6% in the thickness saved. : ‘

When the thickness T of the reflector is small, the tanh (T/L_)
is approximately equal to T/Le and the linear extrapolation, or the saving,
is approximately equal to ( 4./ Ae)T, that is to say, for example, that
in graphite piles with graphi%e reflectors a small reflector acts as if
it were lattice.

Actually, of course, plants are never built with any infinite
dimension. The shape which is most economical of active substance is a
sphere. Because of the (ifficulty of construction, spheres are not
usually used. However, the linear dimensions in three directions are
approximately equal in all systems which are normally under consideration.
Although the effect of the finite thickness is not great, the effect of
finiteness in the other two directions is not negligible. In order to
illustrate how this enters into the calculation, we will carry through
the reflector theory on the same simple model but using the sphere instead
of the slab. In this case the
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and it is convenient in place of 7”tp use the ¥ = r % . The equation
for the active portion becomes

2/.5‘,” _M =0
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anc the equation in the reflector,
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Using - A =

5 this is an exact parallel to the case treated above.
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The boundary conditions in this case are again the continuty of ¥ and
of A¥¢t . The first one goes over immediately into the continuity of ¥
but the second one '

It is only the same when A, = A _ . The solutions which must be used
inside replace the cos by tHe -sin° This is necessary since otherwise
there would be a singularity in ¥ at the center of the pile. They are

LA '—fﬁi A sin r V-4
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VWriting the boundary conditions then between the active region and the .

reflector, -we obtain for the case A; = Ag

if

AsinRYa = B sinh(‘i—-\)
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. tan R JTh = - L_ tanh/ L
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The last equation may be solved for R using a tan™1

expansion for small
angles. The tan~t is

X3 X5
X-'§— -i--g--r- ..........

Here we are dealing with a small negative quantity and its tan’l is

therefore

2, %
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Tt is,. therefore, possible to write -
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R=. fl L-v.«,g, Lo tanh !

A - ¥=4 Lg tanh (T/L.) + , =8)ma Lg tanh(l_s 3
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In order to find the amount of saving, we will have to subtract this -

quantity from the critical radius of the sphere with no reflector which

is

/T;!

Rc =
° VTA

The rest is that the saving

d = R, ~-R—L tanh( Hbl-. .{L tanh({esz‘ri'”‘}]

exactly as before., This formal similarity with the previous case is,
however, not general and it -is somewhat misleading. The first term is
not the extrapolation distance for ¥ but that for b > and in the ‘case
where A i # ). , the second boundary condition becomes

e
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which with a little algebra can be shown to result in

_Lanlé._)/"‘""/\ T L )

D —A—-—-L. tanh [ 2w

YA b e <Le>Llf(1-.i_j:)u§tanh(%—)§J
e * He

;’i& T 1 - AL e L
P Let %Le){h(l— “\Il;@tanh(%.)g{l 5 "eLetanh( e)l-r(l- -i—igﬁtanh(m\x T
e e °

It now appears that only in the case when )‘i = A _ is there no correction
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for finiteness in the leadlng term. The amount of the correction for
finiteness in this term depends on 1 - A, /ﬂA « The formula which we

have written involves R itself which is unknown, and in fact is
essentially what we are trying to compute. However, it involves R only
in a small correction and if R, is used here in place of R, the error

will not be great. The J computed this way will be substantially accurate;
and it may be improved quickly by successive approximation, substltuting
the new R in the formula at each- stage.

On the basis of the general type of theory we have discussed
above, it is possible to get an idea of the relative effectiveness of
two different reflectors. - In the formula for saving, if we consider
only the leading term and omit the corrections for finiteness, those ’
factors which depend on the material of the reflector are:

Le T
— tanh(w—
7. ()

and the ratio of the amounts saved by use of two different reflectors
can be found in the ratio

L
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For thick reflectors, the value of the tanh will be approximately 1 and
e/)L is a measure of the goodness of the reflector. In its present
form, thls says that the longer the relaxation distance and the shorter
the thermal free path, the better the reflector is. This may also be

stated in another simple form. Since ,
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that is to say, it is proportional to the square root of the number of
collisicns made before capture in the material of the reflector. A
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better reflector is one which turns back into the pile a larger fraction
of the neutrons which escape from the active edge. That is, it is made
of material which has a high albedo. From this consideration one would
see that a high albedo goes with a large number of collisions before
absorption. '

Consider for a moment one of the deficiencies of the theory
as developed above. Ve have considered that all neutrons are born
thermal, actually neutrons are born fast and have to slow down. While
they are slowing down, they are not absorbed so rapidly and the effect

‘of the fast neutrons then is to increase the number of collisions before

absorption. (Consequently, the reflector will be expected to be somewhat
better than we have calculated. By approximately calculating where the
neutrons become thermal and solving the diffusion equation for thermal
neutrons with this source function, a more dccurate theory may be
developed. The slowing functions have been calculated by several people,
and in one case their application to reflector theory has been carried
through numerically by Fermi. The case which he did is that of = semi-
infinite graphite pile with a graphite reflector. He found only a
slight change. ' :
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