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SOiE iETHQDS FOR SOLVING MULTI-GROUP PILE EQUATIONS

*» Ijitroduction

The question of determining the critical multiplication constant of

a chain reactor is basic to many engineering and design considerations, The

physical formulation of this problem leads to extremely complex mathematical

equations and has not as yet been completely carried out. An aporoximate, and,

for many purposes, sufficiently accurate formulation of the physical problem Is

contained in the multi-group formalism (cf„ II a below). The solution of

problems in multi-group theory Is still, however, mathematically complex0

It is the purpose of the present report to give In detail several

methods of solving the multi-group equations for the critical multiplication

constant. The neutron flux distributions easily follow. Only "one coordinate"

piles (those of such a shape that the equations are separable to give a set of

ordinary differential equations) are treated herein,. We consider here three

general methods,,

Direct solution of the boundary value problem:

There exist direct analytical methods which use a straightforward

approach to evaluate solutions of the group problem in closed formj a special

case of this technique is the matrix method for solution of the multiregion

problem.

Series expansions:

The flux distribution may be expanded in series of orthogonal functions,

which, when terminated at any given term, yield approximate solutions to the

problem.

CAOTIONk This document containa information affecting the National Defense of
the United States. Its transmission or the disclosure of its contents in
any manner to an unauthorised person is prohibited and may result in
severe criminal penalties under applicable federal lasrs,

7ESTRICTED DATA? This document contains restricted data as defined in the Atomic
* Energy Act of 194-6.



Iteration techniques:

According to the kinetic theory of reactors, any initial flux dis

tribution will, after many neutron generations, approach the equilibrium shape.

The critical multiplication constant is then simply that value which keeps the

neutron level constant. By successive iteration of the group solutions, using

previous values as Bources, the equilibrium distributions and multiplication

may be obtained.,

The various methods are illustrated later in this report* V?e confine

ourselves here to a general evaluation of the teohniques»

The direct methods are undoubtedly the best approach to problems of

comparative mathematical simplicity (one or two groups, or single region problem).

For three or more groups, they become more complicated, and iteration techniques

are advised. For two groups and more than two regions„ the matrix forms are

recommended in preference to other analytical techniques.

The series expansion method has the disadvantage of requiring many terras

to give good flux distribution, resulting in complicated formulae In which

computational errors may easily creep in„ However, the use of a 6ingle term in

the series gives a good first approximation of the critical multiplication, when

a reasonable estimate eannot be made a priori <>

The iteration method is, in general, the only way to handle problems in

which properties are not constant within each region. In particular, the use of

numerical methods furnish the most feasible approach to problems involving a

large number of groups or complicated perturbationsj the numerical operations

reduce to a simple routine in which errors are unlikely to appear0



II'a, formation QF ths pboblem

The differentia.! equations of ad . oup theoarg a»

(i) V* (Dn^^) _ i^+m* ' * ki*±

where the subscript n denotes the group ind la

(thus n- 1 represents the fastest group anda-H eats the th< I

slowest) group) and where

Dn *» diffusion coefficient

£_ ** neutron flux
* n

f* = fraction of fission neutrons having energies lying In the nth
n

a m macroscopic absorption cross, section

» flowing down ero?s section

kjj =» multiplication constant for neutrons absorbed in the n'th grcu£,.

In general^ each of these will be functions of posil I

(2) a*0~ <*-H * 0

since neut neither slow down into group 1 nor slow down from group 1/..

P Is required to be finite and positive everywhere and to vanish on the
n

trapoiated outer boundaries. The critical mass problem may be considered jjd

eigenvalue problem with eigenvalue parameter A. That is, finite solution* of

Eq„ (1) with prescribed functions Dfl? fn, a ,oCft, kn, and the above bourslsry '

•onditions will exist for certain discrete values of A , The solution corres]

ing to the minimum value of A,^^^ *•* the only one which is everywhere
positive. The pile is^under critical, critical, or over critical, respectiv.

^ > 1 -- i or 1, Under certain conditions the differ
min ' ain "' xain



equations are separable and equations in one coordinate result.. Such a set of one

coordinate equations can be handled whereas the set of partial differential

equations (1) is in general quite unmanageable-

A> Cartesian Coordinates

Conditions: Dni am otn, kni, and fn are functions of z only

$n= ?M&) &{x,y)
then equation 1 becomes

(3) G£ D« dS fa+^»(T% T^ ' (Ct• +**} QV **-2G *»-la * c9 y

(4)

1=1

or

TX li^izr- (tf«+s>f»+a^if-i+ Afn2_
i»l

Since the left side contains the independent variable z and not x or y whereas

the right side does not contain z each sirie must equal a constant which is

written as t B , B* will then be taken as the lowest value for which Eq. (5)

has a solution satisfying the boundary conditions,

(5) " **& + -4% -r B2 G=0
ear ^V



Eq o {l) becomes

d^,

*Qea

1*1

Bt Cylindrical Coordinates

Conditions: DB, afl?cxq, kn and fn are functions of P only

Kq, (1) becomes

d^ D»-djj +Dn fl ^' ^n +̂ ^n^^n-l^n-l(7)
f

or

(8)
Dn^n

Ag fn Y. kifi *i =°
ie-1

N

df
_./ n

f df "bT d^lJ"Dnf^'(V an> fn **n-l fM+ >Tn ^_ Wft

" j 2
« dz

1*1

where the buckling B Is determined by the lowest eigenvalue of

(9)

(10)

3-£ -r B2G = 0
dx*

Eq, (8) becomes

d n .df

1*1
•>a+*n^V/» df nfdf



Co Spherical Coordinates

Conditions: Dn, an,otn, 1^ and fn are functions of r only

Eq0 (1) becomes
B

(11) 4- -fl. (Dn r2 i^5) - i+n+^rn +̂ irn.!* >fn Y ^±Hm °r2 dr dr ^

These one coordinate equations can be solved in general by the numberical

integration and iteration method treated in Section II Do Other methods are

applicable if the pile may be divided into regions within each of which Dn, an,

<P-S f_ and kjj are constants.

At any Interface the £ must be continuous so that Vfn i» everywhere

finite, (as required by Eg„ (!)„

Similarly, the normal component of Dn 7 $>n is continuous at any

d? d^n d finterface. Thus in the one coordinate problems f*n, Dn —£» Dn «-—» Dn —-^
dr «" da

are all continuous«,

For simplicity in treating these equations, It will henceforth be

assumed thatj

f » 1 tn* 0for n^ 1

in = 0 for n76 N

These assumptions are not necessary to the methods and the necessary extension

of the work below for a more general case will usually be clear.

If v« let (Tn = c*-n -f an in each region, the equations (6„ 10 and 11)

may be written
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f1 df i d/= Dx ' y1 Dx * « •

(12) / or

>Gl . »2\^Vi-(t}+^i*^ "h^n^0

•Ji^Tf" df f df
3a ti{+B?'V£tlf»i =oNl

(13)

V rn D '/nT D„ / n-1

for the fastest

group

for n^ 1

where the exponent M has the values 0, 1 and 2 for the one coordinate Cartesian,

cylindrical and spherical cases respectively.

II B0 Solutions in closed form

This treatment will be restricted to one coordinate symmetrical piles

consisting of a core and one or more reflector regions. Further, it will be

assumed that k is zero in the reflectors. The general solution of the system of

coupled differential equations (eq. 12 and 13, Sect. II A) is derived first then

the appropriate boundary conditions at each interface are applied. This yields

a set of linear equations by means of which the unknown coefficients are eliminated^,

resulting in a transcendental equation which may be solved by an iterative

procedure to obtain ,A o



-9- •ami
.

The equations in the core are
'

X) V2V^ 8V£*«rlV0 for n ss 1

2) V (f - C-?^3 +B2) f -r -2bs1 ^ = 0
' a wn n Dn ; n»l

f or n % 1

Let us assume that V (f s »n f in order to find the solutions of

eq. 1 and 2„ Substituting there results

•

3) V^S^Vi-T^/V for n= 1

A " n

for n^pl

. The $">s may easily be eliminated from this system of equations by equating the

product of the N right hand sides with that of the N left hand sides and dividing

both sides by the product of the N^"s, resulting in an Nth degree algebraic

equation in vr<,

5) jf ^+s*+A-^ f p
a=l n n»l n : i

jtLj, provide the general solution

of eq. (1 and 2) •

6) •:ft. "h 'Jfl f>**2 'Vfef) + h*fap)
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where the function F is the solution ofyF+j^ F = 0 which is regular at

the origin.

The coupling coefficients S are determined by substitution in Eq. (2)
mn

which gives

i=m
or

•) *™ = I ^amn i~2 °* (l^ +p-fB2)

In most pile calculations eq. 5 will have one positive root which will

be designated as uT and the other roots will be negative or complex..

If all roots are negative except u-, u is pure imaginary for n# 1
2 2

let iJ =2 -p. for n% 1 so that
n / n ^

9) F^x)^ F(i Vnx)=-G(^nx)j n^l
where G( iJ x) is the regular solution of

2 2
io) y G- l/ G as 0

2 n— o
In the reflectors, remembering that kjj = 0 and writing J{ — —- +B«

a Dn

2 2

11) V ?r ^l f l = ° forn-1

12) vVn^nfn^^!^ forn%l

*for Cartesian coordinates, the assumption of symmetry indicates that only phase
solutions for which F(z) =. F(=z) need be considered,.



«=21«»

Sine equation (11) contains only <f, its general solution jan be

written immediately as a linear combination of the functions Q(H± x) md H^ x)

which are the regular and Irregular solutions, respectively, of eq, (11). The

solutions for n * 1 will contain G< .^ x) and H(^u x) plus multiples of the

homogeneous solutions for the faster groups,

C(jx * Ij d{tf1 x) t Zx B( tfj x)

13) Jf2 Î2 G(^2 *> *Z2 H( *2 x> *C2 1[Tl 0(*1 x) fZl B(^l X)7

I tm =*m «<*• *> +Zm H^m *> +c«,-l K~l G^l *>^Z-l Hf*m **+ ~V fl
The coupling coefficients C^ are obtained by substituting the values

of the <f in Eq, (12) and equating the coefficients of each function
J n

U G(^n x) +Zn M(tf nx)J ' ThUS obtalning

!*• ~
Jliri —, \-y- where a > n

i= n+1
*t'

''^ « " ^ w

In the outermost reflector, if T is the distance from the center of the

core to the outer extrapolated boundary, thea a boundary condition is f^)~ 0

which can be satisfied only if

15) IB00fnT>+ZB'-tfnT)~ 3 for all n:

m>e *)
lf>) I = = 2- -«--» —---•1} ° " K^nT)

For Cartesian coordinates, «osb ^ xand sinh ^ x, respectively.
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Since the solution f can only be determined within a factor (depending

upon the power level of the pile), it is convenient to set X^ equal to unitya

Then by using the boundary conditions (that is the continuity of <fn and Dn *jr~

at each interface R,, R2 etc. as discussed in Section II A) (M-l)N linear

equations are obtained where M is the number of regions. By eliminating the

Rll-l)! -lj unknown constants of the type Xn, In and Zn acritical transcendental
equation Involving functions of u results. It is possible to solve this by an

iterative process by dividing the equation into a part relatively insensitive to

changes in A and a part quite sensitive to changes in A0 u^ is commonly the

sensitive function. The critical equation may be expressed as —vtu- Ri—

equal to a function of the remaining variables where F» is the derivative of F,
,M, *fc JUL

An assumed value of iij Is used to obtain A from eq. (5) and by evaluating all

the functions in the critical equation except Fta B.^ and ^ F'ta Rj) anew

value of u^ may be obtained,, A new value of A is obtained by substitution in

Eq. (5) and the process is repeated until the successive values of A converge0

Trial and error, with interpolation, may also be used, of course.

The method Is given in detail for a three group, two region example.

The boundary conditions at the interface R are

It is also possible, and may be convenient if no information is available as
to a good choice of Un, to select a trial value of A and solve Eq. (5) for
the starting value of jo..

** It is necessary to find the other roots of Eq. (-5) consistent with the assumed
el. and corresponding A o
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FCtt1R)+J2;fV2£l)+7 '

22

,s3iflr'^

where

! I I

re;

*%T)
F ^H(^R) ~

This system of linear *•
R,'

determinants, If g* ** ""——' and
G(

i

j )

'. ],

by the me



then tie followi

is;

c

c

»21

TjB t •" LS » s.

p; and pr; t*

The coupling c<*f:.:i- i » I are

-14-



^tV*"^**)
2L S22

21) s31~
*! °~2

=15-

or

^2 t,2n"*</** ^t*)
A

S32 =

_2L2.

S23- ^x

D2^+D?fB2)

£12.
"ftJ&.iS^^*

S33 = _

°i>M+¥z^&%^
and the functionals gj and g2, where

«i *

yiQ^(>/tR)
g( y tR)

The coupling coefficients and the functionals for the reflector (these do not

change with each iteration) are next calculated0

C21 ~ 5' 2-1-.
2 </;. #j)

22)

31 - ,2 .,2,^.2D2D3 Of2 -tfj)(tf3 -^x)

**!' ^2 ant* ^3 are K^vca by

c -£iG32- —"
1_

2 u»2\d3 (^J-^a)
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23) Pi

H(X4T)

„ R IPS (a tt\
These are substituted in Eqe (18). and the value of H\ , ^~X^—L is obtained

FTjTfR)

From this u. R is found and this new value is used to repeat the process.

For the on© coordinate eases the functions are given explicitly in

Table I. A specific numerical example is presented in Section III B.

ft

H

H°

Table I

Cartesian Pylindrical Spherical

cos (Z) *.(*) MlfOX ={S. ^Z)

- sin (Z) - JX(Z) .*±Z +T1= -^3A(2)

cosh (Z) I0{Z) elnh (Z)
Z

sinh (Z) Il(Z)

sinh (Z) KC(Z)

cosh (Z) Kt(Z)

SMLiZl , cosh, Z

«oghJZl
Z

P,#Z + sinhji
„2
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1£ C» Series Expansion Method*

This method is applicable to multlgroup piles divided into regions

within each of which Dn„ CTn and kN vanishes outside the core or central region.

Since in the core ea«ih flux equation is inhomogeneous, the solutions

are expressible as a particular solution plus an arbitrary constant times the

homogeneous solution. T0 adequately represent the unknown slow neutron flux,

which is a source for the fast neutron flux, an appropriate series expansion of

orthogonal functions is usedc In the non^central regions the analytic solutions

of Section II B are used. By applying the boundary conditions at each interface

the arbitrary constants are eliminated and a new expression for /* \s obtained

in terms of the same orthogonal functions X is obtained by means of a secular

determinant which compares the coefficients of the assumed fH and the new f-
derived from it0

By setting A equal to unity the equations for the fluxes in the

arei

1) M^AM^tB^io-^^o

cri» v-zv^-V.+^r^-o ,„.*i

the homogeneous solutions are obtained for

3> Vya.{^^2
n *•

or

fn -*<*«*>

2
0"i

core

This technique is similar to that proposed by Ehrlich, Hurwltz and Stehn (GE-RE-1)
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err.
where «/ » -r5 -r B ,

n Dn

and G is the same symmetrical function as used in Section II Bt

The f will be represented by an appropriate series
a

4)

N to

where F is the symmetrical solution of

5) T72 2

and the 9* are determined in such a manner that

6) 1 F(eAx) vte±x) dr * ct <fti
"0

R^ is the position of the first interface

7) dt » X11 dx

and If Is 0, 1 or 2 when the case considered is Cartesian9 cylindrical or spherical

respectively.

It can be shown that the orthogonality conditions of eqc (6) are

satisfied if the Q^s are chosen in such a manner that

8)

Thus 8oR1P OjR^

3F£8iX)
ax

« o

X=R,

<:=»rjM c*Cfa< •— 0 R„ are the first m successive roots of Fc
m X
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For convenience a general term in e«v U) is used to represent <T
N<

Thus

9) *fu «aiF(01X),

By aubstituting eq. (9) into eqc (1) and adding the homogeneous solution, the

solution for f is obtained.

10)

Thus

fx = xx 0(-2X) +*± f(9ix) _iL
Dl^l ^9i)

In a similar manner the solutions for the other f °s are Determined,

4?<W
/. .* i Z. » Z Z
(e^1 +e1)(^2 +0i)

12) ^ =X3G(-3X) ?lHk{t0f) + _°"l ^l^l**
2 2 2 2W 2 2sD3(*/3 - ~2) ^(^2 ' ^(^ ° "' P

+ «JKififL!iIi!jJ^
DlW1* ei> <^2*9i) «^3 + 6i)

etcetera.

The solutions in the non~central regions are the same as those used

in Section II B (eg. 13) them

13) fx * l^G^X) -h IJfatf)
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U) ?n »!£(*£) +ZjK*^) +CmsR=1 [viOOT^X) r- VlH^n=lX>J +
in the outermost region as before IaG(^nX) -r Z^^X) Is replaced by

Hix.il T
Zn "^" ^ujT a(*

»C9«=>|0(Q>ii»*3en .=

At each interface, for each group, from the boundary conditions requiring

the continuity of fu and Dn ^ two equations are obtainedo If H Is the number of

regions there will be 2K(Mhl) simultaneous equations from which the 2K(H <= 1)

unknown tonstants (x,y,z) can be eliminated and a solution obtained far f^
Ml

which will be designated <?„ » It is to be noted that the unknowns (x&xflja)
* Hi

will depend upon the particular aj and Cs* usedo

This solution for f will be in terms of the functions Q(^jO and

the particular F(61X)S> Since 0,{cu^L)^ f{ /Zl ^/^X) as seen from eqe (395)fi

G(<*/nX) can be expanded In terms of F(9j|X) or

15) GC^nX) ~Sn }^ b^ FCSiX)
i-0

then the solutions for f^. and ^^ are

16) ?*H =a, jf A,j FCOjX)
j=0

at |2

1*0 J«0

since A> was set equal to unity originally
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18) t*m'i
eaeh side of eq, (18) is multiplied by Gk F(8j(X) and integrated over the *ore

where Ck Is the normalizing factor of eq; (6)0

R]_ Rj

19) -*- j Ck F(6kX) fjjdT = j CkF(8kX)fJdT

20)

Rl *© Ri

"jM CkF(8kI) Z. aiF(%x)dt^^ ^FCSiX)^ J>" ajL Aij F(8jX)dT
^ * is* O i«o j=0

21) J-*k= 2L *lAik
iKe

This results in an infinite set of linear homogeneous equations in the unknowns a*

There exists a non^trivial solution only when the determinant of the coefficients

vanishes. Thus there is a secular determinant that determines A* Since in any

practical case the non-diagonal coefficients A^ k are significantly smaller than

the diagonal coefficient A., (where I C k) and the diagonal coefficient*

Aii"—*0 as i—jroo, the approximations t* A determined by finite determinants

converge to the true \ as the degree of the determinant increases .-

As an example the three group, two region case is set up„

Let

1 Dj(core) *• x GUfiT) 2
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Fj - F(OjR) j Gt -'-- G( ^R) ,

G" — '

7u
cX- =•

f*- J5Jil
V"2 ^ <9

en

2*

2 '»

D2. 2 l1
1

**-*
•""

C7-~ :

*»- 2
Ojf*^ + ©i)

GfH. -

-J)*" 3

Then the boundary conditions at the interface take the form

22)

XlCl^ai^liFi= Zl*l

Vi + o-^iVi

*2a2 * °VlGl + Bi ?2 1* i - S2?2 *" ^1P1ZJ

^ +Vi^+0*^[Va* Zl*lPlJ

I3G3 -r-*2x2G2 + a3x3G3 + al?:3iFi = Z3P3 * ^2Z2?2 ' ^?zl}i

X3G3 -r-<*2X2G2 +* 3X3C3 +° ^ Va* ^2Z2P2 +>Wl /



Since from eq< (8)
aFie^)

ax
22 0

X = R

By solving tbase eq^tions in pairs for T± and 2± the solutions are obtains* in

ter^s of the variables a^ ¥±s *f 1±(l >[ n and ^ ?1= ?**»»

Xl Cll 7 11 ai Zl=Kll7liRiFi

23) Xg- £2272l'fC21 7liWFi $ 22= CE22f2i+ii2l'?lI^aIFi

where the C and E coefficients are given by

'11

C22 ~

'33

G21

*lfl

AGi?i +g1pj

££l
*&?2 + G2P2

atn—a»cw.1J ti

^3G3P3 + G3P3

GilIl~ —-rj—v ,
^ ^1G1PX + F1P1

s22~
- ^2C2P2 + Va

E33i - X

^363*3 + O3P3

4F2(cCiGi°ii: ^i?iBii> ^WAi" ^-a?.
0

* ~2G2P2 + °2P2



E21
- ^2G2P2 +G2?2

C32

GjC^lGlCu - ^rjBn) + 62(^2 *Vi*Il "^l0!0^

- ^3P3CCL2G2C22 - ^2^ + ^^22 ' «1&22>
*&$ + G3P3

e32 »S3(0L2G2C22 - Ja^aa* f M^^fe* °^a&aa)
8 I

^3^3 + G3?3

" -W3 + G3P3

E r G3^2G2G2l'a3GlGir^2P2^
31

a 3 »- -X^GjP-i + G3P3

Thus from eq. (22, 23) the solution for ** is
3i

2*) 9^- CC33 731^C32721tC31^li)aiF(eiR) GC^)+^2^G22 72i+C21?ll>Qi

F(0iR)G(*2X) + ^3(Cnf li)aiF(0iR)G(^1X)+ ^3iaiF(0iX)

substituting the expansion of eq. (15) into eq, (24) there results
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Oft-' I V3i+G- *ai+C31?li}¥ |Q ^/^xHff2(C22^i^G21?li5

2< 2 . D2f (©^)+ *3(°11 ?li)sl( Z blJF<ejx> > aiF(9iR)* 73iaiF(9iX)
J: 0 j=0 J

26) A1J«[{C33731-r C32y2i+ G317u)hhJ *^2S2b2j(G22f2i* G2lf1±>

'3 ^ll7ll)J F*9iB>+ ^i^lj
Tha sscular determinant is in the form

Aco c"J" A10 A20 A30

v An^"i" A2i A31 ~ °= L -0
^ in A22 - 4~ A32

A23 A33 ' "J" ~**"~ /
. .... .1. - m • • I. ^ II. ^ M M M M C..9a»...l9BS

iiw.ii.c! . awift»o....e;i...oe..«.»...=i=«-"'"ta

Th t* var.' <s approximations to -£= are

»

*o© ' '1 + Y(Aqq fin)2 ° A(AqqAn ".AqjAjq^
2

;tera
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Constants for the expansion in eq0 (15) and the equation for determining

©i for the three one coordinate geometries are given in Table II- The other

functions are obtained from Table I (Section II B)«

TABLE II

&m -

\

sni

c?7
*!

Cartes: an

24/
*Mh^nR)

(~1):
,2 ^.fl2

alii (ejR)=0

Cylindrical ^j^sris§i-

|^nIl(^nR)
2 uj

ft

R fa^JC ^/2V «T'

2

k n «J)/J0(V>/ t"5+«t>/^*l/2<»«»

IW 0 /S J3/a<»i»>=
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II Da Neutron Flux Iterations*

This method is applicable in the one coordinate cases even when d, <T~

and k are functions of the one coordinate P 0 In principle a neutron flux

distribution for a particular group (usually the thermal group) Is arbitrarily

assumedo This distribution is used as a source to generate the flux distribution

of the next less energetic group (the slowest group distribution Is,, of course,

used to generate the fastest group distribution). This new distribution is then

regarded as a source which similarly generates the flux distribution of the

next lower group. By repeating this process of using each new distribution as

a source for the next lower group the successive approximations of the flux

distribution for any particular group will approach the same formo In the limit,

each successive approximation to a particular distribution differs only by a

constant multiplicative factor which is simply relatec" to the effective multiplica-

tlon constant,,

If D, o~ and Jc, are functions of P Sl we must write eq0 (12 and 13)

Section II A in a more general form thusly;

d *p

X) pB i^" {f^ ~ip - <°-i^DiBVi-'- Aka *!. *h =0

id dlf
2) 7m T~(f\ ~~T) - (0"nf CB2) f + a* f• s= o for n^1P dp ' n dp n n n n^l a»l

So as to write each of these second order equations as two first order

equations we let

II df

dp

* Cf. Hon P~360,
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then eq0 (1 and 2) become

AT

U) ^==/>"(crn^Dafi2)^-/>M^l^l • f«»^l

5) dli a, _ . _ 2. „ ^Hdp = r^i+wrf ^^fi*

The Iteration may in simple cases be performed by the use of analytic

functions and analytic solutions of the differential equations,. For complicated

situations (more than 2 regions or three groups) it is more convenient to do the

problem numerically.

For this numerical approximation method eqc (3, U, 5) are replaced by

appropriate difference equations. Thus utilizing the definition of a derivative

6) (i£\ - fc llffln nr+to - ?<f-**)

a small lattice spacing h will be used so that

•

fipi- frO ~ fif- fr*)

h

this is approximate since h is finite.. Thus eq* (3, 4., 5) become

7> wf-

fa(P r* frO -fn(f -frO __ ip(f)

h A(f)
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9) hSfJJ±zJ^£l i P^Ccr-fD/)^ / n~l
17'a-lj for n^l

P-ftfri

10) Mf^L5)^euff«(cx-i+D/)fx. pVs f,
f-frfrl

By rewriting there are obtains the difference equations to be solved*,

* f»<p+*o =fa(f -* *̂ , ^ *SH^-

12) Vf t «= Ia(P)th^(cra-r d/)^
ff-f * fri

13) I^f +- h) -Ix( P) +h[fM( ct-1+Dib2) fx-f* }, kg o-j, f
H

= P "f*f

Equations (12 and 13) are Inhomogeneous in form because of the presence

of the tera in fn^«- Therefore, the complete solution is expressible as any

particular solution I_* plus an undetermined constant <X times the homogeneous

solution I» Likewise there will be a particular and a homogeneous solution of
n
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Thus

U) <<f^«*<(/')T-hyi(cri+DBB2)^-/'"cril^1

15) 4f*») - *5< f) *»//>Vn tV2>f n]
1 Jf*f-ri*

16) fB</>f-frO = fj[</>-frO+-
WP(f)

A

H H hIn{P317) «"(/> f- frO = 7B< P - frO t -TT

is) %= ij y- * ij

19) rn =rl+*r

for n+1

y°=yoffri

The constant (X is determined in each iteration by the boundary

cohdition that fJ$) = 0 at the edge of the pile (T) and from eq* (19) o Thus

20) oC = --
rfe>
rH(T)
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Analogous to Eq. (1A) for the fast group the following equation is used:

2i) x\\f> +. h) =ipcf) +h(p\o^ f-v/) r{- /^o-,^ 7
Jf-f-ffr,

where A is set equal to unity so that the ratio of any cf^ to the next iterated

value of f will approach /[ in the limit that these two functions for a given

fn become identical in fora0

To solve the difference equations values for f' are assumed; the

process converges faster the more accurate the assumed form of f^ is. From

eq. 3 and the symmetry of the pile F (0) and I (0) are always equal to sere.

Next values for f ?(0 f frO and f ,(0 f- frO are arbitrarily assumedo If hwas
chosen so that TA Is an integer than if and IT can be evaluated at f - sh

«5JL<=

?(where s= 0, 1, 2, 3, — -f TA) by eq0 (15, 21) and in between f x and

cf x can be evaluated at f> m (a + £)h from eq0 (16, 17)0 To deteraine /B(T) a

quadratic interpolation can be used, that is assuming that

22) ^ =»x2f tef •
and let x m0 when f> » T - frx then

23) fB(T - frO - *

24) ^B(T - 3/2a) a* ah2 «, bh + •

25) ^B(T t|h)^ah2fMif-e

by solving eq. (22, 23, 2A, 25) for f> (T) there results
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26) fj$) M.375 fn(T +fri) r- .75 ^n(T -frO -*125 ^B(T -3/2h)

•H,upon solving for /"(T) and /UT) a value for x is obtained which

yields by eq. (19, 20) f the new flux dIstribution<> These values for ^ ,

are used as a source function in an entirely analogeous manner to obtain ♦ _}

however, eq. (14) is used instead of eq. (21) to obtain I^o
i

By repeating this process we eventually have a solution for fn and

the first approximation to A will be

27)

kjj^^dr

where the volume element dt is given by

28) dt ^M=1 df
H _H

When the process Is repeated, the values of f and I" are used un

changed* To make the calculations less cumbersome it is useful to set the new

°P/ \ f*S& "r-^h)
value of (f (0 ~t frO « •• " ' *' since this tends to make the correction

7 » A
term & vaniahc Successive approximations of A are obtained by eqc (27) except

o

that successive iterated values of f are substituted for f> and <?„ respectively

MODIFICATIONS FOR PILE REGIONS

To apply this method to a pile divided into regions within each of

which Djjj, kjj and 3"$ are constants it is advisable to use different lattice

spacing values so that the width of each region is an integral number times the
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h used in that region. The modification comes in crossing an interface

between two regions. The boundary conditions require that In and fn be

continuous in crossing an interface> Thus if R^ is the coordinate of the

interface separating regions 1 and 2 which have the lattice spaoings h^ and b.2

respectively, the value of IB(R2) Is determined by the difference equations

in region 2 and ^n(R2) Is determined by the Interpolation eq„ (26) as applied

to region 2« Row f J$o "^ ^3' HUS^ ^° s0 cftGSen tha* wnen ^n^2^ i8 °^^ne^
by backwards Interpolation in region 3 it will have the same value as ^n(R2)

obtained from region 2» Thus

29) fl^2) m,375 <fF(R2 ~fr^) + .75f B(R2 +fr*,) -.125 fn(R2 -r- 3/2h3)

30) f»V^^>2^)tA^ j^^) ***

3D <f B(R2*3/^)= ?B(R2t^)+Bifo+h,) ;B=̂ f)^ *»*^

_P . » Cr /rPfe+̂ B1)
32) x^* »)* ijcyv c f p(R2f fro . e f^fa* fr^) *f-^i^

where the coefficients A, B, C and E are obtained from eq* (16, 14, 21)0 Upon

solving for fF(R2 *fr^) there results

33) rV +*,> ^'^^^ fJW **•«»"^ • -125 BEy^^**N>
n 2 •* 1 - o!25 B C

Similarly the result for fjd^ tfr^) i*
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mgi n f\i\) + I?CR2) /,375A f- ol25B 7
1 - ,125 B C

since E •= 0 in the homogeneous case.,

upon repeated iterations as in the general case A is approximated

fa dr35) A i J£i
fa" dT

where it is assumed for simplicity that kg ^p 0 only in one region and where

mation to A Is

a?'*- and if are auecessive iterations of any f , A slightly better approxi-

36)
('•I

2

dr

^+1 •* ^
?n *n dT

but as the forma of the same fB become identical eq* (35) is an adequate

approximationo In carrying out the integrations In eq0 (27, 35o 36) any form

of numerical integration may be used. Although Simpson's Rule is superior to

the Trapezoidal Rule the latter is adequate when the iterations of any <f
a

closely approach a common form..
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III A0 Specific Example

In this section a specific example of a three group, two region

cylindrical pile is computed using each of the three methods described in

Section II*

The constants of the pile are:

For the core Rj^ 14.51 cm B2 ar O00l6098*

Dx= 1.793 0~x * .038198

Dp ~~ e>8866 Cr% mm ,049977

D3 mm O2840 O- mn O078583

For the reflector R, —14.51 cm Rg —460O4 cm

\ — .945 CI - o025933

D2 *• °5303 CTg = «. 0091811

»3 m* .5367 (7J = „0012406

B*
e

,0018881

"The B are most commonly obtained from Eq0 (9) of Section III A

by considering the function G to be a symmetric function Z which vanishes at a

point H f- L above the center line. H is the half height of the cylinder, and

L the "extrapolation" length of the medium. Hence,

2-B

Core and reflector may have different values for L, and, hence, different

L can be obtained as an average over energy (CF-Mon P-284), or, in case

the Z direction is also reflected, from previous calculations of reflector savings.
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111 Bo

In the analytic method It is best to determine the functions in the

reflector first since these do not change ith each iteration

en•y? « -il + B2 2= ,029330
* 1 Dx

\i>2 (J~o 2
<K~ = -JS + B* = ,019201

-: Do

X- 2= JDl ^ 82 - ,0041997

C21
2= £l 1

D2 7^-«kJ)

C71 - —*—

= = A,8279

D2D3 (^2^1)(<^3 ^1}

- °1C32 - -%-*,—j- - 1.1404

>e m a7i26
* i

^ * .13857

<)f * ,,064805

•= 3.2865

D3 W3-O

According to Table I (Section II B) G, G«, B, H» are replaced by the

functions I0» Ii» *o and - X3 respectively

^lRi ^2R1

Argument 2.4850 2,.0107 .94032

I~ 302523 2,2967 1,2336

2.4827 lo6066 -,52407

.063466 ,11241 ,45885

Lo

II

0

,075283 13791 ,66717

^T <^2T >t' ^

7,8848 6a3798 2.9836

333,90 95d78 4.8

,00016552 .00082606 „C
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A<- A xx' I0(^!T) * * r-i'j
- .20315

Pl ~ rfVll . K°CK1T) ^A'

P2 = = <,17005

p = «, O096682
3

-

Dn(reflector)
J? m ~r r - ,527051 D^core)

^2 * «59813 ^ - 1.8898

In the determinant ths following are used?

Afi' * -10707 ^Vi - ,58864 ^3C31P1 * - 1o2617

^2Pa =- .lorn £f%?;> =• o36648 ^3P3- - ,18271

In the core it is necessary to assume a trial value for

Let tt, - o08

then A'k~ mhhJtl (a2 +B2 +~i)(u2 +B2-r £s)(p2 +B2t- 2?)» 1061698
J cncn;cri ^ Di ° D2 'a D3

u^ and iu are obtained from eq, 20 Section II B

thus

(u2 -+• B2)2 +• fu2 +• B2) (-^A t -J +»J + u2 f B2) + —!LJ2l22 .J „ - 0

2 2or ^a2 * - <-26785? uT « « .097750

*2 =^A *'51754 ^ =/7j^ = ,31265



*38=

s2; = £i
D29i2^^-fB2)

* .66920

I>2

S22 = fl ,20528

S23 *
*1

D^iS^B2) 1*0833

<5L2Ls 31

D2D3ynl^^+B2H/1i+^^B2)

S32 =

S33 3

*! °^

w&%+*><&+%+&

°1 *5
a . <To . „?v, o cm

taad

D3D2D3%*^B2)H*1?*-B2)

at o41363

- - 3o4538

1,0558

The functions g-j and g2 are next calculated.

lJ T ( i/ R )
In this case sl. - -1 <>v VV*I y^)



.51754

.31265

J&

7.5095

4,53655

^39=

I U-R)
o x

e * .148218

18<.0531

I^R)

« .137964

15.9120

.48174

.27557

Substituting these values in the determinants of eq. 18.

,66920 - .20528

.41363 ~ 3.4538

0 .48174

0 - .098892

0 - 1.6638

0

0

0

1

,66920

.41363

1

.20528

3 4538

*48174

,098892

1.6638

1

1=0833

1.0558

.27557

.29852

o29095

1

1.0833

1.0558

.27557

.29852

.29095

tfrtW = U-5K,071519) _
JotoRl) 1.6339 ~ °63513

1

- 4,8279

3.2865

- .10707

,58664

- 1.3617

0

1

1.1404

0

.10171

c36646

0

0

1

0

0

- ,18271

10 0

4«8279 1 0

3.2865 = 1.1404 1

= .10707 0 0

.58664 - .10171 0

1.2617 o36648 - „18271

From which ^ ar .071917, this is used as the next trial value of^ and the

process repeated as shown in the following table0



Jriaj gfti

Ak3

//o

"3

«2

*3

s
21

*22

S23

s31

'32

33
s

Next u^

.08

1.61698

o51754

o31265

.48174

.27557

o66920

= .20528

>lo0833

,41363

•3*4538

•1.0558

o63513

.071917

.071917

1*51314

.51825

o30949

o48244

.27237

068221

• ,,20457

=.1,1396

.42350

-3,7000

=1.0988

,66547

,073354

=40=

00073354

1.53058

o51812

.31004

.48232

,27293

o67996

- O20470

»lc,1295

,42179

•3-6535

=1.0910

c66012

.073105

.073105

lo52747

.51816

o30992

,48236

.27280

.68036

- Q20466

-1„1317

.42210

-3.6677

-1.0927

o66L45

O073l67

0073167 .073152

1„52823 1.52807

i51815

,30994

o48235

027282

o68026

= ,20467

*lol312

o42203

=3.6641

=lo0924

.661H

.073152
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III C0 Series Expansion Method.

This calculation is more tractable when broken up into the determination

of the functions and constants associated with:

1) The reflector region

2) The homogeneous core solution

3) The combinations of 1 and 2

4) The expansion of the particular core solution

5) The final solution of Affs and Ak

V 22 -J. +BZ = .029330 tf_ mm .17126
1 Dl *•

)Z2=Sl+ B2 2= .019201 XL = .J3857
fc« V —

#2 - £1+b2 * .0041997 tf - .064805
3 D3 3

According to Table I (Section II B) G, G', H, HE are replaced by the functions

I , I,, K and - K« respectively

Xfl ^ Xfi ^T tf£ <*£

Argument 2.4850 2.0107 .94032 7.8848 6.3798 2.9836

I0 3*2523 2.2967 lc2336 383.90 95.178 4o8164

Ix 2.4827 1.6066 .52407

K .063466 .11241 o45835 c00016552 .00082606 O035405
o

Kx .075283 .13791 .66717
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P1= ZqWjR) «o<*1*> rms - .,063465

P2= ,11239 P, m o44978

V^lT)
^*-^il^(^iR)^rnri7Il(*flR)* ~*012893

w *L

P2= - ,019112

°1
^1 D2(^f2 «tf 2) * - 4e8279

V*,-
o-2

D^(X «, • X 2)
= •= 1*1404

3 * 3

>%-
^2/1

D3(^ 2- X2)
- 3*2865

2 °"i pwi •* r + B*~ ,,022914
1 tii

*,2= --if- b2= ,057979
u2

«/2 2= --2 + B2 a o27831
3 D3

P'» - c.043486

*>lL * ol5137

^2 =2 O24079

ul * .52755
3
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In this case Gj and Gi are replaced by I0( jR) and ^l^i ^R)

Ui
L

,15137

,24079

>52755

°1

^R

2.1964

3.4939

7.6548

ex.. • 5- 2" • 1.2287
1 °2<

HL ^2Cfc. == *r .in., in

<*o = 2 1

Djt^J -«/?)&

as 079869

= ,84661

* - JL^l^jR) * ,039804

S2 » ,20484

D,(reflector)
X « -3L . m ,52705

1 Decora)

I0(^AR) ^(^jR) ^i1!^!*)

2,6223

7.3405

309.75

1.9078

6.1717

288.75

S3 m 20.997

£^ m .59813

.28878

1.4861

152,33

/, = 1,8898
3



C22 =

°33 =

C21

C32

c31

- .18799

- ,045555

• ,00087453

o079174

M. ,00099637

= - o000041509

=44=

En = 7,9891

Egg3" 5,9222

E33 » 1,6210

E21 ~ 21°562
B32 * 1.7798
E31= 2,5150

The function FOjR) becomes in this case J0(6jR)

the %R are given by the roots of &{*&) »° with R- 14,51 the first three
2values of 6, 6 , J0(6R) are as follows'

= 0

&1 - ,26407 e£ = o069733

92 = O48350 ©1 - °23377

The coefficients ^^ are given by:

?VZii

eo= 0

>7 S 1it • .•"

711 n^f+^)

f.0-1,9127

7 n

7ia * °17075 ?®

The coefficients bni are given bys

at ,47306

kni "~
C^n + °i) J0CQiR)

9oo
2

P* D2(" JT Oj.)

^_=2l04213
20

y n 22 ,15959

2= .025215

J0C80R) = 1

J.

J0C82R)

,40276

,30012

^2^21

f30 = o89869

f = O080689

^,2 = ,0086650
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b^ = 43*641 b2Q m 17.248 B b30 = 3.5931

\>n~ -26.799 b ~ -19,441 b - -7.1338

\>22 = 12.981 b22 -= 11.421 b~p ar 6.5068

The coefficients Ajj are given by:

hi =[<C33 711 +C32 72i+ C31^1i>S3b3j +(C22f2i+C2l7li)0<'2S2b2j +Cll7 tt'WijjJ

fC^r)* ^31^

Aoo - »65607 A„ = ,016279
10

A =• =A20 .0034545

Aol- - ,033509 An =2 .091160 A21= - .0035784

A^ = ,079944 Aj2= -.010834 A22 - .011817

The successive approximations to Ak using first, second and third degree

determinants are;

(Ak)» « I.5242

(Ak)« = 1.5265

(Ak)"«= 1,5278
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III D, Numerical Iteration Example

The application of a numerical Iteration msthod as given in Section

II D to the specific example treated in the two previous sections is here

demonstrated„

It is first necessary to choose appropriate lattice spacings; here

the core will be divided into ten steps and the reflector into six. The

constants used are as given below:

Core Reflector

n ,0381977 .0259330

°3 ,0499775 .00918109

°1 ,0785833 O00124064

Di 1,793 ,945

D2 „8866 ,5303

D3 .284 .5367

B2 ,,00160981 .00188809

h 1.451 5.255

? ft i 1* K"i 1 t <"V . \ 1 f. f\l
U r J/+,!?i. JL4••-/-»• ' "V «|.v>.Ut».

The procedure is fully explained in Section II D and can be applied

M
Immediately by replacing 9 by P since this Is a one coordinate cylindrical

case.

Computation sheets for the first iteration are shown in tables

(III * VIII).

From these the first approximation for k Is 1.5286^successive approxi

mations for k are 1,5336 and 1,5314. These values apparently approaches a limit

not far from the values obtained by the other methods which were 1,5281 for the

analytic method and 1.5278 for the seriea expansion method,
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TABLE III. fx CORE \

f f hfCo^r-BjOj) h

fDl rl 5 h hfcr3 f\ A ¥x
0 0 0

.7255 .0432492 1.0 1.0 .0827244 1.0 1.55828

1.451 .557724 .0432492 <= .0394752

2,1765 ,129748 I.02412 1.0 .248173 .977984 1.54973

2,902 .278862 .176127 = .160757

3.6275 .216246 1.073235 1.0 .413622 ,933155 1,53232

4.353 ,185908 .408210 - ,372588

5.0785 .302745 1,14912 1,0 .579071 .863888 1.50542

5,804 .139431 .756100 - .690121

6„5295 ,389243 1,25454 1,0 .744520 .767664 1,46805

7.255 .111545 lc24442 -1,13583

7,8905 ,470376 1,39335 1.0 .909969 0640968 £.41885

8.706 .0929540 1,89982 =1.74430

9.4315 .562240 1,56995 1.0 1.07542 .478828 1.35530

10.157 .0796749 2.78251 =2.55050

10.8825 ,648738 1,79165 1,0 1,24087 .275617 1,27586

11.608 .0697155 3.94482 -3,61257

12.3335 .735237 2.06667 1,0 1.40632 .0237649 1,17754

13.059 .0619693 5.46431 °5.00142

13.7875 .821735 2,40529 1.0 1,57176 «= .286170 1.05665

14.51 .0557724 2.60324

2.82028

7.44082 «= .467306

= .665887

=6.80834 .98602



TABLE IV. f REFLECTOR

p
hf^-rB2^} h

fDx f\ Is fl 4 . K

14.51 .383243 2,60324 7,44082 ,467306 6.80834 .98602

17ol375 2.49615 4.31290 - 1,84739 056041

19.765 .281348 18.20647 - 11.41970

22.3925 3.26156 9,43526 - 5.06030 ,20720

25,02 ,222256 48., 98014 - 27.92417

27.6475 4.02697 20.32139 - 11.26661 .07838

30=275 .183678 130.81377 - 73.29447

32,9025 4.79238 44.34900 - 24,72919 .02990

35,53 .156511 343.35103 - 191.80615

38.1575 5.55779 98.08721 - 54.74896 .01101

40.785 .136345 888.49914 - 496.08937

43,4125 6.32320 219.22963 =122.38827 ,00289

46,04 .120783 337.40329 2274.73194 =188.36495y =1269.97488 0

/:-

493.97858 -275.77965

-f .558278 f B -V7TT77?t y



• TABLE V . ^2 CORE
•

1 hf(o^^B1D2) h

fD2 >: 41"
" 0

?1 hf*l f\ A ft

• °
,7255 ,0541137 i

0

1.55828 .0402108 1

0

1.06889
1.451 J 1.12790 ,0541137 = ,00854599
2.1765 ,1623a 1.06103 1.54973 .120632 .990361 1.06345
2.902 .563952 .336362 = .0347168
3.6275 .270569 1.18869 1.53232 .201054 .970782 1.05267
4.353 .375968 ,547985 = .0801324
5.0785 .378796 1.39471 1,50542 .281475 ,940655 1.03674
5,804 .281976 1.07630 - ,147554
6.5295 .487024 1.698820 1.46805 ,361897 .899048 1.01604
7.255 ,225581 1.90336 - .240979
7,8905 .595251 2,12756 1.41885 .442318 ,844688 ,991255

A 8.706 ,187984 3.16979 = .365761
•f 9.4315 .703479 2.72343 1.35530 ,522740 ,775931 .963547

10.157 ,161129 5.08567 - .528379 •

10.8825 .811706 3.54288 1.27586 .603161 .690794 .934861
11,608 .140988 7.96145 - .737206
12.3335 .919934 4.66535 1.17754 .683583 .58685? .908251
13,059 .125323 12.2533 - =1.00228
13.7875 1,02816 6.20097 1.05665 .764005 ,461248 ,888430
14.51 .112790 7,18085

8.30213
18.6289 o98602 ,389067

.310636
-1:33533 .883752

*>;= k:+^?



TABLE VI. *f REFLECTOR

p hfKojrBgDjj) -JL ^2 4
r« hfCTJ r\ 'I tl

.389067 = 1.33533 .88375

.125859 .83302

14.51

17.1375 .916997

19.765

22.3925 1.19818

25.02

27,6475 1.47937

30.275

32.9025 1.76055

35.53

38.1575 2.04174

40.785

43.4125 2.32292

46,04

*» *

.682942 7.18085 18.6289 .98602

13.9192 .56041 2.33546

.501365 31.3928

29.6585

.396063 66.9290

56.1666

.327316 150.020

105.271

.278905 335.355

198.803

,242969 741.259

378.906

.215236 532.290 1621.43 0

727.896

.« _ ~P , ^Moe.Hf-fj-r-.0688895^
2 7 2

,20720 3.05161 =1.50941

,07838 3,76775 -3.56910

,02990 4.48389 =7.09617

,01101 5.20003 -13,62338

,00289 5.91617 -26.08177

=36.66918

=50.16207

* *

2.75956

,53375

5,20040

.30019

=10,77574

.15589

=23.40297

.07206

=51.27563

,02087

=111.8786 0



8

0

TABLE VII. f, CORE

•f hf(03'hBlD3) h

fD3 r\ \
1

»f»i r\ 4
0

fa

0

.7255 .0832061 1

0

1.06889 .0526113 .65
0

0665734
1,451 3,52113 .0832061 - .00215174 -

2.1765 .249618 1.29298 1.06345 .157834 0643423 .662741
2.902 1.760565 .405957 - .00963995
3.6275 .416031 2.00769 1.05267 .263057 .625451 .657000
4.353 1.17371 1.24122 = .0263452
5.0785 .582443 3.46452 1.03674 ,368279 .594529 ,648971
5.804 .8802835 3.25911 = .0618755
6.5295 .748855 6.33346 1.01604 .473502 0540061 .63958
7.255 .704226 8.00195 - ,138545
7,8905 .915268 11.9686 0991255 ,578724 .442494 .630576
8.706 .586855 18,9564 » .307207
9.4315 1.08168 23.0933 .963547 .683947 ,262208 .625102

10.157 .503019 43.9360 - .682597 -
10.8825 1.24809 45.1939 .934861 ,789170 - .0811513 ,629037
11.608 .440141 100.342 -1.52165
12.3335 1.41450 89.3585 o908251 ,894392 - .750892 1 ,653311
13.059 .391237 226.740 =3.39612
33.7875 1,58092 178.068 .888430 .999615 =2.07958 .718627
34.51 ,352113 256,267

357,030
508.251 .883752 =3.24547

=4.74573
=7.57186 ,781577



TABLE VIII. f' REFLECTOR

?
h^+^D ) h

F5 ^ 3

t

*/*S ^
51 ,674798 06,26"; 508.251 _86 .

2C2989 t?j ff? •
.

19.,765 t.4953S,- 593 "

22,3925 026523? ' 715.834 .53: - -10 .. .83:

' 93 ,391340 783-704

27,6475 .327476 -^2 53 - 90 U33 .6*
1 ^-j •:- .'A

32.9025 .389720 1384,29

*>3 •,2755?9 1658,05
•

38.1575 .451964 3841,21 7206

40.785 240072 2490,2.1

43.4125 .534208 2439,04 2,09*;'

46,04 ,225541 2830,46

3283.55

3744,38 0 0

•
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