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IV. Diffusion and slowing down in a reacting mediun

If k > 1, the chain reaction will be just self-sustaining.
provided the leakage 1s not too large. The leakage depends on the
surface to volume ratic of the pile; for a given geomeiric shape, the
leakage therefore becomes smaller as the size of the structure increases,
After the structure reaches a certain criticel size, the leakage will
be sufficiently small to allow the resction to be selfl maintaining.,

To calcula.,e the critical size, in the case of say, a sphere,

we start with plle squation wiith k > 1
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or, for a sphere, -’
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There' are two solutlons which satisfy the poundary condition nv = 0 at
r =R.. First there is the trivial solution

ny =0 -

which 1s the only stationary e=clution which satisfies the boumgary
condition if the curvaturs of the distributiom {i. e., k = 1/} is teo
small or too large to bring the neutron density to zero at the boundary.
The seccnd solution,
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will be & non trivial oolut:;.on {# 4: 0) only if at the boundary r= R
nv = 0. This will be the case if and only if
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This is the formula for the critical radius of a chain reacting sphere,

For a chain react;mg, cyln.nder {radius Tos height h), the p:;.le
equation may be written A
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The solution whlch vanishes at the boundary of the cylinder (i e, at

r=r,, 2 =in/2) is of the form
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where, in order for nv to satisfy the differential equation, we nmust
have by substituting into the pile equation
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Compar"inglthis with Bessel's equation
Jo' b l/x‘%" # JO =0,
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we see that the original expression for n¥ is a non-trivial solution of
the pile equation provided :
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PROBLEM X:  Show that ths critical length; L, of a reacting cube is
given by -~ ' ' o o

PROBLEM 2:  Show tbat for a rectangular parallelepiped of sides &, b, ¢,
the CrlblCdl damen»lons are reLat@d by :
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PROBLEM 3: ~ Show that if tlie length of each edge of a reacting cube is
o changed Qy a certzin pericent, the required - Aof the suruciur@ is changed
.. by tw1ce vhis per: cﬂnto.'_ ‘

PROBLEM ke 2F1nd the critical radius for a cylimder for which k «.1"oa5
U< = 650 cm h =7 meters. If h is reduced to 6.5 meters and ¢ and M~
remaAn the same, what k 1s- requlred to maintain the react10n° '

Optimum dimensions for a cylinder

N For a cyllnder the smallest volum@ which will chain react can
be\calculated as a straightforward maximum-minimun problem. Thus, in
eneral, the volume V is

v=-«g-§;rc2h
and the-cfitical condition is
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To detemlne minimum volume, we dlfferentlate and put dV’ = 0

°0

3(?r + hA )? 405 w 112 45"52 jaéhé‘.‘___ o

dh (n’ _'+ n* A)

: 2 2
o o -3("1' + h A) + 2h £y =0

:’_3,;“5 at minimum volwze
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© from which we get the minimum volume;

1
I V= 48,3 (- /_"_\)mB/ 2 % for optimum cylinder.
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Note that critical volume is proportional to the 3/2 power of 1/ .

This follows directly from dimensional argumenis; since g, has the
dimensions {length)~<.

PROBLEM: Show that volume of a chain reacting cub2 is (3w )j / 2( A)QB /2

of a chain reacting sphere is

W3 . 1. ﬂ3/2(°3)a3/2 o
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