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38TRACT

The statistical aspects of radioactive counting are discussed
wvith reference to:

1. ZHstimation of the accuracy of counting rate
determinations.

2. Description of countinz procedures which will
minimize errors due to. the randem variation /
in the radiocactive disintegration rate.
Tables aﬁﬁ graphs have been orepared as alds to the calcualtion -
of the magnitude of these variations and are incluﬁed in the
report.
In addition to the fluctuations expected in the counting rate
of a radioactive sammlg due to the randem nature of the disinto-
gration orocess, there are other variables affectin; the counting

rate determination, WMethods of determining the »nresence of this

additional ervor are described,



TABLE OF CONTIWTS

Pase -
INtroAUCtion + « o o v v v e e e e e e e e e e e e e e 1
The Zrrors of Countine Determinstions .« « « « + . . . . 2
The Erfors in Countine Rate Determinations . . . . . . . 12

The Error Introduced bv the Backround . . R 15

The Error of the Product or Quotient of a
Series of Countines Rate Determinations s e s e s e . oa 21

The Error in the Sum of a Series of
Countin” DeterminatiOnS L L L R L L I 23

The Error in the Mean of a Series of
Countine Determinations )

The Error in a Result Computed from any
Function of Directly Measured Quantities .« . . . . . . . 28

Minimizine the Error Introduced by the
Backeround by the Efficient Distribution

of Countins Times ¢t ¢+ v s e e ae s e s e s s s s+ e s 30

Determinatibn of Non-Statistical Counter
BehaViOT ¢ ¢ e 2 e 4 8 v s & b ® B e 2 s s v s s e & » 33

Rejection of Suspected Observations.s + o » o « « o« o . o U1

Biblio”raphy L N I T e I N L I R R R -'uh



II.

111,

Ve

Vi,

TABLES

A Gomparison of the Poisson and the
Gaussian Distributions. + « ¢« « v + o &

The Probability of Error with a
Gaussian Distridbution « « o o« o o o »

~

Summary of the Errors Most Used in

Statistical Analvsis, o« o v 4 v 6 o o o

Probability of a Statistically Reliable

Differenca. « v o v ¢ ¢ 0 o o o ¢ o o o,

Chi-sauared Test of Variation . . . ;,,

Chauvenet's Oriterion of the

Rejection of Suspected Observations .+ .

- 10
35
38

it}



Fisure
Fisure

" Fieure

Firure

Fisure

Firsure

Firure

Fisure

Firure

Fimure

Fieure

‘I

10"

11

13

14

LIST OF FIGURES

The Gaussian or Normal Distribution
as an Approximation of the Poisson
at an Averave Value of 20 R

Probabilitv of Countine Error with
Gaussian Distribution v e e e s e s e
Graph of the Error of Countine
Determinations & o ® & $ 3 e s » e e

Nomorraph of the 0.9 Error and the 0.95
Error of Countine Hate Determinations . .

Nomosraph of the EFrror of Countine
Determinations .« o o & ¢ o o o s o o o

Nomoesravh of the 0.9¢ Error and the 0.95
Error of very Low Countin® Rates in
which the Backrround 1% an A)Dr@cLable
Fraction of the Total Zount.n~ Hate . .

Nomosraph of the 049 Error and the 0.95

Error of Low Countine Rates in which the
Backeround is an Appreciable Fraction of
the Total Countin™ Rate o & v & ¢ o « o

Nomo~raph of the 0.9 Error and' the 0.95
Error of Countin~ Rates in vhich the
Backeround is an Appreciable Fraction of
the Total Countin® Rate o v o o v o ¢ o &

Nomovraph of the Zrrors of Countin® Rates
in which the Backeround is an Appreciable
Fraction of the Total Countin~ Rate . . .

Graph ShowinZ the Most Tfficient Distri-
bution of Countin™ Time between Sample
and Back™round « v v 4 6 . 6 6 s 4 o s e

Nomoerzph Showin® the Most Efficient
Distribution of Countin~ Time between

~Sample and Backerouwnd o« « o 4 4+ 0 o0 . o -

Sirnificance of the Spread between Two

Countine Determinations on the Same Samvle

The Chi-squared Distribution . . « o o .

Chauvenet's Criterion o « o o o o «

After Parce

.. b
..o 12
. . 13
.. 1l

. 17
.« o 17
. . 18
LI ] 19
e . 31
.. 31
« . 35
. . 38



INTRODUCTION -1

The improvement of radioanalvtical techniques has led to more
complete utilization of the information available from the laws of
probability in order to correctly intérpret results obtained by
countin® methods and also to increase the accuracy of couﬁtinﬂ rate
determinations. It is because of the fact that individual nuclear
disintesrations are independent of one another and nuclei disinte-
srate randomlv that the laws of probablity can be applied.‘

This report intends to describe the statistical aspects of
countin® with reference to:

1. Estimation of the accuracv of couniin® deter-
minations,

2. Description of countin~ procedﬁres which will

minimize errors due to the random nature of

the radiocactive disintesration process.

It has been written in the nature of a handbook of the methods most
frequently used for the statistical interpretation of countin~ dat;
and contains tables and ~raphs as aids to the calculation of statis-

" tical constants. An attempt has been made to keep all theoretical
considerations to a minimum compatible with an understandin® of the
practical ap%lications.

In addition to the flucturations expected in the countin~ rate
of a.radioactivo sample due to-the random nature of the_disintecration
process, there are other variables affectin® the countine rate which
tend to increase the actual error made in a countin® rate determination.
Methods of determinin® the presenée of this additional e;ror are de-
scribed in the last section of‘this report. An investi”étioh of the

sources of these other variations and the statistical methods used in

their investication will be described in subsequent reports.



THE ERRORS OF COUNTING DETERMINATIONS \

In addition to the continuous decrease in the averaZe emission
“rate of a fadioactive sample due to the decay of the samnle, thg
actual rate is éontinuously fluctuatin® because of the random nature
of the disinterration précess. Thus, a sefies of similar countin~
determinations made on_the same raéioactive sample will, in ~eneral,
all be different and will be randgmf& distributed about an averare
value. Beqause of the fluctuatine rate it is not correct to speak
of the true ratec of disintesration (which implies no‘'error in the \
determination of the actual nuwber of particles counted) but rather
it is more proper to spcak of the true averase rate.

Sﬁgtistical laws may be used to estimate how well an observed
countine determination represents the true averace vezlne. The actual
difference between an observed count and the true avera”e value is
célled the error of the determination., It is possible to determine
the frequency of occurence of an error of‘aﬁv ma”nitude by the appli-
cation of the laws of probadbility. A énmplete derivation of the 1éws
cfovernin® variations én radioactive countine based on the laws of prob-

1 and also By Fry.2 By approximations

abilitv, is =iven by Rasetti
‘which 2re valid in most countin® determinations, it is shown that the

probability of occurence, P(n), of anv count, n, when the true average

1. Rasetti, Elements of Nuclear Phvsics, Prentice-Hall, Inc., Wew
York, 1936, pp. 32-3%5

2. Fry, Probabilityv and Its En2incerin® Uses, Van Nostrand, Vew York,
1928, pp. 235H-237

I



count is r, can be predicted by Poission's distribution law:

) __@ﬂ’z-n
P(n)- ni |
If we make a larfe number of similar determinations of equal time
~

duration on the same sample, this formula tells us in what fraction
of the total nﬁmber of determinations we should expect to observe
Zero, one, two, or more counts,

Numerous statistical and,ﬁractical considerations make it de-.
sirable to use the CGaussian, or Normal, distributien rather than
the Poisson distribution in the consideration of countins statistics.
Statistical properties cnlculated from snv set of data may be com-
putéd more easily if the data are considered representative of a
,Gaussian distribution, If_the number of particles, n, counted in a
glven time interval is lar~e, it can bec shown, by a‘transformatiqn
of the Poisson distribution law, that the probability of occurence,
P(n), of values of n near the true averare, r, may be appro#imated
by the Géussian probabilify, G(n), distribution:

a-n)

Y

e I
\7(7”'\/2,777e

If the true 2 verage count, r, of the particles from a certain
source is 20 counts in a #iven interval, the Gaussisn probabilitv,
G(n), that n will actuallv be counted durine a sinele similar deter-
mination is shown in Table I. Also shown in the table for comparison

are the Poisson probabilities, Pn).
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TABLE I

A Comparison of the Poisson Probability, P(n),
and the Gaussian Probability, G{(n), of Observing
n Counts During a Single Determination on a
Certain Source Whose True Averafe Count for a
Similar Determination is 20 Counts

n G(n) - P n G(n) P(n)
0  0,0000 0.0000 20 0,0892 | 0.0888
1 ©.0000 0.0000 21 0.0870 0.0846 ,
2 0,0000 0.0000 22 0.0807 0.0759 :
3 0.0001 0.0000 23 0,0712 0.0669
Il 0,0002 0.0000 ol 0,0R0% 0.0557
5 0.0003 0,0001 25 0,0u78 0.0446
6 0,0007 0,0002 - c6 0.0377 0.0343%
7 0,001 0.0005 27 00262 0.0254
g  -0.002 0.0013 o8 0-0180 0.0181
9 0,0043 0,0029 29 0.0118 0.0125
10 0,007% 0.0058 30 U 00T 3 0. 0083
11 0,0118 0.0106 31 0. 0L3 0.005k
12 . 0.0180 0,0176 32 0. 0G24 0.0034
13 0,0262 0,027 33 0,0013 0.0020
14 0.0377  0,0387 34 0,0007  0.0ul12
15 0.0478 0,0516. 35 0.,0003 0.0007
16 0.0798 0.,0646 36 0,0002 0.0004
17 0,0712 . 0,0760 37 0,0001 0.0002
18 0.0807 0. 08Uk 38 0.0000 0.0001
19 0.0870 0,888 39 0.0000 0.0001 S

To see_just how sétisfactory-this approximation is at 20 counts,
refer to Figure 1, in whiéh the‘probabilities of the Poisson distri-
bution are compared with the probabilities of its Gaussian approximation.
The discrepancies between the Poissqn probabilities and those ?ivgn by
the Gaussian law are apvreciable in every case, but near the center of

the ranfe, where the probabilities are high, the percenta®e error would

not be of serious consequences for countin® purposes. Near the tails,
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however | the percéntafé sfvor is Vééy iar#é and the Gaussian approxima-
tion should not be used in those re~ions.

Suppose we counted a sample for a “iven len®th of time and observed
15 counts. . If the true avera”e count on that sample for the same time
interval is 20 counts, we find that the CGaussian probabilitv of observ-
inZ 15 counts, from.Table I, is 0,0478., This means we should expeqt
to obsegve 15 counts about 5 times in 100 similar determinations (of
equal time duration) if the true averare for a single determination is
20 counts, This particular result is thefefore not verv likely. How-

- ever, by flancin® over the teble, it is seen that no other result is
much more likelv, ZEven thé protability of observin® 20 counts, the true
avefa”e velue, is onlv 0.0892, Obviously under these circumstances it
is unfair to assume thét_lB counts is an unreésonable value to observe,

The question that really presents itself is not how likely aré we
to observe a particular result, e.2,, 15, but how likely are we to ob-
serve anv result equallv, or less probable, than 0.0L78.

Becquse Qf the syvmmetry of the Goussisan distribution curve, this_
would be equivalent to determinin® the prooability of observin® any
result differin” from the true avera®e by more than five counts. If
the error is called q;‘where q = r-n, and the Gaussian proﬁability of

observing a particular error, q, is G(q), then:

) o S g
b(ﬂ):zj (;,[h): ﬂ?f e 2

~and the summation probabdbility Gs(b) for the error to be largfer t han



a particular value of q, sav b, is:

SIS PV A
WA\ DS T SR S A
-\ Ly /‘f'ﬁ ’//b o oG

This equatinn, by a change in variable, can be put into a form

L4
~.

for which tables are availavle for evaluating the integral.

‘Bet' ;f = ﬁ(V/ET- where r is held constant:‘
Then
and
Thus - e i '_::
s ()= ( G

-‘ [,
The definite integral adbove has been evaluated with the aid of

s

tablesB, and the probability (_j;\ﬁﬁvff'/- LJ /of observing an error
ol

larger than i :ffz/?; ‘for various vslues of ¥ is shown in Table II,

Other values oP'\ and. 7(\f\ / Y /, mey te found on the gravh of Figure

2, which plots / Vs i LJ (%\ / Y /) or in the litersture,>

3. W.P.A., Tables of Probability ﬁuactlop , Volume II, Washington,
D. C., 1942 :

Frv, op. cit., pn. L53_UR5"

Peters and Van Voorhis, Statistical Procedures and Their Mathematical

Bases, McGraw-Hill, New York, 10U, wo. Lzs_lLgy

Crumvler and Yoe, Chemical Comoutatinns =nd Errors, Wilev, FWew York,

S 1oW,, ». 232

Blair, Elementarvy Statistics, Holt, New Yorls, 194l, p. 650

Croxton and Cowden, Applied Ceneral Statistics, Prentice-Hall, New
Yorlk, 10, p., 273

rlsher Statistical Methods for Research ”orkerq, Oliver and 3oyd,
London, 1944, v, 77

Lanze, Handboolk of Chemistry, Handbonk Publishers Inc., Sandusky,
Ohio, 19&1, DD, 2R7-260

Hedgman, Handbook of Chemistrr ond Phrsics, Chemical Rubber Publishing

Co., Cleveland, 10WLL  wn, 200.7uk
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Tnble II

Probability of Error with Gnussinan Distribution -

(%s(g) :(}S(l(/;jis the prob-bilitv of

observing an error lar®er than g= KV'r

K

0,0000
0.6745
1,0060
1.64k9
1.9600
2,0000
2,5758
3,0000
3,290h
3. 2206
4. 6000
Y. kive
4.%016
5. 0CO0

/

(}5( KJ77)

1.0000
0. 5000
0.3173
0.1000
0, 0500
0.0U455
0. 0160
0,0027
0.0010
0.00UL
0. 006006
0.00001
0. 000001
0. 0000006

In the exanplec under considerntion, the probability of-observin®

a result in error by more than 5 counts when the true avernfe is 20,

—

1
is cnlculated by solvin® for K in the expression X = g/r? and findin~

the value of the probabiiity from Fisure 2, thus obtr-inin” 0.3711.

That is, there ~re 3711 chonces out of 10,000 of observin® a result

equally or less probable than 15 counts durin® a sin®le determination

of a count whose truc ~vernfe for that determination is 20 counts,.

Because the probability of dbservin? a result at least as unlikely

-as 15 is 0.3711, which is quite larfe, we can assume that 15 is a

result which mi“ht reasonsbly occur durin” a “iven interval due to

chance variations in the disinte®ration rate of a sample whose true
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avera®e count for that interval is 20 counts. It could also be
shown that there is a verv definite chance, 0.0253, of observin?
a result whiéh is in error by.as much as 16 counts in a sin“le
countin® determination of a radioactive source whose true avera®e
is 20 counts for a similar determinatiom.

In practice we can arbitrarily select a limit of error, SOme-
times expressed as a percenta®e of the aFerae &a;ue, and calculate
the probability that t he observed value is in error by at least t he
amount of the selected error. If this probzbility is small, the
observed count is considered acceptable as a reliable estimate of
the true averae véluea If the probability is lar”e it is necessarv
to accumviaie more data until the probability bepomes low enou®h |
-~ to be satisfuctery. The problem thus becomes thet of determinin®
Just how smail the probability should be before we can reard chance
Variations as hevinZ been virtﬁally eliminafed as a factor in the
determination. v

Standard statistical practices usually set this probability
limit at 0.0% and for more rigid interpfetations at 0.01. TFor |
seneral radiochemical ap-lications, this probabilitv is commonly
set at 0.10. There are nine chances out of ten that tbe actual error
of a determination will be less thén_the error havine a vrobability
1imit of 0,10. For this'reason an error having a probability limit
of 0,10 is guite often called the nine tenths error. This error may

also be expressed as a fraction of the averase count and is then
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called the fractional nine tenths error or as a percentage of fhe
averafe and called the percent nine tenths error. Similarly, errors
havin® probability limits of 0.05 and 0.01 are called the ninetv-five
hundredths error and the ninety-nine hundredths error, re's,pecti'vely.)+
The ?robable error is standard nomenclature desifnatin? the error
with a probability limit of 0.50, The standard deviation is the
error for which K equals 1.0000 with a correspondin® probability of
0.3173 and thus in countin® is numerically equal %o the square root
of phe true avera®e count., Probability tables are usually computed
in terms of miltiples of the stendard devietion. Because of the
limitations imposed by assumin® a Gaussian approximation to the
Poisson distribution, the values of X in Tabie II and Firure aishould
not be ﬁsed when the true averae count of a determination is less
than ten counts,

The most satisfactory level ofvsi#nificahce of all is to as-
certain the probsbility that a ~iven deviation misht occur becapse
of chance, and then deci@q whether or mnot chance has been reduced
to a low enou?h level for the ﬁarticular problem at hand,

EXAMPLE .

The nine tenths error of a sinfle determination on a
radioactive source whose t rue averace count for this |
determinetion is 20 counts, would be 1.645 x 20 = 7,356-
counts. The fractional nine tenths error would then be
74356/20 = 0,3678 and the percent nine tenths error,
therefore, 36,78%,

Table III summarizes the discussion of the most important errors

used in statistical analysis.

4, Othef error limits of varinus probabilities are similarly designated.



Namé-df~£rror

. Table III

Sﬁmmar& of the Errors Most Used in Statistical Analysis
(In the table below, n is.the total number of observed counts)

Probability of Observing
Error as LarfZe as or
Larfer than Error

Named in Column 1

Limits of Error
in Radiochemical
Counting

‘Remarks

Probable Error:fx

N
BN

e
» T
e FEES

Sfaﬁdéférpev;éfidn;

Nine-tenths Error

-Ninetv-five ,
Hundredths Iirror -

Ninety=Nine
Hundredths Irror

0. 5600

0.3173

0.101.0

0.0500

0.0100

[

0.6715(n)3

1
1.000(n)=

1.6&5(n)%

1.96(n)%

2.576(n)%

~all kinds.

of si#nificante.

e
¥

Quite commonly used in scientific work of
Eeconmin® obsolete from a sta- =
tistical standpoint. One half of the value4
in a series of similar countinf determin- |
ations will be in error by less than the Q

e ad

probable error,

Most used statistically since most sta- z
tistical stables are computed as functions *
of the standard deviation. Usually
symbolized as the Greek letter sicma.

Commonly used in rediocountinf. Named
because there are nine chances out of ten
that the error will be smsller., Some- ﬁ
times abbrevisted N.T.E. Statisticians y
would call this the 0.10 level of sifnif-
icance but would not consider deviations i
with a probability as hi”h as this very
sifnificant.

qut Commonly used by statisticians as
the level at which deviations exceed
chance variation and thus are considered
si“nificant., Called the 0.05 level of
sig&nificance,

e

Deviations. of this mégnitude may be con-
sidered hifhly si“nificant. Often used by
statisticians -and called the 0,01 level .
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In practice; if we wish to compute anv of these errors, we do
not know r; the true averare count, but rather n, an observed value,
which may deviate, as we have seen, rather considerably f rom'r,
Thus it is necessary, in.order to estimate the error of a counting
determination, to use the observed result as an approximation to the
true averafe value. It is obvious then, thatAan error calculated
from the observed determination would-ﬁot be an obsnlute and invariabdble
quantity which may be reproduced whenever we wish by performing'thé
experimeﬁt anew. Another experiment would verv l;kely Tive us a
different result, All possible results are not equally likely, however,
The values of the error which we fet are Zoverned by prohability
in just the same way as anv other guantity which is subject to random
fluctuations. The maZnitude of these vgriations does not often warrant
the use of more than two si%nificatn ficures iﬁ the value of‘an error,
It shoulf be noted that these variations in the erfor are of a second
order (square root variation) compared to the\variations in the count,
Thus, in practice, the error of a countin” determinaﬁion would be K
times the s@uare root of the number of particles actually counted,
where K is the préportionality constant found in Table II or Firure 2.
EXAMPLE

, The nine teﬁths error of a sinfle determination in

“which 15 counts were recorded would be estimated a

1.6”5 ¢’I§’: 6.4 counts. The fractional nine-tenths error

would then be 6,4/15 = 0,43 and the percent nine-tenths

error would be 43%, If the true averare count of this

sample were twenty counts, this would differ from the more

nearly correct value of the nine-tenths error calculated

previouslv by about 15%, which is not sifnificant for all
practical purposes, ’
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THE ERRORS IN COUNTING RATE DETERMINATIONS

It is cﬁstomary.to describe the'activity of a redioactive sample
in rate terminolocy and thus if n paxtigles.from a certain sample
were observed in t minutes, the countinz rate N of the sample would be

¥= nft
The estimate of thé error.q in the determinstion would be
g=Xn= K VTt
The estimate of the error Q in the determination of the rate is thus
Q= oft = EYTE ¢ 373

The estimate of the ffactional error F in the determination of the

rate would then be

It has been stated that the limit of random error in radiocounting
has been set at the 0.10 probability limits.' This choice is hifhly
arbitrary and hence this limit cannoﬁ be accepted as an inflexible
dictum. Individual cases wili require separate consideration. The
followin® chart, FiZure 3, has been prepared to facilitate the calc-
ulation of the nine-tenths error and other commonly used limits of
error. The-chart was prepared by plottin& the total number of counts
observed, (Nt), aZainst the fractional error, ¥, for various values
of K as a pgrameter, To determine the value of the errbr for prob-
agility limits not shown 6n the ~raph, the value of the percent

standard deviation is multiplied by the appropriate value of K

found in Table II or Fisure 2,

.



FIGURE 3

I /7}

THE ERROR OF COUNTING DETERMINATIONS

A COUNTING RATE HAS b CHANCES OUT OF 100 OF
BEING AS AGCURATE AS THE PERCENT ERROR IF
THE TOTAL NUMBER OF PARTICLES COUNTED IS Nt

A 'PROBABLE ERROR

B STANDARD DEVIATION
C NINE TENTHS ERROR
D NINETY-FIVE HUNDREDTHS ERROR b=95
E NINETY-NINE HUNDREDTHS ERROR

b= 50
b= 68
b= 90

b= 99

PERCENT ERROR

4

TOTAL COUNTS =Nt

N= AVERAGE COUNTING RATE
1= TOTAL GOUNTING TIME
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EXAMPLE

What is the 0.999 error when a 1250 counts per ////
minute sa mple is counted for U4 minutes? !
The total number of counts is, )
Nt = 1250 x 4 = 5000 counts. . .

. From Fizure 3 the percent standard de-
viation is 1.4% The standard deviation is thus:
l.u/lOO x 1250 = 17.5 counts per minute

‘The value of XK is 3,29 for the 0,999 error (as
determined in Table II) and thus the 0.999 error is,
17.5 x 3,29 = 58 counts per minute.
All the advantaZes of Zraphical representation are retained
when countine errors are calculated nomozraphicallv.? In'sddidion

the nomoZraphic, or alicpment, chart affords four definite ad-

vantares over the rectanfular coordinate Zraph:

1. Hifher defree of precision,
2. Less chance for mistakes.

3., Vhen three variables are presented on the same
chart, all interpolations are made alon® Braduated
scales rather than between curves.

U, Unskilled personnel can perform difficult inter-
polations and computations more readily and with
N less chance of error.

Fisure U is a nomofreph which is useful for calculatin® the

0.9 error and the 0.95 error of countine rate determinations from

5 | S )

A detailed discussion of t he construction and use of nomofraphs
is ziven by Davis, Empirical Equations and NomoZraphy,
McUraw-Hill, 1943, ' ‘
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1 count per minute to 100,000 counts per minute, The chart is used
as follows:

Draw a strai~ht line from a point on the left scale corre-
spondin® to the countin€ rate of 'the sample under consideration,
throueh the peint onthe ri?pt s¢ale correspondin® to the
number of minutes thessample was c ounted. The point where
this line crosses the center scale corresponds to the 0.9 error
and the 0,95 error of the determination.

EXAMPLE

What is the 0.9 error of a sample which avera©es
1250 counts per minute durinf a Y minmte determinstion?

A straisht line is drawn on Fifure U4 between 1250
on the left scale and 4 on the rifht hsand scale. The
0.9 error is read at the intersection of this line with
the center scale and is seen to be 29 counts per minute.

Figure 5 is a nomoZraph which is useful'fér calculatinZ the
percent error for probabilit& iimits from 0.5 to 0.00001 and for
any countins determination from 10 to 1,000,000 counts. The chart
is used as frllovs:

Draw a straight line from a noint on the left scale that
corresvnonds to the total number of counts observed (i.e., the
averafe rate multiplied by the total time of countin?) throufh
the point on the richt scele that corresponds to nrobability
‘limits fTor which the error is to be determined. The point
where this line crosses the center scale will correspond to the
.percent error havinZ the desired probability limits.

| EXAMPLE

A sample was counted for 4 minutes and averaZed

1250 counts per minute. What is the 0,999 error?

Nt = 1250 x 4 = 5000 counts, .
A straifht line is drawn on Fi8Sure 5 between 5000 on
the left scale and 0,001 on the riZht hand scale. The
percent 0.999 error is seen to be 4,6% and thus the
0.999 error is:

4,6/100 x 1250 = 58 counts per minute.
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THE ERROR INTRODUGED BY THE BAGKGROUND

In practice the actual countin® rate of a radiocactive sample
cannot be defermined directly but m&st'be calculated by subtracting
the independentlv determined backround rate from the recorded
rate of the sample counted with the backZround present. The back-
eground rate is determined by taking a copnt with no sample present
althou®h a dummy sample and holder may be used in the determination
for the maximum accuracv, Fluctuations in the countin€ rate of
the backZround arise from the same causes and are Zoverned bv the
same laws as fluctuations in the disinﬁefration rate of radioactive
samples. Thus when 10 or more counts are recorded for a back€round
determination, the principles developed in the precedinf section
will applv and the error of the back®round countin? rate determination
can be calculated from the formula

Gy = K19/ 1)

where the value of K is taken from Table II or Fifure 2.  FiBures 3

or 4 may also be used to calculate the errors of a backeround deter-

mination,

Because of the statistical fluctuations in the countin® rate
of the backeround it is not possible to determine the countinf rate
of a radioactive sample as accurately as if no backfround were
present, It is thus important to-aécertaih the effect which the un—
certainties in the countin~ rates 6f both the backfround rate énd

the countinf rate of the sample includinf the backfround would have
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upon the values of the actual rate of the sample computed from these

two quantities. The problem then is to determine the error of the

difference of two quantities for Which the errors can be evaluated.
Beéause the fluctuations in a functioﬁ'of»independently observed

guantities occﬁr in accordance with the same law of error as those

of the guantities themselves, the fluctuations of the difference of

the countine rate of a sémple with backZround and the backfround rate

will occur in accordance with the Poisson law and 2lso its Yaussian

approximation, As a result of the Gaussian theory of the distribution

of errors, the error, y, of the difference of two countine determinations,
N.-Ny, can be shown6 to be:

y = (ng + Q%a)%
wﬁere QS is the error (probable, nine-tenths or anv other) in‘the‘
determination of Ng, the countinf rate of the samvle includin? the
backgroﬁnd, and Qb is the error in the determination of Nb’ the‘

countin?® rate of the backfround.

6.

Croxton and Cowden, op. cit., pvo., 8Suil-gl2
Crumpler and Yoe,'on.-cit., pp..17u—177 '
Peters and Van Voorhis, ov,. pif., po. 160-163, pn. 176-177

Worthin€ and Yeffner, Treatment of BExperimental Data, Wilev,
New York, 1943, op. 206-207 ' '
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But we have shown that

IH

Qs K(NS/tS)%

and

e

“and therefore the error, y, of a countin® rate determination NS-Nf is

B et ,_:,-....'._._i..w.-._._‘..-“ e m e e e s e -
i 9 712 _ i
y = V/T;st/ts)zj + [k(Nb/tb)ej = K(Ng/tg o Wy/ty)2
vhere K is a constant taken from Table II or Fifure 2,
- EXAMPLE
A sample was counted for 7 minutes and averafed
28.0 counts per minute. The backeround was counted
for U minutes and averared 20.0 counts per minute
What 1s the 0.9% error? ‘
N[ty = 28/7 = 4.0 B/, = 20[% = 5.0 K = 1.96
y = 1.96 4,0 . 6?6 = 1,969 = 1.96 x 3 = 5,9 counts
per minute. Thus the result would be written £.0 & 5.9
For rapidity and convenience of calculatioﬁ, the error in the
~ countin® rate determination, NS_Nb, may be calculated nomofraphically.
Fisures 6 and 7 and nomofraphic charts which can be used to calculate
the 0.9 error and the 0.95 error of countinf r-te cdeterminations in
which the backZround is an aporeciable fraction of the total countiné®
rate. Fisure 6 is uséd for errors less than one count per minute.
Fioure 7 is used for errors less than ten counts per minute, The
charts mav also be used to determine whether or not a countin® rate
determination is sicnificantly different from zero, If the 0.95 error
is less than the countinZ rate of the sample after the backesround has

been subtracted, the determination is usﬁally considered siZnificantly

different from zero,



Ng/ts

0.12

‘ = 0.60

INSTRUCTIONS FOR USE:

DRAW A STRAIGHT LINE FROM A POINT
ON THE LEFT SCALE THAT CORRESPONOS
TO THE QUOTIENT N3/t; THROUGH THE
POINT ON THE RIGHT SCALE THAT COR-
RESPONDS TO THE QUOTIENT Np/tp
THE POINT WHERE THIS LINE CROSSES THE
CENTER SCALE WILL CORRESPOND TO THE
0.9 AND THE 0.95 ERROR OF THE DETER-
MINATION Ns -Np

0.9 ERROR 0.95 ERROR
OF Ng-Np OF Ng-Np
080—_o0.95 -
090 |
0.75 — |
l
| 0.85
0.70
| 0.80
0.65]
| 0.75
0.60—
| 0.70
FIGURE 6
09 ERROR AND 0.95
055+ 565 OF

- 0.55-
045 |

| 0.50
040
| 0.45
035 -
| 0.40

0.30-]

L 0.30

0.20—
[ 0.20

010 _o0.10
0—L=0

o.ui

0.10

0.09

0.08

0.07

006
ERROR

Low COUNTING RATES

EXPLANATION OF SYMBOLS

~
Ng: THE COUNTING RATE OF THE SAMPLE
INCLUDING THE BAGKGROUND 1N COUNTS

PER MINUTE

/
0.03

ts: NUMBER OF MINUTES THE SAMPLE was
ED

COUNT

Ny THE COUNTING RATE OF THE BA|
IN COUNTS PER MINUTE

CKGRO-UND o) 02

ty: NUMBER OF MINUTES THE BACKGROUND

WAS COUNTED

0.01



No /g
12

INSTRUCTIONS FOR USE:

CRAW A STRAIGHT LINE FROM A POINT
ON THE LEFT SCALE’ THAT CORRESPONDS
TO THE QUOTIENT Ns/ts THROUGH THE
PQINT ON THE RIGHT SCALE THAT COR-
RESPONDS TO THE QUOTIENT Nb/tb.

THE POINT WHERE THIS LINE CROSSES THE
CENTER SCALE WILL CORRESPOND TO-THE
0.9 AND THE 0.95 ERROR OF THE CETER-
MINATION Ns-Nb.

0.9 ERR%R 095 ERROR

OF Ns-Np  OF Ng-Np

80— 95

| 9.0
75 |

| 85
7.0_|

| 80
65

L 75
6.0_

|70
55 1 6.5

| 55

L 5.0

4.0_]
4.5

35 _|
| 40

3.0

|30

2.o_t2.0

10
o 1—='8

lFIGURE 7

09 ERROR AND 0.95 ERROR.

Ng:

OF
Low COUNTING RATES

EXPLANATION OF SYMBOLS

THE COUNTING RATE OF THE SAMPLE
INCLUDING THE BACKGROUND N COUNTS
PER MI'NUTE

NUMBER OF MINUTES THE SAMPLE WAS
COUNT[ED .

THE COUNTING RATE OF THE BACKGROUND
IN OOJII‘JTS PER MINUTE

NUMBER OF MINUTES THE BACKGROUND
WAS COUNTED

.3

No /1ty

6

2




~18

Fisure 8 is a nomo®raph chart desifned to calculate the 0.9
error and the 0.95 error of hicher countin® rates than those found
on Fivure§'6 and 7. If it>is not possiblé to calculate the error
of certain determinations on these nomouraphs; the additional error
introduced by the backeround is probably insiénificant compsred to
the error introduéed by the mensurément of 't he samplc and thus
Fisurcs 3, L4, or 5 can be uécd to crlculrte this error. Any of
these errors may of course be calculnted by usc of the formuln for
the error of a countines rate determination, Ns“Nb?

| If.dlould be noted that before usin® the nompfraphic charts,
it is necessary to calculate the gquotients:

| 1. Ng/t,, that is the countine, rate of the samnle,

including the backfround, divided by the number
of minutes that sample was counted.

divided by the number of minutes the backeround
was counted.,

2, Nb/fb, the countin€ rate of the backeround

Charts 6, 7, and 8§ are used in the following mnnner:

Draw a straisht line from a point on the left
scale that corresponds to the quotient N /t_ through
the point nn the richt scale that cdrrespongs to the
quotient N /t,, The point where this line érosses
the cemter scele will correspond to the 0.9 and the
0.95 errnr of the determinatinn Ns"mb

EXAMPLE

A sample vas cainted for 10 minutes and averarced
2000 counts per minute, The Vackeround was counted for
nne minute and 16 counts were recorded in that interval.
Since 2000 divided by 10 equals 200, and 20 divided by
1 equals 20, it is obvinusly necessary tn use Ficure &
for this calculatinn, A strr-ifht line is drawn between
the two pnints nn the left and risht scales respectively,
The 0.9 error is thus seen to be 24 counts per minute
and the 0.95 prror of the determination 29 counts per.
minute.
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EXAMPLE

A sample was counted for 6Y minutes and averafed
‘3,20 counts per minute. The backeround was counted.
for 5% minutes and aversSed 2.60 counts per minute.
Since 3.20 divided by 64 equals 0.0% »nd 2,60 divided
by 58 equals 0.045, it is necessary to use Firure 6
for this calculation. A straicsht line is drawn be-
tween 0.05 on the left scale and 0,045 on the risht
scale. The 0.9 error is thus seen to be 0.51 counts
per minute and the 0.095 error of the determination
0.604 counts per minute. The countin™ rate of the
determination is 3,20 minus 2.60 equals 0.60 counts
per minute. Because this countinf rate is less ,
than then 0,95 error, it is considered not si€nificantly
different from zero on the basis of this determination.

Fioure 9 is a nomp”raph desifmned to facilitate calculation of
the probabilitv limits of anv errer up to fiftv counts per minute
- in a counting determination N -N,. It can 2lso be used to determine
the marsnitude of the probable error, the stendsrd deviation, the
nine-tenths error and other errors useful in a statistical evaluation
of the countin? determination Ns"Nb' The chart is used in the -
followinZ manner:

Draw a straifht line from z point on scale A

which corresponds to the quotient N/t ' throudh the

point on scale B which corresponds to the quotient

N,/t,. The intersection of this line with seale C

is noted. A second strai®ht line is drawn between

this nnted reference pnint on scale C and the type

of error desired non the diafenal scale D. The parti-

cular errnr desired will be found at the intersection
nf this second line with Scale E, -
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EXAMPLE

What is the 0.99 error of the determination of
the counting rate of a sample which averaged 2000
counts per minute in a 10 minute determination with
a 19 count per minute background present? The back-
ground was counted for one minute. As indicated by
the example on Figure 9, a straight line is drawn
between the noints 2000/10 equals 200 on scale A and
19/1 equels 19 on scele Bs A second straight line
is drawn through the intersectinon of the first line
with scale C and the pnint on scale D corresponding
to the 0,99 error. The V.99 error is read on scale
E and is seen to be 38 counts per minute. This
corresprnds to 2 38/1981 x 100 equals 1.9% 0.99 errnar.
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. THE ERROR OF THE PRODUCT OR' QUOTIENT OF A
SERIES OF COUNTING RATE DETERMINATIONS

In addition to .the ﬁarticular indtance just degcribed,,there
are a great numher of other cases in %hich fhe qﬁantity sought
cannot be measured directly but must ﬁe calculated from the results
of two or more other eXperiments on directlv méasured-quantities.

It is, of course, just =2s desirable to know the accuracy of such
indirectli messured quantities as of the directly measured quantities,
Thus, for example, when'determining the disintegrétion rate of a'
radicactive samnle by militplying “he observed counting rate by

the geometrical factor, it is important to know jﬁ§t how inaccuracies
in both the geometry factor and the observed courtirg rate will affect
- the calculated value of the disintegration rate, |

In this section we will consider the determinstion of the error
of a result obtained by mulitplication énd division of directly
measured quantities, Subsequently we will consider the cases of the
error in an'addi6ion, the error ih the determination of the arith-
metic mesn and finallyv, the érror in the general case involving any
functioh of directly measured quantities,

It can be shown7 that the fractional (or percentage) error of a
result obtained by multiplication and divisior is equal to the square
root of the sum of the squares of each of the fractionsl (or per-
centage) errors of each of the independent (directlv observed)

variables vhich determine the function.

7. . Worthing and Geffner,. op. cit., pp. 207-208.
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Consider th e case in which U is determined by calculation from
observations on four directly measured quantities, W, X, Y, and Z

by use of the equation

) ¢
U= 2=
17

If the error in U is designated u and the errors in each of the
directly measured cuantities W, X, Y, and Z are respectively

designated w, X, v, and 2z, the fractional error in U would be:

—— e+ e s o b 1 e ek R, Wik e e
o e e

u_ few2 2 N
G ,( ) -+ ( ) -+ (?0 - (%3
EXAMPLE

In determining t he disintegration rate of a

sample counted on the low geometry alpha counter,
‘one uses the foraula - _
T = (W

where G is the geometry factor used for converting

- the observed counting rate N, in%s #the disintegration
rate, D. If a sample averaged 9°r,ﬂounts per minute
when counted for 4 minutes at O, 1p geometrv and the
nine-tenths errcr in the geometry is estimated at 9%
the fractionsl nine tenths error would be calculated
by using the shove formula.

The fractionsl nine tenths error of the counting
rate is deturmlned from Figure 3 (or Figure 5) and
found to be 5.5%, The fractional nine tenths error
in the disirtegration rate would then be

. |
(5.5 4 5% = 55.25% = 7.ug
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THE ERROR IN THE SUM OF A SERIES

0F COUNTING DETERMINATIONS

Occasionally the results of a series of counting determinations
must be added or subtracted in order to compute the final result
and thus it is desirable to know the accuracv of the sum

Bm: 1 -1 Nz i N3 -+ . 0 o_—j Nm

If Q is the error inthe determination of each of tke N's counted

for time t, it can be shown8 that the error in B, will be:

2%

.

3

¢

I G
Since

Q= K(/8)T .
and therefore

Q2 = E2(N/t)
the error in Bm would be: ‘

Y = K(My [ty 4+ Nofty = s Nm/tm)%:
The error of the sum or difference of a series of counting de-
tgrminations can thus be calculated bv.determiﬁing the error in
each of the determinati&ns from Figures 3 or U, and taking the

square rnot of the sum of the squures of the errors.

8-' ) Co
Worthing and Geffner, op. cit., pp. 206-207

Crumpler and Yoe, op. cit., 1. 177



-24

EXAMPLE

The data for a particular separation experiment
is listed in the following table:

'Sample Description Counting Rate . Counting
No.. of Sample Including back- Rate of
. - ground Sample
! | - i '
i A ! Starting ]
i Material 200 ¢/m | 180 ¢/m
: !
B ' Product after _ E
Separation 160 ¢/m - | 140 ¢/m
c Waste | 4o ¢f/m 1 20 cfm

The background (D) counted 20 counts per minute
in a four minute determination. It should be noted
that there are 20 counts mer minute or about 1090 of
the activity unaccounted for. The question arises,
"Is this loss statisticallv significant?" The stand-
ard deviation of the deviation of the determination,
(A-D)~(B-D) ~(C-D), is

2004 + 20/4 + 160/% 4 20/% 4 Mok 4 20/W)= 10.7 ofn.

We can now calculate the probability of observing a
counting error of 20 ¢/m when the standard error of
the determination is 10.7 ¢/m. "The ratio of 20/10.7
is 1.87. From the curve of Figure 2 we find a prob-
ability of 0.06 of observing a counting error gréater
than K x VT equals 20, when X is 1.87. See pp. 33-34
for a discudsion of the significance of this proba-
bility. . .
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THE ERROR IN TYE MEAN OF A SERITS

OF COUNTING DETERMINATIONS

The best value of a boﬁnfing rate is often palculated as the

arithmetic mean of a series of gimilar counting determirations and

thus it is desirable to know the reliasbility of the average of these
detefminations. The arithmetic mean is computed f ram a series of

measured values bv use of the formula:

m -

The mean, 4, is therefore a function of each of a series of indepen~

dently determined values of ¥, The error in A can be shown? to be:

ym:/-%z_ 4 m‘ 4 e .-t-_g.-,—m:f

where Q is the error in each of the N's previously shown to be:

Q=X JW/t
and there fore, since
Q2 = K2(N/t)

the error of the nean of a series of counting determinstions is

et — et e e it repn e 30

.ly = X // JLTAS) - Wo/to + «oo o+ Wp/ty
e ne

9. .
Crumpler and Yoe, ‘op. cits, D. 183
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When t, = t, = t3 =, . .=t

But Nl -+ NZ 4 e o » + N = mA
Therefore the error of the mesn of a series of similar counting de-

terminations is:

l.,.-.-«'—- / R

/ mA ;A
=K JERE -
m = '/ tme K j tm

and the fractional error

r o= K/ atm o X
o A Atm

These formulag for the error of the mean mev be rewritten:

e

. - /Al
ym:: KV :.\.lt

m

‘I
~. K v At
m "=
o

Thus the error of the mean of a.series of similar counting rate de-
terminations is numerically equal to the error of a single determin-
atinn divided by thesquare root of the number of determinations.

In practice it is wnossible to calculafe tﬁe error in the nean
of a series of similar dounting rate determinations by dividing the

érror of & single determination, calculated by use of Fizures 3, U,

or 5, by the souare rnot of the number of determinati ons.
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IXAVPLE

Four similar experiments. were oerformed and two
minute counting rate determinations were made of
each of the samples prepared, The averagze of the
four determinations was 2250 counts per minute. Yhat
is the 0.95% error of the final experimental result?
The 0.95% error of a single two minute determination
on a sample averaging 225u counts ver minute is “ound,
from Pisure 3, to be 2.9%. The 0,95% error of the
mean of four determinations would then be-

2,9%/ (% = 2,9%/2 = 1.5%
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THE ZRROR I¥ A RESULT COMPUTED FROM ANY FUNCTION

OF DIRECTLY VMEASURED QUANTITIZES

‘.

In many cases involving the error of an indirectly determined
result, the functinn mav be more comnlex than either, simple addition,
subtraction, mﬁltiplication or di&ision and thus not compptable by
the methnds described for'these/simplg_cases. The ﬁore complicatedl
cases include those involving powers and roots, trancendental
functions, and complex numbers., The errbf of a result computed‘from
any function of diréctly measured cusntitics can be calculated if

each of the errors in the directly measured guaintites is known or

can be estimated and has been .hownlU tn De:

where U is anv function calculated. from the directly measured quan-

tities W, X, Y, Z, etc., and w, X, y, 2, etc., are the respective
errors in each of the directly measured guantities,
EXAMPLE

The following formula is used to correct for
coincidence losses in radionactive conunting:
T - N+ ON°
0 is the factor used to correct the observed rate N
to the ture counting rate of the sample T, ’

Then
2? T _ .
= 20
A3 1+
and -
3 T = N2

[

10. Crumpler and Yoe, op. cit., mn, 174184

Worthing and Geffner, op. cit,, vp. 205-214 ’ B
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Therefore the error in T is

g2y (14200222 4 (WR)2 ¢2

where n is the error in ¥ and ¢ is the error in C.

=,

If C is equal to 1.5 x 1072 with a 0.9 error of

heo and a 7500 count ver minute sample is counted for
two minutes, what is the per cent 0.9 error of the
calculated true rate? :

(1 +20M2=(122x1,5x 1072 x 7500)2 = 1.225° = 1.50

= 75004 = 3,164 % 1010 |
o® = (0,05 x 1.5 x 10092 2 (7.5 x 10-7)2 = 56,05 x 10°1*
n2 = (100.7)2 = 10,117.5 (determined from Figure U4)

Jr—e—

£ =/ 1.50 x 16,147.5 + 3,164 x 1610 x 56,05 x 10-1H

t =

it

T

» Per

V15,221 4 1773

16964 = 1%0.5 counbs per minute

1
oS

7500 (1 4 7506 x 1. 10-D) 5 7500(1.1125) = 33U3,75
1

cent 0.9 Zrror in T = —igiir— x 100 = 1.56%
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MIFIWNIZING THE FRA0OR INT=QDUCED BY TH:N ZACKGROUN

5Y TET ZFFICIENT DISTRISUTION CF COUNTIFG TIIE

We have 'shown that the presence of a backgrodhd'count increases
the error, v, of a counting rate determination (Ng1) as shown br
the relatinn )

vy = (QN§ + QN%>% = K(Ns/ts + Nf/tb>%

where T and t  refer to the cpunting rate of the sample apd the
-sample counting time resvectivelv and M and-tb refer to the counting
rate of the background and the background counting time respectively.

It is obvious there is not much advantage in.counting the bvack-
ground for a long period of time in order to reduce the counting
error, if the bulk of the error is due to the error in the determination
of the sammle. In this section we plan.fo show thet when the total
couﬁting time is properlv distributed between countinz the ssamnle and
counting the backzround, the error wiil be smaller than_fof any .other
distribution of the total countinz time. Converselv, the toial |
counting time necessarv to reduce the error ito =nv given‘value, will
be a ninimum i1f the counting times of the sample and.background are
distributed oroperlr,

The problem is, therefore, given the counting rates nf the sample
and vackground and the totel counting time, to distribute the total

counting time so that the error, v, of the counting determination

(NS,NB) will ve smaller than fof any other distridution of the total
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counting time,
If we let L be the total counting time ty + ty, then the error, vy,

will ba a minimum when

v
dy I
atg
Since ty = L_ts
. s .\ 1
then Ay o4 g i Ng N My |2
% H . { -*
dtg g Lt L-t, =/}
. N \ A\‘ .
3‘/ ) i\ 5o NS )
- k ‘\ tb L tS A
(Y &)
VT i
\ 'ts t.b ’/

Thus y will be a minimun when

W A

— - =. 0
2T Ty 2
tb . ts ’
L
or ts o Ng 2
. S i 8
ty { N5 /

‘The most efficient distribution.of the total countinz time between
the sampie and the bakeground, in order to minimize the error intrnduced
by the éackground, is that in which the ratio bf the dounting tim;s‘af
the sample and ‘the background is equal to the square root of the rstio
of the average counting rates of the samole and the background,,

Figures 1U and 11 have been nrepared to facilitate the counting

them calculations in minimizing the background error,
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EXPLANATION OF SYMBOLS T
4.4
fs‘ COUNTING TIME OF THE SAMPLE
?b: COUNTING TIME OF THE BACKGROUND s
6
j
84—
INSTRUCTIONS FOR USE s T
DRAW A STRAIGHT LINE FROM A POINT ON THE LEFT SCALE T
CORRESPONDING TO THE COUNTING RATE OF THE SAMPLE 10—
THROUGH THE THE RIGHT SCALE CORRESPOND-
ING TO THE COUNTING RATE OF THE BAGKGROUND. THE
POINT WHERE THIS LINE CROSSES THE GENTER SCALE COR-
RESPONDS TO THE RATIO OF THE COUNTING TIMES OF THE
SAMPLE ANO THE BACKGROUND NECESSARY FOR MAXIMUM
COUNTING EFFICIENCY.
EXAMPLE:
¥ THE APPROXIMATE COUNTING RATE OF A SAMPLE, INGLUD- +
ING THE BACKGROUND, IS 400 COUNTS PER MINUTE AND THE
BACKGROUND 1S ROUGHLY 25 GOUNTS PER MINUTE, THE
SAMPLE SHOULD SE COUNTED FQUR TIMES AS LONG AS THE
BACKGROUND FOR THE MAX COUNTING EFFICIENCY. IF
THE TOTAL TIME WERE 70 8E LIMITED To25 Msie ey, OF 201
COUNTING, THE SAMPLE SHOULD BE COUNTED FOR 16 MIN-
UTES AND THE BACKGROUND COUNTED FOR 4 MINUTES IN OR-
DER TO REALIZE THE MINIMUM ERROR IN 20 MINUTES OF
COUNTING TIME. |
30
- ‘40__
50
604 _
70—
80__




The aporoxinmate counting rete of a sample, in-
cluding the hackground, is L0U counts wer minute and

-this backzround is roughly 25 counts vwer minute, From

the nomngraph of Figure 11 we see that the samnle
should be counted four times as 1lonz as the background
for the maximum countinz .efficiency. If the total
time were to be limited to 20 minutes of counting,

the sample should be conted for 16 minutes and the
background. counted for ! minutes in order to realize
the minimum error in 20 minutes of counting time.

y
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TUE DETERMIVATION OF NOW-.STATISTICAL COUNTER =EHAVIOR

In addition to the fluctuation expected in the counting rate
bf a radinactive .sample due to the random nature of the disinte-~
gration prncess, there are other variables affecting the counting
raée which tend to increase the zctual error hade in a countingz de-
terminntion, The significance of any unusual variations can be
approximated by comparing the distribution of a series of counting
determinations made on tie same sample, with the disnersinn ex-
pected if the apwaratus were éounting in 2 manner predicted by
the law of random'disintegratinn. This is done bv a prdéedure
which can be summarized into three general steps:

(1) Set up the hvpothesis that the distribution
observed might occur because of chance
factors arising from the randem nature of
the disintegration process.

(2) Upon the basis of this hypothesis, deter-
mine the probability that the distributinon
which occurred might occur because of real
variations in the disintegratinn rate alone.

v (3) Draw a conclusinn concerning the feasohable-
' ness of the hvpoihesis. If such an observed

distribution could often occur because of
chance, we have cast very little doubt upon
the hywothesis, We therefore cnntinue to
regard the hyvothesis as tenable and conclude
that the variations are not significant, If
however, such a distribution could hardly
have occurred by chance, we have cast cdoubt
upon the hypothesis. We therefore abandon
the hypothesis, conclude that the variations
are significant 2nd try to determine the
magnitude and the causes of the unusual
portion of the variations.
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Just how small the probability must be ﬁhat the distrubutisn
could have occurred by chagce variations in the decay rate, has
been discussgd previously. As before, if the prohadilitv is below
0.1 there is some doubt that the distribution is statistical, if
it is less than G.U05 the variafions are probably greatgr then would
be satisfactorv and if the probability is less than L.ul it is quite
certsin that the distribution contains vaiiat?ons which are due to
causes other than the random mature of the disintegration prbcess;

This section of the report inténds to describe two procedufes
whereoy distribution abﬁormalitiesAmwt be revealed. In a subseguent
report we will describe sume sintisticel wrocedures Tor evaluafiné
the actual magnitude of the unusual veriations., “These methods are
not spplicable if less than tern counts are recorded in anv of the
determinations and are most significent when spplied to determinatigns
of more than thirty reéorded counts.

The first method consists of determining the value of the stendard
error of the difference vetween two c&unting determinatinns on the
same sample or similar samples and comparingz this with the observed
difference between the two determinations, The stondard errof of

b
the difference is given by the formula developed in s precediny section:

.‘: I\Tl

y= /=

S TR

No



Having now the two values: (1) The ovserved difference between
the two determirations, N-N,, and (2) the standard error of the
difference between the two determinatinne, we are in & position to
answer the question:

If the variations in the counting rate are only

due to the randomness of the disintengration process,

what is the probability that T might exceed No by the -

observed difference or more, because of chance variations?

This probability can be determined by caleuwlating the ratio of

the observed di’ference to the stspndard error of the difference,

Ni - o

el 'y and finding tHe provebilite either -in Table I¥ or Figure'l2,11
Y
Tedle IV

Probabilitv of Observinz (FI—NE)/y Zgunl to or Greater than p.
(Values of p less than 1.U0 are not in this table because
they have very little significance statistically)

P P D P P 1 P P

1.0 0.159 2.0 ¢.23 3.0 0.00135 MG 0.0000317

1.1 G.136 2.1 0.012 3.1 0.00097 4.1 O.uuuo207

1.2 U.115 2.2 0.018 3.2 0.00058  L,2 0,0000133

1.3 U.097 2.3 0,011 3.3 u.ou0k8 4.3 0,0000085

1.4 w081 2.4 uooog 3.k u.00034 LM 0.00GGURY

1.5 0.067 2.5 006 3.5 ol0u23 M50, 000003k

1.6 G.055 2.6 0.005 3.6 u.toulb L6 0.0000021

1.7  G.UB5 2.7 0.003 3.7 C.L0G11  W.7  0.CuuLisl3

1.8  G.036 2.8 L,U03 3.8 0.0000T 4.8 0.0UDV0LE,

1.9 G020 7 2.9 0002 2.9 L 00005 H.9  0L.000LLOS

1L.

A more detailed discussion of this method of analveis, its limitations
and im>lications and one which also describes the basis nn which
Table IV and Figure 12 were prepared, is given in Croxton and Cowden,
op. cit., »p. 317-322 '

Peters and Van Vyorhis, »v, cit,, »n. 160-170 and Crumpler and Yoe,
0o, cit., po. 1856:18% also 'zive z00d interpretations of statistically
-reliable differences. ) '
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EXAMPLE A ;

A long lived sample was counted for 4 minutes at
the beginninz of an experiment and averaged 592k counts
per minute, After the exveriment was concluded, the
same samvle was counted as a check and averaged 6075
counts per minute in a two minute determination. Is
this amnunt of variation indicative of a voor instrument
or is the difference perhaps due ton chance variations
in the disintegration rate?

vz // 0925 -+ EBZE = 68 counts per minﬁte
Y Lo -2

N M- N g5 - 2925 - 150 . 2.2

¥ - 68 6g ~

From Table IV we can see that for p ecuals 2.2, the

probability of ovserving » difference as large as or

larger than 150 counts vper minute is UL UL,

Thus there are'onlv 1L chances out of a 1U0V0 that this particuler
dispefsion will oécur. In accordance with our arbitrary standafds of
significance, this is not sifficient tn uneguivocably conclude that
the instrument is behaVving improﬁerly; but 1t is.a strong indicétion
that this is the cese., Here is.a rapid, easv to use tést of only two
determinations which reveals significant information regarding the
accuracy of a counting rate determination..

A mor rtigid test which investigates the dispersion of two or.
more simiiar determinations and which mav be used to rore conclusively
evaluate the significance of unusual counting determination variations
is called the chi-square tes£ of variation. This test is particularly

useful for investigating instrument behavior when 20 or more deter-

minations are taken in investigating the qualitv of the instrument.
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The chi-square test is useful for determining.whether or not
‘a ziven series of counting determinstions on the same samnle can be

reasonably supposed to have arisen from random variations of dis-

integretion., This test is often called the test of goodnessof fit.

A complete derivation and discussion of the asvects of the chi-square

U, . . 12 oo,
distribution is given by Peters and Van Voorhls and others,t It is

)

gshown that for true sample ~f a Poisson series, chi-square, defined

by the relation

j><~&' (1 - AV e (% - Av)2 e i . Av)2

o (/)

Will De distributed in a 'mown mainer, This dais

173
ot
3
[
[
o
ot
[N
C
jn

o

depends
only upon the number of determin=tions of fthe courting rate used in
the calculation of chi-squared and is in&epeniént of the actual
counting raﬁe.

Having calculated the value of chi-squared corresponding'td 2

20ssible to determine the

given number of determinations, ip is 7
probability that the cbserved distribution 1s a reasunéble onévto ex—
pect i7 the Variafiéns are only due to the randomness of the disin-
tegration process. This probacility hes been celculated as 2 functioﬁ

N

chi_squared and the number of determinations and is shown in Table V

th

0

jut! '

and also on the graph of FTigure 13, More complete tables of this dis-

-r

tributinn may be found in the literature.ljr

12, o :
‘Peters and Van Voorhis, op. cit, , pp. bui-lbil, o, 419
Fisher, o»n. clt., p. B, vu. 78-25 _ '
Worthing and Geffner, op. cit,, »». 183-156
Frv, op. cit., »v. 26R-320
13, ' : :
' Fisher, om. cit.,, »o, 112-113%
Blair, »o. cit., ». %91
Corxton and Cowden, op, cit., ». 322
Frv, op. cit., po., 46Z_NEG
Peters and Van Vanrhis, op. cit., #D. L92-50¢



Table V

Table of Chi-sguared

. Fumber of : .
Determinations Probability
0.99 0.95 0.90 “ Q.50 © 0.10 " 0.05 - 0.01
2 0.00157 0.00393% 0.0158 . 0.U55 2.706  3.841° | 6.635
3 0. 201 0.103 0.211 © 1.386 4,605 5.991 . 9.21u
i 0.115 0.352 U.584 2.366 6.251 ©7.815  11.345
5 0.297 0.711 1.064 3.357 7.779 9.483  13.277
6 V.55 1,145 1.610 4,351 9.236 11.07¢  15.u86
7 S 0.872 C1.635 2.204 5. 348 10.645 12.592 16.812
g S 1.235 2,157 2.833 6.3u6 12,017 14,067 18,475
9 1.646 - 2.73% 3490 7.3uk 13.36 15.507 20.090
10 2.08% 3,325 4,168 8.313 1k.68L 16.919 21,666
11 2.553 3.9l 4,865 9.3u2 15.987 18,307 23.209
12 3.053% 4,575 B.578 10.341 17.275 19.675 . 24,725
13 3.571 5.226 6.30u 11.340 18,549 21.u26 26.217
1L 4,107 5.892 7.042 12,340 19.812 22.362 27.688
15 4, 660 6.571 T7.790 13.339 21..064 23.685 29,111
16 5.229 7.261 g.547 14.339 22,307 2,996 30.578
17 5.812 7.962 9.312 15.338 23,542 26.295 32,000
18 6,408 g.672 10.085 16.338 2k, 769 27.587 33,409
19 . 7.015 9.39u 10.865 17.338 25.989 28.269 34,805
20 7.633 10.117 11.651 18.338 27.204 3.1 36.191
21 8.260 16.851 12,443 19,337 28, 12 31.410 37.566
22 8.297 11.501 " 13.2L0 20. 337 29,615 32.671 38.932
23 9,542 12,338 1,0l . 21.337 30.313 33.924 hy.289
ol 10.196 13.:91 1u,848 - 22,337 32,007 35.172 41,638
25 10.856 13.8u43 15.659 2%.337 33,196 36,415 42,980
26 11. 524 1k, 611 16.473 24,337 34,382 37.382 4h, 214
27 12.198 15.379 17.292 25.336 35,563 384885 L5, 642
28 12.879 16,151 18,114 26.336 36.741  bLo.113 u6,963
- 29 13.565 16.928 18.939 27.336 37.916 11,337 hg,278
30 14,256 17.708 19.768 28,336  39.087  L2.557  49.588

8¢~



m= NUMBER OF DETERMINATIONS
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FIGURE 13

THE X* DISTRIBUTION

THE PROBABILITY THAT THE VARIATIONS IN A SERIES
OF COUNTING DETERMINATIONS ARE DUE TO THE
RANDOMNESS OF THE DISINTEGRATION PROCESS

EXPLANATION OF SYMBOLS

N = COUNTING RATE OF A DETERMINATION

m = NUMBER OF DETERMINATIONS

Av= AVERAGE COUNTING RATE

t = LENGTH OF COUNTING TIME OF EACH DETERMINATION

m= NUMBER OF DETERMINATIONS
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x : Av/t
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If the probability is greater than C.1 there is certainly no
reason to suspect that the distrivution is anyv poorer than could bde
obtained under the most satisfactorv uoperating conditions. The

significance of probabilities less than (.1 havé been discussed nre-

viously and also apply to the problem at hand. It is to be emphasized.

that high values of the pfobability (abové 0.9) corresponding to low
valuss of cﬁi~sqpared are to be regarded as definitely indicative of
a poor determination as low values of the pnobability due to abnor-b
mally high values of chi—SQuafed. It is recommended-that 20 deter-

minations on the ssme samnle be the minimum number necessarv for an

. . .. U
exhaustive analvsis of counter benav1or.1‘

EXAMPLE

Ten two minute determinations of the counting
rate of the same sample are tabulated below, Would
the instrument be considered as behaving properly?

6obY 5964 5930 6020 5887
6018 606U 6078 609U 5034

The average counting rate is calculated by summing
the counting rates of esch determination and dividing
by the number of determinations and is thus found to
be 6U15 counts per minute. The average is subtracted.

ll"- : ‘

Similar tests of counter statistics are described by:’
Covevou, Testing of Counter—scales Units for Statistics,
Private Communication '

Korff, Electron and Fuclear Counters, Van Wostrand,
New York, 1046, », 154

Strong, Procedures in Experimental Physica, Prentice-
Hall, New York, 1943, pm. 302-304

//—
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from each of the determinations and the result
squared.1l> The sum of the squares of the de-
viations from the average has been calculated

to be 36ul6. In accordanceswith the chi-squored
formula

N 6015/2

s
} = —360—16': 12.0
’ 1o .
Prom Table V we find that the probability of ob-
-taining a chi-~squared equal to 12.0 for 1¢ deter-
minations is less then 0.9 and more than .1 and
thus this distribution is reasonablv Poissonian
and therefore the instrument could be assumed to
be operating properlw. ‘

15.

If a Friden calcualting mechine is availavle, the sum of
the squares of the deviations from the aversge meyv De more
guicklyv calculated usinz the easily derived formula

(0-a7)2 4 (1-an)2 5 L L, s (W-av)? o W2 L s(av)2
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REJECTION OF SUSPECTZD OZSERVATIOKS

Occasinnally, in & series of similar experiments, a result
appears which differs considerablyv from the results of the group
as a whole, - The presence of this abnormal result does not nec-
essarly indicate that a gross error has been ﬁade although this
may be the explanation for the unususl deviation. If this diver-
gent variation occurs as one of a séries of a smell number of
determinatinns, its ihfluence on the best value of the determin-
ation mav be unduly large and it‘is reaéonable to conclude that
the éverage of the determination would be more representative of
the éorrect.answer if the determination were discarded in the
calculation of the averrge., Althouzh the easurement may be re-
jected if there is definite evidence of unusualnegs-during the 
course of.the determination of the unﬁsual result, with no such
evidence it is desirable, in the interest of =ccuracy, that the
determinatioﬁ bg rejected and thus a criterinn df rejection 1s
necessarv,

Such a criterion has been developed and is described in the

16

literature. In wor&é,vthis qriterion states that anv reading
of 2 series of h readings shallibe rejected whHen the magnitude of
its deviation from the mean of the series is such th&t the prob-
abilitv of occurence of. ali devéation that large or 1arge; is less
than 1/2n. Table VI and Figure 14 indicate the magnitude of this

deviation in terms of multiples of the standard deviastion as a

function of various values of n.

16.
Worthing and Geffner, op. cit., vp. 170-171
Crumpler and Yoe, op. clti, pn. 188-191
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Table VI

CHAUVENET'S CRITERION OF THE
ROJACTION OF S SPnCTTD ORSERVATIONS

Limiting values of the deviation of & reading from the neen of a

series in terms of multinles of the standard deviation, for the
exclusion of that resdinz from the series on the Yasis thost, in

couparison with the other items, it exerts too gre~t an influence

on the average of the series.
n = number of determinations in the series
p - ratio of the deviation to the standard deviation

n n n ° n %'p n P n
2 1.15 - 7 1.80 15 2.13 4o 2.5 250
3 1.38 g 1.36 20 2.2L 50 2,58 360
4 1.54 9 1.91 25 2.3% 75 . 2:71 Log
5 1.65 10 1.96 300 2,40 100 2,81 500
6 1.93 12 2.0k 35 2,15 200 3.02 1000

The criferion is used as follows:

1. Compute the mean and the standard deviation o a single

3.09
3.1k
3423
3.29

2 )

Je T

observation, retaining 211 suspecited observatinns in the

computation.

2. Determine the ratio of the suspiciously larze deviation

to the standard deviatina of a single ohservation,.

3, TFrom Table VI or Pizure 1l secure the limiting value of
the ratio for the corresponding number of determinationsy

n.

U, If the observed ratio is greater than the value Tound on
the gravh or in the table, the observation may be rejecteds

EXAMPLE
Five two minute counting rate determinations were
made on the same samvle with the following results:
2046 2105 201l 2u72 2016
Shnould the value 2105 be rejected? ‘

The mean counting rate, includinz the suspected 21CH, is 2050
coants per minute, The standard deviation, computed from the

formula previouslv described is

(2050/2)% = 32 cohmmts nmer minute

This value may also be determined from Fizures 3 ar by



The ratio of the suspected deviation to the standard
deviation is

2105-2050
32

z1.72

For 5 determinations the tabulated value is 1.65.
Because this i$ smallér than the ratio of the de-
viation to the standard devistionn, the observation
2105 should be rejected. The best value for the
experiment would then be the mean of the remaining
four determinations which is 2036,

-3
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ES AR s CHAUVENET's CRITERION _
—Eclmlia| A SINGLE DETERMINATION IN A SERIES OF N DETERMINATIONS
: i SHALL BE REJECTED (because of the disproportionately large influ-

- ence ot this determination on the value of the mean) IF ITS DEVIATION

JFHfEH| FROM THE MEAN IS LARGER THAN X TIMES THE STANDARD DE-

VIATION.
TR = 8 ] s g v
RANt I e o o 1T AT
N=NUMBER OF DETERMINATIONS [/l L T
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