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SLOWING DOWN AND DIFFUSION OF NEUTRONS

Neutrons drop from 3 - 5 Mev (vel. 2 x th km/sec) to thermal
energies (vel. 2 km/sec) primarily by.losingbtheir KE in elastic |
collisiohs_with stationary nuclei.
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Two exceptions are the cases of 1.) very fast.neutrons, 2.)
very low energy neutrons. The very fast may effect an inelasti;
collision, with conseguent ;earrangement of the nucleus,emitiing &

I -ray. This case allows for'muéhlmore rapid énergy loss, but it is
important only in heavy elementsa Again, at very low energies, the
neutron does not have enough KE to free an atom from the chemical
bonds holding it to its neighbors, so that the neutron effectively
rebounds off zmf the WholeAcrthal; this effect occurs from 1.2 volts
on down in graphite,

In the equilibrium state, neutrons have approximately egual
probability of gaining energy from or losing energy to lattice.

Since low energy neutrons are absorbed very ;apidly, the Maxwell

distribution of energies expected in the equilibrium state is distorted,

so that neutron teﬁperature is greater than the lattice temperature.
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10SS OF ENERGY IN ELASTIC COLLISIONS WITH - ATOMS .

1. Collision with hydrogén - mass equal to neutron mass
‘Considering the proton to be stationary and the neutron to
have a velocity of a, assume:

proton at rest 1.) Conservation of momentum: v + u = a
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. " . 2.) Conservation of KE: mv2 , mu® ma®
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N a proton 2 2 2
at rest

.°. © must be a right angle and vectors
will slide on a circle, bul n will
never.bqunce back. .
Here the minimum final KE of the neutron occurs when the neutron is
stopped, whereas it has a maximum energy equal to the initial energy.’
A1l energies afe equall& likely since in the center of mass
systeﬁ all directions of recoil’ are equally likely. (In the c. of m.
system mv = O; therefore, only rotation is possible. Here tﬁe n may

go backward after a collision.) Then the chance to find any recoil

(arithmetical) averége energy loss is Eo/2.
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I', Angular distribution in proton collision.
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If the energy values that the neutron has after successive
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collisions are plotted, the result is that the values of the KE at
) ' : :

thermal energies will be crowded closely together _,/‘\\J/“\V/“\fﬁ¥?7ng @g %
: _ NG e



since the neutron loses 1/2 of its energy each collision, on the average. -
It 1s much more convenient, therefore, to use a logarlthmlc scale.

The average logarlthmic energy loss per 001115101’1, § ,' is

defined by:
£
| —— [ Tg, bdE
§ = Jlfnégz-" = £ :’ for hydrogen
| 3 *JE
l
2. Collision with a heavy atom, mass A:
Lab_system . ‘
: _ ' _ln oy Aﬁ
Mass 1 mass A, at rest Position of ¢. of m. =/P: [+ A
——— @ .
2 ‘ Vel.ofcvofm.r'-\j;f‘: &
1+ A
C. of M. system
before collision :
& /% wselfom
after collision -;—--\—@--: +e-'-\-é_—-- where v = vel. of mnetews
£ T TE . '
-and subscripts refer to c. of
Fipo b .-
oy 4 . Systemc
From sonservation of momentum, v g = A_}_;p
w

From conservation of energy, ¥ 2 +-_gg2 A+ (A+1) V2= a2

from which vg Ta A
: A+1

Hence the range of velocities of the neutron after collision include a

. A a ﬁa I~ A
minimum V-=a= 2, = 2
s A= Py ﬁﬂ A'ﬂ s e
and a maximum;, A~z ye A 5 . g '
A‘H

Thus agaln, if 211 dlrectlons in the c¢. of m. system are equally

probable, (thls is not Lrue for very fast neutrons)
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or using the approximation
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To obtain the angular distribution in the laboratory system from
Figure .

aroome © =M+

P =
1
giving tan® _ A &
14- A cnd &
and cos
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Hence the average value of the cos of the angle of scattering is
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SLOWING DOWN (OR AGING) EQUATION (GOOD FROi SOURCE TO THERMAIL ENERGIES)

Consider neutrons in a region where the density in space is
uniform. Assume that every neutron with energy E has experienced the

same number of collisions, and that to reach this E a certain time must

have elapsed since leaving the source. (Actually, a spread exists, and



if this process is to be treated as a continuous one there must be many
colliéions.) Then, if there is a constant supply of neﬁtrons, and if
there 1s Wm, the number of neutrons entering an energy range
A (1n E) is equal to the number that leave per sec. |

Now the number in the range 4 (1n E) per cmuB is

n(E) 4 (1n E)/em® = number entering/cm> sec. x time to
o ' , Cross range

q (E) x number of collisions to
cross x time/collision

q(E) x aln E x A

v

A(h:f")
where q(E) = slowing down density
= number of neu.’c.rons/cm3 sec. éntering a given log energy range

From the last equation we have

q(E) = @n(E) y_ and Fick's law will hold for it.
2 _ .

o o D Aq = aQ/Bt,

which is difficult to solve directly because D is a function of time
[ D= Diy) ]

Hence the substitution

,D(E)é‘o =47 is mede, where T is (Fermi's) "age" and has

the dimensions of lengthzg However, using the relation on a previous page

1T = A, 4t = a(_A_l; s ! .’S.. ...l- A E
3 -G 3 r-me V&8
. . Time required to

cross range d (1nE)

or,
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Integrating this equation with the boundary condltlon that initially
Tz o, |
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using the

Since, the distance the individual neutron travels -.\#f one may relate T
to the displacement, r, of i:h_e neutron from its 'in:x.tlal position by

THEORY OF THE RANbOM WALK _
£ lfé/f f 33 /"L )C = displacement of the neutron
i = oo e S _‘7' | between any two successive
y S collisions
2* ‘-'(Z £l
But1
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[’ f)becomes zero for heavy elements, since here the distribution
afber collision is isotropic.

Since the probability of making a
collision at the end of a displacementpis the product

probability of surviving a distance f. probabllity of making a
collision during distancegp =<

de/y
from which we can obtain the average value of f
: 0 3 ~£
£ rFe 7 Ir/ s a2y
o0 -’fj( o
[ e 4 Jde/s
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so that
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