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} easily irrittda down, eéven where the coefficients are variadle,

ﬂ}a‘

Malti-Group, Multi-Reflecter Pile Theory

1. Inirocncuon. The differential equatione 1nw1vcd-i.n-
t!;o multi-group, sulti-reflector pilé theory etudied in this paper
are hopogeneous partial &rfwwtin equations of the aeeond ordere
Ausoctated with the pilo or any of the utlcctoro io mten ot
ap many equations ao theto na sroups. Thue, if there are n groups
and v reflectors Shere is a. wotw of n second order equattone in
each of the+ 1 regions, thy gsolutions of the Y+ 1 systeme
satiefying appropnase eoacmuny conditions at the boundaries.

Thers are three typea'of piles congidersd: the infinite slab,
the infinite cylinder, amnd the ophere. Moreover, eymotizcal
characteristics of the problems are such that the partial differential
equations reduce to ordimary differential equations. Although ehoA
equa.fions are linear, the eoefficiont-s are coastant only ia th§ case

of the slab pile, othervise, thay are functions of the independent
o

varigble, V o ,)7

Ordinarily, the problem ta be solved is to find the neutron
density ad any point within the reglon bounded by the outermost |
reflector and to £ind the critical eise of the pile, after the |
dimensions of the ghl'ecbors have been aceigned. In all three

mentioned the genersl solution of the set within each region is

Thereafter, a difficulty aricee in that the location of the

boundaries ia not auoigned bnt ‘1s dependsnt upon the sige of the
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'equa/tions is replaced by 2 system of 2n first order differential

e

pile. Thus, a procedure for tho solution of the prodlem is to

solve tho emations sequentially from the pile through all of
tha :;eflec\tiérw in ﬁerm of a fixed Put mpecitied eritical sise
(radins or half-width) until the outer boundary is reached.

-Thea, the cuter boundary conditions together with roqn;ruea_tb

of eymueiry within the pile provide sufficient specifications

for the determination of eriticel pile sise and the Complete

solution of the problsm, ‘ | . ,
In & previcus report, Mon P.202, the two-gromp théory for -

the case of zmultiple reflectors, without mmltiplication in the B

reflectors, and an iofinite sled pile is diecussed. In tho

deterﬂnauon of orlﬁical eise it is found that the contribution

of each reflector to the solution of the problem is independent

of pile size. ".Eh(.t ‘evq\mtsv.ox_x vhich finally iield- the critical

sise involves a single fourth order determinent, whose first two

columng only involve the pile gise, and whose last two columns

~ are obtainable as a preduct of Y = 1 fourth order matrices and

ons L4x2 ma.tﬂx (four rows and imbolumno). all independent of
pile giseo | '\ _

In thie papor the problem is diacueae& from a more general
polnt of vievw which ineludes the consideration of possidle ‘
smltiplication in the reflectors and three different pile shapes.

Piret of all, the system of n second order differential




~ equations. - This procedure embraces all of the advantages of

the firet study while frtuer pz%&ivmaiig better general.

perspecbive on the problem wad cimpufying nomvhat cdrtaia

‘ eoapntauonal aepects of the prohlen, The sinplicuw tirw

-

achiaved in tho infinite ol.ab caoe 19 preiervod in tha new
procedurs, btut does ot peramt m the op?encal and ’
cylinducal cases for e&thw mihod Bo\kver, in an caees
1t 1s ponsible to rednce “the order of tho fnndaaental

dewmﬁmt for the detemination of - eﬂ.ncal palo sise to .

- exa,ctly tha mmber of sroupa lnvolvoﬁ m the probleme

Ia§2a special amle 1o prov:ldcd ror the case of tw

' sroupa ané an arhi.trary mmber of reflactors in an iz\nntte

slad pile, with mltﬂpuya.tlou in the reflectors. ‘\In 3 3 toe

case of the tafinite slab pile is Yreated with full generslity.

' Genoral treasmta of the spherical ami qylmdrical cages are

 given in £ and § 5 reapectivelyo n'inally. in § 6. o otudy is

nade of the umi.ti.ng thation in the case of the 1nﬁnite alab
pna and the apherical pile to provlde an n - group theory with

a raflector of variable deasityo

2. The twoam mnltiareflector problam for the S.nﬁnite

, \

slab 211 0. _ o
2.1. e dfforential equations gad boundary conditions.

Let y, with an approprie.te mbeoript %o represent a particular

gronp. represent the flux of the peutrons of this group in any of
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the 2 + 1 reglons consisting of the pile and the reflectors.

4

Let 73 represent the flux of thermal neutrons and ¥, the flux

of non-thermal meutrons. The edustions in any reglon have

N

~ the form
ay ‘
iz
(20191» 2
2 dxa - (« )\lx = o

| ghc;re 'the\ conoia’nt k is gero in a reflector withont‘mltzplicationc .
'I'he boundary eondiuone preacribe the eonttsmﬂ.ty of 'yq and
N JL, tort=1, 2, st the interhediate boundaries and the
vanlsgfng of 'y'i at the ontex* bo\;ndary- ' \.

2.2, Beduction %o a ﬂstem of firat order differemtzial

etuations., If im (2.1, 1) the substi%utions

-

B |
335}\171 As

. ()

are mede, the system of first order squations which follow is

cbtained? ! ‘ ‘ )




N |
yl = ‘7\1 ys‘ [
. 4 >\-=.3f- y‘
(2.2.1) 2= %2 Tyt

| “y By 2
/ 3= Ay Ky = hN, Ko

' -'2. . 2
Yo =N K T, s N XSy

. 1 Na2%p

Fow, let the symwdol y without a suha_cﬁ:ot‘ denote the. columm

' "vdc?;dxf- of components Tyo o '¥.. Y o Then, the equations

3 4

{2.2.1) can be written in the matrix form

. y =y,
vhere ~
‘M= 0 0’
0 0
a2 a2
TR =fa2%2
2 o 2

2

2

. Solution‘of the problem for the case of Bo

mltiplication in the rsflectors. Solutions of the form

.yi. e A o ¥ o1l 2, 3 4}, are now souZht.

i
in (2.2.1) yields the equations

Subsiitution




Al/"g \1 A} ?
N
bopz 2o By o _
\ !
2, 2

' 2 2 N
M cENTKG M Ra%o A,

i

which hé?e a ton=%rivial solution in Al’ Aa. ;3, Ak provided tﬁat

‘ '(2.,3,1)

Thie 18

= | ° \:1' 0 | 3 o' .
o .9/‘\/ o g

MKy 'c,,\zkgﬁ oo e

S L SRR R /

the charéateribtic eauation of the system (2.2,1).

The e_qﬁation' (2.3.1) can be written in the tora

0 0 X;«" 0 s 0/
. ) =1 ’
N : - .
, 2 2 - 2 - 0

s 2. 2 2 s




b .

and conseqﬁently

2 _.,2  _xe
KT -~ 1_‘2

i = 0 . ’
\ -ExKY ,Kg%ﬂ2~ ; | )
(2.3.2) («§ op?) (KE p2) - ij‘.?é k«;‘ 2 0.

!

In the pile k> 1 and the equation (2. 3.2) in 42 has one

positive and one negative root. /'Ehua_, -the four roots of (2.3.2)

\

2
real and posltive numbers. In this section 1t is assumed that

may be writien in the form £ 1 uj, T4, vhere gy 88 si, aTo

ke 0dn the'reflécto_rs. agd; the corresvonding roots of (2,‘3..2). ) B ‘
| é;'e £ ¥, ?;’Kan Ia either casé there exia.téta set of four

. ix_xdopendgﬁﬁ solutions of 'thge syetem (2.2.1).. Leﬁ.each eolubion
of any independeat st of solutions be made s column of a

h» hmatrix ¥ . To nlge&rate.‘é matrix Y. corresponding to
the « = th region eof the pile is .conatx;uaieé;; One uses a
apiutaon of the vf'orm ¥4 = Aié.hg‘ r .. taking A = 1, in the“
equations (2,2,1) to get- the £iret ¢olum im Y. . 1In thls

case 1t 1s found that 43 = &, 20 . The substitution y, = 4,C

' gives the second coluam, and 80 on. 'The £inal result for x > 0 is

@ o S
Unt¢ll further motice in thies section a enbacript shall
'henceforth desigaate a particnlar region instead of a particular group.
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T (2) 2
Fle ’.le\ . . AK?K
e )
- . ‘éi" o=, 2 ‘ .‘« A
0 o >‘1>\2 'Kaa(«l m\sZ}e« &
/‘k x WqZ i ‘Kax'
1 - "L |
N Ky =7 K e ,. ??1“2'
0 0 ‘ e
i NN, (Kl kaﬁs

/‘23; o N '\Kx
Ce N KK ke 2
D 1 2

3

vhiéh ie a non-siggular matriz, By tsking sppropriste linesr

combinations of the columns of this matrix one msy replace the _

above matri;: Y, by 2 nev one

ix(z)?a

Cana ek
R " o
‘\ljgachxez ’- | X‘l« 'lsh"Kix
- )\é ;sl'\(?ehkzx . ‘0

~

l

eh X x Y

o’ x
S Sy ol

A

)\1'\( 23}11(28 .




Yy | P

f

For later reference the matrix Y‘. éorreéponding to the y';ile.

is computed to be

Yy (x) = -
LY | ch s % ' : sin,«,lx \sh/.‘.zz‘: o
t19°8./4f * - rach ,waz L | rl‘siu 44 z | l. | reah /.4,2:
= .\iﬂ»léin/;.ix } Ny /baah/'-ex ‘I . )\1 /"‘.1°°s/*'lx xl /",Zch ’"’22_
arl‘,\ 2/4.;-191‘:;}»1: ra}\zf,;aoh,bez r \ ' coo,u.l | rgX z/baéh,géx 3
uhére ’ |

e

~

rig\ >\ "Ka (1«1+/~1) .

\1)‘ ‘“2 “‘1 ‘”/“27 :

One bears tn mind that the parameters \ and‘?\which occur here are
‘thoga characterising the mat.erie.l of the pile and are dlatinct , |
fram ,those\occurring in tpe matrix ‘105 written abqveo : o o
Ié general, t,hen.. ”thamét-rix ?(i) fox"a\gch_ rogion 1s Q
nonaaingﬁ;#r matrix of functione of x sati,afying' t!'w matriz

sguation ' | A o
.-
Y « Y. -

Since !4 ia s congtant matrix the relato\d syaten of equatiom have

constant. cosfficients. It is thea clear that 1f in the matrix .

. \ '




=12=

Y(x), %he independent variable x is everyvhere replaced by

X = :iuo the resulting matrix Y(x - xo) is also a matrix of

independent solutions 1f x, designates any point within or on
a boundary of ‘the/ régi.'on (pile or reflector) over which the

differential squations are defined. In{leed.‘the replécemenf
/ . \ . ! , Lo
of x by x - x, is merely a transformation of the independent

variable which ﬂao no offect upon the form of the equationg,
Morebver’; overy colution of the equations is expreesible in-

the fora y = ¥e. where ¢ is a column vector of four elemeats. -

~ One now takes the origin as the center of the pile ynd

»x“ 1 and X, 8 the bounds of the «-- th region. Aeeofdingly.'

the matrix Y, may be taken as a function of x - x_ _, that ia,

f =

of the distance from the inner boundary of the reglon to an

~

" arbitrary point of the reglon. - S

The conditions of cont_i.nﬁuj.ty at the pile and roflector -
. ) J

boundariee reguire that

jkhm—xﬁwﬁ,gy%fl(m .

or, ;f. | e S Ex- X

vi(Bd=2y 0

Hotice %hat in the lant equation neither x,; nor ‘:zo'~ appears.

=4
but only thoe thickness t, of the X - th region.

‘Suppose now that a solution I, Were given.fo_r the pile.




\ ul}a

i .
This could be expressed in the forma -

[
7/

. .yo = Yo »co 8

vhere 7, is the particular matrix of fundamental solutions which

has been chogen within the region of the pile. !ow.’ the soiution

~

3=y ¢ {n the first reflesctor must patisfy the relatios
7100 = 7,(a) .

vhere 6 = t, 1s the half-thickness of the pile.
~ \ AY

‘Hencs,
Ty (2)e) = Tolb)ey o

and, since all of the ¥, s have been chosen non-singular, one

obtb.ino
| =1
cl = Yl '(0)!0(5)00 e
Asaino ‘at tho next ‘bound.ary; .
’ y2(°)§ yl(tﬂ) . B .
or
!2(0)°23 !1(31331 o" , o '
go that

& = T3 (O, (800, o+ .

g wd Ak pom T . S T



ol

=1l

or

4 _ .
©y = Y (O)Y (tl)Yl (G)IO(a)co .

54 \this procedure is continued one obtains

-

TR A ) T (a)e, .

1
(2.3.4) o ngk (?)?x 55 D A |

Thus, if the vector 6, (or the eolution y, within sh}a pile) and
the balf-thickness a of the pile were known, the solutfon within
all of the reflectors could be odtalned.

The situation last considered does not generally arise, and -

. both Yo and 8 mst Yo obtained from other conditione, The

physical si.tustion requires that the solntion be symmetric within
the pile. Accordingly. the last tuo componeats of the vector y,
must vanish at the outer boundarya that is, tha firct two conponents
of the vector y, m_st vanich at the outer_bouhdary.,, To express
these requirements in symbolic form let Y, and Y, be partitioned \

N

into 2x 4 matrices:

Yo1\. . o J1

- s

Yo2 o - Ive

andv then require that:
(2.3.5) o Y, p(0)e, s 0 e - .

(2.3.6) ' BEREWOS TN

If the mtrix Y, is written in the form (2,3;.37 the requirement (2.3.5)

4
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is met Yy mking the laet tvo componmta of the vector c@ &Qqual
to serod. ‘!he md result 1s the same lt ohe drops ont the laut
Ywo eoluhno of Y, thus making it & ll X 2 aatrix coumosed: of the
21ret two columie of (2.3.3), and 1t will Ve assungd that this
has been doms in what zonon., | |

| How, in (2. 3.!0. _ aet = =..) and mltiply on the left by
Y,3(t» ). Then it foll'ows from (2, 3.6) that

Y, i(,é., ‘)‘L) (0)! ‘1(5 1)31) 1(0), o Y,(a)c,,
The matrix Y (07! 91“:;) al)!j. I(O)a .o - T (8) fealx 2 aatrii

esince Y, (a) 46 & b x 2 matrix, and Y, l(t,, ) s a2z kmatrix
Thea the nrod.uct is a 2 x 2 matrix, Tho equauono are consiatent

if ené only if the dotermtnant of the erfﬁcianto vanishee.

(2.3.,73 \ .‘u(t.,) )!,, (0)1’) 1( " 1)!1, 1(0). r,,(a)\ g‘o' .

The detern!.aant is ot order %wo and thg sbluuon of ehe oqua.tioa
gives the eritical plle ¢ise g - a
o ‘The compntauon &a simplified in o merlcal nmblem it

o (X = x\) ) is x-enlacoa W Yy(x - x,,) Thie ha‘c tho-eﬁ’eét
of making the last two comnonents of thé vector ey eqna.l to zerog

. and condition (2. 3055 becomes
Y‘) l(o)c é ,o' o

'Equation (2. 397)\ is now written




) : el R
\Yv 2(! - G.‘) )Y_‘) nl(g‘o »I)Y-J :1(0)0 s 6 Y‘(.)\ = 0 .

As a nattd' of record the follomlzérmlas are listed:

bf,z (0) =

» ) p
a1 ‘l a o
0 .o
- |
1 = By 0 o
— B | 1 | | o
0 B 91 - 0 | o

R YO Sl

v 1 - ,
chk,t . =za(chK 8y - cBK t) sa’K &,

P

o C N KR by 0

~ The first two yows only ooour in the determinant of (2.3.7).

&
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It shonld be emchasised that in’ the preceding fotmulas thd
snbscripts on the Y's and t's refer to a mruculqr reglun (pile
“or reflector) and the snbscrintd elsevhere dosignate a mrtic\xlaz‘
group. VWhen these rormnlaa are used for actual comﬁutation a .
double subacrint notatlion (iJ) #hould be used, where [ deﬂé&&tn

| the region and J§ deaignaten the group.,

2.4, mzhe: ohservﬁ:onn on t.he solutibn: 1t is poéei‘ble

that the computation in the m‘ob‘lem of the preceding metion can
be simplified by making the mattix Y. (0) ot initisl Valnes tho
fidentity matrix. I3 18 clear th;t i Y (x - ,x“él) is any non-
singular matrix of solutdons théh so Alsd ie the matrix .
Wlrox, Vel oz v N0y
°I‘ K =] = TR S N : °
and moreover : g -

rr——

¥ (0)=1.. .
Then, the fundnmental equation (2. 307) becomes

ARG 1(},1).;0,,3(;)\ g'o' :

whare W, l(t.\, ) consiste of the firat two rows of W,, (t) ) and
¥,2(a) coneiste of the firet two columns of &! {a).

In the preceding section the formula

(2.5.1) o = y;"'(o‘)y;ﬁ?l(t.nal)rnd(o;o T A (a) g Pog,

“was obtalned without 1npos’i‘ng'any reatriotion on the matrix of
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rolutions Y beyond its non-singularity. ;It ie now observed

that (2.4.1) can Do written in tho equivalent form
_ =1 -1 - N _
S a 'Yo (Sjyl ( O)Yl ( tl ) 6 e o Yn ( O) Qn = P cE °

~ ’hccompanying conditions required that

’

(02« 1) (0)Cy & o

‘ (12 ) 023'13(‘3)03 =2 O ®
. / = ' : /
vhere 0Oy and I, a78 2 x 2 sero —~ and identity - matrices,

‘respectively. By the special cholce of Y, whereby a partitioning .

of I, (0) has the form

.the’condigion on tﬁo veofor S aléne,is e§u1Valent torthe

‘ f%qutrement that the last tuo components of'c; be‘;ero. The

subsaqnent elimination of the two vectors °o aad oy vas found to

yield a determinant of order two in the final equationlor the

problem° 4 similar special choice of Yy is useful whon the outer

reflector ie lnfinite in the X - direction. To this end ome - |

chooses the first two columns of Yy to be 8 set of éolutions of

the difxerential eqnations vhich vanish at 1ntin1ty, Eence, the | d

last two components of ¢y are both :ero and there remains the




~19-
determinantal equation

(2.%.2) | 1505y (45e) « - .« Toato)|

where !;’2'(0) 1s the lower half of the matrix Y;?'(O) and

= 0

-

7,,(a) the left-hand half of the matrix Y (a).

A procedure which simplifies the computation of YNZ(O)

in aquation (2.4.2) has been ﬂuggestod by B. Spinrad. A )

special cholice of the last two 'columno in Yy 18 made 20 that

the task of computing Y;l(O) is made as simple as possidle.

‘O_ie writéa YH(x) in the form

Yn(x) s . . . ’ '
s -kx sh K1% 1 | ‘
e .8 . . (KishX ox = Kogh ¥ ax
‘ | M¥ o Rk U 2 = Fash Ba¥)
ﬁ-K_ - K
0 8o - & 0 "f‘,.,.éf
=Kqx ' ‘= KX ) \
=Al‘1<le =\1“k20 ~ chklx N 1 (chK x=- ch“lx)
. 28
. , RE
80 that'YH(O)' takes the form
A 0 ,
B |

the inverse of which is readily 'co_n_:pﬁteda

of this inverse which is used in (2.4.2).

It iz the lower half
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In case the plle is not symietric there iz no redquirement
of symmetry at the center. Instesd, if O .ard ¥ designate the

~ %wo outor reflectors, it is required that
(1, 05)¥5(0)y = 0
(I Op)¥gltglogs O o
provided that both oﬁi;sr réﬁectora are finite. The svecial cholce
of both YQ ~nd YH, r;aultn in YO(O“) and Yy(’ﬁl) b.‘étv'ing tho partitioned .
fornm o |
0 B
v o)
;Ehie meane that the first two colns:ﬁ:ﬁ of cach vanish in &heir_ﬁrst
%wo components at the outer boundariég,' In cise eituer reflector
is infinite in 'ihe % - direction the requiremente §n Yo (0) oF
'Yn(%x") are mesninglees, but in thié ceiée the tfirst two eolumné.of
the Y matrix ére chosen to vanish at infinity. 1In ?Qither ca:se;
the last two c§mp;>nen$s of ¢, and °ra are zero. Note _th;at. 1€ tho
80;‘0 « reflector is iin‘ﬁ‘._nite.‘ the 6:"131;!: qmét- be moved to its 1nn§r
boundary. How, ir °ol .a.nd %n denot§ tho two-vectors of RON-gero

components there results eiehér of the equivalent pets of 2 x. 2

équation’s of the form

\
~

~

v "Ry =0 o RBogy S50 o

_ o .
from whieh one obtaine either of the equiv;ﬂ.ene determin-ntil

equations

~




1f 1t 1s assuned for the sake of {ampnouy that all of rﬁne

reflectors are finite, nota tmt it mokes little di.!feréncc

vhich of the 1! regionn is lett 1th 1its thiekneu undetormnoda

The unkanown thtcknene b is involved in only a singl.o matru of
. the product  or'R. Thie nf:.t_r&x 19 multiplied on tha left !py a
. v : . . . .

constant qxaﬁrm of dimansions 2 x 4 Snd—"on the right by one of

.dimensions k x 2,

2.5, mitiplication 1n the refleéﬁ'diso

1

case of multiblicatton 1n t,he refleetors is coneidered.,

In this section the

"It k=0

tn the characteristic équauon (2 3 2) there reeulss the foreeoing

- situation in whiéh there atb‘»tﬁo positive fv-.;lue;té_of)ca. -4

0<k <1 the ,‘i»a“s‘nré 6till positive snd the metrix Y, is as

~ before. If k= 1, there is one ponitive 2 and one zero,«.a.

~ The mabrix Y vakes the form

——— ——

e

Voo =
o - (¥E2+rwdx
/ b = - &
' . ‘ ’k +’k S)x
N ‘\3.’K§ . )‘lk%x re
Np'KE 2«2 . s
- ) v S & R S
0 Nz ee 12
(2. w2,
(K + K ‘)x
0 )‘11(% =88 :
2
Y-

1]




. OF
Y. B
x -h(x§+‘1<§)=,< 2 - cn(1@+1<z)z
XIK%‘ ' BRNL 2y
+"\;,;x : 1 ™1 r ch(“& *"K i
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If k> 1 ¥, (x) takee the form of Y4(xz) as in (2.3.3).

A

3. \'I‘ha mltia_goni, melti-reflector problem for ﬁhe infinite

sladb pile.
3.1; The gemoral formilation. Ae iR§2, let y, with sn

appropriate subscript to represent & partioular gronp. represent the
£luz of the nautrons of thia gx'oup in any of the J+ 1 resi.ons ‘
consisting of the pile and the reflector. . Tha .Bubgéripts are chosen.
80 &8 %o lncrease t_sith the ‘a_zesn cnerg of the group, that is, n
rap'reaénts the flux c;f thermal newtrons, 132 that of the slowest
group of fast neutrons, and y, that of the fastest group (the fiesion

neutrons). 'Pha differential equamons in any regi,on ‘have the rorm :

L4
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. \1 Y 71 =>\ -Kfyi*‘)\ifl’l\i‘flyl*'l = 0 § (1( a) .

(3.1. 1) o
2 2 -

V?’“”‘lhkx " "n“n’n o

where the constant k ia aero in a reflector wuhout m.ltipncauon.

The boundsry eondittonb prescribe the eohtinnity of ¥, and of
N sv Ty at the mterme;nate bouncxariea apd tt{ae va.uiahipg of 34 at |
‘the ounter bonndary or boundaries. |

3.2, fhe infintte’slad pile. Yor the infinito sled pile

the differential equatians are especia.lly simple in form since
ay boeomea merely the eecond darivatlve utth resoeet %o x and

all coefficiente of the ¥q4 and thetr dorivauven are constant.

It 15 convenient %o introduce tho additional variables

yn-Q-J‘S \J y; 1] o (J;n) e

 which mikes it poseible to replace the system of n second order

oquations by thes Zn first order equationse

O B . c oy
321 3 2wk lg on L K2 g (i< w)
(22 _yn-l-i. = >\1 1’; '°>‘1+1. 141 %141 ¢ , ’
K 2 2 ‘ !
L= k @
Yon MRy ’1”‘:1% n

- If tho symbol y without é subseript denotes the columm vector of

€ompOnents Fye Fpo ¢ o o » Yopo these squations can be written in
' the matrix form -
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(322 . g K .
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i

vhere the 2u x 21 wabriz M can De partitioned io the form

:
I
!

6 ATTN
ne=l |
-\l 0 f _
- with ‘ ' {
‘ 4 .
Ny 0 { 0
’ -

y ‘" =1
0 0 o o b ‘\a
w2
\aKe 0 .
g 2
" s S
¢ B ¢ 0

The characteristic equation

Cfmer| = 0

[ ]
R 0.
a o o
) oty




" whers the first mutriz on the left is M - .I and the second has. _ C
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~

of the equation (3.2.2) is easily written down with the aid of the

\

1

relation

e ael 2 ' - =1
epnl U\ S -0 AN

o
-

) . 2 .
R T A L ANt

the determinant unity. BHence e ' ' B

o] i 2allAT 2 et )

~

: Al(; a/lf" wnrka 0 . o ¢ o 0 .
! . : o
“ 2 2 e ,
'. 0 '.K 2 =,=-A(_ o K3 . o e o . o ) . o :
“‘k kl 0 O i o o qa . Kn = /‘0
. The last _deterniinant can be exp‘andgd immediately to yield the | N
eqnation ’ \ ‘

(3.2.3) AKZ By (k2 - uBy N ) am«i«g, C.x2

It 1s clear that when k = O the roots of. the characterietic

t

_equation are £X,. To investigate the case k »0 consider the

~ graph of the left member of (3.2.3) plotted against ., This

croeses the «2 - axis at K2 and crosses the vertical axis at

'foz e o “Ki. The effect of subtracting k"Kf“g R 84
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from the function ic to ralse the «2 = axis by this amount.
i Henece, i kiai-the real roots of the equation 1n,u?-ata all
positive; if k a 0 there ig one sero root and all other real
roote are positive; if k> 1 there iz one negative root and ;il
other real roots are positive. However, one cannct be assured.
in general, for n> 2, that the roots_ingka are all real since,

for any k> 0, by making the differcnce between any pair of K ig

sufficlently emall one may iatroduce a iair of comnlek roots.,

- ;
r

Whatever the nature of'thé characteristic rboéa, ons can
alwéyu egpioy them to write down a set ofien 1§depeadsut
:solutloﬁs-of tho/differeqtial equations. If each of these
solutions '1e made a column of anx &;“mtrﬁ ‘f. as in§ 2,
ihen‘Y ie a non=eingular matrix eatisfyling the matrix

7

equation

A ' =M .

-

From this point on the discussion for theléﬁne of two
groupﬁ.given in §2vapplies without significant éhanéea for the \
ce0e of B groups. The eqnation‘fof phe-deter@in&tioﬁ of critieal
pilé size for ail of the situations considered will involve a
determinant of order exactly B . The fundameﬂtal determinantal
squation may of course be used to find k if the pile and

reflector dimensions are fixedo'

4, The multi-group, multi-reflector problem for the

spherical pile.




!

4.1, The differentinl equations and boundary
conditions, If the spherical pile has reflectors in the
form of spherical oiells, such as to provide complete

spheri cal synmetry, them
2 . AY
~ b o V ay b= Lvml o )

/ . 2

Then the substitution

o X . sy

¥y s

g

. B (1'¢n) ,
v, ig Xilvi. ’ .

~

1in the differemtial equations (3.1.1) yields 2a aifferentisl
. . , . !

aq}uatliom in v, v,

, 4 Of exactly the same form as those 1n

Iy in +4 for the olab lf,ileo However, in the spherical case,

the boundary conditions which iBpose continuity upon y; end’ ' , N
. } .

0 ' , / :
)‘in° when expressed in terms of Vo reguire the continuity
, ) . .

of v and |
PR\ UL I TN . YA/}
i* 5 dzu w’/ r ra

at'th'e'pile and reflector bYoundaries. DPote in paseing that
vhen the \1“8 are equal the v, "0 are also contintouns and
the procedure ie.in all respectis siimilar to the élab case.

' 'l;;,é; Solution for the genmeral cage. The formation

- of 2 fundamental set of solutions v coqa%itutiné & non-singulex
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matrixz V does not differ in any respect from the formation of
such 1 matrix Y in the case of the elab plle. These solutions

can de e:pressed”as functions of r or of/ P2R2T= x-.* .9 vhore

=

;u desi@atea the ~ - th region, since any fundamantal get
| exprossed as fnnct;ona of r/ remains a fundamental set wheén 7 is
replaced throuéhogt by po 1In thie proéedur§ 1t must be noted
that ‘one pw\obﬁin» solutions &1 = vi/r vhich become infinite

!

under cartain circumstances.

It is suprosed nmow that in each region« a matrix of

golutions V. has besn found and, for the sake of convenience,

> -

7

" that thie le so chosen that
v‘*(rdal)gss (x%lb 20 010'0 97)) o

Since none of the 7, 's in known until the critical radiue
, , S .
T, s 8 is found, ¢his choice involves exnressing the soiutions

v as funetions of p 2 r = T and choowing V, %o be ﬁm

=1
identity matrix when p = 0.

In the pi'lg (x = 0) y sust remain finite"at = 0, so that

. otst of the 21 solutions o can be eliminatod Adcordingly.‘ the

required solution is of the fora’

R /

0} o

where c, is en B - vector of constants and vol is the 2n. x n
matrix of vig (o:_anreeeed in terms of trigonomstric aend hypsrdolic

7

o




e

sines) shose first B rovs va?nlsh'a'& 220 . The rapk of

voi me%‘h@ 2, | |
The contizuity requirenent involves the continuous
veotor
1 Y '
- . - Yve
(u0201> @ ’ - : .

O l 6 o o o 0 0 o o o 0
0 0 ceo 1 6 0 ... 0 )
N \
> mz 0 8 © 0 0 %’ 0 c o - ¢ 0
re N
0 a,z;g ’ 5 o o O . 0 35 o o o 0
2 =
o 0 L ‘a o o = B Zt.‘g ‘ (4] 0 ‘s o o ;’
Thas, 4% s first of 211 required that
1 o\ 1 9 L
Vor(od%p = A A S
B G N




‘ 'éontixmity requirenent al the tecond bowmndary yields

-

(4.2.2)

I 0

30~
provided thet V) = 1 8% s Ty = g o
. Boto that
X -0 ' I ' o] 1 0
A L\l ) \o
\a T alf\-8Z\y a1 0 I
s Ay s lf\ce Yy |
g0 that, (4.2.1) may be written as
1 o 1 e\ - DR
s /A 1 eIf\-=- s 2\ etz
or
R 0 : o
l e Vol(ﬁ)ﬁ = 01 ° o
8 (A=A T B o -

‘Hoxt, 1f the fotetion b, = T, -, , 1o introduced snd if
all v, 8 aro expressed as funetions of +7 ¢ T T, ?’ the
L f =

RN
. | 1 0
T80 . |

~lart)A, et ~(a+t 7, fa+8)7

4

o




. [ -
. . 5
. : N . - ana .
¥ : d
'

S S
('8.0253) .

Brt) Ny =Ny} 3

Bz -

‘Then fram (4,2.2) and (k.2.3) it follows that

I 0\ T o\ ’
' T o .Vl(ﬁ')

N,y 1) \a A, =AY .1 ) o

The next pﬁep giveo

) S o

'(a.’ytl% tas"'lm) =Ny 1

vhich fe uced to elimnate ¢, in the last two equations, If this .

_procedure is contizmed one obtatns finally : o

T o

o ~ : i 0 | ,
(l&92= 1‘) , . : v.) 'Z’l(t") A .8 o B . 701(3)% b= e‘g\ O | )
cal .\ : 1. ) . 91 R . .
g,)_q(Af ]\Jal) 1 p 8 " (- ’Acw _ I J | : /
Where ] gﬂ g‘ 8+ %14' ta 4 o o .u +t_) | . o:‘ -

This mt#i equation expressos ﬁhg 2n ’&mﬁonents of ¢ sh
texns of the n cohjoﬁents of °c, and the unkuown eﬂticd radius =
a. An a@.dﬁionp,l matriz relation g -:ﬁe‘eded for the eum.tna.ﬁion. |
of ¢,, and this ;15 foupd in the requiremeat that the éoluti@n

v, shall vanish in 1ts first n _comﬁonanm at the outer boundary.

’
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.'°j3é*"

e

/ Hw, v,=2V, ¢, , wonce.:j;!.:f- :?_,,1 denotes the zmatrix of tho

firet n rows of V, , the eo‘:i&itidg in qﬁ'egtion takes the form

, ' '
‘ 1(‘ )% 20 -
1 . \.
i
s Accordingla if the emtioa (u,.a ) is nmltipll.ed on the ieft

. by v 5 1¢ there reanlta the eqns‘!aon ,
1 0\ - I 0

V508 . N vL al(t-) 1)" °

=1 o Ql

\,él(AJaAJcl) Ry o \E (A e./\ ) 1

’s)he matmx coefficient of e 19 BxAn an& its &etermwt pust

-

vanish, ths% ie, ' o - - ' .

| | \'vvz“«; ”) e o . ﬁi(é)\- = 6 "

Vor{®e = 0

Hote again that it Nas besn preéupposed that V. (0) 5. If

‘thig noa'mlisaiion 16 not mede the patrices Vi 4(0) suet alen So"

" included m'the matrix produet. HNote also that g does not ocour

‘in ‘any of thq V. ‘e for %2 O . but only in the elements of the

form (a+ %‘_Q N )‘:1 mltiplied'by o aiffercnce of /\ ' g in.

congacutive regions. Hote finally that Vv, (t, ) Lo of the same

form as in the aléb cs8e., L N

5. ZThe lmlti«»goup, ﬁmluareflector problem tor the

infinite glindrical pileo
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5.1, The dxrféreutiu m"t‘iéne'g_ undary co n_q_iu&nso
f the cylindrical pne has raflectoro in the form of qllndri.oal

ahanv, ‘such as to provi.de axial symmetry, then

» ar '

q%ggm%‘*égs o
ar

‘!hu differential equatiohs in gny reglon may be written in the

form . 4
ad ¢p D1\ ? . : :
Ay ar ((’ \11 5‘7 M \h 1 i+ J."h i° ° e (1 < a),

\'\nm(r%@%k\ rqu\k ry s 0 ..

The boundary oonditiona _requi‘r‘e the cohtiauiey of y; end
N .%& ob the ihtermediaté bowndaries snd the vanishing

of y, at the outer. boundary of boundariea.

L .5920 Solution for the genoro',l czge. The utrpda;c;tion
" of the variagbles |

-~

) 8

3 ° . (Jén)o-.

has the ei’rect of replacins the ayeten ot B Beeond oraer

eqnatione (5. 1 1) by the 2n first order oquations

- 0=l =1 ‘
: » . 4 o yﬂa g \}"1 z 73.\.'1 [ B : (1 f: n)o
(5:2.2) g4 = \{K%&, = Ny, ;{Kf* 1%i+1 (i < n),

B - e
yax-; fk}‘lklryi*}\uknr’n‘ a




. .“3h=.

It the é?mbﬁl.i_uithént-a sabsoript deaéﬁéo the columa vgc@or' ‘

of bompbhe#tq Ty T o o o 0. Fgo ﬁxen the equau'.ono\ (5.2.2) -
can bs Q‘ﬂ‘lttm in the matrix form ¥y = Xy vhere M ie tho '

‘ anAconétﬁnt matriz:$t coeffiotents 1n'th§:eqpationao

Solutions of the systen (5.2.2) of thn fore —

Iy =28 Jlnr)

-(5.2;3) v ’ (4 : n),

71;1!- i = 85414 Jl(/‘— r) 5
.ai'e hoW sought. Subatitution of (‘502,-3) i_ntg (5.2.2) gives

- ol . T ’
(5.2.%) | s . |
S N PR LH AL TR R T

L e C e 2
VAR L AL
These equations have » mon-trivial sélution in a, provided that

(5.2.5) - : :

B epd
Qhare A ' S
AT e [N e L. 0 ot
)\
0 Ny oo 0




" and ‘
e 2
/ N\ q‘ly L 0 o 0 e 0
| .' = a ‘. a . ’ ©
& ) )2.‘(2 L) "(\3 o o o( o
\A ¥ o,
- k)\ﬁkl . 0 0 s o o )\A‘Kn

[

By a reduction eimilar to that ueed in § 3.2 the charactertetic

1

equation (5.2.5) becomes

(5.2.6) (K2 aB)UB 4By, au« + By gxk’-‘K"’ .

Hote that the roots of this ‘eqmation in ,«.2 are the hegativea.
of the roots of (3.2.2) 1:\/\'20

| I J, ‘and J, are replaced by Y, and Y. ® reepectively in
Yo 1 , o

3
- €5.2.3), tnp ayatemA(soaah)., and comsequently the equation ‘
(5.2.6), remains unchanged, However, if the combinationa
L. 'Il or xo., Kl‘ are .n_aed, the effect 1s‘the expacted ona of
changing the sigas of the roots of (5.2.6) in ,«.2,, or of

replacing 4-by 1.4,

The notation for Bescel functions used in this

paper is consistont with that found in 'l‘heory of Bsaael
~ Punctions by 6 X. %Iatsr,




ﬁ%: -' .

' If the roots of (5.2.6) 1o are all ¥sal, then the
fanctions J, and Y, correspond to. the poaitive roots and the
functions I, and K, to the nogative rools. Thus, in this case
at least., a set of 2n independént splutions of the differential

' equations can de found, As in the Preeﬁdiug sections, if each
of these solutions is made a eoiuxm of a.2n x 2a gatrix V,
then ¥V 8 a mon-singulay matrixz satisfying the matrix equation

vV 2 W . l S . ' !

In the slab and epherical cases certain material

siméuf‘.l_cauona vere found by oxpressing the' nt;lntions in the

oc‘..f' th ’regionaé ‘funetions. of a eoordina_fe‘ orlgtnating at the

ionermost boundary of the region. This slaplification 1s not

',possiblc in the cy,lindrical‘ case einco the matrix M ii no

longer & 'cohetant m.tﬁx. 'Acco:‘dingly. the determiaation of-

eritical pile eisec even in tho qiinpioqt cases bacones an . _ S
 extremely arduous and untnviting task. The oquation vhich
‘ yields the critical pile eize may be vritt;n ém‘th'e nxn \

~ deterninantal equation
(Ge2?) |V, CE WL T, () W ) - Tl = 0

"her.i;*g.“‘tl‘hte*-ona'\'t“o:vol .
exprepsed in terms of the functidme J, and I,, which are finite

<

i8 a.2n x n natrix of vis

’
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for r= 0, and where V), o ann x 21 matriz, tho upper half
of the matrix V,;\. _Hote that all of the matrices in (5.2.7)
| mvolvo the pﬂ.a size g.

6. mltiesroug pile thoog_ »ith continuously m .

paranetou in the mtlector.

6.1. The eage of the inﬁnlte alab ptleo In this

aiscussion lt ie now anmnea that the M “a and X 13 of the
‘mlti::@oup pne thoory eqna%ium are continnouely varylng
pa.rameters. 14 § 3 the eystem of o eecond order differenttel
\eqnauona o replaoed with 5 systen ar an first order equatlone | | : '

vith the aid of the substituation

| J‘;MJ = \Jy“;‘ 0 | (3 ¢ n)s
vhere the N j'“s are now functions of . It follows then from
(3. 201-'5 that the system

- - 2
U)o N KE gy >‘1+1“

i-:.i 1 lg 0 (1<n)o.

(knya) - ‘o\m"Knin+k\1"K1!1 = ‘0' o

xepla.cee the orisina,l eyet.om of socond order (nrferential
ethauona., ) _— : | .
‘A convenient point of departure in this section is the

_ eoins»idexauon of the soquence of sets of equations




B

) - : i
T = "x#e& »

vhers ¥, 18 the colusn Vector'of: 2n. components réprueﬁtin‘k’

a solution oi’ the oquauoné in tno X = th reflect-or. and Hx

’ io a comntant Batrix eompoud of the paramters chmcterictic
of that region. ; Heretofore 80 relat‘ion betveen the Me tor ‘
diettne% regj.ona was aneume&a 'rhe eblnuons hwcvero

vera requ.imd in all cages to aatisfy the bontimuty relations
ya((;‘)ay*‘_l(x,g) : °-  -

If v is wpreaééd ia term of the fnndamantal matrices Y‘ then

the continuity rglaﬁiohé talie the fdx'fm

(6.1.2) Y‘(x,")c;i Toakdey b

A A 2 £ Bnpnosed now thas tho 4p110 and raﬂect’or; eonstitnte
a single region with continuously' v.arying paxameters, or .
,pa.raaneters haﬂ.ng at mont a finite xm.mbor of diaconttmitieuo
Then the several séts of squations with constant cooffictents

are replaoad by a tlngle sat of oquations

“2‘M(x)y o . -

with varying cocfficients, Since the case in vhich M has

components with difcontinuitics presents no essential

LY

complications, 1% will suffice to consider only the contimuous
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ozss, The utéivval frob pile boundary io-aiehoecor boundary
is broken up 1nto slabo bf thi&aeae ﬁx and an apnroximanon
to the single net ot eqaations with vax'ying eoefficients is |
achteved withva soquence of sets wu;h eonatant eosfncientso
- This seguence of sets ha; the same form as the ong ‘preﬂonoly
considered wu.h |
M,‘ z M( £.9 o x

N : ' .xcﬂg g-"

, s

X

x ©

. that s to na:;y‘wtth # of the forntakcﬁ by Miz) whon the
| éémpoz{ms a,ro evaluated at an ardiérary bus hxea poug.mthu
the oL =th regi.bn;' . . |
‘Phe fundamental matzices Y. are choses as in § 2.4 8o that

YVO( (x,og ala a1 v

- Then, from (5.1.1) 1t follows that

Od*lﬁy*,ﬁ!*)ﬁ“ af

~

The xatrix ¥ « (x <) may be expanded in powers of & x %o give

. : ) - L / : ‘
\Yx'(x'a) E?*‘(x'xn].* A xd | | N jl

kY

)\‘PY‘" vAz‘ s

® =] *

‘8 Y, (=




~ho-

them

T {z, )=sl+H 4%+, ;,,.o_ . -

It w111 suf?ica i.n thlu atscussion %o keep only the firot
t.uo teras of this eerieao \

By definition y. (x) = T, (x)o, . Then it follows

. that ¥y, (2, ;) =Y (x“ 1) « Elo,® a, R Hanca. i g(x)
rapreseats the solution for tho. entira reflecb‘or. shexa y(x)
is 1d.entiﬁ.ed. wlth yl(xo) 2 91. where 1:0 deaimtes the inner ’
‘ boundary of the first reflector of mm thi&nese A X Baoreover,
the entire a"pproxlmation to the exact solutdon 7(x) svaluated

at x, is given by

i}

NI ) .
#(xx)’\/ci,\,l (fo*A;)Q“(

09

(I+ M Ax)I+H | Aa)o*gl

b
o
-]
o

a9

(I*—N*é_ls(l* Mo‘éillx% - o{I+ Nltl\.x}c o"'
vhere ¢ = cl" or .
- . " L L,
y(xx 3"‘" I*;mﬂ\Ax*’ZMﬁMﬁﬁAx
. A>p'
1,4 s - i
+ZM{3HﬁﬁMPa Asx-booo“l'@ °
\ ' p>ﬂ|>P,‘” . . . ) . -~
In the passage to the limit hold fixed the point x ., but




@

wllee

\

aliow %he uumﬁéxL of cudbdivislons to increasa vl thout 1imit

while A x spyproachee gero. If the subseript « is suppressed

—~

one obtains in the limit - -

X

o .
,(x)g'[-x.g-J M(E e f+ J J MC§ m(gelatral
%o X JFg p

+ WEIM(EoIM(EMYaimatraby . o | ¢
J:oLo X0 § | § ) § dras d§+ ] »

If the matrix

(6.1.2) K(x) = I’*—‘J-,; u(§ )d§+! J M(EM(E)agral oo o
L R Y

. ;a in :"r;dnced. tfxe solution bLecomes

(6.1.3) y(x) = K(x)e o :

_vhers K(x) 12 & maﬁ*ix whose columns constitute a fundamental

\

set of solutions and which roduces to tho identity at Xyo _’

. The solution (6.1.3) can De obtained by s well-known

clasa;cal procedure. Fizet of all it is noted that the original-

équaﬂons

yeMxy o ylxg)zme o
are equivslent %o fhe eet‘i of,eqdatio’nn

"y(x) = c+Jz M(E)?(g,)d_g ..
o Ux ——




\ /

Thus, by repeatod substitutions, one finde that

' MJ" H(E ) [ c+ﬁ° ‘m(gf»y( gww]_ ai

3

{0

. y(x)

-

| \_1+ 'Jx é({)ag'}'e+ r

fx( £ Iu( my( fo)ageaf
R R o

wo-

-Phig procéaﬁre- glves rise once again to the‘matrix K. It is’
known that this eeiieé converges to the sdlﬁtion. foi‘ en
grbttrary ¢, under -véry generél conditions, The_ géneral '
Amawlx K(z) of sol;.tions, or the particular solution y(x),
cou:'ld be appraximate& by compﬁﬁing'a sufficient numbefof x
terme in the series (601025ﬁ ' The repeated integrations m&v;
however, become véry laborious or %0tally ;mpoefeiblé %0
ce.rry,éut in closed form. Humarical integraﬂon involve'a_th; '
| _béealtlng vp of the x'ange'of integration into subintervels énd
the introduction of imterpolation polymomials. It may be
simpler and less lsborious %o' apply the 8lgd procedure for \
obtaining the spproximation. Sincé the 8lad pz.'ocedur(@ ie : -
no more complicated when the slsbs are un\lequal in thickness,

1% ghould be sspecially édvmtageéus vhen certain parameters
varyl at highly nonpnnxforﬁ raten, permitiing great;r thicknesses
where the rates are all l\ow, ahd,requiring gmaller snbdivieionz

where some are high,

!

It 15 worthy of particular note that this vhole procedure
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6.1.3)  esm = KlasMla) .

3=

is quite indepsndent of the forﬁ of M and cam b§ applied %o
any seot whatsoefer of linear equationrs,

In the problem of @etex‘nd.ning the ‘critical eize of a
pile, aa;umed %o have a uniform 1§ta-iqr reglon within a

reflector‘ of conunuouely'varying parémeters, qf T 4s the

total thicknees of the reflactor the foregoing procednre

.y!.alds 8 relation of the form

In this relation the 2 .appears ex\plicitly in y(a) sz; ¢, bat
not ‘at all in eﬁ.thez" y(a;:- ?) or.E(a+T), the a+’r.beiﬁg
nerely & place label. that 18, y(a+T) and K(a+T) in {6.1. 3) are
functions of T alonoe The y(a+T) takes the place of
Y,(t,)e, in § 2. Moreover, i . -
' /N .
N L x(/a) = Y?(a)% = Y,(a)i(ﬂ o

' ) |
if 7,(0) = I. -Accordingly., (5-1.3) can be vritten in the form

| Sart) = K(&H'E)Yo(a%(o) ,

~

" where a occars in' Yp &lone. The firet n components of y(a+ )

are zero and ‘che last n components of y(0) aFe sero. Thus 1%
follovu that 1n the 2o x.2n matrix K{a+ T)Y@(a) the minor n x n

matrix in the upper leftaha.nd corner is eingular. Thise is

obtained by multiplying the upper half of K by the left hand .

1
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half of Yoo

5.2 _The oass of thé spherical pile. The diaeusaion
in-the -precédlng section spplies almost without chax;.ge to ﬁhe
casa of the spherical pilé with 8 reflsctor wvith continuously
vai‘ying parameters. There ig, however, a aigx{ificanfdifferenco
in that the transfomafion émployed above to oblain oguations

- with cosfficients that are cometant within each epherical

-8hell at the same time provides solutions which are discontimwous - '

in their last n components at the boundaries. ‘The substitution
that providos continuity at the baundaries. viz_;x/yn e A Jy‘; |
sields a set of equetions with coefficients which are functions
of T even within each uniform aheﬁo

The adVantége of having equations with constant coefficients
is; of /eourm. that their mlﬁtions can ba written down re:;dny
in terms of gxponentials, o¥ trigonometric and }l;wp?erbol;i.;c sinea\j .
and coginesol 'H§wevero onee éolutiohs are given in thoso terms
for the eqngtiom with comstant coefficients (with discontinuities
in the aolut:ione at the’boundaz'i.es) a simple trangformation |
_provides the correspording soluﬁons of the eéﬁa’aiéna with
variable coefficients (with solutions that are continuous at ’
the bouhdérieaso A further méﬂjusﬁm@nt By be needed té

provide a matrix of solutiong ‘red.ucing to I at the inner boundarye

but this can alvaye be effected, From ﬁhié point, the procedure

is formally the pame as for the slab case, and the spherical-
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gshell approximation to the case of contimuously varying
paraaétere can be 'apﬁrdximated by aoiv_ing a fiaite number
of pets of equations for uniform shells.

In conslucion 1t is noted ﬁhat the form of the msolution

in the cylindrical caso doss Dot lend 1tself to the type of

analyois used 1in the preceding sections for the problem of '
continucusly varylng parsmeters. At the preseat time then -

the cylindrical case with continuously varying parsmeters

. 4in the ro_'ﬂector ‘constitutes an unsolved prodleam.
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