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C. 2 Application to diffusion length measurements Jid Lo, S . o

’ / 7—,'
4t great distance from source, mno proamtmn7 S sufevisof ABORATORY RYGORDS,
of thermal neutrons. Hence
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Hence from measurement of ¢ (and a) cne can gel ‘,&5{%0 Hote that
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is the constant valne \bwh the normalized Laplacian has; the quc.nti‘t?

é{i is a measure of the curvature of n at each point. It is positive

for absorption, negative for production,

To consider higher harmonics, suppose distribution in z = o

‘plane is n{x, y). Then we can expand n(x, y) in a Fourier series:
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This is somewhat academie as it stands becaunse a‘bure
primary thermal source is urknown. For point sources, n(x, y, o) is
a d ~function, ¢ (x) dx) =0, x 5 o
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' C.3 Actual determinaticn of >
. D In practice cannot make m°asux‘emmts only where n's am
) thermal. In this case,
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hAnv ~ W +3 g=o

where q < number becdming thermal/ cm%sec & "nascent therwal densit;
If cd. sheet is placed at x = o, have effectivaly placed a sink at
X = 0o, HNew tnerma.l disv..mbutmn, n'v obeys

An'v - 3’ v-;.%c q =

Intréduce W E n = n'y, then.
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which is identical with C. 2 (1) and so can use same equations as in
C.2. Hence by measurement with -and without sheet can elmnate effect

of go This is method actually used for measurenent of Ti,

Exercise: Find the distribution of thermal neutrons far {rom
the source in an infini te.&y iong block of diffusion length- v, ifa
“sandwich" of thickiess [ of a mdt,e,rla.L with different diffusion
iengti n] is inserted. '
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Exercise:‘ Find the distribution of thermal neubrons in a ‘
finite block of length { for a point source at x =y = 2 = o,

Corrections in formula for ¥t

1) Absorption |
Y= N v/ 3@“& (1 - Cra )
=

2) Forward scatiering (isotropic scatiering in g. of g.
system) and absorptien '

M = Ny35%8 (1»_@, Cfg)(\/l'—é?é’“é)
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cos & =2_ . M = mass of scattering atoms
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If scatterer is a "molecule", O cos_..e gB_ ( Ty + ‘52)
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This is valid outside rsgion of chemical binding!

" To derive cos ©

% = angle in c.g. system e=g¢ () - o

= angle in lab., system

S
cos 8=1 /S cos 8 d(cos @) =2_, since
' 2 - 1 3A
cos 8§ = L+ A§3§ L (Thia may be left as an
(14 A + A cos ‘P) : exercise.)

In previcus derivation of D, assumed that history of .
particle before it made collision in volume element dv was immaterial.
Actually those which came from right direction on previocus cellision
are somewhat more likely to ¢ontinue in right direction on next
flight., Moreover, if there is n gradient, then weighting in right
direction due to those from above dv more than compensates weighting
in wrong direction due to those from below dv. We could thus
calculate velocity vector dlstrlbution out of dv. and from that the
transport equation,




The result of this calculation is that
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and Yiis changed correspondingly. The quantity

A
vl - ¢cs @
is often called the "t,ransport“ mean. free path.

3) Boundary correctn.on

"Augmentation length = A/ vV 3. Can get A from this.
This correction arises in cons:.clering transition from diffusion to
"transport” flow, where A is feirly apprecieble. At a boundary with
a perfect absorber, coandition is. that Fick's law flow and transpori
flow must match., .

- Problem: Show that in 2 dimensions ths diffusion coefficient.
is given by D = Ay

N

Note on l-dimensional diffusion. (Seq Bethe, Rev. Mod, Physics, Vol. ,9}
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Suppose r é.tqms move to right, X to left. Then
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. In one dimensionsl . w{' analysis, the boundary correction
turns out to be just M= (instead of M /¥ 3), since at a boundary (on right)
there are no L particles; hence, from equations (1) and (2)
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. - (949 ) n  at boundary
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Hence extrapolation distance is just M ih 1-dimensional modsl.
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