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§G. Effective Momentum in a Periodie Potential.

The momentum of a particle in a periodic potential is not a constant,

either in clagsical or wave mechanics. The quantity

['\.' = ““. :t“i ”"l‘ '\,‘ﬂ (691)
e I S

which plays the role of momentum in this theory, is therefore properly to be
called the effective momentum; the adjective will, however, be omitted where no
confusisn will result.

The logarithm in Eq. (6.1) is multiple~valued, with values differing by
2in, where n 1s any integer, positive or negative. Change in ixi* by 2 ¥in
will change p, as defined above, by {fftzﬁz = ?{} + Egquations (5.8) to (5.12)
remain valid, however, no matter how this choice of P 1is mede.

There are two ways in which one can make a systematic choice of the alternaw

tive values of p.

A+ Restricting attantion to permitted bands,

o
Ao =8, (6.2)
one can take
w3y = (B , S (6.3)
for every value of E. Then
Ko oo N
- é-.( (",—- = a”" " e ‘ (6.4)
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The quantity thus defined will be called the reduced momentum, The dependence of
[+« on E is sketched in Figs 7, pe 19+ The positive values shown in this skatch
should be imagined to be supplemented by equal negative values for each E, Then
for each value of H in the permitted bands there are two valuss of P,,, to each

of which corresponds a solution of the wave equation of the form

= et Db, yx), (6.5)

v

The relation of p_ to E takes on a familiar form when E is plotted
against p_, as shown in Fig. 8, For each value of P~ there is then a value

of E in each permitted band, Tho vertical tangents of Fig. 7 here appear as
o, thf2a ,

*

horizontal tangents of E}P\) for b

3

,r)l
B, It is possible to choose the value of the logarithm so that, increases

monotonely with E, as does the classical momentum, The rgsulting relation is
shown in Fig. 9. This can he derived from the curve of Fig. 8 by displacing
segments in |>,. by appropriute multiples of h/h. For example, the left half of
the second curve from the bottom is to be moved by h/b to the right; the right
half by an equal amount to the left, In this way one associates with every B

two uniquely defined values of p, negatives of each othsr. Tho momentum quantity
thus defined is closely related to the classical total momentum, and will there-
fore be referred to as the total (effective) momentum, py. The energy is then a
discontinuous function of the continuous variable by

An important charactcristic of the E?qﬁ? curve can be understood by follow-



—5..




6w

- - — - - v o
4/.// o
4//74.
™~
~
./,.
. e e e —_— A
; — — -
AN
///
N
- — e —t Jw~i4
N
AN
1:[_
h
\
- — - - - —_— - - H |
—— T -
4
-
-
v
\.\
—_— L. - —_— e - e =
P
oz _ o

> \,_,_\:

E (py)

F;'«.]u ve 7.



ing the changes in form of this curve as the magnitude of the variations in the
periodic potential is gradually increased from zero. Whon the potential encrgy

is constant, V = o, one has
I e (6.6)

in wave mechanics as in classical mechanics. This parabola is indicated in

Fig. 9, Vhen tho poriodie potential is introduced. forbidden bands appear;
breaks appear in the relation of E to P» The relation between E and p

is most strongly modified neur these breaks, and always in such a way that the
tangents are horizontal at the breaks. The inner part of sach segment will be
little changed in form, if the variation in the potential is not too gresat.

This is particularly true for very high E, when the variution in V has negli-
gible effect on the form of the wave function. EHquation (6.6) then applios ex=-
cept vory close to the band edges, where there is o very abrupt curvature to

glve the horizontal tangent at Ft" gll » ®»= ri{,+2 ... Roughly, one will

in
expect BEq. (6.6) to apply to tha total momentum P+ oxcept for o range of E

near the bond edge which is comparable to the width of the forbidden band.
The form of the roelation near the band edges follows from fgs. (5.3) and
(5.4), For b¢ near tha momontum o of uny given band edge onc can write
q®
-, ( by -Pe)
£ = ' t_\: ) .
2 m

(6.7)
Hore m* is a constant of proportionality characteristiec of the band edge undoer
consideration; it will in genoral vary from odge to edge. Since Eq. {6.7) has
the form of the classical rclation betwsen the kinetic energy E‘"Eé, momentum

bt ‘h., and mass m* of a particle, m* is oalled the offeotive mass of the
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particle., It will appear later that it plays the role of the mass of the electron
in other connections. The applicability of this concept, like that of Eq. (6.7),
48 restricted to the neighborhood of a band cdge.

It will be noted that if E is in a permitted band and just above the
band edge, then E~E% and hence m* will be positive. If, however, E is Just
belew the top of a permitted band, E7~Eé will be negative and m* must be
nogatives Thus the effeetive mass of an elootron noar the bottom of a band is
positive, but near the top of a band it is negatives The physical significanco
of this statement will appear in the next sootion.

As already noted; the curvature of tkbg near the band odges becomes very
great as E incrocases; that is, jj&* becomes very large, and m* correspending~
ly small. In gcnoral one can expect m* to deorcass as onc goos to higher and

higher bands.

‘;77‘ Motion of & Wave Packst in o Poriodic Potential.

The wave functions discussed thus far arc stationary-state functions, de-
scribing eleectrons which have eXactly defined onorgies, but may be anywhere in
the crystal, To deseribe an eloctron with well-defined position, such that its
motion through the c}ystal can be followed, one must uso a wave packet, a wave
function with a limited extont in spaces Such wave functions must be solutions
of the genoral wave cquation, but can not be solutions of the stationary-state
wave equation. #very such function can e oxpressed as a linear combination of
the stationary-state solutions of the general wave equation:; which have the form

CEt ‘
b - - ( ?‘-*Et)
"{/_,;(“)f = ?’[P;x\ et "

(7.1)
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The general wave packet in one dimension has thus the form
S+ 00

L (px-E4
Vieed) r} dp o agf P((‘J,’x} ‘,et' b ) (7.2)

.50 .

(Here and henceforward in this scetion p reprosents the total momentum
of the proceding soction,) It is possible to choose @lh) to be goro excapt
in a small rango about a mean momentum Po s and yot have W(x,‘!} with limited
range in space, for not too great t. Such a wave packet describes a particle
with welle~definod (but not oxactly dofined) position and momentum. Thore is,
of course, a limitation on the uxactness with which these gquantitics can be
simultaneously dofined, arising from the uncertainty principle,

Lot ap) be zero except in a small range about [30. In this small
range of p 1t will be a good approximation to represont px-Et by the first

two terms of a Taylor expansion in powers of (_b»»p,,) :

- . ¢
X"t‘t = — ! — — /é—. ]
P (hox=Eot )4 (p !’a){ X0y \ { : (7,3)
\b:: ,‘.-"
Then Eqe. (7.2) bocomes
e Somls (2]
Vi, gr= " T dp oadp) Fipis) e L A (7.4)
- Ao o .
This has tho form of a progressive wave with :  onergy E,). momentum .bo »

modulated by a function of x and t given by the integral, Now if t is
fi Ar

P TIN
and the expongntial are unchdriged, and the integral has tho same value as bo-

increased by Al = pa and X by Axzna s then both 7% bixt
fora., This means that in the interval al the form of the wavoe packet is un-
changed except for an inoresse Ax in all ecoordinates. The form of the wavs

packet is not complotely constanty 1t undergoes changes as the packet moves in
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the variable potential field, but it returns to the original form (to the approxi-
mation here considered) whenever it advances by an integral number of periods of

the potential. The wave packet thus moves as a unit with velocity

/ -
. AX /AL
YT T ) ) - (7.5)

,},z he

This formula for the velocity is valid both for free particles and for
wave packets in crystals. For the crystal, however, E is a guite different
function of p (see Fig, 9): the v for the packet depends on its energy in a
quite different way, If the energy is well in the middle of a band, where Eq.

(6.6) is valid, then
v = Pl (7.6)

the velocity of the packet is the same as that of a free particle with the same

mass end energy. If, however, E approaches the edge of a band, so that Eg.

(6.7) is valid, one has

Vo= EEH:J;? Y (7.7)
™
the velocity of the packet is that of a particle of mass m*, momentum bf ~Pe
and!:of. Bq. (6.7)jlkinetic energy -£, . More generally, v can be determin-
ed as the slope, for the given E, of an Fﬂt%) curve such as is shown in Fig, 9.
The velocity of a wave packet always goes to zero as its energy approaches that
of a band edge.
Equation (7.7) illustrates again how the constant of proportionality in

Eq. (647), m, plays the role of an effective mass for the particle. The ef-

fective momentum of the particle, Pt”’i » is easily seen to bs either Pr
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where this approaches zero at the band edge, or y;téi, when this approaches
zero, It is evident from Fig. 9 that if a packet has positive mean momentum

its veloeity will be positive. The positive v in Eq. (7,7) will be associated
with positive values of effective momentum and effective mass near the bottom of
each band, but with negative values of both these quantities near the top of the
band, For intermediate E this equation doos not apply! For negative Pn ’
v is negative, and the effective mass and momentum have different signs.

The significance of a negative effective mass may be illustrated by con-
sidering an electron moving in a periodic potential, and subject to an additional
constant force to the right. Llet its energy be near the top of a band and its
momentum P° positive, Its position on the energy diagram and in space are in-
dicated in Fige 10 by the numeral (1). As the packet proceeds in the direction
of the force its kinetic energy will increase, but JVo=-pel and v will de-
creases Thus a force to the right produces an acceleration to the left: the
ratio of force to acceleration, the effective mass, is negative, It is not
sufficient to think of tho effactive chatge of the electron as positive, rather
than the effective mess as uegative: although the motion of the electron is
that of a positive mass with positive change, it transports a negative chagge.

A material conducting by a few electrons near the top of an otherwise empty
band would have a negative resistance.

In relation to this last remark, it may be useful to consider conduction
by a material in which all the electronic states but one in a band are filled.

A completely filled band would give a uniform change distribution and no trans-
port of change even undsr an external field, The uniform change distribution |
can be considered as a sum of distributions from electrons in non=-localized
stationary states, or as the sum of distributions associated with elsctronie
wave packets. If an electron is removed from the band in a locelized way -=

that is, if we remove the electron described by one of these wave packets --
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there will be a deficit of negative charge which will move like the wave packet
deseribing the missing electron. If this "hole" has an energy near the top of the
band, the motion of this wave packet will, as we have seen, be that of a positive
charge with positive mass. The charge transport by the moving hole is also that
of a positive charge, since the local deficit of negative charge could be obtained
by introducing a positive charge. In all respects, then, a hole in an otherwise
full band will behave, in conduction, like an ordinary positive charge with posi-
tive mass f:n*] « In particular, a material conducting by such holes hag a posi-
tive resistance; on the other hand, a material conducting by holes near the bottom
of a band would have negative resistance. This oversimplified presentation leaves
out of consideration some effects due to the interaction of the electrons that are
teken into account in Heisenberg's theory of holes.

We now return to the consideration of the electron in o periodic field, and
subject to an additional constant force to the right. As the encrgy of the elec-
tron reaches the top of the permitted band the packet comes to a stop (points 2
in Fig. 10) and reverses its direction of motions This ebrupt change in the sign
of p, or reflection of the wave packet, is analogous to the Bragg reflection of

X-rays by a crystal, for it occurs whenever the wave length of the packet,

A= - e ; (7.8)
satifies the relation
(7.9)

This reversal of »p brings the momentum to the point (3) in Pig. 10. A4s the
packet moves to the left it loses energy; its velocity increases until, in the

niddle of the band, it has the classical valus for u free elesctron., As the energy
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approaches the bottom of the band the velocity again decreases and the electron
begins to move like a particle of positive effoctive mass Al 3 it comes to a
stop (though it may have a large negative momentum rf ) at the bottom of the

band (point 4 in Fig. 10). It now undergoes e change in its direction of motion,
through Bragg reflection of its momentum to point (5), and its energy begins to
inerease as it moves to the right. It then repeats the whole cycle already de-
scribed, oscillating back and forth indefinitely, The period of this oscillation
can be estimated by neglacting the time required for the motion near the band

edges, and applying the classical equation,

_
F - Tf ' (7.10)

valid for the rest of the motion-(lz) Integrating both sides of this equation

(12) cPf. W. V, Houston, Phys. Rey. 57, 184 (1940).

over half a cycle of the motion, of duration Z » where T is the period, we
obtain
d‘r l" / -y . <
{- T G [T ERN X SR d
f it Al - K o<, (7.11)
or
=
(VAN (7.12)

For a cell-length of Uf§ and an applied fisld of 1000 vqlts/bm the period of
such an oscillation by an electron in a crystal would be about 10-10 seC., in the
mizrowave region. Since the distance traverssd in such oscillations would be of
the order of 10“3 em. | see later, Eq. (8.1)}, much greater than the mean free path

‘n most real crystals, it may be impossibls to observe them in nature. The exe

armple will, however, be useful in the next ssction.
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§ E. Semi-classical Discussion of Motion of Particles in a Perturbed
Periodie Potential.

The ideas developed to this point can be made the basis of a semi-classical
discussion of the motion of particles in a perturbed periodie potential, For
this purposae it is necessary to assume that the perturbing potential changos

yery slowly with x, though its net offect need not be smalls Under this limi-

tation, the form of the potential in any single cell, or even in regions con-
taining many cells, will be inapprecinbly affected by tho perturbation; its im-
portant effect will be a displacement of tho general level of the potential en-
ergy which varies from region to region. As an example we may toke the case,
considered in the preceding section, of a particle moving in a periodic potential
and subject to an additional constunt force F +to the right. Instead of troeat-
ing the potential as poriodic and following the transfor of kinctic energy to the
particle by the external force, we can consider the motion as one of constant
total energy whero the potential energy consists of two parts; the periodic
potential and the linear potentinl from which the constant force F 1s derived.
(See Fige 11)s If the particla is an electron, the periodic potential that of

a orystal, and the constant force due to a field of 1000 volts/cm, then the
stated restriction will be abundantly satisfied, The periodic potential will
change through many ev. in a coll diameter, of the order of Angstroms in dimen-
sions; on the other hand, the potential energy change due to the field, in this
distance, will be of the order of 10—5 evs quite negligible in comparison. One
can not neglect, however, the fact that the potential is different in different
parts of the crystal, since the total change in potential through the crystal
may be large compared with the width of a permitted band. As an illustration

ol the situation, Fig. 11 greatly exaggerntes the dimensions of the cell and the

choenge in potential across a coll.
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Under the restriction Just described, one can suppose that the bund struc-
ture of the crystal, determined by the form of the cell potential, is everywhere
the same as in the unperturbed erystal; the bands are, however, shifted up or down
by just the amount of the perturbation energy in that region. This is the basic
assumption of qualitative thinking about such problems.

Figure 11 shows the band structure for the problem in question. A particle
with energy E can be in the permitted band only for 4 x & x,.

The oscillation of a wave packet described in the proceding section is an oscil-

lation between these limits, through a distance

ax-= B/F , (8.1)

where B is the width of the band in question. The velocity of tho packet ot
any Xx corresponds to its position in the band at that Xy as already described.
This type of argument is particularly easy to apply when the energy E of
the particle is everywhere so oclose to the energy of a band edge that one can
employ the idea of an effective mass. Figure 12(a) shows a periodic potential
modified by a perturbation Vi downward (say tho potential energy of an elec-
tron in & crystal, as modified by a locnl excess of positive charge). A band

-

edge of energy IZ_

in the unperturbed erystal will then lio at energy Eé+-Y}x),
Generalizing the results of Section 75 one will oxpect that a wave packet will

at any x move like a particle of mass m¥, kinetic energy i< - {:-\ﬁ.; + and
potential energy El:p\/(‘) + For the energy illustrated it would then oscil~

late between the turning points X, and x, where the energy of the particle

equals the energy of the band odge.
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Similar stable oscillations can occur when the particle is subject to a
local repulsive force, if its energy lics as shown in Fige 12(b)s Its oscilla-
tion is that of a particle of negative mss m* in a reglon of negative kinetic
snorgy E'-Ee-\:’rn » Or, in more familiar terms, that of o particle of
positive mass |m”*! , positive kinetic energy £, +Vix)-£ . It can not
pass outside the range %X, X $x, , for there its enargy would lie in a for-
bidden bend.

It will be noted that the onergy of these stable oscillations liss outside
the permitted band for the umperturbed orystal -- below if the potential is per-
turbed downward, above if it is perturbed upword.

39. Qualitative Wave Discussion of the Motlon of Particles

in a Yerturbed Periodic Potential.

The semi-classical discussion of the precoding section is essentially an
application of a particle picture derived from a wave=machanical trcatment of
perfectly periodic systems. It is usoful for some purposes, and is commonly
applied in discussions of rcotification at crystal surfaces. The validity of
the method is strongly limitoed, however, for it leaves out of account characteris-
tic wave phenomena which appear in imparfoctly periodic systems:

(a) quantization of enorgy,

(b) penetrution of barriers,

(c) reflection of potential changes.
For purposes of qualitative argument, those deficiencies can largely be corrected
by more complete use of wave ideas developed in preceding sections,

The essential points to be borme in mind are the following:

1, If Vio) 4g slowly varying, then in any small rogion whers the potential

is effectively periodic the wave equation has good approximate solutions
of the formof oy (p:x)  and V_ (p;x) | Eq. (5.9)]. In a pormit-

ted region these are periodic functions modulated by progressive waves;



in a forbiddon region they arc perilodic functions exponentially at-
tenuated to the right and to the left, respectively,

2+ In a limited region one can express any solution approximately as
QJ 3 A‘L’+ (hix) < Rk}_ (p;x) (9,1)

whore A and B aro constunts.

S+ In any region, howover long, whero the perturbing potential is con-

stont, p will be constant, \l/t will have constant forms, and Eq.

(9,1) will give an oxact solution.

4, VWhere Vi) and p are slowly varying one will have slow variations

in the form of \i; and Vo » ond the appropriate values of A and B
for rcprosentation of a given \i will also chunge elowly with x.

It may be remarked that the probloms of extonding solutions of the form
of Eq. (9.1) from a pormitted to a forbidden region is completely paral-
lel to tho problom of connscting W. B, K. solutions for non-periodioc
problems across a classical turning point.

Lot us now return to the problem of Fig, 12(a), nssuming that V(M=o sut-
side of a finite range of x. If LP is to be bounded as %X -» oo , and thus
be physically acceptable, it is cssontial that A= o in the region of largo
positive x. For any given E +this can be satisfiod by only onae independont
solution of the wave oquation. If \P 1s to boe bounded us % - < > it is also
essential that O = o  in the region of large negative x. This condition also
can be satisfied by only one independent solution for a given E, In general one
must oxpect theso conditions to be inconsistent, but for special walues of E ons
can cxpect to find a \P which satisfics both of these conditions gimultaneously.
Thus onc concludes that for disercte encrgies in the forbidden band thers may ex-

ist wavs functions which arc physically acoeptable, These are exponontially at-



tonusted away from the perturbation in the la ttice, and represent particles re-
maining indefinitely in the neighborhood of the perturbation. One may say that
the particle is trapped in a rogion where its onergy is permitted, because it is
perfectly reflected by the surrounding unperturbed part of the erystal whore its
enorgy is in the forbiddon band.

By the same argumcnt one sees that in the situntion of Fig., 12(b) thero
will be discrete pormitted cnorgics above the permitted band of the unperturbed
crystale Their existonecc cun be understood in exactly the samec way.

The system of Fig. 11 oxhibits tho analogue of ordinary woak quantization,
For certain narrow bands of onergy therc will oxist solutions of the wave squa-~
tion for which A vanishes near Xy and B vanishes near <, , Such solutions
will be oseillatory in the central pormitted rogion, strongly attonuatod in the
forbidden region on either side, and vory small in tho permitted regions beyond.
Particles known to be in the central permitted region will have ono of thesc
wookly quantized energics with very high probability. In the coursc of tima,
howover, they may penetratec tho barriers formed by tho forbidden bands and appsar
in nearby permitted regionms,

The spacing of the waukly quantizod states is sasily determined. It is
obvious that if Yrx) is a solution of tho wave equation of this systom for
energy E, then ¢W<~na) is a solution for cnergy FE-nfa. , where n is any
integer. The spucing of the woakly quantized states ig thus AL = e and

the frequoncies omittuod in trunsitions betwoen the statos will bo

Fr

Lo (9.3)

,.’ = n.



-22

It 18 not surprising that these frequencies are multiples of the frequency
of oscillation of the particle, as deduced in a previous aectioniéq. (7.122l

Figure 13 represonts the potential near the surface of a crystal, with the
potential periodic inside the orystal (x>-) und having the form of an image force
potential outside. Part of the band structure for the periodic potential is
sketcheds Consider first the solutions for the band-edge energy E; ¢« A solu~
tion well-behaved for negative x will have exponential character in the non-
classical region to the left, will oscillate in the classical region near the
crystal, and will reach Xso with definite slope~to~-magnitude rgtio. On the
other hand, for x>~ there will exist only one physically-acceptable, periodie
solution, say with zero slope at the edge of the first cell , X=0 (At other
band edges it moy be the magnitude of the well~behaved solution that vanishes ot
the cell edge.) These two functions can not in goeneral be fitted together to
form a continuous physically~-acoeptable solution. 4s E is lowsred, however,
the acceptable solution for negative x will reach X=o with smaller slope-
to-magnitude ratio, whereas the well=behaved solution for x»>» will have a
greater and greater value for this ratio. Por some E these values will become
equal, and there will exist a continuous quadratically~integrable solution of the
wave equatior, exponentially attenuated as X - % o o« This repreosents a dig-
crete energy state in which an electron is trapped near the surface of the crys-
tal; it can not move away from the crystal because of the image force, and it can
not go far into the crystal, being perfeetly reflected pecause its energy is in
the forbidden band of the erystal. Such surface states can occur only for energies
in the forbidden bands of crystals; they mny be above or below nearby permitted
bands,

It would be incorrect to infer that localized clectronic states of energy

E can arise only when E is a permittdd energy in a region surrounded by other
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rogions where E 1s forbidden or less than the potontial energy. Figure 14(a)
i1llustrates the termination of a crystal by a potential jump. For onergy E the
o

entire region x<o is a nonclassical one, und fo: :E is a forbidden enorgy.
Nevertheless, if B is properly chosen there may exist o *P large near x=zo
but exponentially attenuated ns X~ %o o This will occur only if the for-
bidden band in question has the right character.s A solution well-behaved for
X< necessarily has o positive slopc-to-magnitude ratio at x= , and can

therefore bs fitted to a well-behavod solution for X»>0 only if this well-bo-

haved solution, Y_ + hos a positive value of T- Now lef, Eq, (3.13)]

VLS
. = 7 (9.4)

will be positive in some forbidden regions, where % is positive, and rnegative
in others; all forbidden bands of & crystal may have one character, or all the
other, or the two typos of forbidden band may alternate, At any rate, the local-
ized states mentioned above may arise in any band for which r 1z positive,
The oleotron is thon trapped, but not in a region where it is to be expected by
either classical ideas or by those derived from consideration of perfact crystals.
Figure 14(b) illustrates another situation of this type, where crystals of
two different types meets, There can then exist quadratically integrable solu-
tions for discrete enorgies E in the forbidden band for both crystals «- pro=
vided the forbidden band to the right is one of positive f¢* and the band to
the left is onc of negative [« s or converselys. In such casecs it is possible
to fit together smoothly at x=o a golution for X>0 attenuyated te the right
and a solution for x<’ attenuated to the loft, Thus one can have loocalized algec-
tronic states existing at orystal interfaces, with cnergies in the forbidden band
for both types of crystal. The oxistence of such states is easily understood,

however, since the potential deviates strongly from periodicity in the region
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where tha two typos of potential meet; for an clectron in this region the forbid-

den bands for the individual erystals have no absolute significance.

$10. The Roduccd~Mass Wave Equation.

We now turn to the problem of treating in detail the wave equation for a
perturbed periodic potantial, An intuitive approach to the problem will first be
described, in preparation to a more systomatic attack to bo given later, Atten=-
tion will be restricted ta cascg in which the onergy E of the particle is
overywhere ncar the encrgy Fe+V of the lower edge of a band in the perturbed
system, as in Figs 12(a). To simplify the notation we shall also assums that the

band edga is one at which Pr2py-Pe « Then Eq. (6.7) will become
F G-V = -Rr (10.1)
and Eqs(7.7) will be

v o= f’r (10.2)

In the semi-classical approximntion, the motion of the particle in a per=-
turted periodic potontial will be that of a classical particle with mass m»,
energy &, potential energy Eg{Vixy. We have secn that this approximation has
the defects to be expectod when particls ideas are applied but wave ideas are
more appropriates: in particular, it does not yicld the quantization of cnergy
for stable states of motion. It is therofore natural to guess that a mare satis-
factory description of the behavior of the particle would be given by a wave func-
tion §§ which satisfies the general wave squation for a particle of muss mx
and potential energy fos Vin .

__11_ g{:;’ + { £, .;\f(u)g' @?

e 3 x>

!
1

e‘;f

%
at

(10.3)
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This equatitn has as solutions wave packets which morc, like the wave packets
already considered, according to Egss (10.1) and (10.2), Wo shall be particular-
ly Incerested in the solutions with definite onergy E. Thesc have space factors

(P(x! which satisfy a corresponding stationary-stato equation

L
- ICL—?: +§e \(x“(P - Fq (10.4)

2 {

This equation will be called the "roduced-mass equation”,

Now the solution P of the reduced-mass equation is certainly not the same
a8, or even an approximution to, the sta itionary-state wave function which de-
seribes the state of the particle in the usual wave-mechanical sense, This is a

solution of a quite different wave equation which involves tho truc mass m and

the true potential energy -\'7()() + Wy of tho particle:
h 2 A‘kl’ ), _ ., 1
e e + PJ(K? + v N 1
2. Ay® .\ “"1 Voo Y (10.5)

In particular, P has a local wavelongth

I h

),, = ,L_N"T,,';“'...«“‘.;._'t“' = b (10.6)
V -<n\ ft -1 *V(\ﬂ '
whereas " has the much smaller local wavelongth
N o _
r  CTDLoLoTTmmonnml, = T ' (10.7)
-AM(L N(\\)'\/(V‘ '
P here being the true classical momentum of the particle.,:
The rolation between ¢ and \P is easily determined when V:o .
Then Eqs (10.3) has solutions
T e e M »
¢ - i.y\?nx\tl:)“ _ \}‘.:Pf‘
€ - @ (10.8)
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and Eqs (10,4) has solutione
2 b x
4)“‘ - ei?’ _p(pr;x) | (10.9)

Thus ?‘9 appear in ¥'s ag factors modulating functions periodic with period .

One can reasonably anticipate a similar relation in other coses. The par-
ticle ideas on which the roduced-mass equation is based worc developed as de~
scriptions of the motions of wave pockets, and refor to thec bohavior in time of
modulating functions, without rogard to the periodic functions which they multi-
Plys Thus no more :can be expeetaed of the functions ¢ and @ than that

they should be the modulating functions in, respoctively, the gaeneral cuse and

the case of motion with definite enorgy E. If this is actually tho case, %3.
and ¢ will givo vory uscful (though incomplote) ropresentations of the elec-

troniec state. In particular, if

Vi = poo Vg (10.10)

and Tﬁur‘ is the samo in every coll, then qf<p will give thae relative proba-
bility of finding the particle in tho sevoral cells,

Moro complex rclationships between W and ¢ than that of Eq. (10,10)
are easily imngined. It remmins, then, to detormine whethar 2 wave oquation set
up on such nnive grounds as Hq. (10.4) can really give correct stationary-state
encrgies, and what is thoe rolation botween ¢ and Y . Ono method of investi-
gating this question is to make a guoss as to a relation batween ¢ ond v o,
and then see to what approximetion the ¥ determined from a given P satisfies
the correet wave oquation, Eq. (10.5). This procedurc has, in effeet, been used

13
by Tibbs( ) and Peckar(l4). Their guosses will be described briefly.

(18) 8. R, Tibbs, Proe. Farad. Soc. 86, 1471 (1939)
(14) 8. Pockar, Russian Journal of Fhysics, 10, 431 (1946)
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Since tho encrgy E 1is always close to the band odgey ono might guess
that Q(ﬂ modulates the periodic function obtuined by solving the unporturbed

wave equation for tho bund-edge cnorgys. This idea loads to o solution

Yo = Goo Pooyx) (10,11)
with
* AP : =
- 1?- ~(£~~———-~~;~----‘ F W Proie = B Plosx) (10.12)
e, Arx ’

One ignores the differenco betwecn the real and effective masges of the

electron, writing

1
.tl. .‘A A - “ ! - .
- 2:« Tl%i“ * { e * \”’",\( = Eqoo (10.13)

then Bqs (10.11) dofines tho approximate solution used by Tibbs., (It is evident
from Fig. 9 that identification of m with m" s roasoncble for the lowest band,
but vory dublous for higher onos.) If this werc an exact solution of Eq. (10.5)
one would have[gubstituting Eq. (10,11) into Eq. (10.5) and rearranging termg]

P ox |- £ d Pro.y + (w “Ee) Prosn| + T’co;ﬂ{'l}-‘ ‘;(‘L*(Ee"'.v’f)(f]

L 2w A y*> w dx

1 N d¢ d f’fO.":‘ (10.14)

= w dx 4 x

By Egqs. (10.12) and (10.13), the terms on the left vanish 1denticany;\fwou1d be
an exact solution of Hq., (10.5) if it werc not for tho prosence of tho term on
the right. The magnitudo of this term con be estimated as follows. Bqe (10,12)
can bo wrigtten as

&P
dx*

i
i
9_3_
L)
v
e

|

(10,15)

3+
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where p, is the classiocal momontum when F = Ee » und Bq. (10.13) oan be writton

a8
vl L
Il
A O (10.16)

again ignoring the diffcronce between m and m¥, First approximate solutions are

of the form
. Pe
DL, TR
= Ce ' (10.17)
gi B
. LR
¢= Ua A (10.18)

Thus to orders of magnitude only, one has

'd. ?(o.x\ ~ g -tf_ P( 5 %)

Aw ~ x ) (10.19)
e~ o % ¢ - (10.20)
Ay "

The crror term in Eq, (10.14) is thus of order ' T*[% W ¢ The kinetic energy
m

term in Eq. (10.5) is, however, of the order of (p*/2,) ¢ +» Thus Tibbs' solu-

tion satisfies Eq. (10.5) with relutive errors of the order of

p ARV N,
hebe o 2Ppr (10,21)
*
P P
A more sophisticated guess ns to the roelation of ¢ to ‘-" hos been made

Vhe
by Peckar. In a perfoctly periodic potential each modulating function e‘ v X

is assooiated with a diffarent periodic function Pr‘a,;x) « If a solution
of Eq. (10.,4) is expressiblc as a sum of such functions,
. r x
S 2
(p/x\ T, cps) ¢

’ 10,22
b (10.22)



then one may suppose that in W each of these exponentials will appear with the

same cooffioient, but multiplied by its appropriate periodic function:
— .}r« LA
‘bpm = Z, CiPe)e Ppeox) . (10.23)

P
This is the solution proposed by Peckar, reduced to the ono~-dimensional case.
If one assumes that the sum contains only terms with b, so smll that one can
P

replace 'P(pr; x) by (0,;x) » then this solution becomes

Vi = @ x) 1?00 . (10,24)

identical with Tibbs' except for the use of the reduced mass in the calculation
of @¢x} « This is the only solution that Peckar examines in detail, It can be
shown that the errors in this solution are of relative order (PJ:N /'55 ‘»
where (PY )‘*‘ﬂv is the largest value of by appoaring in an important way in the
Fourior expansion of ¢ (x) , Eq. (10.22). Thus tho uso of the reduced mass in
computing | Pty will greatly improve the acouracy of the solution W(«) s at
least in cases where (\3\“)\'»40»1 is not too larges, It will appear later that Eq.
(10.23) defines a still more accurate solution, though the mathematical and prac-
tical difficulties in the use of such expansions arc excessive.

The remainder of this report will deal with a systematic attack on the
problem of solving Eq. {10.5). This leads to a solution closely allied to that
of Eq. (10423), but of more convenient form, and to other solutions which are

still more amccurate and nore generally applicable,
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