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. ON PRONY'S METHOD.OF FITTING EXPONENTIAL
DECAY CURVES AND MULTIPLE-HIT SURVIVAL CURVES

ffony's method of fitting exponentials is described by Whittaker
~and Robinson (3), and by Willers (4). The method is extremely elegant but
suffers ffom two\seridﬁs drawbacks.” First, while having the .appearance of

a leastlsquéres curve fitting, it is not strictly such, and in particular

it provides no means for weight ing tﬁe obsérvations in accordance with their
supposed precision. Second, it provides no criterion for determining the
number of'exponentiais required for the fitting, so thatwoné'must either
suppose this known in advance, or else, perhaps, apply the method repeatedly,
increasing the number of terms until one is satisfied with the result.

Each time this is done the work must start afresh.

It is quite possible, howeverz to elaborate Proﬁy's method
somewhat so as to obtain a valid least squares fit with correct weighting
of the measurements. It is also poésible to Qévelop a sequential process
such that,.say, at the n-th step bne can test ﬁhether ﬁ+1 exponenfials
are required, after which one either proceeds to step ntl, or‘utilizes
the computed results in a'simple fashion to comflete the first step in
the calculation., For obtaining a valid least squares fit it is neéessary
to utilize the results 6f the first step’iﬁ Prony's mgthod as a first
approximation, to be“improved by an aﬁpropriéfe iteration.  We éhall
therefore first describe Prony‘’s-method, whiq@ seems to be not well
known,. Thereafter it will be shown how one can proceed to obtain a

valid 1eésf squares fit, and finally we shall indicate the criterion

for choosing the number of exponentials requiredt



The method  is adapted  to cases where measurements are made at
equally spaced intervals of time. This is: not the usual way in which, for
example, radio-active decay data is presented, but in many instances an
-obvious interpolation in the records will provide.this. Hence, if the
tpebretical'function is

A; exp (=a; t), (1),

i

y(t) =

i

W Ms

and measurements. are made at times

we may set
u; = exp ("a;7); (2)

‘then: the: experimental values Yog, Y19 eeey YN are estimates of the quantities
n .

y(rr) = 2 A", (3)
izl

The method is based upon the fact that the y, must satisfy a difference

equation of order n which may be written in the form

Yp Sa f;'_,y\nilllsnfﬂ tooow yp+n:3 sy t Yoin = 05 (4)

the s, being, apart from sign, the elementary symmetric functions of the u;

If the s, can be determined, then we have an equation of degree n to be solved

for the-ﬁi, and the A, can be obtained thereafter by ordinary least squaresi:



Prony*s method continues now to form the normal -equations

from (4) after the usual pattern, obtaining the set

[Yo Yol s, + [Yo Yal s,y + .vo # [Yo Y] = 0,

[Ys Yol's, + [¥i Ysl- 8,7y + ... + [¥s Y] =0, (5)
S 'y s L] ) 'S . . ' - a

[Yn:l YO]"Sn + [:Yn-‘n Y1] Sﬂ.n-—! ... t [Yn:l Yn] =0,

where
[y, Y1 =¥, Yo £ Y, Youi * oso (6)

It is clear that these equations are formed in accordance with the usual
‘least-squares model, However, the usual assumptions do not hold in this
.case,.since the éoefficients in theée equations are subject to error,
whereas in the ordinary derivation of the normal equations it is supposed
‘that only;the te?ms.free of the ugknownS‘(in'this.case'thevsi)-are'subject
‘to eITOT. Furthérmore9 as: we remarkéd aboﬁe, there is n6 way‘proVided-in
this.method for applying statistical Weighté to the Y's when they differ
“in precisionoﬁ

Since the method purports to yield a least-squares fit to
Qquations (4), it is a{'once suggeéﬁed that we examine tpe correct
method for obtaining this. The cofrect method is to sé determine theiN+l

quantities y, and the n parameters és that the sum of squares

S =sw (Y.—y)? (7)

is minimized subject to the fulfillment of the side conditions (4).-



The multipliers w,. .are the statistical weights associated with the:

measurements Yr."If we introducé. the Lagrange multipliers K; and define

: N . N-n .
s = X w, (Y, -y,)%2-2 2 AP, (8)
r=1 P
where
Pp = yP Sa + yp+l Sh-1 tooot yp+n = 0 (9)

then the minimum is obtained by adjoining to equations (4) the equations
% / ¥y, = 0, ¥ /LB, = 0 (10)

and solving for the unknowns s;. Aijand y,- Unfortunately, the equations
are non-linear and ‘their solution does not appear to be -easy.

We may, however, proceed as follows: 'fresumably the solution
provided by frony's method would give at least a first approximation to
the theoretically correct solution. Consequently, we may accept this as
an approximation and proceed thereafter to improve sequentially the

results.. This is done by expanding in Taylor‘'s series, retaining only

constant and linear terms, and solving [see Deming (2), Czuber (1)]-
‘For this we set

&r =y, t M, Ty T o8, t opy (11)
where the r; are solutions of equations (5), the p; and the 7. are

(presumably small) corrections.” We can calculate

Pyo = Yp'rn t Yp+1 Th-1 toont Yp+.n’ (12)



and by neglecting terms of second order in the Py and nr'Write, in place

_ PPO - (np ‘rn +°"l"+ 7’9¢.n)v + (Yp p‘n i”-"’»+ Yp+.n-lp'l)" (13)

'If these linearized ‘equations are used in place of (9) the problem
‘reduces "to that of solving:a-system of linear equations for the unknowns

m, p and'A, We proceed as follows:

Denote By A the column vector of the 'A\'s, by o the column vector
of the p's in reversed order, by 7 the column vector of the 7's, and by P
the column vector of the Po'so' Let W designate the diagonal matrix of the

w's, Form the matrices

// T, 0 0 e ' 0 \\\

They T, .0 e 0

rn-z They r, oo 0

LA ) c o0 0.00 o e e LI
o® o o e 9 0‘0! L o 50

R== r, r, T, 0o’ oee ’ (14‘)
1 r, r, os o one
0 1 ry o eolo’
Lo N )



and

Y, Y,
.Y' = .0 L - L]
YN-n Yn—‘n+.1 °

Then the-equations to be solved are found to be

W - R = 0
R'n+ Yo = P
Y'A =9 .

Hence the first of these matrix equations gives

m = W11 R\

-and then the second becomes

RRW! B = p - Ypo-
If we set

R' W !R,

)
1

we have
A= C'P-Q!Yp

Hence from the third,

Y 8! Yo = Y Q! P.

(16)

If we solve these equations for p, we are able then to find first A

and then 7 by substituting back into the preceding equations.” It is to



be noted that the matrix Q is a triangular matrix and therefore easy to

‘invert; .the :1last equation in A involves only Kn- the preceding one involves

n’
only AN‘A,:and‘AN_h_l, etc. The equations can therefore be solved
sequentially étarting with the 'last and proceeding toward the first.:

When the éolutioﬁ is complete, if the n‘s and p's turn out to be
fairly iarge'it may_ée necessary to repeat. One substracts thé 7M's thus
found from the Y's, .the p"s. from the r's, Ijenamés the results Y and r,

and proceeds exactly.as'before.

The statistical test for goodness of fit consists in computing

s = (Y-y)' WEY-y), (17)

.where'Y.iS‘the vector of initial measurements and y the finally accepted
adjusted values.: This has a chi-square distribution with N-n degrees of

freedom.-

After the s; are determined one must solve the algebraic

equation:
u® o+ s utl tt s, =, (18)
and the a's are obtained from these n roots u; by

= —r—1
ay T log u;.

In using Prony's method one must replace equations (3) by the normal
equations with'Y in place of y, and solve for the A's by least squares.-
However if the adjusted values y, are'used, and these have been obtained

with sﬁfficient accuracy, then any set of n of the equations (3) will be



suifable, and the normal equations are not necessary unless greater
accuracy'iS‘reqﬁired;

Our modified ffonyvs method is seen to consist of four distinct
steps.: The first is to form the pseudo-normal equations (5) and .solve
for thé s{.  These values aré not, however, the true least squares
estimates we require, so Qe rename them r, and take the second step which
amounts to solving ‘equations (16} for the p's and 7's,. using them to
correct the r's and adjust the Y's according to (11). The third step
.consists in solving the élgebraic equation (18) whose coefficients are
the quéntities s, just found.' The last step consists in solving any set
of n equations (3), or the normal equations obtained from the entire set,
‘for the coefficients A;.- But we have, as yet, no criterion for‘determining
the number n of exponentials required. We return, therefore, to the first
‘step involving the pseudo—nofmal equations.:

" Consider the vectors

[ ) N Y .
. y° i yl : Yi
vo = yl ¥ vl: y: "."’-ﬂvi:vyi,‘,‘l "'." (19)
Y, Y3 Yieo

Y‘y . ny+l y')/+
L) ) 1)
whefe, for the moment, we leave 7 unspecified. If the Y, satisfied a
diffefence equétion of order n, then so would the vectors v, and, in

fact, any ntl of these vectors would be linearly dependent.  However,

if v > n, any smaller number of these vectors would be linearly independent.:

10



We could write, in fact,
] V

v s t v, s, .t ...+t v = 0. (20)

Let us apply Choleski's orthogonalization process to: these .equations.
vThisvproéess consists of first orthogonalizing the vectors

" v;- That is, we replace each vector v, by a linear .combination of the

vectors v, V;, ..., V, orthogonal to .all vectors Vor Vs eoes Vieg ©
Thus we set
Vo = 8¢
= + :
ARt 8y Fio 2o

where p,, is chosen so as to make a, and a, ‘orthogonal. This means

that

Next;, we set

Vo T o2y Y Mgy @y Yy, 8y,
choosing M,y and u,, so that a, is orthogonal to both a, and a,. Hence
C [
8o Vo Hao &0 29>
1 V2 T Hyy By 840

Proceeding sequentially, we finally .set

vn-l - an-—l t. #nu-l,n-—Z an-—2 toeee ot /J'n-1,0 ao

11



where
n—2
teeeeocaceseeoesoeseanooeeoasan
89 Vooy = Haei,0 89 89

. designate the matrices

Vi 5 (Vg Vyy weey Vi), (21)
A, = (ag 8y s «eny 34),s (22)
1 Hio H20 ter #i;\\
0 1 Moy ces Hiq
M, = 0 0 1 Kia (23)

Then
V. = A, M, . (24)

i i i

Now M;, being a triangular matrix, 'is easily inverted, so that. the solution

1

A, = v, gt | (25)

‘is 'easily cobtained.

Equations (20) can be written in the form

12



Q
+

<
"

n-1 n n E 0,

ES
By means of (24) we see that (26) is equivalent to

An—] Mn—! o-n + Vn - 0.
‘But since A, is a matrix of orthogonal vectors, the product

D . =, ,Ar'

n-1 n-1

A

n-vl
is a diagonel matrix., Consequently (57) can be written

D i Mn—:l Un + Atlxal v = 0

and "this gives

o, * DY, AL v, T 0

n-1 n

by an easy inversion of D, ;, and thence

. - F -F ' = -
Un + Mn-—l Dn-l An:l Vo © 0

by the inversion of the triangular matrix Mgy

.13



Note that if we multiply  (29) by M. on the left we have precisely 'the
pseudo-normal equations. (5) written in matrix form. Thus (29) and (5)
are equivalent.

Now define the vectors

Ky, -1
N

The .equations for determining the a's and u's can be written

Vier = 8ien TOAL M v (32)
These give . :
A, v, T OAL AL B

i i+l i 3

since all columns of A, are orthogonal to 8441, OT
Al vy T Dy B
whehce
- -1 ¢ . :
Figr - Dy A, Vi ' . (33)
In particular,

(34)



so’ that equation (31} becomes

o, t ML ok, T 0 (35)

To summarize, we calculate.pﬂ§i_and ai+i‘sequentia11y.by means
of (32).and (33). We adjoin 8;,; to A, to obtain A£+13 we border M,

by #;,; and a unit row-vector to obtain M;, ;" Each vector a;,;

is that component of v, ;that is orthogonal to the space of the
previous‘v“s.:.If the vectors v, satisfied strictly a difference
equétion of order n, then v_  would be a linear combination of the
preceding v's and a, would vanish. We could thus continue the process
‘until we found a vanishing a. Since the components of the v's are
subject to errors of measurement, it is not to be expected that any
vector a will vanish strictly, but we may expect that for some n,

a, will be negligibly small. Having found such an a , there remains

only the simple calculation (35) to obtain o.

There remains only one unsettled point; ‘the choice of
¥. Since all vectors v ﬁust have the same number of components, we
must not cﬁoose ¥ so large that we run out of components as we
inclu@e higher v's. Hence we must set some uppér limit to the-
likely value'of n, and choose v accordingly. If 7y is chosen too
small we waste some of the experimental values at this stage.’

However, these can be pickeéd up again when we improve our solution

by the method of equations (16)

The above method is readily adapted, with minor modifications,

15



to the fitting of general multiple-hit survival curves of the .form
y = e“"-‘k(1+,8ﬂt+52t2 toane Bnt“)e'i{ (36)

As N." M." Smith has pointed out,  curves of this type are to be
expécted from-irradiated organisms if there is a region within which
n hits will be lethal, and also other regions in which a smaller number

will suffice.” Here t stands for dose.:

This function satisfies an n-th order difference equation whose
characteristic equation has all its roots equal.’ Hence the coefficients

s, determined as above must bz such that for some u

R (37)

r
Consequently
n B n -
(L) seer = () 8.0 (38)

The consistency of these equations may provide a rough test of the
hypothesis, but not a rigorous test since, of course, the measuréments

are not correctly weighted.-

Having found u, one obtains a as before and then from (36)

the B's can be found by ordinary least squares.:
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