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ELECTRONIC STATES IN FERTUR3iiD PERIODIC SYSTEMS

by

Hubert M. James

Introduction

The electronic states of crystals (like those of any
other system containing very many particles) can be treated
only approximately in wave mechanics, by a forced separation
of variables. To a good approximation however one can
treat each electron as moving in a static potential field vw
due to the other electrons, and to all other charges In the
system. The motion of an electron with energy E is thus
described by a solution \j> of a wave equation,

- H v 0/ * ¥ (r) •//= E </>
2m ^ T

All Dhysioally significant solutions of this wave equation must be congous,Swith their first derivatives and must
remain bounded. If for a given value of E there is no boundedfofuTIon^rils equation, then the electron can never take on
that value of the energy.

The wave mechanics of particles in perfectly Period!o
potentials, such as would exist in xdeal c^^a^inci_°an be
regarded as completely understood, at least in P^^tl'd
Mahv vears before the advent of wave mechanics, Hamel^'andHa^t^^discussel, from the mathematicians point of view anequation essenfiaily identical with ^e one-dimensional wav
equation for a particle of mass min a periodic potential w vx;.

- k2 d2 4>(x) * W(x)<fr(x) = E^U). (l.D
2m dx#

(1) G. Hamel, Math. Ann. 73, 371 (1912)
(g) 0. Haupt, Math. Ann. 75, 67 (1914); ibid 79, 278 (1919)
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They were particularly concerned with the "oscillation
theorems" for this equation, relating to the dependence
on E of the existence or non-existence of bounded solutionsj/ UJ.
They showed that all solutions are bounded for certain ranges
of I (the "permitted energy bands" for electrons in crystals),
separated in general, by ranges of energy for which no solu-
??ons are tooSnled ("forbidden bands"). This wave equation, ana
the corresponding three-dimensional one, have since been
studied by a number of methods suited to various special pur^
poses; It.will suffice to mention here the work of Bloch,
Brilloi\in (4s and Kramers vo'.

Recent work on the solid state has directed increasing
interest on the motion of electrons in IfPerfect^y^le.
Electrons in re?« crystals move in potential fields which deviate
from perlec? periodicity for many reasons; imperfections in
the crystal, missing or foreign atoms in the lattice, and in
any case, termination of the crystal at free surfaces. These
deviatioAs from periodicity, if not too extensive do not
greatly disturb the band structure of the permitted energy
values' Experiment and theory have, however, made it clear
that thev mav give rise to electronic states with energies
outside the permitted bands - states in which the electron
can not movePfreely through the <^^S*f^fl^e^tS t0a limited range near the surface or crystal cell where the
periodicity is disturbed.

The existence of localized surface states in crystals
waa first suggested by Tampon the basis of study of a
Special one-dimensional model. The latest and most instructive
Tntlof this tvoe is that of Shockley, who discussed the sol-
u??ons of the onl-dfmensional wave equation for apotential
2hi?h is perfectly periodic in a finite range of x, represent-Sg the crysta? Lr?apidly approaches aconstant value out
side. (Fig. 1*.). In such a case one might write the wave

(3) F. Bloch, Z- fhysik, 5£, 555 <19|8)(4) L. BrillCin, Compt.rena^m, 198,^(1930),
(5) H. A. Kramers, Fhyslca, 2, 453 (1935)
(6) I. Tamm, Fhys. Z. SowJ . 1, 733„H?qSm
(7) W. Shockley, Phys. Rev. 56, 317 (193y;.
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equation as

-jL- d.2tK-x) +W(x)'Hx) g E t'(x) 0<X<L
2m dx2 ' (1.2)

-t,g a2^ (x). f V(x)»(x)= E <^(x) x<;o,x>L ,
2m dx#

when W(x) is the periodic potential of the crystal, and V(x)
aprescribed non-periodic function. An alternative approach to
the physical problem is that of Goodwin(87, who used the per
turbation method in treating a finite chain of identical atoms.
Both methods indicate the existence of surface ?tates» ™* -
closer investigation of their nature is requlrea, particularly
since experimental evidence as to their existence is not yet
conclusive.

A quite different type of deviation from periodicity
occurs where there is a foreign atom in a crystal lattice.
The potential is profoundly modified in the crystal cell which
contains this atom. In addition, if the net charge in this cell
°due to all charges except the electron under consideration) is
different from that in other cells, then the periodicity of the
Potential tSSughthe whole crystal is modified by the coulomb
Potential of the excess charge. The corresponding one-dimen
sional wave equation is

-. »\

where W(x) is again the periodic potential of the ideal crystal ,
and V(x) is a non-periodic perturbing potential. A similar
modification of aperiodic potential may arise '«» ^^he
side a crystal, or on its surface. Fig. (lc) represents the
total potential energy of an electron in the presence °* *
foreien ion with excess positive charge. Fig. (Id) represents
tSe votenTlal energy of an electron near the surface of acrystal
which has anegative surface charge and acorresponding positive
Schottky layer, where the negative charge density falls below
that existing in the interior of the crystal.

In the work to be reported here, attention has been
centered on the development of a more satisfactory method for
thS sSlutiSn of Eq- (1.3). Basically, the method involves

(8) E. T. Goodwin, Proc Camb. Phil. Soc. 55, 205 (1939)
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constructing solutions for a single period of the periodic part
of the potential, and piecing them together to form a solution
of the wave equation through the whole domaif. of x. The same
general idea has been used, in the case of perfectly periodic
potentials, by Kronig and Penney(H), who studied square-well
potentials, and by Shockley (7), who considered potentials
symmetrical about the center of the cells, but otherwise unre
stricted in form. The now formulation of this idea employed in
the present work has proved to be especially convenient, being
suited for discussions of the general features of the problem,
and equally so for the study of special details; it appears also
to be ideal when numerical calculations are to be made.Here it
will be necessary to discuss its application to perfectly
periodic potentials, in preparation for the later discussion of
imperfectly periodic systems. A proof will be given (one-
dimensional case onlyj) for the existence of a band structure
in the permitted energies of particles moving in a periodic
potential; some features of the wave functions, essential for
later applications, will be derived.

It may be mentioned that the differential equation to be
considered appears in quite different problems- The equation
for a mechanical oscillator of mass M, displacement x, and
spring constant k is iA \

If
k = K v kM\

where kx(t) is a small periodic change, this equation has the
same form as Eq. (1.1), with the time variable t replacing the
spatial variable x, and x playing the role of y. The band
structure theorem to be proved then has the following signifi
cance: in the presence of a periodic perturbation of k, the
oscillations of the system will remain bounded for values of
ko (that is for frequencies of the oscillator) in certain ranges,
but not for values of ko in other ranges> In these ranges of
instability most oscillations will increase without limit as
t ~> *a . Exceptional oscillations will increase without limit
as t-*-«3, but will accroach 0 as ■*-♦*> . However, these
oscillations are still"unstable, for the smallest perturbation
will convert them into exponentially increasing oscillations.

The same relations hold in LC circuits. In the presence
of a given periodic perturbation of L or C the system will
oscillate stably in certain ranges of LC or frequency, but will
become unstable in other ranges of LC.

(11) R. de L. Kronig and W. G. Penney, Proc. Roy. Soc, i2g'£99
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The rings of Saturn give visual evidence of such stability
phenomena. They consist of many tiny satellites rotating almost
independently about Saturn, with frequencies greater the smaller
the radius of their orbits. They are subject to periodic per
turbations due to Saturn's major planets. Orbital motions of
such satellites axe stable for certain ranges of orbital frequency
or radius; these radii are those for which the rings exist.

For other frequencies, other radii, the motions are unstable;
the satellites have long since moved out of such orbits,leaving
the gaps between the rings. There is thus a close analogy in
origin" in the band structures of Saturns rings and of electronic
energies in crystals.

§.?, Preliminary Considerations and Definitions.

Let W(x) be a periodic function with period a:

>h*> - "W<m*via.J , *-*« **.-••. (2.1)

The range of x will be divided into periods or cells of length a,
such that in the nth cell

L, ^ X *(«♦!>* . (2.2)««.

The potential has then the same form in each cell. It is often
convenient to choose the origin of coordinates so that the
potential in each cell Is symmetrical about the center (Fig. 2a);
this is not always possible (Fig. 2b), nor is it necessary for
application of the method to be described. Attention will, how
ever, here be restricted to the symmetrical case.

We now fix attention on the Oth cell,- o.$x$fi-.
The wave equation

_J5,1 £± ♦ VU*,* -t+ (2.3)

Is, for any fixed value of E, a linear second-order differential
equation with two linearly independent solutions. In particular,
there will always exist independent real solutions 5 «~i «• Su»-i. ,ut

?K; f.) =1 , r/(C> x)ro . (2.4)

These basic solutions can be determined, if necessary, by
numerical integration, beginning with the indicated initial con
ditions at x -f:M they will be defined, and need by computed, only
within the Oth cell. It is obvious that g(x) will be symmetrical

' ebout the center of the cell, whereas u(x) will be
•en-cisymmetrical. One will have then

- 8 -
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The dependence of these quantities on E will be understood
but not indicated hereafter.

An arbitrary solution of the wave equation in this
cell (a "cell solution") can be expressed as an appropriate
linear combination of <y rt*.^ ou;

Since the potential has the same form in the 1st cell as
in the Oth cell, the solutions of the wave equation will have
also_identical forms. In particular, _5(£; <-«.) a—h
u.iic ; *~«,^ will be special solutions, and an arbitrary

solution in this cell can be expressed as

^(ir ;xj •= y, q(£, *-a.) * 3, u.(€\ *-*) A^.X<2^. (2#6j
In the same way, an arbitrary solution in the nth cell can be
written as

Now let ^ denote a solution of the wave equation con
tinuous through the whole range of x, specified by giving its
magnitude and slope at x-o. If the special solutions $<*•>
and u.C*) are known in the Oth cell, one can gain a convenient
and complete description of vf by determining the corresponding
values of«* and g^in all cells. This can be done, starting from
the known values of a^and &, , by the familiar process of joining
cell solutions at the cell boundaries, in the following way.

If the functions of Eqs. (2.5) and (2.6) represent
different portion© of the same continuous solution of the wave
equation, they must have the same magnitude and slope at x=a,
where they join:

or

OtQf\(rK.s f j3t, u'f/t) r oC, <?'fo> -f p, <A (o) (2.8)

*o

- V0
(2.9)
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Sd^'^Jh' one,0*-n SOlve these equations to determine*,,and g, Similar relations exist between (<*, ,3, > and
Rv^™ALL S2iTlng them 'one can then determine ^ and 3, .By continuing this process one can determine any <v,T an.
forn positive or negative. The calculation can, in'fact be
given a convenient matrix form: '

valid for all ri, positive or negative.

u * Ttis °atrlx formulation of the connection problem can
be made the basis of a full discussion of the oeriodic potential
problem ana its generalization to non-periodic potentials has
proved to be useful. For most purposes, however, the method next
to be describee is preferable.

?-3 "Self-Matching" (cr )Cell Solutions.

*4-», The Problem of connecting cell solutions can be made
S?;J ^imPler bv the use of basic cell solutions, $(£,%)
with the special property of having the same slope-to-magnitude
ratio at the two ends of the cell:

-±l<Lk*l • JlSE^I = o-ter) (3.1)
$ (£jo) f (£ ;<U

To normalize these functions, it will be required that

fee ;«rt * l . (3.2)
In passing from the left end of the cell to the right, the solution
will increase in magnitude by the factor

Ue^/UG.a) , >(6, (33)
Such solutions will here be called self-matching or, for brevitv
cr cell solutions. '

Self-matching solutions derive their name, and their
importance, from the following property: given a single self-
matching solution in the 0™ cell, one can construct from it a
continuous solution of the wave equation through the whole range
of x. If f{x) is a cell solution in the O^h cen c, *("*-«.)
will be a cell solution in the 1st cell, c>."Tc*-2<U
a cell solution in the 2£^ cell, and so on. All these cell
solutions will have the same slope - to - magnitude ratio
at the ends of their respective cells. Therefore, if c, ,cx,,..
are so chosen that the cell solutions have the same magnitudes

-11-
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at their common cell boundaries, they will have there also
the same slopes: they will fit together smoothly to form a con
tinuous solution through the whole range of x. Since each sol
ution changes by a factor A in passing from the left end of the
cell to the right end, the magnitudes can be made continuous by
choosing cn =>*•. for all n, positive or negative (e^. Pig. 3),
Thus one obtains from the given cell solution a solution of
the wave equation for all x:

It -0,-fc f. ±-2,-" , (3.4)
This solution has the same form in every cell; it changes from
cell to cell only by a (possibly complex) multiplying constant %.

It remains to investigate the existence of self-matching
cell solutions. If the cell potential is symmetrical, a <T*solu
tion must (like any other solution in the Qtn cell) be express
ible as a linear combination of the special solutions g and u. ;

f(£;*) . y(6> g(*;*) *. £(£) t^(t";x)

The constants * and {3 must, by Eq. (3.1), be such that

&%'(&) 4 ftu. (v) _ iV^'co + |3 uf(4)
*L%(^ 4 Sufo) OtJ^' ♦ Bu.fi-)

or- /
tipUp

(3.5)

(3.6)

30^ (3.7)

If the energy under consideration is one for which the quantity
on the right is neither zero nor infinite, there will be two
values of a/a which satisfy this condition; for such energies
there will be two independent <rcell solutions. These solutions
will be distinguished, for all S, in the following way.

We define y(£)- fo /^

Then Eq. (3.7) becomes

et "•*

> r(e) -= <-^o /u. 0

y^>
|*M?)

Va.

(3.9)

The upper sign in this equation will apply to the cr solution
$+ l£;*) , the lower sign to -f_ (£jk) . The corresponding values
of o-and A follow from Eq. (3.1), written as

-12-



and Eq. (3.3), written as

Thus one obtains, by use of Eq. (3.2),

(3.11)

+t(e i^ff ?'* l So"^ ^ P "~X^~J' (3.12)

,,, (3.13)
«•'*-

*

It will be noted that as regards form (but not magnitude)
**V and -V. are mirror images about the center of the cell. Also

**• ^- a * ^ (3.1S)

Nature of the Crystal Solutions

From each ©"cell solution one can construct a solution for
all x, as already described:

The character of these solutions, and in particular their bound-
edness or aon-boundedness, depends on the value of p , which may
be anything from— to 4- , depending on the value of E. We shall
here consider the characteristics of the P% as they depena on p ,
reserving for the next section the discussion of the occurrence
of the various values of f .

Case 1. Ta^T. ThenHf*is real, ^fl is real, and the lf>» s are real.
•—- •"—• 1

If 0<p<-l , then >^is real-and greater than /. Then <H>-
increases in magnitude from cell to cell with
increasing n; it oscillates with an amplitude
which increases without limit as *-«. As x-»-«°.

v|/^-» o .On the other hand, A.is real
but less than » • Thus «k. oscillates with
amplitude which increases exponentially as
/_»_«* t but *l~»« as *-»+-*> , The

general solution of the wave equation,

is necessarily unbounded either as *
or as x -# - °o . In either case it is
physically unacceptable.

- 13 -



Xf P> I. )k+is real, and <-l . There Is a change in sign
in'the function from cell to cell, but it remains
true that M^shows an exponential increase in mag
nitude from cell to cell as x-*«* . Similarly
#- increases exponentially in magnitude as .<-»-•*>,
Again there is no physically acceptable solution of
the wave equation.

Case 2. In this case <~& is imaginary; ^/<x is imaginary, and
_ the functions £+. and 4- are complex. Since l-M p
U?j5° an<3- '-*"?"* are complex conjugates, with the same

modulus, it follows that their ratio A*.has
modulus 1: , n

'ft V - i tf
A *. * e , /v - - 6

The solutions 4v and *f- constructed from f.».and f.
therefore change in phase from cell to cell,but
they do not increase in magnitude; both remain
bounded as *--*•*<*>. The general solution of the
wave equation,

is bounded and therefore physically acceptable for
all values of C 4. and C-.

Case 3. If ^o there is only one possible value of */p ,
only one self-matching solution, with a = 1. This
reoeats itself exactly from cell to cell; it is
periodic with period a. > remains bounded, and is
physically acceptable.

There are, of course, other solutions without
the property of changing by a constant factor from
cell* to" cell. One of them can be constructed as
follows. As f>-*o ,i* p.nd 4^-. approach a common
periodic form. Hv-«*-is alwpys a solution of the
equation, and it can be shown to approach zero as
>rp"* « Therefore c

is a solution of the wave equation for y^o;
it is not bounded, and not physically acceptable.

The general solution of the wave equation,
when P~ 0, is ,

+*(!♦+♦*■ C*^ .
It is physically acceptable only if Cjl = 0. • Thus
there is only one independent and physically accept
able solution of the wave equation for p= 0.

srO
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Case 4. Here again there is only one value of **& ,
. and one self-matching solution, with > = -I. .
fP* ±3c] This merely changes sign from cell to cell. It is
L-l—. 1 periodic with period Za„ , bounded, and physically

acceptable *

A second solution of the wave equation is

It is not physically acceptable. For f>~ ±<*>
there is only one independent and physically
acceptable solution, Sv .

To summarize:

All solutions are bounded and physically acceptable for
p<o . No solutions are bounded and physically

acceptable for p>o . Only one solution (to a multiply
ing constant) is bounded and physically acceptable for

§*, Dependence of p on E.
To complete the proof of the band structure of the per

mitted energies in periodic potentials, it is only necessary to
prove that p is positive for some ranges of E, negative for
"others. The following discussion is slightly more detailed
than is required for this purpose, in order to bring out features
of importance in other connections.

mai

ce

An energy E is in a forbidden band if the slope-to-
gnitude ratios of g(x) and u (x) have the same sign at the

wll edge, and in a permitted band if the signs are different.
The behavior of these quantities, T and fc, is easily deduced.

Since - , ,

the curves g(x) and u(x) will be concave to the x-axis when
E >Trtto, and convex when E<vJ . Figure 4 indicates the general
form of the solutions for a cell potential with minimum in the
center, for a sequence of energies; only the part of the solu
tions for o ^<^z is shown. For E <\aJw;,v both curves
are everywhere convex to the axis; 1 and h- are certainly nega
tive. As E is raised the following quantities vanish in the
indicated order: ^ .^.uo ,u*, ^L >%«» u* >"-« » •" .

- 15 -



The curves of^EVnd ft(£> have alternate zeros and infinities,
resembling the tangent function in form. When E becomes
so large that the variation in W is negligible one has approximate-

ly idz) •* C(TTtuUK/F) ,
|t(0 3 -CJT"ca\-(K/£ ). (4.2)

In Fig. 5 are sketched the forms of F(£> *~^ >*£); Fig. 6
shows the corresponding form of ^(E), and the alternating for
bidden and permitted bands of energy.

/ >

The exact succession of zeros of 5» •3° ,Wa> ^ shown
in Fig. 5 does not hold for all forms of cell potential. It
can be shown that for other types of potential one may have re
versals' in the orders of zeros of 5„ and ttj , or of u» a~<& Jo .
That is, one can only say that zeros will always occur in zae
following order: 5a', (_5t» .<*• > ,(u,.?»M ,^o>^)r"
The form of Fig. 6 is, however, unchanged by such reversals; it
applies alsDwhen cell potentials are unsymmetrical.

If the associated zeros of g0 and u0, or gG' and t*o }
happen to coincide exactly, the corresponding forbidden band dis
appears without a trace. The constant potential is a very
special kind of periodic potential for which all forbidden
bands disappear.

§5", Characteristics of the Solutions.

In the permitted regions the solutions undergo only a
phase change from cell to cell. This change is given by

whence it follows easily that

The variation of B with Sis sketched in Fig. 7. Near the band
edges where p~»o one has

"~ _ (5.3)
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f «? ar «. 7 < 0<-£} a^o> j»a=)
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Near the band edges where f - ~°° one has

(5.4)

f.% tlfz-Ez.)

fi

In each band the phase change from cell to cell ranges
from 0 to IT", If we take two cells as the unit, the phase change
from unit to unit is twice as great; it changes from 0 to Ttr
in each band. But a phase change of 2""" leaves the function un
changed. Thus the function undergoes a slow change in phase from
unit to unit at the edge of any band; in the middle of the band,
however, the phase is changing rapidly.

In a forbidden region it is not the phase of the solution
but its magnitude that changes from cell to cell. The change is
exponential, but very slow at the edge of a band. It changes
magnitude at maximum rate near the middle of a band.

We shall now define the quantity

a function of E* It will soon appear that If one takes the
principal value of the many-valued logarithm, then p is the re
duced momentum familiar In the theory'of crystals. In a per
mitted band, where

A+ * e (5.6)

we have

i "fc AY * Z% > (5.?)
a real quantity, as the momentum must be. In a forbidden band,
where ^ls real, p is imaginary, again as Is characteristic of
wave mechanical momentum in a non-classical region. In any case

\± s e**. m (5.8)
Since

± n.^(k)* \ ^fA-na) , m^ k<(n4^. ; (5.9)
one has I . , i ,

4^(k) « e 1 X+. e 4*(*-**))^xsCn-M)*.. (5.io)

- 20 -



The quantity in brackets is continuous, since it Is the product
of continuous factors *** and e^,T± !»*} • Increase of x by a,
together with the .corresponding increase in,n by / , changes Its
first factor by >*', its second by *.%fWify\b*.\ - \? ,
and the last factor not at all; the product is unchanged. It
follows that

U^> * X4 e 4^ <*-*«.) (5ill)
is periodic with period a.

ThUS cl ^^
(5.12)

T3where l*c*/ are periodic with the period of the potential. In
permitted region V* have the form of a periodid function mod
ulated by progressive waves with momenta ±fc> ; in a forbidden
region they have the form of periodic functions modulated with
real exponentlals,increasing or decreasing to the right.
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