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THE SLOWING ~ DOWN IENGTH IF °© MIXTURES

M. E. Rose

The purpose of the following is: (l) To 1)resent & general
formalism based on a minimum number of assump tioqs which provides a
very convenient starting point for all detafled calculations of the
slowing down 1eng-th°‘ (2) To apply this formalism to some cases of
particular intercst, notably mixtures of 1ight and heavy water. T;::o
cases a.re considered: Firsi, a mixture c¢:ntaining only e smali
amount of light water wherein the firite mass of all the non~hydrogeneous
cénstituents is taken into account so that these ;'e‘sults nay algo be
applied to other cases, for example Ba-H 0 mixtures. Seconci, mixtures
which are predom:lnantly composged of 1 iffht water with small amounts of

heavy water are also considered.

AN

I. Geperal Theoxg'

- We start with the Boltzmenn ¢quation for the collision density,
1}1"(2,}1,11) (the number of collisitis per se¢ per cm3 per logarithmic

energy interval and per unit solid arcle)., For a rlare isotropic source

and a homogeneous non=-absorbirg slcwin: down medium we have

u (1)
’\P Ypfe )\ al L'du'f (v-u' 5 LP(z,)u Juf )c (ut)é l'*"’—J(Z)O (v)
r‘ p . , .
*k
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The notation is the customery one but is repeated here for convenienceo
am (1) A Zcosd amd I def:lnes tha direction of motion with respast
%0 the z-a:ds (normal to tha plane source at z = 0) while u= log B O/I& K
where Eo is the pzﬂmgxy (sourc@) energy. The componsnts of the mixture
are designated by the index k and the scattering kermel giving ths nro-
baoility that the logarithmic emergy cﬁanges from 0 to u and that the
scattering angle is arccos :10 in a co;lisiop with the km ruclear ’
species 1s (for spherically symmetric scattering in the center of

gravity reference frame)

o EDT o
£, (wpy) = 2%*;‘ u 8(9 ()l
o of3 (@)
bot= [0 ¢ 0e™2 - @one ]
- ) 1)
vhers O . is the maximum logarithmiq anergy gain
oL 2 10 L 1.
Rl
By the conseﬁatioa laws
ka © _ u? O"k | (2a)

-~

/

80 that fk is discontinuous at o i’ The lower limit in (1) 4s defined

’

by . C.ku o LR
_— o (3
Ck u -o(k \ u > ol " :
ard takes care of (28). Evidently the rormalization is. .
zfj dPodu" fk(uwu' ’fuo) =1 | (%)

1} VWhile the energy decresses in each collision the logarithmic energ

u must; of courss, 1ncmase _
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In the convection term of (1) ) is the total mean free path

1, % e |
3 I ()
and in the scattering term the ck are the relative number of collisions

. with nuclei of type k: |
o SAN O (58)

With . ,ZO 23
‘ : kk

The primary point in the following procedure is te recognize the
fact that we are interested only in the second moment of the distri-
bution, that is, in ’

o2 ='f7-2“y(ggg,u) d& dz

¥ (aopow) d p az (6)
or in the slowing down length L; defined by |
12 234° - (6e)
8

Since these quantities depend only omn the initial and final erergies,
" 4n fact only on u, equations involvine only moments of the spatial
distribution are simpler to work with tham (1)« 'i.’hese equations (see
(15) velow)have the further simpueity tiaat they are simply integral
equations and not integro-differential squations.

We first expand the collision density as well as the scattering
kernels in legendre seriess k '

t

N | |
Yoo o = 2 2Ly 0 Y O N ()
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£ (u,}a) 2 Z; (2Q§ l)f (u)P (i‘o

= fPﬂ (p)wy(z,rsu)dﬁze

= [r, (B, (s dan,

. 2 o
2"("&4&;?"}'2 euPl (('bk)

and (1) becomass .

N {Q Woa } 3)‘%@} ' ¥

2{¢ 1 0z

3 é{{ aut ¥ (a0 )e, (a0)g,, (weuDg 6, 3(0) §lw)

We now define the gemeralized moments by
w () = { om ACRAEE
so that '

-, oy (u)
By (W

From (8) we get

(7a)

- (70)

(7c)

(8)

@

(9a}

Enq 2Q J.Q n-=1Q -1 ‘(261)@ 20 % 1] (10)

) | |
=2 (7 aw g, e tungy, ()t § 8 I
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2)
where we have used

f ’b% dz € -n B 1\€ ' (10a)
)

since :
’ n, ]
(2 kpz )Z < & 00 s 0
From (92) we are interested in the case n = ¢ = 0, n=2and

{ = 0. Hovever, from (10) 1t 1s seen tc be necessary to consider the

cases n EQ'? 1l and n=O,'Q = 2 as well. tle find

u ' R .
5(u)€' Zl%g‘,k du'éﬂoo(ﬁ')ck(u')fOk(ru-u') \ ' (11a)
M- 3 (u LA )s 2 Sg awth (a)e, (w)e, (ueut) (110}
. . |
u -2 A M Zk g au'ly (u)e, (a')E, (umu?) (11e)
Sk }
ZS dutll (u'): (u=u?) (114)

25 Special considerations are necessary for m = 0 for the following
reasom, Because of the symmetry of the problem

W (zzpsu) - ly(“zs”}lv“)

so that \V 18 an even function of z if § is even and an odd function if
?, is odd° Tt follows that for evem £, Y}, are continuous at the souros

= 0 but have a discontinuous darivative {cf, (8) ). For odd £ there
15 a discontinuity in ¥, at 2 = 0 and ,/?2 z has a J -function
singularity at this pointa For n = 0 in (lea and £ evem the loft
hand side vanishes because % /2z is an odd function. For £ odd

/dz is an ever non-singular function plus a multiple of ad -function..
The contributions of these two parts just cancel and ther:fore (IDa) is

valid in general,
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The system of momen{; equa’cions is therefore a closed one. I%
will ba noted that this result is exact, nith respect to the
assumptions on which (1) is based, and no meglections corresponding

to diffusion theory, termination of the Legqndm serles (7) or any

other approximative schemes are used.

Tre system of equation (11) can be further simplified by observ-
ing that' ¥ = 0. The proof 1s given in Appendix I. In fact, it is
02 N ! _
shown thaet all the moments ¥ fo’rQ,‘— O must vanish, This leads to

0f
the result that the integrated collision density is isotropic; that is,
% u)dz = -A.a \‘\ .
y‘}’( 9{13 ) Py Yo(z,u)dz o (12)

is independent of direction or of the ordemtation of the piane source,

Eq*nss; {(11) are further simplified by recognizing that in u - space
oach of the M's has a 8 =function singularity at the primary value
u = 0, This follows at once from (11 e-c) and the fact that the intepral
of a Scrfunctiom singularity is non»z_singularo ila, therefore, set
M SKta § u
00 0 o (')
M =K+a 5 - Q
w58 u) (13)
UCE & 325 (w)

where KO, K1 and K.?. are non-sinfular at u = 0, We fimd

= = ; = g 2
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where the subseript O me'ax_xs that the quantity is evaluated at the

,

primary energy or at u = 0. Then (11) becomes

= > U
Kon- ~ Jgk go(u )ck(u')fOk(u-uv)duu ¥ ck(o‘)fOk(u) (158)

|>"

* e (O)f (u) (150)

u
= Z}{Sg Kl(uﬂ)ck(u')f k(umu")du' J. 3 %

-2)K a2 S K- (u‘)c (u')fo (u-»u')dU' }\ 2 K (O)f (u)
' (15¢)
‘i'he second term’ on the right hard side of each ovf' these squaﬁona'
 represents the comtribition of neutrons reaching the energy interval im
quastion from the source energy by a singls collision. The kth term in

each of these sums drops out for u 3 of {(cf. 2a).
. , X _

The second moment is pow given b§3)
2 =K /K. (16)
-2 0 .

The eq-' ns, (15) form a gemeral representation of the second moment
problem and a convenient starting point for all the épproximatev pro-

4)
cedures which have already been developed .

3) The function K ,'which cgives the energy disti'iﬁution of the neutrons,
was the subject of 8 paper by G. Placzek, Phys. Rev. 63, 423, (19%46).

L) See e.g. Marshek, Slowing Down of Neutrons by Elastic Collisions
with Nuclei.
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Folléwing a similar procedure one can express the ‘higher moments
.of the spatial distribution in terms oi\' K-functionBS) o waever, con~
tenﬁng curselves witl; the consideration of the' second moment squations
(15) we find that the primary difficulty in solving these equatioms
arises from the fact the the E-functions are not anmalytic. Inm fact,
considering for- a moment the siimpler case of a single slement aso tha“t
the sums reduce to one iterm, ome sees that bécause of the souxﬁe term
~ the K-fmctiomé are discontinuc;us at m have disscontinuous first
derivative at 2 & and in gemeral discontinuous (n - 1)st 'deﬂvative‘ A
at n o . Thess discontimiities arc simply due to the fact that u Sof-
we count neutrons which have made all numbaés of collisions from O %o
while at u 2ol § neutrons which have made no collisions are excluded.
Aéain the diseont:lnuity'at nof is‘ simply the contribution of neutroms
which ﬁave made just (n - 1) collisioms. For large u it is clear that
these discontinuities are less and less important, occurzring for u >
n o only in the (n - 1)st and hicher derivatives. Hence the K-functioma
wpproach smoo\th functions asymptotically. Thus, it is a comparatively .
simple matter to obtain the asymptotic behavior ot" the Ris. As is te
be expected, this asymptotic behavior simply gives the Fermi age for a
single element. |
CRER TR R

0.

~ 5) Por example, the calculation of Z=eu O/MOO depends on the '
.golution of seven coupled integral equationsés ' '
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fuf (wau = 1- (I Vel TOg K 2
2 -1

vy
"

W= jf (v)au =

-~
[ ]

are the' averare logarithmic emergy gailt and the average cos of the '
scattering arngle.

Cbmspondingly,, for a mixture thert are discontinuities of all
three K-functions at u =otk for each k ané discontinuities in fir§t
derivatives at of ‘k% of » Jn fact, all poirts Zk nk°( . where nk
are 8 set of positive integers, are points of discontimuity es is
physically clear, Hovever, one can also obtain the asymptotic be-
havior in tﬁis case leading to the usual Feirmi age for Laz. In the |
next section we consider a case in which ;.he Fermi sge approximatiom -

18 insufficient,

-

II. Application To Hegvy Water - Light Vater Mixtures

It is clear that a 1’1501‘0!.18‘ solution of (15) can be obtained 121‘
tea limiting cases of hydrogen, for which® 2 o so t;hat no po_int of
discontinuity occurs in the region of interest, and in the triviel
case of a scattering rucleus with 1nfin1te mass for ,whiﬁsh ot= 0, The

latter case, of course, is trivi_al but the combiration of the two cases,

hydrogen plus infinite mass scatterer which repressnts 320 quite well,

N _
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can also be carrisd out‘i‘or essertially the same reason that no point
of discontinﬁity occurs‘ for finite non-vanishing 1.16)° In this case’
the equations reduce to firét order differentikl equations and their
" golution lseds to the well-known result for the slowing down length
7 '

inHo ' .
20

A more general case is the ome in which the mixture contains an
element such as de’uterium, the mass o;t‘ which may not be oon‘sidex'ed
infimite, In fact, in the cuse of 920 mixtures the maég of the oxygen
shAould not be teken asl hfinite gither unless .the amount, og‘ oxygen
present is considerably greater than the amount of deuterium. .We,,

- therefore; considsr t70 cases below, First s we> consider the casa of \a
-small smount of 320 in an Hao'- D20 mixture wherein the mass of .the
oxygen is takern to be finite, .Secozid, we consider a 1120 - D20 mix&ux'e

in which the former 1s the major comstituent,

Case I. Small Héo Concentration

In this case the slowing down length is obiained as a correction
on the age formula for D,0. The latter is obiained, where no H is
present, by assuming a slow variation of the weighted K-function,

6) While it is possible to solve the eguations (15) for a single
element the solution must be carried cut in each interval O te o,
o{ to 20 ete., separately. Such a formal solution cammot bs applied
practically for the energies of interest, viz: about sewven to eight
slowing down intervals in deuterium,

7) 1la-53, ¥T-17 and reference 4.
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-)i=

¢ Kn, in the slowing down interval u -u(,k to u, corresponding to

k

amall of . This means that the product ckx in the scattering terms
n

are expanded in a Taylor series. Denoting all quantities referring
to D G alone by an asterlisk we obtain

2
K” w-‘:-l—gv , : (17a)
0 €a
E3 «®
* K
¥ g2 20 (27)
1 3 (I'F JA
4. E, = 2XK 17¢
aa 5 A% k .1 _ (17¢)

where the subscript A means averaged over the comstitusnts of the
mixture, €. ge»p
‘ ‘ 2
= c
§a ;; k(?)é;k
and in (17) thé subscrii:t k fakes on only the two values corresponding

to the two constituents in D20° #hen (17¢) is interrated subject to

the age assumption xz(o) Z 0 we get, as usual,

#
2’52,5-;-;% =2 }1' A*‘Zgu' ) du' (17d)
K 3 #* (1 ﬁ)* )
0 0 §7al1qE)

The effect of the Ezo present 1s now considered by raplacing KO’

K and K2 in the scattering-terms due to B by the results (17). It is
1 .

to be emphasized that the usual Fermi-age assumption, valid for small

slowing down intervel o/ 413 not made for the scattering by H nuclei
k

LN
| _ |
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where the slowing down interval is largé. In the scattering terms
correspording to the non-bydropereous constituents the age expansion
is agaln made. Then one gets

a €k | «
a¥o N |
™ 3 OHKO /AO(“) 4 (18)»

u ' .
' 3 A(u)

Choosing the integration constant so that’ Ko" Ko* for cH= 0 we obtain

u #
| - § (ey/8 J)auw '
K:lﬁ“'e o A [1{-313(11')5 H/gA du}.

o §, (18)
Similarly
o (u'-u)
K= ‘ l:*_-{)\x%' f/\ (u“)K (uv) °g (u')e duf
1,3 IPA 0 5 -rﬂ(u") : :
-3 u/z:(
¢ )\ocn(o)e, (19) -
¥or Ka we obtain
u
o -§ w f ‘°H/€ Jau!
- KZ"" e g A (u')e ; du®
- §A
, o (20)
where " | :
'Az(u)'a )\Kﬁ{ 0 ’;(u‘)l{%o(u‘)ca(u‘)euuau.du‘? BNCE
1y 2 ~0
-5--5 )\0 cH(O)e

A
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and ‘U 1s defined by (17d). Eq'ns. (17) - (20) eive the slowing

&6\?11) length from
(200)

t
)
)
o
S Y

in terms of quadratures,

If we expand the above in powers of epe retaining no terms beyond

first order, the result obtained is

Ly = <)) 1=, (-e™) = [ o) (ot ,).M']

| 8 1)
X ey e [
+ ..%CH(O)(“‘ { +é | - ) T« 4 b) I - )
/ _ B
“' RN
et Wt Lk
4—{ e s 50U ey ]

<) Y,

o u’ 1 P ‘ H'
PS5 f/\¥(“"}c"(“"’ e BlH “i_i A

A (w) o g:*(.w). - *‘(u) ) .
o ent) g f»w' T &+ fw fm”duvq,(u") U
. 0 EA*(LL’) - o > g (h”)

(20¢)

In the foregoing we have omitted the effect of "first® collisions

' N\
in the case of the non-hydrogeneous constituents although these have
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been included for the hydrogen collisions. These effects e@d be
includéd in a straightfbrwani manner which in the case of D O alome,
may be described as follows: The equations obtained by mak?mg the
Taylor expansions in the slowing down integrals for D emd O are con-
sidered to apply for u »o{ only and not for all u, To obtain the
initial conditions Kn(o( D{pl)) the integral equations for u & ‘are
solved. This can be done directly if the slowing down in O 4
neglected so that effectively one deals with a ;1ng.le element, Then
in the interval 0 to®d D the. eq'n. (15) become dii‘i‘arent_.ial equations,
of first order for KO ‘and' Kz and of socond order with constant
coefficierts for Kl. From (15) we ¢et 'Kn (0) and the digcontinuitles
Kn(d #)=K (¢ -). A similar procedure is followed in the case that
a smagl am:untnof H O is present., Fortunately, on the basis of the
age calculations foi D20 1t’ seems advantageous to dispense with these
additionallcpmplicationso Such effects are considered in the case of

small D20 concentration treated below.

Case 2. Snall D.Q Concentration

- We mow t'reat the mass of the () nucleus as infinite since the com-
parison of th; slowing down and average scattering in O is now to be
made with that due to H miclei which are present in much greéﬁer quantity
than the D nuclei. d#ith infinite mass constituents in the mixture Eq's.
(15) must be ﬁodified, If J designates the infinite mass constlituent we

have £ (u-u?)= g(u—u') § (21)
. i j . 2 .

£ 0
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The substitution (13) now gives
. /
a8 = m—-—l.mn—- ¢
0 l-c f (0)

) s el Mo
3 1- cj(o) (22)

.2 ’\of__.
a .

5 3 (1-¢,(0) )2

and the moment equatioms

~

| (l-cj)K(): Z

gu o ' | ](23a)
k#j[ Sy Aty (e1)e, (vmutle, () aock(O)fOk(u_)

u .
K-Z;K,zx (230)

53R g Qs (e (wut)e (w)t e (0)F, k(‘f)
k

(1-e J)xz-a Axlz

u , ' - (23¢)_
}éj [gg ) du'Kzfu')fOk(u-uv)ck(u‘)5- azck(o)fOk(uﬂ

where here and in the following the a's are.given by (22),

when the elements of finite mass are hydrogen plus a second elsment

{deuterium) vhose effective concentration are cy and ¢, respectively

the Eq. (23) becomes, for u > o¢
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. u “w
(cﬂécz)Ko= i KO(u')ﬁbn(usuf)cn(uﬂ)du“§ f Ko(u“)foz(u-u')cz(u‘)du“
) 0 u=o ’ \
L abcH(O)fOH(u) ' (23a)
A < § | ¢ “
Kla 3&05‘5 Kl(u")fln(?yu°)cn(u')du“§‘S Kl(u')flz(upu°)c2(u°)du°
‘0 U~
. ‘ . -
| t aloH(O)flﬂ(u} | (23b)
- n ' | u
| (cn'}cz)gznz )\K1= J Kz(u')fon(u-u')cH(u')du°-§-f Kg(q.')foz(uau')cz(u')
Y u=-of
b e (O (u) (230

- where of refers to the non-hydroéemeous element of finite mass(otherwise
designated by subscript 2), For u <of the only changes are the additionm
of arother source term o_(0)f, (u) (£ Z 0 forX and K ,% =1 forK)
curresponding to collisions with element 2 in which the primary eper:y
is the source energy, apd the replacement of the lower limit in the

scattering integral for element 2 by the value zero..

The method of approximation adopted in the solution of these
equations end the details of solution are described in appendix II,
Briefly, the essential part of the procedure is to treat the nom-hydro-

geneous collisions by an agse procedure while treating the hydrogen

.
]



-17-

!

collision terms rigorously. The result is

) (2)
2. e G, () F
N X 0| 2043

-(?2 ) - j*(@git?) dfﬂ
¥’ F 2
o 1'1 uoy X Fl u?

see Eq's, (2.4) and (2.6) of the eppendix II. Auxiliary quantities are

defined or given by Eqfs. (2.3a, b), (2.4a), (2.5a) (2.8), (3.1), (3.3)
and (305) ° »

<Y

In the limit of zero deuterium or D20 concentration (24) reduces

to the well-known formula for H 0 as it should.
. ' 2 . .
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tach momernt Mbe for Q f‘ 0 satisfies the integral equation
u

b, ® % fg mogf“')"k(“')% k(u»-u')du' (1.2)
k

(v-uf)= 0 for u' Z u-of , the lower 1imit or each
4 K X ,

Since £
v ﬂk
integral can be replaced by zerc. Therufore we can write
u - ' /
M = ¥ (u')H(u,u’)du’ (1.2)
of § g T ‘
0 v
where _ :
| H=Q ¢ (u‘)f (i) (1.3)
k Qx
Since both H and M are bounded in the refion of integration we have
: 0 .
L < B ) u D (1.4).
L2 Ol m

where the subscript m indicates maximum valuve in the 1ntarva1 0 to u.

: Using the right side of (1l.4) in (1.2) we have

M 22 \
02<2' (M)

and by iteration :
' n .n
() .
0 (1.5)

Lim Y. H
< n nd m
For finite u the 1imit is zero and therefore all MOQ (u 0) vanish

identically.
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ACPENDIX II

We first consider the Eg. (23¢') and for the non-hydrogeneous
.element the ape;e:q:énsion is made. In first approximation, whex'e onl_y
one term of the expansion is taken, we would f£imd |

u
-ug UL L _ 2.1
) G,-2 )K= e [d G,(u')e” du +sz (2.1)
where .
) C'2° 01K2 (2.1a)

o o
B,= ach(G)} fvcl(u')Kz(u')eu dut
0 - (2.1m)

. We K{ave faken cogrizance c‘>‘f the fact that in the hydrogen sca.ttering
integral, tgken from O to u ) % ; the mf:ment function K2 vhich eppears
in the integraﬁé must be defimed fr-om'u.( « 4n an analytically differex}t
marner than for u > L . This ¢ives rise to the gecond term in the

constant 82° The evaluation of this temm is considered below,

For deuterium the rext term in th'e ageae;tpahsion'is important ard

including this term we find instead of (2,1) (2'2)

du' } B _f 93_252
2 2 du

u
. - . ut
62-2)\1{1'-‘ e u{ g Gz(u')e
. _ %
where E 2 is the aversge 'loggrithmic enevgy gair in element 2
(Geuterium). Differentiation of (2.2) would lead to a secord order

' differential equation with nor-constant coefficierts. To avoid this |
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situation result (2.1) is used in the last term of (2.2) and we obtain
after differentiation of (2.2) the first order equation -

By p (138 1opF-L)c=lrsdF) (2.3
du du 1 F 2 Fp 2 qu
1 1
whera -
- a_ %2
Fl- 1t ag du cl \ (2338)

is a known function of u _gnd

= 2}k (1-% 2 243k (3
F7 -2)K (1 {2 aﬂ)%« 252 = g;)\ . 3b)

18 determined below (see Eq. (2.8) ).

The solution of (2,3) subject to the initial condition applied at
v =d is readily found to be

w l (2.4)
= o) [P Fp ( F
> (] - duf
G ( )[ 7{ o ‘}(F X F X ')'(?"'f.-""?’
- 1’ 1% e VY
argurents being indicated by a subscﬁpt vhere comvenient, In (2.4)
we use the abbreviation .

%(u): -I;,}-(—S , [-u $ f %] (2.48)

1

which 18 & known function, In (2.4) the argument oL actually mesns
ol 4 ¢ where £ 1s infinitesimal but positive. It should be added
. that (2.4) is to be used only for large u. In additiom to 62 it is

pecessary to find G 5 ¢ K. foru o . This can bs done quite
C 0 H O

easily if the variation of K over the slowing down imterval o{ is
’ 0

/

I

1
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. neglected as in (2.1) above. Although this approximation 1s not

necessary, in the sense that the same procedure as led to (2.4) may

be applied, 1t seems a reasonable one and will be made for both K

0
and K , Then we find for G
1 0
u ‘ . ,
-u w
C=se [B 4 g G (u')e du'] (2.5)
0 0 0 ‘
~ where , (u’ u' ‘ _
= [+] ]
B % n(o)_ﬂ Gplude  du - (25)
. ,
is a constant, The asymptotic solution of (2.5) is the constant
- 0 4 '
G = Be ’ (206)

It is primarily for this reason that assumption just discussed was

made

4

Proéeeding in the same fashion we find '( : )
. ’ 2.7

_ \ _ =3u/2 b S . 3u'/2 }
xl(l_rzcz)- 3 Go- ) [1.314' g Kl(u')cﬂ(u Je du?
H ‘ © -}
where -
| Po- ¥/,
« own
Blsach(O)l} SKl(u')cH(u e du! ~ (2.7a)

0

The solutior of (2.7) is . h u "
K].: e ¥ {Kl(-t){- g e‘?(u )P(u')duﬂ

-




L
where -
1-P302(U) u 2-¢ -3fe¢
) | 2 “n-ala2
=1 = $ —
° 1-1,1262(0) fo 1 - fic, du'
(2.8a)
! i)iﬂ + 1)H
P=C 3 du 2
‘ 0 - = (2.8b)
l=ng¢ .
. 122

and >\E is the mean fres path in hydmggn of the same density; 1.e.,
- ~ - ; 3

XH /NS, where M= munber of B atous por on” and’, 1 the

miscroscopic cross-section for H. In (2.8b) Go 1s given by (2.6). .

This result for Ki is to be used in (2.3d) to find Fz.

To complete the solution of the problem we need K (t4) and K (u)
\ - . n . ) n
foru { & . Ornce the latter are found the initial values K (« §)
. . n ’ )

are found from

Kt b) =K (=) A ° (2.9)
where the discontinuities are obtained directly from the integral
: , n A
equations (23'}: 2 : |
B o m—— s ) , ‘ (2.9a)
2/y '




" For u { of we have

L ,

(ot N o [ Yoo g Yl (ut)e” duv} (3.0)
(.‘ )2

J = o ()t

czhﬂ
2 .
The solution of (3.0) is obtained by differentistion and is

QD{ (0) [(M "1}2 u e, B } (3.1)
K = exp & S - Gut

¥ -
O CB 02 2 OH q‘ 02

Comparison with (2.5) and (2.5a) shows that Ko or G 1is now completely
. . 0 - »
defi_nedo

~

To obtain K, for u o we note that the pertinent integral

1
equation i | ,
\ \t -3 3(u- u.')
,X J [ c(uy+C(u007*0 )
kl 3K g‘K' ) ( KT

) 000 =200 T4
- - gM,

o [(Cu“) t 02 (0) (1\12*‘)?) ¢ - Cz/b) (M2+ ‘) (Mz ")g =Y
3 _ | qQ ,.12 A | gHz

-3u4/2

(3.2)
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can be put in the form of a limear second order differential

8) , S
equation. Unfortunately, for a mixture the coefficients are not
constant, However, 1flwe set ¢ 2’-5' O as is consistent vwith the approxi-

mation here considered, the resulting first order equation gives

u | ot
._g& ‘}{ c,du o .2,' g‘ oydu - |
1
K= 5e ixo.__._ﬂ_ § 0 [%;(AKO)*‘ %,\KJ du‘,ﬂ}
0

- i , ‘ ‘ , (303) .
or alternatively ) : - -

u
{»S‘ dur
K =1 AK + 19-2% 0 °g {)O (1{'08) ﬂao\!( 0) %j‘ u|° (uﬂA(u')K {(u')

oy (c q-c

. /
, i f ca ]
' ‘ 25- : } (30'33)

where 'Ko is given by (3.1)

From this result Bi is determined (ef. 2.7a). Also from (3.3)
and (2.9b) one obtains K1(°( }) so that Kl(u) for u y & is mow

determined, see (2.8).

8) It may be mentionsd that for equations of the type considered the
reduction to & differential equation deperda only on the fact the kernel
is of the form of a sum of terms each of which is a product of function
of u and a function of u', In gemeral the order of the differntial
equation is equal to the number of terms required to express the kernel
in this form.
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There rema.ins only the determination of K (u) foru ¢ e . ‘

"‘he interral equation .

. ! u 2 . ‘
(cn%qz)xzaz )\Klg e [g Kz(u“) X(u')eu_ du' ¢ a, x(o)j (304)
3 - o ’

~ N

fgives the differential equation

[ ANEy ' -
S5 (oyfo)x - - ™ Lo K, = z{ ¢ )\Kl (3.4a)

., N\
/

and obtaining the intial condition from {3.4) we find the result

\

. ' ) 2 '
2 M -1
xza,f.__. 0{;)‘9. ( j (1-( 2D e }du“
o {!c c : .
H . 3 ‘3’° ) #c )K lolﬂz cn{}c2

(3.5)

‘where K and K  are given by (3,1) and (3.3).
(o} l ’

The limiting case of pure nzo 1s obtained by setting o = O and

) ) ) _1y ,
¢, = O. Then Boa 1 and Go.. 1 while Kl(bl) K1(0)= 3‘>‘O(1* l/cﬂ)a"

Then also - u v(U') ‘
S O [T RAPY }
o 0

u \
V :j (%" B) du’
0

. Mo
G, k)= cz(o)::,% ';ﬁﬁ) (2 4 eg(0) )
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that the above

fomulae mproduce the well»known water formula for the slowing down

Rl

lengtho :
.
\ -~
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