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ELECTRONIC STATZS IN FERTURBSD FERIODIC SYSTEMS
by

Hubert M. James

Introduction

The electronic states of crystals (like those of any
other system contalning very many particles) can be treatéd
only approximately in wave mechanics, by a forced separation
of variables. To a good approximation, however, one can
treat each electron as moving in a statlc potential fileld W(T)
due to the otherelectrons, and to all other charges in the
system. The motion of an electron with energy E is thus
described by a solution ? of a wave equation,

- t2 2+ (®) Y= E
Lo oy EpmEy

All physically significant solutions of this wave equa-
tion must be continuous, with thelr first derivatives, and must
remain bounded. If for a given value of E there is no bounded
solution of this equation, then the electron can never take on
that value of the energy-.

The wave mechanics of particles in perfectly pgriodic
potentials, such as would exlist in ideal crystals, - can be
regarded as completely understood, at least in princiQiﬁ.

Many ¥e?rs before the aGvent of wave mechanics, Hamel and
Haupt < discussed, from the mathematiclans point of view, an
equation essentlally jdentical with the one-dimensional wave
equation for a particle of mass min a periodlc potential W (x):

- h®e a2 ¢(x) + Wwix)¢lx) = E ¥ (x). (1.1)
2m axz

(1) &. Hamel, Math. Ann. 73, 371 (1912)
(2) 0. Haupt, Math. Ann. 76, 67 (1914); ibia 78, 278 (1919)
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They were particularly concerned with the "oscillation
theorems® for this equation, relating to the dependence
on E of the exlstence or non-existence of bounded solutions § (x).
They showed that all solutlons are bounded for certain ranges
of E (the "permitted energy banis" for electrons in crystals),
separated, 1in general, by ranges of energy for which no solu-
tionsg are bounded ("forbidden bandsg"). This wave equatlion, and
the corresponding three-dimensional one, have since been
studied by a number of methods suited to various special p% <
poses; 1¥ w%ll suffice to Tg?tion here the work of Bloch, 3)
Brillonin (4), and Kramers .

Recent work on the solid state has directed increasing
interest on the motion of electrons 1ln imperfect crystals.
Electrons in repl crystals move 1n potential fields which deviate
from perfect periodicity for many rcasons; imperfectlons 1in
the crystal, missing or forelgn atoms in the lattice, and 1in
any case, termination of the crystal at free surfaces. These
deviations from periodicity, if not too extensive, do not
greatly disturb the band structure of the permitted energy
values. Experiment and theory have, however, made it clear
that they may give rise to electronic states with energles
outside the permitted bands -- states in which the electron
can not move freely through the crystal, but 1s restricted to
a limited range near the surface oOr crystal cell where the
periodicity 1is disturbed.

The existence of loc%%ized surface states in crystals
was first suggested by Tamn,%on the basis of study of a
gpeclal one-dimensional model. The latest and most instructive
work of this type is that of Shockley, who discussed the sol-
utiong of the one-dimensional wave equation for a potentlal
which is perfectly periodic in & finite range of x, represent-
ing the crystal, and rapidly approaches a constant value out-

side. (Fig. 1%). In such a case one might write the wave

(3) ©F. Bloch, Z. Fhysil, 852, 559 (1928)

(4) L. Brillowin, Compt.rend. 191, 198, 292 (1830); Jour.
Fhys., (VvII), 1, 377 (1930)

(5) H. A. Kramers, Fhyslcs, 2, 453 (1935)

(6) I. Tamm, Fhys. Z. Sowj. 1, 733 (1932)

(7) W. Shockley, Phys. Rev. 58, 517 (1939).
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equation as

2
~HR 0 a%u(x) + Wix)w(x) = B F(x) 0<x<L ,
2m dxe ,

(1.2)

2 aB¢ (x) + V(x)¥()= E ¥(x) x<o0,x>L,
2m dxe

when W(x) is the periodic potential of the crystal, and Vix)

a prescribed non-periodic function. An a%ternative approach to
the physical problem is that of c-oodwin(8 , who used the per-
turbation method in treating a finite chain of identical atoms.
Both methods indicate the existence of gsurface states, but
closer investigation of thelr nature is required¢, particularly
gince experimental evidence as to their existence 1s not yet
conclusive.

A quitc different type of devistion from periodicity
occurs where there is a foreign atom in a crystal lattlce.
The potential is profoundly moGified in the crystal cell which

contains this atom. In addition, if the net charge in this ccll
(due to all charges except the electron under consideration) 1s
different from that in other cells, then the periodicity of the
potential through the whole crystal is mocdified by the coulomb
potential of the excess charge. The corresponding one-dimen-
sional wavc equatlon 1s

2 vl . , -
-k Sy ( Wi +Vu:‘}¢(x? = ENn ,

L
P SR

(1.3)
where W(x) is again the periodic potentlal of the ldcal crystal ,
and V(x) is a non-periodic perturblng potential. A similar
modification of a pasricdic potential may arise from chargcs out-
slde a crystal, or on its surface. Fig. (lc) represents the
total potential encrgy of an electron in the prescnce of a
forecign ion with excess positive charge. Fig. (1d4) rcpresents

the potential energy of an clectron near the surface of a crystal
which has a negative surface charge and a corresponding positive
Schottky layer, where the negatlve charge density falls below
that existing in the interior of the crystal.

In the work to be reported here, attentlon has been
centered on the development of & more gatisfactory method for
tne solution of Eq. (1.3). Basically, the method involves

(8) E. T. Goodwin, Froc. Camb. Phil. Soc. 33, 205 (1939)



constructing solutions for a single period of the perlodic part
of the potential, and plecing them together to form a solution
of the wave equation through the whole domaw. of x. The same
general ideca has been used in th? c?se of perfectly periodic
potentials, by Kronig and Fenncy\ll?, who studied squarc-well
potentials, and by Shockley (7), who considercd potentials
symmetrical about the center of the cells, but otherwise unrc-
stricted in form. Thc now formulation of this idea employed in
the prescnt work has proved to bc especially convenient, belng
sulted for discussions of the general featurcs of the problenm,
and equally so for the study of speclal details; it appears also
to be ideal when numcrical calculatians are to be made.Here 1t
will be necessary to discuss its application to perfectly
periodic potentials, in preparation for the later discussion of
imperfectly periodic systems. A proof will bs given (one-
dimensional case only!) for the existence of a band structure
in the permitted energies of particles moving in a periodic
potential; some features of the wave functions, essentlal for
leter applications, will be derived.

It may be mentioned that the differential equatlion to be
considered appears in quite different problems. Tne equation
for a mechanical oscillator of mass M, displacement x, and
spring constant k 1s ey )

PP XY
Ir ‘
‘\ = \’.\3 » 1_’\,, '* : .

where kj(t) is a small periodic change, this equation has the
same form as Bq. (1.1), with the time variable t replacing the
spatial veriable x, and x playing the role of ¥. The band
structure theorem to be proved then has the following signifi-
cance: 1n the prescnce of a periodic perturbation of k, the
oscillations of the syetem will remain bounded for values of
ko (that is for frequencies of the oscillator) in certain ranges,
but not for values of ko in other ranges. In thece ranges of
instablility most oscillations will 1ncrease without 1limlt as
t —» = , Exceptional oscillations will increase without 1limit
as t — -, but will acproach O as i+ ~ ., However, these
oscillations are still unstable, for the smallest perturbation
will convert them into exponentially increasing oscillatlons.

The same relations hold in LC circuits. In the presence
of a given periodic perturbation of L or ¢ the system will
oscillate stebly in certain rangee of LC or frequency, but will
become unstable in other ranges of LC.

11) R. de L. Kronig and W. G. Pcnncy, Froc. Roy. Soc., 130,499
(1) & T1921)



The rings of Saturn give visual evidence of such stabllity
phenomcna. They conslst of meny tiny satellites rotatling almos®t
independently about Saturn, with frequencles greater the smaller
the radius of their orbits. They are subject to perlodic per-
turbations due to Saturn's major plenets. Orbital motlons of
such satellites are stable for certain ranges of orbltal frequency

or radius; these radil are those for which the rings exist.
For other frequevncies, other radii, the motlons are unstable;
the satellites have long since moved out of such orblts,leaving
the gaps between the rings. There 1s thus a close analogy 1n
origin in the bend structures of Saturns rings and of electronic
energles in crystals.

§.2, Preliminary Considerations and Definitions.

let W{x) be = periodic function with period a:

‘ﬁ{x: ?'Vf(lrnw}, X=%4 o (2.1)

The range of x will be divided 1nto perlods or gells of length a,
such that in the nth cell

me, & )(S(VHUQ. (2-2)

The potential has then the same form in each cell, It is often
convenient to choose the origin of coordinates so that the
potential in each cell is symmetrical about the center (Fig. 2a);
this is not always possible (Fig. o2b}, nor is it necessary for
application of the method to be described. Attention will, how-
ever, here be restricted to the symmetrical case.

We now fix attention on the Oth cell, og X<&.

The wave equation 1
= li-!. g ; - I~
__j_ T,IT" ‘+ \Nl" q‘ L+ (2.6)

A
is, for any fixed value of E, a linear sccond-order differential
gquation with two llnearly independent solutions. 1In particular,
there will always exist independent real solutions g nwd & Surk At

L@y -
glesg)=1 . gilER)=e. (2.4)

- P N R
LL(.E;%_ T Q , u.’(E,l}-‘.

These basic solutions can be determined, if necessary, by

numerical integration, beginning with the indicated initial con-

ditions at x ='4; they will be deflned, and need by computed, only

within the Oth cell. It is obvious that g(x) will be symmetrical
v " about the center of the cell, whereas u(x) will be
-anvisymmetrical. Cne will have then
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gk, 0 = j‘ti"hg‘o , ?’(E;on_r’(é.‘a)rjfz'

4

’

- - - 7y w /7 o
w lE ;o = —OL(E>Q)-U\:’ , wlE,0) = wfa) ° We

1 4

The dependence of these quantities on E will be understood
but not indicated herecafter.

An arbitrary solutlon of the wave equation in this
cell (a "cell solution") can be expressed as an appropriate
linear combination of g rwdd !

Y(E:x) = xuc%(L?;x) + Bu (£, x), (2.5)

Since the potential has the same form in the 1lst cell as
in the Ofh cell, the solutions of the wave equation will have
also _identical forms. In particular, §(&; x-&) amd

w il ; x~a) will be epecial solutiong, and an arbitrary
solution in this cell can be expressed as

PUE X w, 9B x-a) + B ulE;x-0) agxs2e. (5.

In the seme way, en arbitrary solution in the nth cell can be
wrltten as

V(£ x) =a(r\3“:‘7- Aona) 4B alE x-na) , pa ¢ 24l (2.7)

Now let W denote a solution of the wave equation con-
tinuous through the whole range of x, specifled by giving its
magnitude and slope ot x=o. If the special sclutiocns §(x
and wCx) are known in the Oth cell, one can galn a convenient
and complete description of ¥ by determining the corresponding
values of %, and B,in all cells. This can be done, starting from
the known values of a,and fs , by the familiar process of jolning
cell solutions at the cell boundaries, in the following way.

If the functions of Eqs. (2.5) and (2.8) represent
different portions of the same continuous solution of the wave
equation, they must have the same magnitude and slope at x=a,
where they join:

Mo gla) + B, wln) = o, 5,0 + 3, w(0) |
f Vi (1 i

/ » « 4 I'4 (208)
) 3 (Y o+ B, u () T o, ? o) + ﬁ: w (o)
or ‘ : :

a4

XoFe = flo o Y Go + fius

2

7 ’, / ’
- ¥y Tu + cho = Nl:fo + ﬁ’% - (2.9)

e 10 -



Glven &,and 8o, one cen solve these equations to determine &
and @,. Similar relations exist between (e, 3, > and

(s¢a, Ba) ; solving them , one can then determine ¥, and 8, .
By continuing this process one can determine any &,, @

for n positive or negative. The calculation can, In fact, be
glven a convenient matrix form:

N"') go“é*aéu“) ‘2‘40‘*\‘:’ \"ﬂ. & |
Bn| T\ ~280%  gous +7$uo/ (paj’ (2.10)

valid for alln, positive or negative.

(K]

This matrix formulation of the connection problem can
be made the basis of a full discugsion of the periodic potential
problem, and its generalization to non-periodic potentials has

proved to be useful. For nost purposes, however, the method next
to be described 1s preferable.

§-3 "Self-Matching" (I~ ) Cell Solutione.

The problem of connecting cell solutlons can be made
still simpler by the use of basic cell solutions, +(F; %) |
wlth the special property of having the same slope~to-magnitude
ratlo at the two ends of the cell:

Few | S

E T (F) (3.1)
£ (E;0) e )
To normalize these functiong, it will be required that
L) = 1. (3.2)

In passing from the left end of the cell to the right, the solution
will incresse in magnitude by the factor

'F(E’la/‘;(‘?i“) = )(F} (3.3)

Such solutions will here be called self-matching or, for brevity,
o cell solutlons.

Self-matching solutions derive their name, anc¢ their
importance, from the following progerty: glven a single self-
matching solution in the OEE cell, one can construct from it a
continuous golution of the wave equation through the whole range
of x. If #(x) is a cell solution in the Oth cell, ¢, T(x-a
will be a cell solutlon in the 1st cell, e, F(x-2a)

a cell solution in the 204 cell, and so on. All these cell
solutions will have the same slope - to - magnitude ratio

et the ends of thelr respective cells. Therefore, 1f € ,Ca,-
are so chosen that the cell solutions have the same magnitudes

-11 -



at thelr common cell boundaries, they will have there =slso

the same slopes: they will fit together smoothly to form a con-
tinuous solution through the whole range of x. Since each sol-
utlon changes by a factor A in p&ssing fyrom the left end of the
cell to the right end, the magnitudes can be made continuous by
choosing €= A™ . for all n, positive or negative (ck. Fig. 3).
Thus one obtain$ from the given cell solution a solution of
the wave equatlon for all x:

- ne - ‘ %
YE = NF(E; x-na) | Wcxcliaja,
n:o‘tl.tz,‘." (304)

This solution has the same form in every cell; it changes from
cell to cell only by a (possibly complex) multiplying constant ).

It remains to investignte the exlstence of self-matching
cell solutions. If the cell potentisl is symmetrical, a @ solu-
tion must (1like any other solution in the OEE cell) be express~
ible o8 a linear combination of the special solutions g and w :

flex) = x(E_)j(EJK) + 3(E) wik;x)

(3.5)
The constants x and @ must, by Eq. (3.1), be such that
gg’(o)-&pu.’to\ - —Yi(m s Buftal ’ -
o T 4+ Bulo) > q (a' + B ln) .
or (EE)L i jﬂLE%” .
V- 3o To (3.7)

If the energy under concideration 1s onz for which the quantity
on the right is nelther zero nor infinite, there will be two
values of &/ which satisfy this condition; for such energles
there willl be two independent ¢ cell solutions. These solutions
will be distinguishec, for all E, in the following way.

We define ]}(E) = ?Q’ /30 \ P(E) = L&«‘\/‘LU
[4
) = 019 - RALS
pes) ’ﬁ’/i; AT (3.8)

Then Eq. (3.7) becomes
§° Ya.
o Ue )
The upper sign in this equation wlll apply to the O solution
» (Eix) , the lowsr sign to ¥. (Eoxy, The corresyonding values
of @ anC A follow from Eq. (3.1), written as

g = ..39,*(}_(“:)..9;1 ) (3.10)
8o ;— (GIX.\ u.0
- 12 -



and Eq. (3.3), written as (
. o Pl
A= So + (Bla)uo * (3.11)
Thug one obtains, by use of Eq. (3.2),

_ L sEY M w (Egk
'Y't (€% = l ;,?va ) *S'—q';"* ¥ P m.m._.»..a._.l. 1 ,

y wo J (3.12)

Ty = ¥ ¢ =
SV (3.13)

' N I W
Ne T TF v (3.14)

Id It will be noted that as regards form (but not magnitude)
+ and ¥_ are mirror imeges about the center of the cell. Also

p Y SR
Ae b (3.15)
o == Ty, (3.14)

Nature of the Crystel SBolutlons

From each O cell solution one can construct a solution for
all x, as alrerdy described:

¥{»~ B “J‘P ’ f‘ — ('L"

The character of these solutions, and in particular their bound-
edness or non-boundedness, depends on the value of P, which may
be anything from-eto 4+ , Cepencing on the value of E. We shall
here consiler the characteristics of the Ys as they depené’on £,
reserving for the next section the &iscuesion of the occurrence
of the various values of p .

Case 1. ,fﬁ?__gz Then {mp 1e peal,*nis real, and the Y's are real.
If o<P<i, then A sis rcal and greater than |, Then Y%
increrscs in magnitude from cell to cell with
increasing n; 1t oscillates with an ampli tude
which increases without limit as X=27. A8 X+ -,
W, o . On the other hand, A.is real

but less than | . Thus W. oscillates with
amplitude which lncreases exponentielly as

X ~> - oo , but Y=o as A= +© . The
general soluticn of the wave equation,
¢ - Q4 Wy + Lo,
x>+ 0

ig necesearily unbcundéed elther as
ar as x » —w , In elther case it 1s
physically unsccertable.

- 13 -



Case 2.

[p<o]

Case 3.

Lp=o]

Ir

> 1, Apis real, and <=} . There is a change in slgn
in the function from cell to cell, but it remains
true that ¥ shows an exgonential increase in mag-
nitude from cell to cell as X-—» o0 . Sinmilarly
Y. increases exgonentially in megnitude as X-» =20,
Again there is no physically acceptable solution of
the wave equatlon.

In this case (& 1s imaginary; B/x 1is imaginary, anc

the functions f, and +. are comzlex. Since \+¢
and '-{@ =are comglex conjugates, with the same
moculus, 1t follows that their ratic N has
moCulus 1: .
X \ -6
)\*_se , M=% € -

The solutions ¥4 and $_ c-nstructed from f, and f.
therefore chenge in phase from cell to cell,but
they ¢o not increase 1n magnitude; both remain
bounded ags X »>xoo . The general solution of the
wave equation,

\\l = C-r\po- + C*-'#-)

18 bounced and therefore physically accegtable for
all values of C4+ and C-.

If P=o there 1s only one possible value of e,
only one self-matching solution, with A = 1. Thils
reveats itself exactly from cell to cell; it 1is
periodic with period & , remains bounced, and 1s
rhysicelly acceptable.

There are, of course, other solutions without
the pro:erty of changing by a constant factor from
cell to cell. One of them can be constructed as
follows. As p-eo, ¥, and Y- apnroach a common
periodic form. Wi-W.is alweys a solutlon of the
equation, and it cen be shown to approach zero as

o . Therigére L{
B AN B

= LT VF L%"kf
is a solution of the wave equation for pf~=o;
it is not bounded, and not physically acceptable.

The genersl solution of the wave equation,
when p= 0, 1s

\P: C.‘P, ¥ Cg‘#&;

It 1s physically acceptable only if Cap = 0. Thus
there i1s only one incewnendent anc whysically accept-
able soluticon of the wave equation for p= 0.

- 1



Case 4. Here again therc is only one value of %8,
anc. one self-matching solution, with A = —I..

{ g= ta£] This merely changes sign from cell to cell. It is

— periodic with period Za_ , boundel, anc physically
acceptable.

‘gecond. solution of the wave equation is

o et T e -t
It is not physically acceptable. For P = %e0

there 1s only one indepencent anl physically
acceptable solution, FUN

To sumnarize:

411 solutions are bounded and physically accertable for
pLov . No solutions are bounlel anG physically
acceptable for p>o . Only one solutlon (to a multiply-

ing constant) 1s bounded anc vhysically acceptable for

pP=o, o8,

Dependence of 7 on E.

To complete the proof of the band structure of the per—
mitted energies in periodic potentials, 1t 1s only necessary to
prove that p is positive for some ranges of E, negatlive for
others. The following Giscussion 1s slightly more cetailed
than is required for this zurpose, in order to bring out features
of importance in other connections.

An energy E is in a forbldlen band if the slope—-to-
magnitude ratios of g(x) and u (x) have the same sign at the
cell edge, and in a permitted band 1f the signs are different.
The behavior of these quantities, Y and f, 1s easily decuced.

Since 1% 2 j .
2 L SWeoy
ool TR R

the curves g(x) and u(x) will be concave to the x-axls when

E >Wtw, and convex when E<W . Figure 4 incicates the general
form of the soluticns for a cell potential with minimum in the
center, for a sequence of energles; only the part of the sclu-
ticns for O <% «&f/z 1s shown. For E <Wmin both curves
are everywhere convex to the axis; ¥ and i are certalnly nega-
tive. As E is raised the following quantitles vanish in the

A ¢ M ' ? ‘ 4
indicated order: 3° 'rj\") we , Qs %o R %O) Uo 1y 4 ot

' (4:.1)

- 15 -



The curves ofikkwmlrdﬁ)have alternate zeros and infinities,
resembling the tangent functlon in form. When E becones
80 large that the variation in W 1s negliglble one has approxlmate

1y ‘
YE) R CTE e (K({E)

V.(E\ ’;’-CJ?Q,Q\‘(K(E} . (4.2)

In Flg. 5 are sketched the forms of pleEd *“37«t); Fig. 6
shows the corresconling form of P(E), and the alternating for-
bidden and permltted bands of encrgy.

’

The exact succession of zeros of S»aﬂo"uo, “s shown
in Pig. 5 does not hold for all forms of cell potentlal. It
can be shown that for other types of potential one may have re-
versals in the orders of zeros of §o 80G Wy , Or Of Ue 0ad Go
That ie, one can only say that zeros will always occur 1n e
following oréer: 3@’ , (e .'4.’ Y, { wa: ?ef‘ ' ‘?o; ‘—'-c’ ), e
The form of Fig., 6 is, however, unchanged by such reversals; 1t
errlles alowhen cell potentials are unsymmetrlcal.

If the assoclatel zeros of g, and ué, or gé and W
happen to coincice exactly, the corresponding forbldden band dis-
appears without a trace. The constant potentlial 1s a very
special kind of periodic potential for which all forbidden
bands Cisappear.

§5,Characteristics of the Solutions.

In the permitted regilons the solutions unlergo only a
phase change from cell to cell., This change is glven by

UL § A T LTI
+ - e - I—-d P - ‘_'L‘ l?‘ ! (5.1)
whence it follows easlly that

9 v ——
Tew 3 = gl (5.2)

The variation of O withf1s sketched in Fig. 7. Near the band
eCges where p=o one has

~ ~-& >
= le - (5.3)

6 = y1 E-Cl -
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Near the band edges where P = =« one has
[‘-4.".:, -t(E"EQ_)
| (5.4)

p= = ‘E'Eer

0 = [TEar -

In each band the phase change from cell to cell ranges
from O to ™, If we take two cells as the unit, the phase change
from unit to unlt 1ls twlce as great; it changes from O to 2w
in each band. But a vhase change of 2% leaves the function un-
changed. Thus the function undergoes a slow change in phase from
unit to unit at the edge of any banl; in the middle of the band,
however, the phase 1s changing rapidly.

In a forbidcen reglon it 1ls not the phase of the solution
but its magnitude that changes from cell to cell. The change 1s
exponential, but very slow at the elge of a band. It changes
magnitude at maxinum rate near the middle of a band.

We shall now cdefine the‘quantity

P = - Zéllw e, (5.5)

a function of E. It will soon appear that if one takes the
principal value of the many~valued logarithm, then p ls the re-
duced momentum familiar in the theory of crystels. In a per-
mitted band, where

Y]
A, = e (5.6)
e have
w " ;
P (5.7)

a real quantity, as the momentum must be, In a forbidden band,
where A,1s real, p ls imaginary, again as 1s characteristic of
wave mechanical momentum in a non-classicel region. 1In any case

A, = e 4 (5.8)
Since
xn
‘(’* (x) = X,, ﬂ (x~ma) |, mat xs(nu)a..) (5.9)
one has

t}%""( *n ;‘;’\”‘
T As e . £y

¥
Sor

¢, (x) = e (l-hﬁ)})ﬂ&5x$(n4na“ (5.10)
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The quantity 1n brackets 1s continuous, since it is the rroduct
of continuous factors Y% anc exb{?t px}. ~Increase of x by a,
together with theigorrespcnding increase in.n by 1 , canges its
firgt factor by ), its second by aspiF(%\pa} = N3’

anc. the last factor not at all; the procduct is urnchanged. It
follows that ' o

tn ;-“""PX
+
oo = k* e t& (%-wo) (5.11)
is periodic wilth period a.
Thug | *~£—bx
¢« "R
£ 0= € £ 0 (5.12)

where (% (xl are rerlodic with the perioc of the potential. In a
permitted region WYe have the form of a periodid function moc=
ulated by progressive waves with momensa +¥% ; in a forbidden
reglon they have the form of periodic functions modulated with
real exponentlals,increasing or decreasing to the right,
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