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MonP-255 

THE SLOWOO DOWN LENGTH :m' MmulBS 

----------=---------~-----------
Mo Eo Rose 

The purpose ot the followiDf is: (1) To ~?resent a reneral 

formalism based on a minimum number of assumptio~s which provides a 

ver,y convenient stsrtiDf point tor all dete~.led oalou1ations of the 

slowinr down lel'lfth.. (2) To apply t~ls f01.'mallsm to some oases of 

partioular interest" notably mixtures of light and heaVy -;mtero Two 

oSBes are oons:!.dered: ]i'irst, a, mixture c ~)ntainillf! only a small 

amount of light water wherein the finite masS of all the non-bydrofeneous 

oonstituents is taken into account so that these results may also be 
'. I 

applied to other cases, tor example B-'lI,,·B 0 mixtures.. Second, mixtures 
·2' 

. '" " 

which are predominantly composed of l,tf'bt water with small amounts of 

heavy· water are also consideredo 

IIII General Theoll 

We start with the Boltzmann frquatlon for the eol1j.sion density, 

1.!Jiz'F'u) (the Jlumber of eoll~s:1'c:QS per seo per em3 l?er ~ofar1thm1c 
anera interval and per unit solid ar.r1e) 0 l!'or 3 r:1a1l6 isotropiC source 

aild a homoe-eneous nOll-absorb:!nr slowinr dQ','ln medhun -:ve have 

" ._ IU. . ' . ,(1) 
Ar~'t~pa L \ dU.ldulf (u-u"f ~!r(Z,p''Iul)e (u'H.l...:J (z)6(u) 

(i.... l~ .J~ k 0 k 4'11 
k 
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Tho notation is the customar;y one but is repeated hore' for oonveMtJllC9 <) 

Iln (1) r :: cos 9-- &lid ~ defines the direction of motion with reupaot 

to the z-axis (Ilormal to tba plane source at z :: 0) while u :: log E,jE , 

where E is the Pli.mar.Y (source) en81'&'fo The components of the mixture o . 
are designated by the index k and the scattering kernel eivill€ the ,ro.-

bao111ty that the logarithmio energy cballfos trom 0 to u and that tJ\e 
. th 

scat:l;.eri!l€ aIJfle :is arccos ~O in a collision with the k wc Ie ar 

speCies is (for spherioally symmetric scattering in the center ot 

gravity reference frame) 

2 
rk(Up~O) ;: ~\ .. 11- 1~_ s-u S(u -0 (u» u(ot 

81(' ~ . 1..0' k J k 

'k(~)'= t [<'\ t 1)e-u/2 - (~_l)eu/~ 
where 0(. 1s the maximum logarithmic energy gun 

k . 

By the conservation laws 
'-. 

r=o 
k 

. Mk ~ 1. 
0{, ." 2 log .----. 

k M - 1 
k 

u I a(k 

1) 

(2) 

(2a) 

I 

80 that it is discontinuous at ex. it .. The lo-~"er lim~.t . in (I) is defin9ci 

, b7 . ~k: 0 u < 0{ k 

~k: U -oCt U '/ oG
t 

ar.d takes oare of (2a).. Evidently the normalization is. 

211" S ~OdUD fk (ueou· 'r
O

) -: 1 

(.3) 

(4) 

I 

n While the energy decreases lin each collision the logarithmic emra ~ 
u must, of course, increaso . . 

\ 
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In the convection tam ot (1) i\. is the total mean tree path 

1: ')iO"" 
1\ k kk 

(~) 

and in the scattering term the c are the .relative number of collisions . k 

, wi'tlb nucalot type k: 

with 

o : AI Cf 
k k k 

;lo ~ 1 
kk 

(5a) , 

The pr:imary point in the .folloVrl.ng procedure is to reoogn1ze the 

tact that we are interested only" in the second momellt of the distri-

button, that is, in 

v,2 :; fz.2.!(z,PeU) d M dz 

f l' (z,p_u) d r- dz 
- " 

or in the slowing down leD€tb L defined by . s 
L 2 :: i ~ 

8 

(6) 

(6a) 

Since these quantities depend only" Oll'l the initial aDd final enerries. 

in fact only" on u, equatiolls involvin€' only moments ot the spatial 

distribution are simpler to work with than (1) .. - These equations (see 

(15) below)have the further simplicity that they are 8lmp~ intefral 
• I ' \ 

equations and. not Intefro-difterantia1 aquationso 

We first expand the colllsion'density as well "as the scatterbg 

kernels in Lef'endre seriest 

. )V(z_p,u) II: ~ ~ (2£' t 1) 0/ ~z,u)P t <,r) (7) 
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.. J.,;'!%) 
. 00 

'£ (u,1! ) :: 41..,., Z (2£ t 1)f'1) (u)P n (Uo) 
k f o· 'Ii, 4>k JC, 11 

~ :: f Pi (p.) "y (Z'f,U)d!2r ' 

t~ k :: J P { (P).fk (U,PO)d.c1o 

(~.~ 1)2 -u 
: ~ e Pa (Ok) 

. ~ ~ I. 

and (1) 'becomes . 

L f t ?'* .,1, t (~~ 1) "aft tl] .. ~ 
2 ~ + 1 L ((} z ' ro Z I.. 

: {' ur dun t '(z,u' )e
t 

{us )I
lk 

(u-u' H· 4D d (z) d (u) 
~ . . 

We now define the generallzed moments by 

lane. (u) :: ,) zD ~(Z,U)dZ 
so that 

(7a) 

(7b) 

(7c) 

(8) 

(9) 

zr-,- '!?O (u) -MOO ~u) (9a) 

From (8) we get 

, IIDe - ;tr Je ll .... 1• 2 -1+ U ~ l)I1 ... "qt J (10) 

:: 2k ) ~ dU 3 M n f (u t ) ck ( u t ) '1 k (u-u' H 40 S rO J' (u) 
~ . 

k 
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where we have used 

since 
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f n o~ dz:: -Illn-l /
t 

z 'bz. 

( n I til ) ~ II! 0 
I: Tt z = _ 00 

I 

(10 .• ) 

l!:rom (9&) we are hterested in the c~se n :: Q :: 0, 11:;2 and 

~ : 0" Ho?!sver, from (10) it is seeD to be necessary to consider the 

cases n = a I/: 1 and 11 = 0, Q IlIl 2 $S wello \'la find 

Ii :: a (u)+ )" r
U 

du'M (U')ck(u')f (u-u') 
'00 T~~ 00 Ok 

. lk 
(lla) 

II - 1: (M .\I. 2M )~ Leu duaM (u')o (ul)t (u-ut) 
11:3 00 02 k J) k 11· k. Ik . 0 

(lib) 

u 
14 .. 2 A Y..= L ( dU8.20(u~)O' (u' )1'. (u-ul ) 
~ II k ~ k ~ 

Sk 

(lIe) 

II :: L r'1 dual (u')t (~ua) 
20 k JC;; 02 a 

k " 

(~ld) 

2r'Spec'lal considerations are neC6Ssarr fpr n :: o tor the t~llOw1118 
reason" Because of the symmetry of the problem 

. tV (z,p,u) :: 'Y (-z,-p,u) . 

';0 that ~ is an even function of z if t is even al'.ld an odd function it . 
t is odd o It tollows that for even.t. tpe. are continuous at the source 
Z :; 0 but have a discontinuous derivative (cf 0 (8) ).. For odd J. there 
is a discon:tinui ty in. 'fJt at z ::' 0 and Q~ /~ z has Q J' .. 1'tmetion 
singularity at this point.. For n - 0 in (lEla) and fL even the left. 
hand side vanishes because 'J¥ /d z is an odd function .. torJ.. odd 

t>ft. /6 z is an even non."s1Jlfular function plus a multiple of a; ·f\mctiOllo. 
The contrlbut:1ons of these t\'10 parts just cancel and ther::fore (lOa) is . 
valid ill feneral~ 
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The system of moment equations is therefore a closed one.. It 

will be noted that thi s result is exact, with respect to the 
\ 

assumptions on which (1) is based," and no neglections corresponding 

to diffusion theory, termination of the Lefe.ndre series (7) or a1'.l.1 

other approximative schemes are used .. 

The system of equation (11) can be further simplified by obeen­

in{' that WI :: 0.. The proof is riven in Appendix I.. In fact, it 1s 
" 02 - I 

s~o\m that all the moments Dot for ~f 0 must vllnish.. This leads to 

the result that the intet:rated collision density is isotropiC; that is, 
a::::: s" fI 

r'Y (z,JI,u)dz : ..l-. f "Y (z,u)dz J t 4n 0 
(12) 

is independent of direction or of the orientation of the plane source .. 

Eqi !lSo (11) are further simplified by recognizing that in u - space 

each of the MD s has a 8 -function si~ularity ·at the primary value 

u : 0.. This follows at once -from (11 a-c) and the fact that the integral 

of a S -funatioil singularity is non-siJ'lf!'ularo ~1e, therefore, set 

!I :: It fad (u) 
00 0 0 . 

U : K + a $ (u) 
u 1 1 

-20= K2+ a
2
I (n) 

where K , K and K are non-singular at u : 00 ~Ye find 
012 

(1.3) 

a :: 1,a .G 1 "0' "2= ~ "02 
(14) o 1.3 .3 
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where the subscript 0 means that the quantity is evaluated at the 

primary energy or at u ::: 00 Then (11) becomes 

U ' 

K : L r K (u1)c (u')f (u-u' )du l .~ c (0)£ (u) (lSa) o k Jr 0 k Ok k Ok )k ' 

,u ~ 

K - ~ K = l:'S K (u@)c (u')t (u-uR)duO t .' o'(O)f eu) (15b) 
'1 .3 0 ' k S k 1 k k .3 k Ik 

It -2A K = 2 (u K' (u' )c' (u')f (u-u' )du. 
2 1 k l)' k 2 k Ok 

i· ~'A 02
, ok (O)lOk (u) 

(15~) 

The second term' Oil the right hand side of each of these equations 

represents the contrU:'iL;tion of neutrons reaching the ellergy 1ntenal in 
~ , til 

question fl'011l the source energy by a singl.e collisiolle The k term iD 

each of these sums drops out for u ) 0( (cf 10 2&) 0 

, , k 

, .:3) 
The second moment is now fiven b;y 

-::r g It /it . 
z 2 0 

(16) 

The eqtnso (15) form a general representation of the second moment 

problem and a convenient starting point for all the approximate pJ'Oc> 
4) 

oedures which have alreacv beeD developed <> 

3) The functIon K ,'t1h10h gives the energy distribution of the neutrons. 
was the' subject of, 9 paper by Go Placzek~Physe Rev. fa, 423, (1946)" 

4) See' 8"£0 J,1arshak:~ Slowlnf DoWn of Neutrons by Elastic Collisions 
with Nuclei .. 



/ 

-8-

Followinr a similar procedure ODe CaD express the~bigher moments 
. " . \ 5)' 
ot the spatial distribution in terms ot K-i'1mctions .. However, con-

tenting ourselves with the consideration of the'second moment equations 

(15) 11e find that the prim8l7 difficulty in solving these equations 

arises from the fact the the K-functions _are not a.nalltic 0 In tact,_ 

considering for a moment the simpler. case or a single el.me.nt so that 

the sums reduce to one termQ ODe sees that because of the source tam 

the I-functions are discontinuous at ol have disoontirtuous first 

derivative at 20( and in general discontinuous (n - l)st derivative 

at 11 0(, • These discontinuities are simp~ due to the fact that u = at-
, 

we count neutrons which have made all numbers of c.olUsions from 0 t61 

while at u !'! ol t neutrons which have made no collisions are excludedo . , 

Again the dlsaontinuity at no( is simply the. contribution of neutrons 

which have niade just (n ... 1) collisions. For large u it is clear that 

these discontinuities are. less and less ,important, occurr1l'l€ tor u > 
11. e{ only in the (n - 1) at and higher derivatives.. Hence the X ... functions 

\ . 
... pproach smooth functions asymptotiCally.. Thus, it is a. comparativ&l,;r 

simple matter to obtain the asymptotio behavior of the lU e" As is to 

be expected p this asymptotic behavior simply rives the Fermi age tor a 

single ele1'1lent .. 

L 2 :: 1; 1 =- SU ).2(u l ) dun 
. s :3 s (I-u) , . 

Q 

5) For example, the calculation of -;;: g IL/Moo depends on the 
. solution of saveD coupled integral equations-; . 

 

. .---' 
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where 0< 

S : J ufO (u)du = 1 .. , ~!l _1~2- log !. 4- 1 
o· 3 1-1 

« 

i:fflM~=L 
'0' ~ 

are the' averare lOfar! tr.mic energy ea1:r., and the averafe cos of the · . 

scatter1ll£ all{"le <> 

COn."eBpondinrly" for a mixture the %'Ii 1 are discontinuities of all , . 

three I-functions at u ~ for each k aDd discontinuities in fir:rt 

derivatives at 01. . .. 0( <> In faot, all·pOili'ts ~n 0( where 11 
. k 3 kk k k 
are a set of positive integers. are points of discontinuity as is 

physically clearo HO'.lfever, one can also oiltain the asymptotic be-
. 2 

bavior in this oase leading to the usual. Fel~l life for L " In the . s 

next section we oonsider a case in whioh the Fermi aga approx:lmaticm 

Is insuffioient" 

" 

no !fElication To Ha_!l Water - Light Water Mixtures 

It is clear that a rlforous solution of (15) Call be obtained in 

t~3 llmiMIlf cases of hydrogen, for wr.ich a( ::,~ so that no point of 

discontinuity occurs in the region of· interest, and in the triviai 

case of a sc.r:tterlJlf.' nucleus with infinite mass for which 0(. = O. The 

latter oase, of course. is trivial but the oombination·of the two cases, 

bydrofen plus infinite mass scsttGrer which represents H
2
° quite well, 
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can also be carried out tor essentially the Bame reason that no point 

of discontimdty occurs' tor finite non-vanishing u 6)" In this case' 

the equat1 ons reduce to first order ditferenti~equations and their 

solution leads to the ,,.eli-kno\'1l'l result for the slo\dng down length 

in H 07) 
2 " 

A more general case is the' one :tn t1hlch the mixture contains an 

element such as deuterium, the mass ot which m~ not be considered 

im'initeo In fact, in the Case of D 0 mixtures the mass of the oll;Vgen 
. . . ,2 

should not be taken as infinite either unless the amount of oJriYgen 

present is considerably greater than the amount of deuteriumo Wet 
~ \ 

theretore, consider t',70 cases below" First, \vs consider the oaBe of a 

. small amount of B ° in an H 0' - D 0 mixture wherein the mass of ,the 
2 2 ' 2 , 

oJiYgen is taken to be tini te'" 'Seco:!ld, we consider a H
2
0 - D 20 mi.x11wre 

in wnich'the former is the major conatittlento 

Case I" Small HiP Conaant7'ation 
• 

In this case the slowing down length is obtained 8S a cOl"l"eCtion 

on the age formula for »20. The latter is obtained, ~"lhere no B 1s 

presentllb.Y assumill€ a slow variation ot the weighted It-function • . 
6) While it 1s possible to solve the equations (15) for a single 
element the solut1o~ must be carried out in each interval 0 te 0( f 
0( to '20( etc 0 ' separately.. &ch a romal solution cannot be applied 
practically for the enel"g'ias ot fnte:rest, viz: about sewn too eifht 
slowing down intervals in deuterium .. 
7) u....S.3, Bn-l? 8Ild reference 40 

 

. , 
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c K, in 'the slowing down interval u -0(, to u, oorrespotlding to 
k n k' 

small 0(, • This means that the product c X ,in the scatteri~. terms 
k ' kn 

are expanded in a Taylor series.. Denoting all quantities referring 

to D 0 alone by an asterisk we obtain 
2 

Il' '* ...&.,1_ 
A :: 'I:;: 
o "'A 

~ t 
'I ~3 

.. 
10 

(1-n')A 
I 

~ (* it * * 
J&.. "-) ,12 :: 2 X It 
du 1 

(17a) 

(17b) 

(170) 

where the subSCript A means aWl"a@'ed over the constituents of the ' 

mixture:> e " go, 

. 
G* ::: 5 c (u) C 
").A "It k , ') k 

and ill (17) the subscript k takes on only the two values corresponding 

to the two constituents in D 0.. ,\'hen (17c) 1s intefrated subject to 
·2· 

the &fe assumption K (a) :: 0 we ret, as usual, 
2 

K" II U )."2lI!!.1~ 
2'(& r: = 3 i (*.l (l,n> A 

(17d) 

The effect of the H
2
0 present is now considered by replaclDg 1

0
, 

It md t in the acatter1llg,tenns due to B by the results (17) 0 It is 
1 2 

to be empbasized that the usual Fermi-age assumption, valid for small 

slow1Il€ down interval 0( is not made for the soatteriDg by B nuclei 
k 

.. 

, J 
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where the slowill{" down interval is large.. III the scattering tenns 

correspor.:dir.fT to the non-hydrofer,aous constituents the age expansion 

is 8fain made" Then one rets 

d ~* ~f\ .I 0 K = A (u) 
. _'J. "f' 0 0 

R , 
(18) 

u (I) u' .. u 
A - (0) -u • f °H U . - 0 e t e dul 

o H . 0 ~* A(u) 
(18a) 

Choosing the interration oonstant so that· K ::: It '* tor c = 0 we obtain 
u.. 00 ,H ; 

_ 1.. - i- (oHI ~ ,)du
O [u, su" CHit A du' ~ 

K .. ~ e 0 1+ J A (u ') e ., j 
o ") A 0 (lSb) o 

Similarly I -

u '* '* L~~ ~\K II It :::.3 1- -. f\ 0 v-
1 , r A 

f 1.. (u')~M t-(u'-u) 
o 1- r (u' fCB,,(u

t
). dug 

A ' -

-.3 u/2J 
t AocH<O)e 

Bor K ~ obtain 
2 u 

1.
2
= t A e - b ("JrI~\)du' S

ut i (c I~* 
) A

2
(u')e a II" A)du

ll 

o dUD 

where . 
(u '* u'-u 

A (u)g A K t 1 "C (u')1 Cu')o (u')e dur 
21- 0 H 

• 0 . 
1 \ 2 -u + j f\ 0 0B(O)e 

" 

(19) 

(20) 

(2Oa) 
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and .,; is defined by (17d) 0 Eq'nso (17) ... (20) rive the slowing 
~. 

dov'ln lenrth from 

in terms of quadratureso 

L 2 =t~ 
s It o 

(20b) 

If we expand the above in powers of OR' retainiJlf no tems beyond 

first order, the result obtained is 

J"'" t,,(lA..') ( j.j'- '" ~ I] __ e -lotM 

o 5" /" ') . . 
L: : -c: (,,) [ I - C. (.) (1- e "') -

~l _.) 
+- .....!.CH(o)(lA. ... f +e . 
3. . 

I 
I.\, II) '" 
J Cit ( M. I;\. - \..( ., 

4- . - e k 4-

S /rlt- ( .... ') 
4) 

f-

~, 

~A' {.'~ J t (" "Ie" (- '.J E; 

.~ ( L( I) 0 ~A -It (""1 

A 

f.(. . 

_+-[ ~""'I"') [(010)(, -e-j 

~ ~(I.t'J \ 
A Ao 

-;. (tA.} 

_l~/'1.'" 
(' .. (o) e 

/I ,) '1/ J i(t( -4. ~ 

.. ~ 

.f.. .J en (w') d.M..' 
o ~ .x-(l(') . 

..... "" lA' S ~' "l~') -I- f«...' f AlA ',-riu. '? CI,r~ "J e '1'- It' 

o 0 () ~t(ltll) 
It . i1 

(lOC) 

In. the foregoing we have om! tt.3d the effeet of "first· c0111810D8 
\ 

in the case of the non-bydrogenepu8 const:!. tuel'lts althougb these have 
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been included for the hydroge~ collisions.. These effects could be 

included i~ a strai€'htf'orward !IlaDller which in the 'case ot D 0 alone_ 
2 

may be descri~d as follows: The equations obtained by maldng the 

TaylorexpansioDs in the slowinf/ down integrals tor DandO are con­

sidered to apply for u 7r;/, . onlJr and not for all Uo To obtain the 
. D 

initial conditions Xn(o(.D+} the intefral equa:tiona for u {.. oil' are 

solved.. This can be done directly :1f "the slowiDt' down:ti:a 0 is 

neglected so that effectivel,y one deals vdth a sinele element.. Then 

in the interval 0 to~ the eq'n. (15) become diffarantial equations, 
D 

of first order for It and! and of second order ~ith constant 
o 2 

coefticlSl'lts for K 0 From (15) VIe fet 'K (0) and the discontinuities 
1 - n . 

K ( « f) ... I· (0{ -).,A similar procedure is followed in the Case that 
n D Xl D 

a small amount of H 0 is present.. Fortunately,. on the basis of -the 
2 

age calculations for D20 it, seems advant8€eous to dispense tdth these 

additional complications.. Such effects are Con~ider8d in the case ot 

small D 0 concentration treated below~ 
2 

1hse 2.. ~§.ll D2Q Co~entratio~ 

- We now t~at the mass of the 0 nuc leus as intini te since the oom ... 

parison of the slowinr q.own and average scatteril'€ in 0 is !lOW to be 

made with that Que to B nuclei which are present in much greater quantit,. 

than the D nuclei..iVith inti!dte mass cOlDst1tusllts in the mixtqre Eq'so 

(15) must be modified.. If j desirna;tes the infinite mass const1tuellt we 

have f (u-u'): S (u ... u·) [' (21) 
tJ .t 0 

\ 
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The substitution (1.3) now fives 

and the moment equations 

I 

1 ..,. a= 
o 1 - 0j(O) 

a = 1 
1 3 

a = 2 
2 j 

1\0. 
1, - 0j(O) 

1\2 _0_ 

(1-0 (0) )2 
j 

(22) 

" ,[ u ' J(23a) 
(1-04)1:: ~ S du'l (u')f (u-ul)c (u')t a c (O)f (u) 

oJ 0 k'f' j t'" 0 Ok k' a k Ok . 
. ~K 

"':;-l U . J '(23b) 
I - ~ K:: .t:.... S' du'K (u')f (u-ul)o (u')1 a c (O)f (u) 

1 .3 0 k:r j 1 lk k t 1 k ' 1 k < ,\ 
k . 

(l-c }K -2 AI:: 2.. ( du'l (u'}f (u-u')o (u')t a c (O)f (u)l 
[

u I (D) 

j 2 . 1 k:t= j l)' k 2 ; Ok k 2 k Ok:J 
, 

VI~~e:re here and in the following the aU s are ,[,iven by (22) «> 

\','hen the elmnents of fillite mass are hydro€,en plua a secolld element 

ldeuterl.um) 17hose effeotive concentration are c
B 

and c
2 

respeot!ve17 

the Eq .. (~3) becomes, for u > Q;( 

\ 



( 
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1,1 '4.. 

(0 ~c )1:: (' K (u')r (u-u¥}c (u~)duQJl. f K (Ul)t {u-ut)e (u8)du' 
B 2 0 J 0 On . B e 0 02 2 J 

. 0 u=~ 

t a (I {O)f (u) 
o B Oil 

a 
(2)a) 

'U J ~ . 

K ... ~t :: [ I (u')t iu-nQ)o (u' )duU + { It (u')r (u-u·)o Cu' }du~ 
1.30 J 1 1lI B J 1 12 2 

o . U-Ql 

u 
t aloB(O)fm(u) (2.3b) 

. '/U . u 

(oH~e )1 -2 Alt = 'S 1t2(u l )r (u-ut)c (u' )du't f K (u')f (u-u')o Cu') 
. 2 2 1 0 OB H 2' 02 2 

. . ~~ 

+ &0 (O)f eu) 
2 H OB 

, 
(2.30) 

. where 0{ refers to the non-hydrofensous element of finite mass(otherwise 

< 0{ the only chaDfes are the add! tion 

( 1 :: 0 ror' It and K ,i = 1 tor Jt )' 

designated by subscript 2)" For u 

of another SOUl'Ce term c (O)fb (u) 
2 . :1.2 021 

c\)rrespond1ng to oollisions with element 2 in which the primary e:oer.,;)";f' 

is the source energy, and the replacement of'the lower limit in the 

soatteril'l€ interral. for element 2 by the value zero ... 

The method or appro:ldmati_on adopted in the solution of these 

equations and the details of solution are described in appencHx no 
Briefly i the essential part of the prOCedure is to treat the 1l000-bydro-

geneous oollislons by an age procedure wbile treatll!€ the hydrogen . 
" 
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collision terms rigorousqo The result is 

(24) 

L 2 :: ~ X (U)[ _~~ol) fi~)-(_~2.) ... J~ ~- ")' dUJ' 8 2B v l;{} l Tt< Yl~ 'X l7. 
o t\ ..... u 0( 1 UO 

see Eq8 So (204) aJ'ld (2~6) of the appendix n.. Awdliary quantities are 

defined or given by Eqt So (2,.3&, b), (204&)" (205a) (2 .. 8), (3 .. 1), (3 .. 3) 

and (.305)0 
, ' 

In the limit of zero deuterium or D 0 conoentration (24) reduces . 2 

to the ~ell-k~own formula for BO as it should .. 
- 2' I 

, 

" 
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4PP iN2U.,..l... 
, 

Each moment M D tor t t 0 satisfies the intefral equation 
. O~ 

M = l. t M ( u ' ) c (u t ) f ( u-u ' ) dU I 
OJ k)~ ot k l k 

~k 

(1 .. 1) 

Since fa (u .. u t ): 0 for u' < ~ . = u ... at ,the lower limit on each 
"tok k k , 

interra.l can be replaced by zero o Therofore we can write 

u 
M =f III (us )R(u,u' }du' ot ' 02 . 

(~o2)' 

o 
where 

H : ~ c (uA)r (u-u') 
k k ek 

(1.3) 

Since both H and III are bounded in the refion of Inte€ration we have 
o 

M < B (M ) u 
O~ ~ or m 

(1..4) 

where the subscript m Ind1cate~ m.a:x:l.mum value in the interval 0 to u .. 

Using the right side of (1 .. 4) in (1 .. 2) ue have 
2 ' 

II < lL. H 2(1 ) \ 
OR 21 m oj m 

'lnd bY iteration 

M < LJm ~ H
n 

(M ) 
O~ n nt m at m 

(1 0 5) 

For fInite u the limit is zero and therefore all 11 (~. 0) vanish 
. . . O~ , 
Identleall.7. 

" 
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APPEliDlLlJ 

We first consider the Eq~ (2)c') and for the non-hldrofeneou8 
, -

sleme,nt the are-e;xpansion is made 0 In first appro::ld.matiODg where onl:' 

one term of the expansion is taken, we would tirld 

where 

G
2

_2AIt
1
= e-u[r G

2
(u')eU

' duo t B2] (2 .. 1) 

G2= cll2 

B2=· a2cH(C)t 

(201a) 

'" c (ut)K (u')e u' dU" j 1 2 
o (2.1b) 

We have taken cor~lzance of the fact that in the hydrofen sc8tter1~ 

intefral, taken from 0 to u ) ~ Ii the moment function 1 dlich appears 
, 2 

" , 

in the intefraoo must be defined f:r'om U < c( :l'n an analytically different 

marmer than, for u / r{ " This fives rise to the second term in the 

constant B. The evaluation of this tem is considered below!> 
.2 

For deuterium the next term in the are-expansion' is important alA. 

includiI!f' this term we find instead of (2 .. 1) 

'( )U I , -u ,U 
G -2 A K :: e G (ll t ) e du t 
2· 1 Q(. 2 

, 1 (202) 
+ B' _~ dC~2 

2 2 du 

where ~ is the averaye 'logarithmic energy fain in element 2 
2 " , " 

(deuter1um) • D.ifferentiation of (262) \'Iould 1ea,d to a second order 

. differential equation with non-constant coefficie~ts. To avoid this 

/" 

" 

, 
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situation result (2.1) is used in the last term of (2 .. 2) and we obtain 

after differentiation of (202) ~e first order equatIon 

where 

dG2 '" ( If .Q.. 
du du 

10£ F _ L) 
'1 F 

1 

F:lf,J" S-~ 
1 ') 2 du 01 

is a known function of u aDd 

G : l...(F' .f. dF2) . 
2 F 2 du 

1 

ICC 
F = -2AK (1- ~ ~)f 2 ~ -i. Ji.. Alt 

2 1 2. 08 2. C H du. 1 

Is determined below (see Eq. (2 .. 8) ) .. 

(203) 

(203a) 

(2 .. 3b) 

The solution of (20J) subject to the initial condition appUed at 

u : 0(" 1s re':'2dily round to be _ 

G = i (u>['~ +(!Ll -Irz _\ , -f(' '2, ) dUJ 
2 7( (ot) ., ')(~ 1! l. -} \ II F 2 J 

1 1 U J.. 1 u. 

(204) 

I!:\J'@'tJJOOntEt beillg indicated by a subscript where convenient.. In (204) , 

we uSe the abbreviation ' 

teu>: F 1 (~) ,exp [-u t j ;U(U'l] 
1 , 0 1 

(204a) 

whlch- Is, a len,own function.. In (204) the a!'fUDl9nt 0( actually means 

0{ .. t where t Is infinitesimal but positive. It should be added 

that (2.4) is to be used only for large u., In addition to G it is 
2 

naaeesar,y to find G = c It tor u ,,)0<.. This can be done quite 
. 0 H 0 ' 

easily if the 'Variation of K over the slowi!)f d~ IDtenal 0(. 1s 
o 

I 

\ 
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negleoted as in (2 .. l) above" AlthoUfh tt.1s approximation 1s not 

necessa17, in the sense that thf! sam'; prooedure as led to (2,,4) ·mq 

be applied, it seems a reasonable one and will be made tor both 1 

and K .. 
1· 

where 

Than we find tor G 
o 

-u u' u ] 
Co=· [Bot 1 Go(u1l. duO 

" . 

t u' 
BO= aocaco>. J Go(u'}e duO 

o 

o 

{205} 

.(2 .. 5a) 

1s a oonstant. The asymptotic solution of (2 .. 5) is the COl!lst8n~ 

... 0( 
G := B e 
o 0 

(2 0 6) 

It is prlmaril,for this reason that assumption just discussed wa~ 

made" , 

P~eed1ng in the same fashion we fil'ld 

-3u/2 [ .u 3u t /2 1 Kl(l-~c2)- ~ Go= e B1~ \ Kl(Ut)cB(uV)e dUJ 
H ..' fA. 

(2,,7) 

where 
r2= 213M2 

0(. 3u'/2. 
B1&alcB<O)f S Kl(u')cB(ut)e . du' (2 .. 7a) 

a 

The solutiol'l of (207) is _\I) [ r \!J(u') _1 
K = e J K (0() t } e 1 P ( u' ) dU:J 

1 1 4( 
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where l-Pa02(u) u 

(f) :; 10€1 ... ii,.C to}' + r 
'I;t;. 2 0 

3 - 0 ~ - 011 - '6 P2 2 du' 

1 - P202 

(2 .. 88) 

l~ lAB 
P:G 3dU t 2 o :; 

1-110 , 
(208b) 

122 

and I\u is the mean f%9s path 1n bydrog~n of the same density, !.e.D 

~B= l/BHfJ It i?here IB: number of B atom~ per em' and(f H is the 

mlsorosoopio cross-seotion, for B (> In (20 8b) G 1s ~ riveD bJ (20 6) ... 
. 0, 

This resy.lt for '1 is to be used in (203b) to fl~ '2e 

To complete the solution of the problem we need K (o(t) and. K (0) 
n _ . n 

for u < 0(. .. Onoe the latter are found the initial values K (0{ t> 
n ' 

are found fl'Cllt 

K (0{ f.) :: It (CIt -) • A n n . n 
(2 .. 9) . 

,-

where the discont1nul ties are obtained d1rectl1 trom the Integral 
n, 

equations (2)1)1 2 
Il • _ ~M2-1) 

o 4M 
2 t-::'? 'oJ (:H t c2t' . 0 

.tl
l

: (~12 _1)2 

12M . 
2 

( °u J /) (~~ X.. J ) 

'iI f O2 .a (cll '" c2}uc 
o 

2 t IJ. = (Mg-l) . Cu . -1-

2 6M' 0'" c ) -(c t c ')< 
2 II 2 0 It 2 

( .>. Gl . ~o( ~ >'0
2 

] 
x G( ~O- (PH f c2 - {Crr + c

2
}, 
o 

SlapE !t 
.g . - iiIIW'ijJ 

(2,,9&) 

(2.9b) 

(2090)' 



For u < 0(. we have 

~f.:. ,:::&...:ri'k, ,·,:::.a.t~ 
t.::~:', ~'c.t..~~"~~:~ 
V..::- ; ~1~ "'''~:l;/ :S-E"G~· , 

-230 

(oi °2)10= e-
u 

[ 8
0 

"(0)+ I l(U')J[o(u')eU'dU'] 

'f (rhil ) 2 

D (u): cH(u)f 02{u) 
4M2 

The solution of (3 eO) 1s obtained by differentiation and 1s 

&.0 i (0) . (M2-1)2 u °2 .. J 
K = exp . ( ClU n 

o ~.~ ~ J ~+~ 
o 

(JoO) 

()01) 

Comparison with (2 0 5) am (2 .. 5a) shows that It or G is now compl~te17 
o 0 . 

defined. .. 

To obtain Xl for u < 0(. fie nota that the pertinent internl 

equation 

If - ~ K 
". 3 ., 

\( . ") 

f 
,[< 1) ... ~ it-' .. k 

;; I\..(k/) CH("')+Cl.(,,')(H~+I~ e? 
o ." M" 

- C
L 

(10.') (Mt +.) ~ (Mt -I) • - 1(11'· ~,) J d-.... I 

, <lM ' 
'2. 

, (I." Il })' - 31.1./2. ' 1 1 ~ a. '1' ,C If (0) + t 2 (0) \Mz tI· e '-c (0 ) (Mol .... ) (1\ .,) -",,, 
.' ~M z - e ~ , B~, 

~~-;'i;'. '~,~:..:::.:.::J",';1:JO 
~:~-"R::g-.~.:. .. !!l ",--.;.' ~ . ", ' ... ;;-.~ 

(3,2.) 



(, 

'. 

fIlcmr-"';; 

mOaD?1P 
...w;;: ; 1'*;'; r : 4kAJri> 

= 115$ ~ .. ¥'. . ;!oW, A:li,. 

-,24 ... 

co be put in the form of a linear second order differential 
8) . . 

equatiOllo Unfortunately ~ tor a mixture the coefficients are DOt 
• r 

constant., However, if we set °
2
= 0 as is consistent with the approxi­

mation here considered, the resul'tiJlf first order equatiot.l fives 

u u' 

~JI. *' 5 C1du . " u~' - I CDdu" ' . .' . J 
JC c le 0 \ \ 1" ,:uW f r e2 

0 (SL().K )+ JAxl duD 
1 ) 1\ 0 " j du 0 2 '!l 

~~ . 0 . 

(3,,3) 

or alternatively 

u. u 

, ~ to J Cu
dU

{ (1t OH) ... ~cBo1(o) +JdUtC (ua)A(ur)K CUi) It = 1 'I t 18 0 ~ - "< ). B 0 
1 .3" 0 ) 0 CD cHf.c 2 0 0 . 

o 
I;J.I 

jll~_ - f 0 du· J 
x e-r 0 B (303a) 

where '0 is given by ()01) 

From this result D· is determined (cf. 2 .. 7.)0 Also trom (),,3) 
1 

8Jld (209b) one obtains K (~~) so that K (u) for u ') 01... is now 
1 1 /. 

df!term!,ned, see (2.8)" 

8) It may be ~ntioned that for equations of the twe considered the 
reduotion to a differential equation depends only on the tact the kernel 
1s of the form of a sum o;r terms each of which is a product 'of function 
of u and a function of u'.. In feneral ~e order of the dlftel'l"nt1al 
equation is equal to the number of terms required to express the kernel 
in'this fol'BlCl 

<> 

, 

/' 
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.. -- 2i421i.i.o 
r;;> it Q & 2 Z""RI!I 

';'2~ 

\ 

There remains only' the determination of It (u) for 'u < c( " 
, . 2 

The interral equation 

(0..l.2)K2-2 ).K~: .-n [ r 12 (u') t (U')8 u' du'. ~ -2 t (O~ ().4) 

• ,I, 0 

fives the differential equation 

sl.. (o_k':2)!" 2 c:K = 2- 1 ll- ~I (I ":1)2. ~d )d{ J 
du ~ 2. 4M 2 2 du 1 

. (304a) 
. 2 

and obtaining the intial condition from (3,,4) W8 find the Nsult 

\ 

It ~ 2hKl ~ 21 [~ 
2 0B~·02 0.3 

. 2'] _
1__ J¥ ll.! (1112""1) . 0 ) ~ 1 1- 2 dun 

. (oU,,"o )1 .4M 0 Vo ' .. 
o '0 2 0 2 H 2 

where K and It are given by (.301) and (3 .. 3)" 
o 1 

(3,,5) 

The limitiD£ oase of pure H 0 is obtai·ned by setting «( = 0 8m 
2 ., 

O2= .00 Then BO= ~ ad G
O
= 1 \m11e 11 (1Il):K

l 
(O): 3'~o(i~ l/oH)Oo 

.... 

Thenalso 1 -f[ ~ ~ fU. ,,(u
l

) .]. 
J( :: "ll e ~ *' c etA e dug· 
l~· 0 H 

o 
u 

~= J (~ ... CB) duu 

o 2 

G2~)= °2(0)= 1 . :0(0) (2'" 0B(O) ) 
B 

.,. \ 
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, 
W:f.th ,the aid of' these results it is easy to 

;., 

MonP-255 

that the above 

formulae rep:rocluce the we~;L ... 1mown water formula tor tJle slow1mg dow:n 

length 0 
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