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§<». Effective Momentum in a Periodio Potential.

The momentum of a particle in a periodic potential is not a constant,

either in classical or wave mechanics. The quantity

/•' " -* — --• .4+ , (6,1)

which plays the role of momentum in this theory, is therefore properly to be

called the effective momentum* the adjective will, however, be omitted where no

Confusion will result.

The logarithm in Eq, (6.1) is multiple-valued, with values differing by

2rrln, where n is any integer, positive or negative. Change in v A* by 2if in

will change p, as defined above, by <,-7.|^ >Ub . Equations (5.8) to (5.12)
remain valid, however, no matter how this choice of p is made.

There are two ways in which one can make a systematic choice of the alterna

tive values of p.

A. Restricting attention to permitted bands,

A+ " e > (6.2)
one can take

for every value of E. Then

K* / A
~£ < fV * £* '" Z7. • (6.4)



The quantity thus defined will be called the reduced momentum. The dependence of

f,r on E is sketched in Fig. 7, p. 19. The positive values shovm in this sketch
should be imagined to be supplemented by equal negative values for each E, Then

for each value of E in the permitted bands there are two values of t>r ,to each
of which corresponds a solution of the wave equation of the form

T <? K.<J?f\*K (6.5)

The relation of j?r to E takes on afamiliar form when E is plotted

against b„ ,as shown in Fig. 8. For each value of p„ there is then avalue

of E in each permitted band, The vertical tangents of Fig, 7here appear as

horizontal tangents of t'(pj for (v = C| ± K/*«, .

tf>l
B. It is possible to choose the value of the logarithm so that.increases

monotonely with B, as does the classical momentum. The resulting relation is

shown in Fig. 9. This can be derived from the curve of Fig. 8by displacing

segments in [;,. by appropriate multiples of h/a. For example, the left half of

the second curve from the bottom is to be moved by h/a to the right, the right

half by an equal amount to the left. In this way one associatos with every E

two uniquely defined values of p, negatives of each other. The momentum quantity

thus defined is closely related to the classical total momentum, and will there

fore be referred to as the total (effective) momentum, pt. The energy is then a

discontinuous function of the continuous variable p, .

An important characteristic of the Bif^ curve can be understood by follow-
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ing the changes in form of this curve as the magnitude of the variations in the

periodic potential is gradually increased from zero. Vshen the potential energy
is constant, V * o, one has

•ir*. (6.6;

in wave mechanics as in classical mechanics. This parabola is indicated in

Fig. 9, When the periodic potential is introduced, forbidden bands appear;

breaks appear in the relation of E to p. The relation between E and p

is most strongly modified near these breaks, and always in such away that the

tangents are horizontal at the breaks. The inner part of each segment will be

little changed in form, if the variation in the potential is not too great.

This is particularly true for very high E, when the variation in V has negli

gible effect on the form of the wave function. Equation (6.6) then applies ex

cept very close to the band edges, where there is a very abrupt curvature to

give the horizontal tangent at ^ .x .jii ,»-*,.**... Roughly, one will
expect Eq. (6.6) to apply to the total momentum fo except for arange of E

near the band edge which is comparable to the width of the forbidden band.

The form of the relation near the band edges follows from Eqs. (5.3) and

(5.4). For bt near the momentum b£ of any given band edge one can write

Here m* is a constant of proportionality characteristic of the band edge under

consideration; it will in general vary from edge to edge. Since Eq. (6.7) has

the form of the classical relation between the kinetic energy £•-fc"e ,momentum

K %, dnd mass m* of a particle, m* is called the effeotive mass of the



particle. It will appear later that it plays the role of the mass of the electron

in other connections. The applicability of this concept, like that of Eq. (6.7),
is restricted to the neighborhood of a band edge.

It will be noted that if E is in a permitted band and just above the

band edge, then £ L'e and hence m* will be positive. If, however, B is just

below the top of a permitted band, £~fc*0 will be negative and m* must be

negative. Thus the effective mass of an elootron near the bottom of a band is

positive, but near the top of a band it is negative. The physical significance

of this statement will appear in the next section.

As already noted, the curvature of ftj^) near the band edges becomes very

great as E increases; that is, ^~> becomes very large, and m* corresponding

ly small. In general one can expect m* to decrease as one goes to higher and

higher bands.

77- Motion of a Wave Packet in a Periodic Potential.

The wave functions discussed thus far are stationary-state functions, de

scribing electrons which have exactly defined energies, but may be anywhere in

the crystal. To describe an electron with well-defined position, such that its

motion through the crystal can be followed, one must use a wave packet, a wave

function with a limited extent in space. Such wave functions must be solutions

of the general wave equation, but can not be solutions of the stationary-state

wave equation. Every such function can be expressed as a linear combination of

the stationary-state solutions of the general wave equation, whioh have the form

(7.1)
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The general wave packet in one dimension has thus the form

(7.2)

(Here and henceforward in this section p represents the total momentum
of the preceding section.) It is possible to choose *!» to be zero except
in asmall range about amean momentum fa ,and yet have *<» }i} with limited
range in space, for not too great t. Such awave packet describes aparticle

with well-defined (but not exactly defined) position and momentum.. There is,

of course, a limitation on the exactness with which these quantities can be

simultaneously defined, arising from the uncertainty principle.

Let fitfi) be zero except in asmall range about ^. In this small
range of p it will be a good approximation to represent px-Et by the first

two terms of a Taylor expansion in powers of O-tt,) j

Then Eq. (7.2) becomes

-*5*

(7,3)

Mi

j ^ njp) p^.-xJe • "PN (7.4)
" - y>

This has the form of aprogressive wave with ; energy E , momentum k ,

modulated by afunction of x and t given by the integral. Now if t is

increased by f±-- *« jl>£} and x by A*. na_. ,then both TV b. ,,
and the exponential are unchanged, and the integral has the same value as bo-

fore. This means that in the interval A{ the form of the wave packet is un^

changed except for an increase ax in all coordinates. The form of the wave

packet is not completely constant! it undergoes changes as the packet moves in
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the variable potential field, but it returns to the original form (to the approxi

mation here considered) whenever it advances by an integral number of periods of

the potential. The wave packet thus moves as a unit with velocity

v = .a* . 'it\
At " J|. I • (7.6)

Y - I °

This formula for the velocity is valid both for free particles and for

wave packets in crystals. For the crystal, however, B is a quite different

function of p (see Fig. 9): the v for the packet depends on its energy in a

quite different way. If the energy is well in the middle of a band, where Eq.

(6.6) is valid, then

- YU ; (7.6)

the velocity of the packet is the same as that of a free particle with the same

mass and energy. If, however, E approaches the edge of a band, so that Eq.

(6.7) is valid, one has

(7.7)

the velocity of the packet is that of aparticle of mass m*, momentum bi -j? >
andfof. Eq. (6.7)1kinetic energy J?-^, . More generally, v can be determin

ed as the slope, for the given E, of an £(\>^ curve such as is shown in Fig, 9.

The velocity of a wave packet always goes to zero as its energy approaches that

of a band edge.

Equation (7.7) illustrates again how the constant of proportionality in

Eq. (6.7), m*, plays the role of an effective mass for the particle. The ef

fective momentum of the particle, K TV. ' is easily seen to be either i:>T ,
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where this approaches zero at the band edge, or u ±-7^ , when this approaches

zero. It is evident from Fig, 9 that if a packet has positive mean momentum

its velocity will be positive. The positive v in Eq. (7,7) will be associated

with positive values of effective momentum and effective mass near the bottom of

each band, but with negative values of both these quantities near the top of the

band. For intermediate E this equation does not apply} For negative b0 ,

v is negativej and the effective mass and momentum have different signs.

The significance of a negative effective mass may be illustrated by con

sidering an electron moving in a periodic potential, and subject to an additional

constant force to the right. Let its energy be near the top of a band and its

momentum {><> positive. Its position on the energy diagram and in space are in

dicated in Fig, 10 by the numeral (l). As the packet proceeds in the direction

of the force its kinetic energy will increase, but /|^-f>gl and v will de

crease* Thus a force to the right produces an acceleration to the leftj the

ratio of force to acceleration, the effective mass, is negative. It is not

sufficient to think of the effective change of the electron as positive, rather

than the effective mass as negatives although the motion of the electron is

that of a positive mass with positive change, it transports a negative change.

A material conducting by a few electrons near the top of an otherwise empty

band would have a negative resistance.

In relation to thiB last remark, it may be useful to consider conduction

by a material in which all the electronic states but one in a band are filled,

A completely filled band would give a uniform change distribution and no trans

port of change even under an external field. The uniform change distribution

can be considered as a sum of distributions from electrons in non-localized

stationary states, or as the sum of distributions associated with electronic

wave packets. If an electron is removed from the band in a localized way —

that is, if we remove the electron described by one of these wave packets --
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there will be adeficit of negative charge which will move like the wave packet
describing the missing electron. If this "hole" has an energy near the top of the
band, the motion of this wave packet will, as we have seen, be that of apositive
charge with positive mass. The charge transport by the moving hole is also that
of apositive charge, since the local deficit of negative charge could be obtained
by introducing apositive charge. In all respects, then, ahole in an otherwise
full band will behave, in conduction, like an ordinary positive charge with posi
tive mass hn*l . In particular, amaterial conducting by such holes has aposi
tive resistance; on the other hand, amaterial conducting by holes near the bottom
of aband would have negative resistance. This oversimplified presentation leaves
out of consideration some effects due to the interaction of the electrons that are
taken into account in Heisenberg's theory of holes.

We now return to the consideration of the electron in aperiodic field, and
subject to an additional constant force to the right. As the energy of the elec
tron reaches the top of the permitted band the packet comes to astop (points 2
in Fig. 10) and reverses its direction of motion. This abrupt change in the sign
of p. or reflection of the wave packet, is analogous to the Bragg reflection of
X-rays by acrystal, for it occurs whenever the wave length of the packet,

* h ' (7.6)

satifies the relation

*> - 2d.
(7.9)

This reversal of p brings the momentum to the point (3) in Fig. 10. As the

packet moves to the left it loses energy; its velocity increases until, in the

middle of the band, it has the classical value for ufree electron. As the energy
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approaches the bottom of the band the velocity again decreases and the electron

begins to move like aparticle of positive effective mass /«.* ;it comes to a

stop (though it may have alarge negative momentum (^ )at the bottom of the
band (point 4in Fig. 10). It now undergoes achange in its direction of motion,
through Bragg reflection of its momentum to point (5), and its energy begins to
increase as it moves to the right. It then repeats the whole cycle already de
scribed, oscillating back and forth indefinitely. The period of this oscillation

can be estimated by neglecting the time required for the motion near the band

edges, and applying the classical equation,

C'fc (7.10)

valid for the rest of the motion.(l2> Integrating both sides of this equation

(12) cf. Vif. V. Houston, Phys. Rev. 57, 184 (1940).

over half acycle of the motion, of duration -^ ,where T is the period, we
obtain

/ %*<•
or

si.. * J'" ^!(" 5 ^ i > (7.11)

T - K A-.
/ Fa- ' (7.12)

For acell-length of V4 and an applied field of 1000 volts/cm the period of

such an oscillation by an electron in acrystal would be about lo"10 sec., in the

microwave region. Since the distance traversed in such oscillations would be of
-3 j ,

the order of 10 cm. [see later, Eq. (8.1)], much greater than the mean free path
in most real crystals, it may be impossible to observe them in nature. The ex

ample will, however, be useful in the next section.
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5 B. Semi-classical Discussion of Motion of Particles in a Perturbed
Periodic Potential.

The ideas developed to this point can be made the basis of a semi-classical

discussion of the motion of particles in a perturbed periodic potential. For

this purpose it is necessary to assume that the perturbing potential changes

very slowly with x, though its net effect need not be small* Under this limi

tation, the form of the potential in any single cell, or even in regions con

taining many cells, will be inappreciably affected by the perturbation; it3 im

portant effect will be a displacement of the general level of the potential en

ergy whioh varies from region to region. As an example we may take the case,

considered in the preceding section, of a particle moving in a periodic potential

and subject to an additional constant force F to the right. Instead of treat

ing the potential as periodic and following the transfer of kinetic energy to the

particle by the external force, we can consider the motion as one of constant

total energy where the potential energy consists of two parts; the periodic

potential and the linear potential from which the constant force F is derived.

(See Fig. 11). If the particle is an electron, the periodic potential that of

a crystal, and the constant force due to a field of 1000 volts/cm, then the

stated restriction will be abundantly satisfied. The periodic potential will

change through many ev. in a cell diameter, of the order of Angstroms in dimen

sions; on the other hand, the potential energy change due to the field, in this

-5
distance, will be of the order of 10 ev, quite negligible in comparison. One

can not neglect, however, the fact that the potential is different in different

parts of the crystal, sinoo the total change in potential through the crystal

may be large compared with the width of a permitted band. As an illustration

of -the situation, Fig. 11 greatly exaggerates the dimensions of the cell and the

change in potential across a coll.
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Under the restriction just described, one can suppose that the band struc
ture of the crystal, determined by the form of the cell potential, is everywhere
the same as in the unperturbed crystal; the bands are, however, shifted up or down
by just the amount of the perturbation energy in that region. This is the basic
assumption of qualitative thinking about such problems.

Figure 11 shows the band structure for the problem in question. Aparticle
with energy E can be in the permitted band only for K, «- x < X*

The oscillation of awave packet described in the preceding section is an oscil
lation between these limits, through a distance

*" B/F ' (8.1)
where B is the width of the band in question. The velocity of the packet at

any x corresponds to its position in the band at that x, as already described.

This type of argument is particularly easy to apply when the energy B of
the particle is everywhere so close to the energy of aband edge that one can

employ the idea of an effective mass. Figure 12(a) shows aperiodic potential

modified by aperturbation Y.„ downward (say the potential energy of an elec
tron in acrystal, as modified by alocal excess of positive charge). Aband

edge of energy (^ in the unperturbed crystal will then lie at energy E^Vt*)
Generalizing the results of Section 7, one will expect that awave packet will

at any x move like aparticle of mass m*, kinetic energy U-^-Vtn ,and

potential energy F^V**) . For the energy illustrated it would then oscil

late between the turning points x, and ^ where the energy of the particle
equals the energy of the band edge.
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Similar stable oscillations can occur when the particle is subject to a

local repulsive force, if its energy lies as shown in Fig. 12(b). Its oscilla

tion is that of a particle of negative mass m* in aregion of negative kinetic

energy jF-«re-VfK, , or, in more familiar terms, that of a particle of

positive mass \n*l ,positive kinetic energy £t *V/*> -£" . It can not

pass outside the range *,v< * *x* ,for there its energy would lie in a for

bidden band.

It will be noted that the energy of these stable oscillations lies outside

the permitted band for the unperturbed crystal — below if the potential is per

turbed downward, above if it is perturbed upward.

$?. Qualitative Wave Discussion of the Motion of Particles
in a Perturbed Periodic Potential.

The semi-classical discussion of the preceding section is essentially an

application of a particle picture derived from a wave-mechanical treatment of

perfeotly periodic systems. It is useful for some purposes, and is commonly

applied in discussions of rectification at crystal surfaces. The validity of

the method is strongly limited, however, for it leaves out of account characteris

tic wave phenomena which appear in imperfectly periodic systemsj

(a) quantisation of energy,
(b^ penetration of barriers,
(c; reflection of potential changes.

For purposes of qualitative argument, these deficiencies can largely be corrected

by more complete use of wave ideas developed in preceding sections.

The essential points to be borne in mind are the following?

1. If V»o is slowly varying, then in any small region where the potential

is effectively periodic the wave equation has good approximate solutions

of the form of \^ (y; O and 4_ (|i ,x) ;~Eq. (5.9)1. In a permit

ted region these are periodic functions modulated by progressive waves;
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in a forbidden region they are periodic functions exponentially at

tenuated to the right and to the left, respectively,

2. In a limited region one can express any solution approximately as

^ -A^ <h;x) * £^ (/,ix) (9a)

where A and B are constants,

3. In any region, however long, where the perturbing potential is con

stant, p will be constant, ^ will have constant forms, and Eq.
(9,1) will give an exact solution.

4. Where lio and p are slowly varying one will havo slow variations

in the form of % and ^_ , and the appropriate values of A and B

for representation of a given ^< will also change slowly with x.

It may be remarked that the problems of extending solutions of the form

of Eq. (9,1) from apermitted to aforbidden region is completely paral

lel to the problem of connecting W. B. K. solutions for non-periodio

problems across a classical turning point.

Let us now return to the problem of Fig. 12(a), assuming that V<v)?o out

side of a finite range of x. If ^ is to be bounded as X -% «, , and thus

be physically acceptable, it is essential that A»o in the region of largo

positive x. For any given B this can bo satisfied by only one independont

solution of the wave oquation. If ^ is to be bounded as *— - ** it is also

essential that b - o in the region of large negative x. This condition also

can be satisfied by only one independent solution for a given E. In general one

must expect these conditions to be inconsistent, but for special .values of E one

can expect to find a ^ which satisfies both of these conditions simultaneously..

Thus one concludes that for discrote energies in the forbidden band there may ex

ist wave functions which aro physically acceptable. These are exponentially at-
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tenuated away from the perturbation in the lattice, and represent particles re

maining indefinitely in the neighborhood of the perturbation. One may say that

the particle is trapped in a region where its energy is permitted, because it is

perfectly reflected by tho surrounding unperturbed part of the crystal where its

energy is in the forbidden band.

By the same argument one sees that in tho situation of Fig. 12(b) thero

will bo discrete permitted energies above the permitted band of the unperturbed

crystal. Their existonco can bo understood in exactly the same way.

The system of Fig. 11 exhibits tho analogue of ordinary weak quantization.

For certain narrow bands of onorgy thero will exist solutions of the wave equa

tion for which A vanishes near *3 and B vanishes near ^ , Such solutions

will bo osoillatory in the central permitted region, strongly attenuated in the

forbidden region on either side, and very small in the permitted regions beyond.

Particles known to be in the central permitted region will have one of these

weakly quantized energies with very high probability. In the course of time,

however, they may penetrate the barriers formed by tho forbidden bands and appear

in nearby permitted regions,

The spacing of the weakly quantizod states is easily determined. It is

obvious that if 47x) is asolution of the wave equation of this system for
energy E, then ^«~rts) is asolution for energy E-»F*. ,where n is any

integer. Tho spacing of the weakly quantized states is thus At - fk. and

the frequencies omitted in transitions between tho states will bo

Fa

k (9.3)
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It is not surprising that these frequencies are multiples of the frequency
of oscillation of the particle, as deduced in aprevious section^. (7.12)}

Figure 13 represents the potential near the surface of acrystal, with the

potential periodic inside the crystal (x>r .) and having the form of an image force

potential outside. Part of the band structure for the periodic potential is

sketched. Consider first the solutions for the band-edge energy i?e < Asolu

tion well-behaved for negative x will have exponential character in the non-

classical region to the left, will oscillate in the classical region near the

crystal, and will reach x*o with definite slope-to-magnitude ratio. On the

other hand, for *>o there will exist only one physically-acceptable, periodic

solution, say with zero slope at the edge of the first cell %x*0 , (At other

band edges it may be the magnitude of the well-behaved solution that vanishes at

the cell edge.) These two functions can not in general be fitted together to

form a oontinuous physically-acceptable solution. As E is lowered, however,

the acceptable solution for negative x will reach X~o with smaller slope-

to-magnitude ratio, whereas the well-behaved solution for *>o will have a

greater and greater value for this ratio. For some E these values will become

equal, and there will exist a continuous quadratically-integrable solution of the

wave equation, exponentially attenuated as *-»*«,. This represents a dis

crete energy state in which an electron is trapped near the surface of the crys

tal; it can not move away from the crystal because of the image force, and it can

not go far into the crystal, being perfectly reflected because its energy is in

the forbidden band of the erystal. Such surface states can occur only for energies

in the forbidden bands of crystals; they may be above or below nearby permitted
bands.

It would be incorrect to infer that localized electronic states of energy

E can arise only when E is apermitted energy in aregion surrounded by other
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regions where E is forbidden or less than the potential energy. Figure 14(a)
illustrates the termination of acrystal by apotential jump. For energy E the
entire region *<o is anonclassical one, and for 1 is aforbidden energy.
Nevertheless, if E is properly chosen there may exist a $ large near x=o

but exponentially attenuated as x-* ^ . This will occur only if the for
bidden band in question has the right character. Asolution well-behaved for

*<o necessarily has a positive slope-to-magnitude ratio at x«o ,and CQn

therefore be fitted to awell-behaved solution for *>o only if this well-be

haved solution, 4L ,has apositive value of <T. f Now |cf. Eq, (3.13)]

' J (9.4)

will be positive in some forbidden regions, where ^ is positive, and negative
in others; all forbidden bands of acrystal may have one character, or all the

other, or the two types of forbidden band may alternate. At any rate, the local
ized states mentioned above may arise in any band for which f<- is positive.
The electron is then trapped, but not in aregion where it is to be expected by
either classical ideas or by those derived from consideration of perfect crystals.

Figure 14(b) illustrates another situation of this type, where crystals of
two different types meet. There can then exist quadratically integrable solu

tions for discrete energies E in the forbidden band for both crystals - pro
vided the forbidden band to the right is one of positive f^ and the band to

the left is one of negative p. ,or conversely. In such cases it is possible
to fit together smoothly at *. -o asolution for *-o attenuated to the right
and asolution for x<o attenuated to the left. Thus one can have localized elec

tronic states existing at crystal interfaces, with energies in the forbidden band

for both types of crystal. The existence of such states is easily understood,
however, since the potential deviates strongly from periodicity in the region
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where the two typos of potential meet; for an electron in this region the forbid

den bands for the individual crystals have no absolute significance.

•> ,0< The Reduced-Mass Wave Equation.

We now turn to the problem of treating in detail the wave equation for a

perturbed periodic potential. An intuitive approach to the problem will first be

described, in preparation to a more systematic attack to be given later, Atten

tion will be restrioted to oases in which the energy E of the particle is

everywhere near the energy <re +V" of the lower edge of a band in the perturbed

system, as in Fig. 12(a), To simplify the notation we shall also assume that the

band edge is one at which ]?r =» j^-ft* • Then Eq. (6.7) will become

and Eq.(7.7) will be

(10.2)
m.

In the semi-classical approximation, tho motion of tho particle in a per

turbed periodic potential will be that of a classical particle with mass m*,

energy E, potential energy !~,Aux) . Vifo have seen that this approximation has

the defects to be expected when particle ideas are applied but wave ideas are

more appropriate! in particular, it does not yield the quantization of energy

for stable states of motion. It is therefore natural to guess that a more satis

factory description of the behavior of the particle would be given by a wave func

tion 4" which satisfies the general wave equation for a particle of mass m*

and potential energy £e •* V <v) :

ft d$>
$t ' (10.3)
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This equation has as solutions wave packets which more, like the wave packets
already considered, according to Eqs. (10.1) and (10.2), Wo shall be particular
ly incerested in the solutions with definite energy E. These have space factors
ft* which satisfy acorresponding stationary-state equation

-A iip + C- ., \?m* AK*. j t« + V(xj vcp - J-:^. . (10.4)

This equation will be called the "reduced-mass equation".

Now the solution Cf of the reduced-mass equation is certainly not the same
as, or even an approximation to, the stationary-state wave function which de

scribes the state of the particle in the usual wave-mechanical sense. This is a

solution of aquite different wave equation which involves the true mass » and
the true potential energy Vto +W <*) of the particle:

<^rv\. /*

In particular, Cp has a local wavelength

whereas ^ has the much smaller local wavelength

W.
(10.6)

* K „ _ K
-A r -^ *" ~ . (10.7)

\J 3n(e-»lt»i- Vfx> **

p here being the true classical momentum of the particle.=

The relation between f and l|> is easily determined when V, o .
Then Eq. (10.3) has solutions

t - e = e K (10.8)
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and Eq, (10,4) has solutions

Thus <p *appear in Vs as factors modulating functions periodic with period a.
One can reasonably anticipate asimilar relation in other cases. The par

ticle ideas on which the reduced-mass equation is based woro developed as de

scriptions of the motions of wave packets, and refer to tho behavior in time of

modulating functions, without regard to the periodic functions which they multi

ply. Thus no more can be expected of the functions § and <p than that

they should be the modulating functions, in, respectively, the general case and

the case of motion with definite energy E. If this is actually tho case, %

and cp win give very useful (though incomplete) representations of the elec

tronic state. In particular, if

Vi^ r f<*) P«») ^ (10#10)

and VP is the same in every cell, then q?*qp will give tho relative proba
bility of finding tho particle in tho sevoral cells.

More complex relationships between ^ and <p than that of Eq. (10.10)

are easily imagined. It remains, then, to determine whether awave oquation set

up on such naive grounds as Eq. (10.4) can really give correct stationary-state

energies, and what is the relation between <j> and p . One method of investi

gating this question is to make a guess as to a relation between & and vf ,

and then see to what approximation the if determined from agiven <p satisfies
the correct wave oquation, Eq. (10.5). This procedure has, in effect, been used

(13) (14)
by Tibbs and Peekar . Their guesses will be described briefly.
(13) S. R, Tibbs, Proo. Farad. Soo, 35, 1471 (1939)
(14) S. Pockar, Russian Journal of Physics, 10, 431 (1946)
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Since tho energy E is always close to the band odge, ono might guess

that tyi*) modulates the periodic function obtained by solving the unperturbed

wave equation for tho band-edge energy. This idea leads to a solution

^(x) -- <£<*} F(o; x) (10,11)

with

-A* i-l^ >\V<*»P,o;»o ,£, Pfo;,). (io.i2)

One ignores the difference between the real and effective masses of the

electron, writing

~H ^ *{ ** +Vr*f <pu> - fr( ,„ f (l0#13)

then Eq. (10,11) defines tho approximate solution used by Tibbs, (It is evident

from Fig. 9 that identification of m with m is roasonable for the lowest band,

but very dubious for higher ones.) If this wore an exact solution of Eq. (10,5)

one would have{substituting Eq. (10.ll) into Eq, (10,5) and rearranging terms!

[ 2^. <J x'

(10.14)

By Bqs. (10.12) and (10.13), the terms on the left vanish identically;.would be

an exact solution of Eq. (10.5) if it were not for the prosence of tho term on

the right. Tho magnitudo of this term can be estimated as follows. Eq, (10,12)

can bo written as
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where ^e is the classical momentum when £ - 6^ , and Eq. (10.13) oan be written

as

•±T.<p
(10,16)

again ignoring the difference between m and m*. First approximate solutions are

of the form

e ' (10.17)?*

f * (J

Thus,to orders of magnitude only, one has

d.?

4% Tv

rlcp
tv

(10.18)

(10.19)

(10.20)

The error term in Eq. (10.14) is thus of order V^f* 0/ . The kinetic energy

term in Eq. (10.5) is, however, of the order of (^7?„») ^ . Thus Tibbs' solu

tion satisfies Eq. (10.5) with relative errors of tho order of

}\*v AH- .
I3

(10,21)

Amore sophisticated guess as to the relation of (p to 4 has been made

by Peokar. In a perfectly periodic potential each modulating function e' t*

is associated with a different periodic function P|kT;x) * If a solution

of Eq. (10,4) is expressible as a sum of such functions,

<P(lO L c^e^"
tv

(10.22)
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then one may suppose that in ty each of these exponentials will appear with the

same coefficient, but multiplied by its appropriate periodic function:

%<** - Z.> V\ir)t ' PfN ;x) . (10.23)

This is the solution proposed by Peckar, reduced to tho one-dimensional case.

If one assumes that the sum contains only terms with '^r so small that one can

replace P(j»r;») by Pto ,x) ,then this solution becomes

*hx> ~ 9<*> 'P'";m) t (10.24)

identical with Tibbs' except for the use of the reduced mass in the calculation

of q>«*J . This is the only solution that Peckar examines in detail. It can be

shown that the errors in this solution are of relative order (h^3 /W* ,

where (Vv^-J€ is the largest value of br appearing in an important way in the
Fourier expansion of (f (*> , Eq. (10.22). Thus the uso of the reduced mass in

computing <pt*) will greatly improve the accuracy of the solution $<*) , at

least in cases where ^J^ is not too large, It will appear later that Eq.
(10.23) defines astill more accurate solution, though the mathematical and prac
tical difficulties in the use of such expansions are excessive.

The remainder of this report will deal with a systematic attack on the

problem of solving Eq. (10.5). This leads to a solution closely allied to that

of Eq. (10.23), but of more convenient foria, and to other solutions which are

still more accurate and nore generally applicable.
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