Realeq M )

.. DO .NOT REMOVS THIS PAG XYz o " ReporT NO. MON PP
- R Noted _&77-4-‘-—-- . _ :
- : . 5 , " PHIS DOCUMENT* CONTA NS /7 - - PAGES OF - . 6’/
) REC(’ DEC 1 01946 M& EXT'AND - o PAGES OF F}GURES,
' His 1s copy RO oF b/ series A
- CLASSIFICATION: = ISSUED Tey A VT AN 74 6-
THIS 1S A CLASSFIED DOCUMENT
. ETHIN
; . \ (s
OR!ZED PERSON !S PROMIBITED BY LAW
NAME MUST BE ON THE LIBRARY LIST OF THUSE AUTHOR!ZED TO READ MATERIAL OW THIS SUBJECT, OR PER- .
L1355 1ON MUST BE OBTAINED FROM THE ASSIST»'\IT DIRECTOR CR THE DxRE(‘TOR OF THE [NrORMATlON
3. THIS IS A CLASSIFIED DOCUMENT AND 18 TO BE KEPT ONLY IN A GUARDED AREA. -
' s : TT—--—— 1L ING CASE WITH TUMOLER LOCK.
ORNL TECHNICAL INFORMATION ING CABINEY.
. - . | DIVISION
€  SION OF THE ORIG| : TENTS OF A SECRET REPURT MAY
racen SERE 2 Document Reference: Section -
24 (] K i i
% AFE T T
. " ee sapctORSIONY LOAN COPY ONLY _
. MUST BE DONE IN 4 R AND LATER DESTROYED..
. . ) i Do NOT transfer this document to any other : N
oy e S ﬁv# person. If you want others to see it, attoch their R .
© 5. THE PERCDNTOR™OF nomes, return the document, ond the Library o T g s BLE FOR THE
: B Egocu;{xgﬁTm&M&-Lw- will arrange the loan as requested. ; B. BOCK
UCN-1624 .
MUST ALWAYS BE US ueN 162
‘ 555! :
K - -
-6, AS SCON. AS THE
WHEREUPON THE lNDlVlDUAL} CSPONSIBILITY FOQ;%(TS SAFE- KE.EP NG.
7o THE»«W Q.BELOr?'I‘_l&,,USc-Oa‘IN“ROUT‘FNG“‘THIS R‘E‘PDRT‘AND”MUS'T B DS IT.
4
. | ) . '\". - ]
OUTE To . 'READ BY DATE CROUTE TO™ -y, "o o 8Y DATE N
o . ~

‘ Classification changed to: poan Al N EENPNE R

UNGLAIITEY
LD ~-/7 /2

S

‘ ) ) By Aufh@tgmof'-«: S ui”v']wiuh;
T : —~+< Y-12 Technicel Library
.. ' | BY —pocament Keference STTLION
' ———  *%% Ruildiag 9711-1

Date: FEB 8'51




e

llon P-187

Contraet No, 1.-35-053, ens. 71

»W%'&‘***-¥*****

IETHODS AVAILABLE FOR CALCULATING CRITICAL

ke ) ) .
y‘ SIZES OF SLOW AND RESONANCE ENERGY
. CHAIN REACTING SYSTELS
A, ll, Weinberg
October 21, 146
Date Received: Oct. 24, 1546 ' Date Issued:
|
S

Oct, 25, 1946



-
,

.@thods Availsble for Calculating Critical Sizes of Slow and

Resonance Enerpgy Chain Reacting Systems

The calculation of the critical size of a chailn reacting
system is one of the central problems in pile technoiogy. At
present there are a fairly large number ol methods for solving
this péoblem whizh have been used at different times; howevor
no systematic collection of these -has been made. In particu-
lar, no attempt has been made to 50 systematize the calculations
that the numerical computations remain, in complicated cases,
within reason. The present report is not intended to be such
8§ collection - rather it is 1n£ended as an outline, with
references, whish may be of some use to thes nathematics de~
partmont, whose task it will presumably be to prepare a more
comprehensiva study. ‘ ;

The nmethods which have been used can be classified

| adcarding to the mathematical technique employed, or accord-

ing to the physlecal systems to which they apply. Thus.
variation methods have been used in many different physical
settings; on the other hand, high k plles can be treated from
several different mathematical viewpoints. Generally speakihg.
we shall try to classify the schemes acdording to the assump-
tions made regarding the slowing down pictu.re°

A. llathematical complications arise out of two separate

conglderations. First, certain geometries are
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natura.ly harder to deal with tharn others; and
second, even in simple goomoprics; the spread in
encrgy of the fast neutrons 1s troublesome. In one
group calculations, only the gecometric considera-
tlons are important. [For milti-group caleculations

even the simplest peometries are difficult.

I. One-~Group .lodel

The one-group model, in which all ncutrons are
assumed to have the same velocity, reduces to the

solution of the wave equation

An+B%n=o0 _(i)

‘subject to the boundary ccndition n = O on the
outer surface of the system. The wave equation

is acéurate-only if the system is large enough |
Lfor simple diffusion theory to be applicable,

This 1s usually the case in systems of interest

to us. |

The solutions of the wave equation in meny

different goomstries are well known. ‘e list thenm
under

l. Bare >iles

Tor simplo shapes; such a3 sphsre, alab,
cylinder, see CL-574.
For shapes such as olliptic cylindeor,

cone, otc., which are simply related to
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systems of ortho onal funetions, it is
usually possible to write the solution as.an
infinite series of appropriate harmonics. The
coefficients arc thon determined so that the
boundary condition, n = D on boundary, is

satisfied. Since this in general leads to an

Cinfinite set of linear equations, the calcu-

lation 1s usually periormed by solving sHCeos-
sively larger finite sets of lincanr equations
and noting the convargence of}the resualt. By
this method the followln; shapes have becn
treated: | '

a. Truncated sphere - FP. Trray (CP-1461)

b. 21lliptic cylinder =~ X. ilorehouse (unpublish-
ed notes which I have)

(e
°

Tranented cone - R, Scalettar, llon P=33,

Solutions for many other shapes must exist
in the llterature since the critical slzs
problsm is identical with the calculation of
the fundamental mode of a'vibrating cavity
vhose outer suriace is the same as the pille
shape. It probably would be worthuhile %o

resurrect many of these results -~ in particu-

lar the ¢ritical size of an ellipsoid.
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The Rayleiéh-nitz variation mothod 1s also
useful for various odd shaped piles. In this
scheme (described in Courant-Hilbert, Q.g.) use

is nmade of the fact that

2 . \s\(‘vn)2 dr

n® de

LW

1s‘stétionary with respeét to small variations

ofzﬁhe function n(r). Thus if n is chosen to

sgtiaf& the boundary conditions, it is not vory

important that it also satisfy the wave equa-
tion. Aéplications.of this procedure are found,
8.g. in Schweinler, lion P=152, Youn:s and
Castle, CP=1456, Scalettar, ion P=33, p. 16.
If the quantity B° 1s a function of T, the
solufion of equation (1) ¢can uuually be done
only numerically. The critical size can still
be calculated by a variation methdd} however;
this has bsen done by Schweinler, lon P-152.
Ir B2 depends on n, as is the case in a
pile operating at high power, the problem be-
comss non~linear. In this‘cése numerical work

mst. be resorted to. A few spocilal cases have

. 'been worked out in vhich B2 is a 11hehr fune -~

tion of n: Xbung and llorehouse, CP~1069. A

‘pnre extendeélstudy of the non-linear problem,

2 .

i I .
(- . . . T -
A
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again with a view to establishing foasible
numerical:mthoés would be very worth vhile.
Pils with Reflectoz'

The one poap pile with reflector problem is
very simple Af the geonetry is simple. Thus
concentric sphores or conc;bntrio infinite cy-
linders are easily solved iCL4574).

On the other hand such a relatively sinple

looking problem a8 a cube 1ns ide another cube

carmot be solved accurately. The reason for
this is that i:he furiotions appropriate to a
cube do not matoh pz'operly in the corners of
the Preflector. Thus 1f sin %J.i sin Eél
cosh A% 1s taken as the sclution in the top'
reflector, and sin WE osn q y sin ME 45

Ly
taken as the solutf. ion in the side rei‘lactor.

these two funotions will overlap along some

surface in the cormer of tho reflector. On

this surface the neutron density is ¢ontinuocus

‘but the normal derivative is discontirmious.

This corresponds to a golution of the wave

equation but with a certain distribution of

" sources and sinks determined by the nature of -

the discontimuity in tho normsl derivative along
the surface. Viigner has suggested that this

solution, in vhich there is an extra source, can -
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be used as a starting point in a mothod of
sucoessiqe'appboximations. The noxt approxi-
mations would be to arrange a dlsposition of

sources or sinks which would just balance the

‘ original sct. These sources will now remove:

the® discontinuity in the derivative, but'thej
wiil in general spoil the boundary conditions.
Thé details of how one readjusts the boundary
coﬂd;tions'have not beeh worked out..

The problem of concéﬁtric‘ellipsoids,can in
principle be solved with known functions. It .
would be a valuable result since any of these
"cube in cube” or "eylinder in cylinde:"-proé
blems can be approximated by the ellipéoid..
problem. . '

Another method which has ﬁqen triad:

(lion P~8 -~ with not too great guccess) for this
problem, is a variant of perfu:bation theory.
In this method, one starts with a uniform pile
vhose outer surface coincides with ﬁhe outer
surface of the reflector in the actual pile.
The perturbed syétem is obtalned from the o:i-
ginal one by increasing the buckling of a
central piece of the uniform pile until it
coincides with the active part of the pile, and
at the saﬁe time reducing the buckling in the



outer paré; corresponding to the roflgctor.
A perturbation calculation 1s thon perforﬁed;
_the result is an approximate characteristic
value and function for the gystem plle + ro-
flector. The success of this method deponds
on the raflector-being:rafhor sxdall; for the
perturbation required to convert the uniform
pilq into reflector is very lérge. and unless
the reflector has a vory small statlstical
woight.'the mefhoé will not converge. Schwein-
ler has appligd this scheme to the concentric
sphe re problem.where the solution is well known-
in that case agreement betwcen the approxinate
and exact thoory ls good. For the cylinder in
cyllhder'ahd the sphore in cylinder problem.the
results, in.the particular case tried, dlvorge.
It is not clear vhy this is so, since the sphere -
in sphere converges very well., A further investi-
gation of this me thod would be éory worth while.

- II. Mlti-Group Usthods |

The schematic handling of the fast neutroms by con-
sidering them to diffuse according to & simple
diffusion squation without energy loss was sugpgest-
ed by perhaps 6 different people (including a.
member of tho German Uranium.group). In the case

of a bare pile the use of the multi-group methods

- - - - JR— S
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has no advantage over the Fermi-mothod. Kowever,
for a pile with reflector, and particularly if the
pile has pigh miltiplicatlion constant, multli-group
methods are usually the only foﬁéible way of calcu-
lating critical sizos,accuratelyf

The multi-group problem is, mathematically.
the following: required to solve the following set
of differential equations

Dgng - Noim +k Nugéns -0 (3),

‘80 O

D44 ny - Ho;ini + Nqi = I - 0

vhere n,, n; represents the neutron density at
various enefgy levels. If the set cons.sts of 2
squations, we speak of a "two~group“ theoory. The
- more accurately the slowing down process is des=-
eribed, the larger the numbor of groups required.
For L0 systems, a tvio groﬁp picture is not too bad;
for heavier moderators, gt least a three group calcu-
lation is needed, although. because the caloulation
quickly gets veryvcoéplicated. most calculations
have been done with Just 2 groups.
The usual problem is to compute the critical
radius and‘the characteristic functions in a system
consisting 9f two regions, plle and reflector. The
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fundamental solutions of equations (3) in e.g..

8 planc systen are a sua ol exponentials:

A

n in pile

X x

n

ng = 2;1 Am 8y ©

Jy - 2 -
{ éﬁ ,Bm hy e in refloct{oz.'

vhen n, and \)1 are neutron densities in pile and
reflector, gi, hi are known constants and Ay, By
are arbitrary. At the interface between reflector
and pile, density and flow rrist be continuous. |
This leads to a set of 2 m equutions which are
linear and homogeneous. The detorminaﬁt of these
- ' | squations will Qanish only if the system is just
' eritical, that is, if the pile-reflectof intérface
is at just the right plade to make the piie size
correct. The probiém is therefore, in principle,
<Py simple since it jusﬁ involves solving a detormi-
nantal equation. However, the detcrminantal equa-
tion very rapidly bcocomes complicated (4-th degree
for 2 groups, 6-th degree for 3 groups, etc.) and
80 one of the most pressing problems 1ls to estab-
lish computétional schemes which will nake the
solutions of these 1inoar equations a reasonable
task. Varioﬁs methods for handling these linear

 equations have been used. These ars -

(1) Straightforward solution. This has been used

in@ and 3 éroup calculations by Wigner, Weinberg,




'(3) "Back and Forth lcthods"- Hordheim (CP-2222,

10

. williamson, CP=1461 (2 group. control rods).

Friedman and Lloyd, CP-1554 (2 group), CP-1874
(3 group). Volkoff and LeCaine, iIT-30 (general

treatmantg
(2) Perturbation of DBoundary Condition. Wheeler

"~ {cP~71 & CP-838) has pointed out that, since the 1
- group picture glves good results if the plle is

sufflciently large, the effect of the fast, group

can be treated as a small correction to theiboun-

‘déry conditions, Yipgner and Friedman have also

indicated how an "equivalont" one group theory
can be concoted out of a two group picture (CP-1662,

c>-288).

p. 18) has suggested the following computational

me thod for obtaining the characteristic functions

in rmlti«group syétems; Je 1llustrate with 2 gfoups:
One starts with the fast group in the reflector,
since this group is not coupled to the slow there
(éssuming thore is no mﬁltiplidation in reflector).

One then contimues the fast group intc the pile by

'requiring continuity at the boundary. From the

fast neutron density in . the pile one can compute the
density of the slow group inside, and then the density
of this group in the reflector. In general the sléw~
group will nét vanish, as 1t should, on the boundary
of the reflector; %t will vanish, say., inside the
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reflector. One then:moves the position of the

‘pile-raflector interface in a little and repeats

the process. This procedure 1s repeated again
énd again, adjusting the position of the interface
a little each time, until both the fasts and the
slows satisfy all the boundary conditions - in
particular, the slows vanish at the outer relloctor
boundary . _

ihile this éeéms 1ike & tedious trial and error
method, it is ﬁct&&lly a very useful scheme, and .
has been ussd éxtensively, éépepially for 3 group
problems., i/hat is needed here is to examine methods
for improving §hé'second guess.
(4) Source,and Sink llethod -~ A variant of the

"Back and Forth" method is to keep the boundary

fixed, work in from the reflector fasts, but to
observe that, if the pile size 1s-not'§u1te correct,
the problem solved is onme in vhich there is a dis-
triﬁution of sources or sinks of a certaln strength,
From ébe stréngth of the source or sink, one should
be able to éstimate how much the maltiplication con-
stant of the whole system needs to be increased or
decreased 1ln order to make the system coritical with-
out any source or sihk. This meothod has not been

tirded, (at least by me), but 1 think it should be



sntirely foasible to wse the source or sink =trength
to give a povd indicuation of the rogquired corrsction,

5) Perturbation liesthod - It has been suggested

—

T
Foud

hat the perturbation nethed (Mon P-3, p. 14) can be
sxtandsd to ssveral groups. fvidently such an exteh-
sion will be rather complicéted - but it is.by no
means c¢lear that for very many srouns this wight not
ﬁrovide a relatively feasible conpatational schene.
0 summarize, the rulbi-group calculations are, for the
most part, In good thworetical shape. What ls needed
most ié a critical study of tho mutli-group sehemes from
a compntationél standpoint with a view to establishing a
very aelfinite procedure which can be ussd routinely for
all criﬁical calculations rcquiring morse than one [Iroup.

Fermi-Theory

fuen the number of groups becomes infinite, but the over-
ail mean sguare distance travalloed by a fast ncutron re-
mains finite, ths multi»gfoup pilcture iz raﬁlaced by vhat
is called the Ferml plcture., In this cass the system of
many ordinary diffsrential equations cmllapsés into a
pair of equatlons; one of which is a partial differential

equation:

Nq - 29

t
DAn - ain o+ ally) =
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Agéiﬁ fhe bare pild problem‘cives'ﬁb difficulty. How-
ever, the pile with'reflcctor problem is very difficult
mathematicaily; 1t'has been solved, in case the piie
and rcflector have the same moderating propertiés by
Volkoff, LT-21.,

Geﬁeféi Integral llethods

In its rost general from the pile equation for a slow.
neutroh chain reacting system surrounded by a reflectbr

is an integro-differential equation

DAn - NOg n.* k No, S n(r')P(r,r') def = 0 (4)

c .
whers P(r,r') is the probability that a fast neutron
produced at r!' will appear as a slow neutron at r. The

‘inﬁegerion is carried out over the active pile since

‘only in this rcgion are fast neutrons produced. Since

the Green's function G(r,r') for (4) is known, viz.
} r-pt | |

@‘l“ﬂ"‘,

. 4ﬁ'L2tr-r'\

(5)

- G(r,pt) =

equation (4) can be cast as an integral equation. The

most convenient way to do this‘has besﬁ described by
Greuling (LA-399); his method is applicable whenever
the core and reflector have the same slowing dowm kerhel.
Pz.r'). | |

The integral equation for the pile has the form
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wtmm F’ is assentially the oore mltipuoab&on con-

gtant and f(r-r') 48, in ‘part. a kernel obtained by
“taking the comolution o£ G(r»z-') and P(r.r‘). “The im-
portant ths.ng ebout 3 (r.r') 1s #hat it can be .exhiblted
48 a'numerlical function providec P(r.r') is lmovm,

-olthor Lrom experimant or fmm htaory. Then tho integral

aquation ean ’be solvad by succeasWe iveration. or better,
by usw '&é raoi'. *h&t' ‘ ‘

ﬁ

(?551'(:'-@') n(r’) dr' -
ﬁna(x‘) ar. - E

fied by deriving ﬁulér's équatibn i‘"ovn the functioial

oL Greuling has used & paz*abolic approxmation to
computo‘ﬁ'. and has tab'ulataa tho . raeulta for the sys~
tams: water careawaber tamgaro

‘The advantage. 51’ the 1:: begral mef.hod 1a very great

‘4 the’ refleotan’ 1§ infinito and as the sime moderator
‘as- the cora, If ¢ither or these conaluom is not mst,
"I7do not-imow v:hether -the thegral method cm:x ‘ba made to
! worko - The  main dif.'ficulty 1s that tbe kemel. cennot
"then be written siuply as a. mnotion of tha c}iatance
“betiween p ‘and r*. Tovever, by using the group. picture

~ one can 8811 exp:‘ees the kernel ag the salu.tion of a
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coupled set of differentidl'equations.' In this case
the eqdation (6) can be replaced by a vector eqdation
a(r) -J F (z.rt. D) nlzy) dar (8

where c}'is now a Green's matrix. Again a variation

-'problem can be obtained from (8). and. in orinciple,'

tne oigenvalue vector [ 'cdn be computed. The problem
vould then depend on hou comnlicated .j“becomes. I sus-
pect that .3 would be so complicated nat thero is nothing
to be gained by such a mode of attack. Iowever. this is
just a conjecture on mg part. and I think 1t might bc o
worth whlle 1ook1ng into the méthod as an altcrnative 2
the straightforward group calculation.

Passage from uulti-Grodp Theory to Fermi Theogz

The reflector problem with Fernmi slowing down has been

successfully solved (Volkoff, :T-21) only in case the core and
 reflector are identical in moderating properties. .ihen the re-

~ flector and core. are different. no . solution has been obtained
for the critical problem although Friedman (CP~1075) has obtain-

ed it for the- distribution from a. point source. . On the other
hand, these problems can be handled by the group method. Fur-
thermore, in the. limdt of infinitely many groaps. the group
method and the Fermi: method become idcntical._ '

It may ﬁherefore be conjecturcd that tho rollowing schemse

can be used to solve the non—uniform proolem with Fermi slow=

ing down. First solve the group problem for n groups, and

try to get a general, expliolt_formula«ror the charactoristic

value (i.e., multiplication constant) and the charactoristic
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- functions. Second, try to pass to the limit.

Evidontly this is complicated. Ilovever, a rather slmi-
lar limiting process haé been carried out (LA-SSO)'ih going
from the spherical hamwonlics to the MNopf-iiiener solution of
the transport cgquation, and it may be hoped that in this case

too the problem can be solved.

A. 1. Weinberg'

ALl :dkw
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