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This report gives an analysis of the damage produced by fast neutrons

in graphite crystals. The end results are

(a) estimates of the energy stored in the crystal, in displaced carbon
atoms, per neutron of a given initial energy, and

(b) estimates of the relative damage produced by the neutron distributions
existing at several points in a pile.

SEC. I. INTRODUCTION

In this report no attempt is made to extend earlier calculations of
the cross-sections for the primary processes which occur when an energetic

particle traverses a graphite crystal. The values for the energy loss in in
elastic collisions (electronic excitation) by recoiling carbon atoms traversing
the crystal are taken from the report by BrownU). The discussion of elastic
collisions is based on formulas derived by application of the Born approximation
and the statistical model of the atom. The derivation of these formulas is given
in some detail by Seitz(2); the same formulas are given by BrownM in adifferent
notation.

The present report does go beyond the earlier discussion of Seitz in
its detailed analysis of the cumulative effects of these processes. The treatment
of Seitz is based on the observation that energy losses in elastic collisions in
crease rapidly as the energy of the particle decreases, whereas energy losses by
inelastic collisions decrease rapidly. There is therefore a rather narrow energy
range in which the two processes involve comparable losses. Seitz therefore assumes
that one can get a satisfactory approximation by neglecting elastic collisions com
pletely when the inelastic collisions are dominant, and neglecting inelastic colli
sions completely when elastic collisions are dominant. This assumption simplifies
the analytical developments of the theory, and it is certainly justified in the
first approximation. It will be shown later, however, that the somewhat extreme
point of view implicit in this approximation may be misleading in some respects.
Its avoidance in the present treatment has required considerable use of graphical
calculations, and the presentation of the principal results in graphical rather
than analytical form.

The present treatment differs from that of Seitz also in the greater de
tail in the division of the elastic collisions into those producing thermal agi
tation of the crystal, slow secondaries (knocked-on atoms) and fast secondaries.
Finally, the calculations are carried to new and concrete end results.

A valuable aid for concrete thinking about such problems is the reduction
of collision cross-sections and rates of energy loss to terms of "probability of
a collision per layer of atoms traversed" and "average energy loss per layer of



atoms traversed." These quantities will be defined, not in terms of the actual

crystal structure of the crystal, but in terms of a simple cubic lattice of equal

density. Let the spacing of the atoms in such a crystal be

d = N-i/3 , (!)

where N is the number of atoms per unit volume. We define the "geometrical cross-

section" of an atom in this crystal as

A = d2 . (2)

If cr is the collision cross-section for a given type of collision, the probability

of such a collision per unit length of path in the crystal is cr/d3, and the

"probability of a collision per crystal layer traversed" is

cr cr

p = a • -n- = — • (3)d3 A

The "energy loss per layer" is defined as

H = d •• -2- . (4)
dx

o

In graphite, d ^ 2.1 A ¥ aH.

SEC. II. ENERGY LOSSES IN INELASTIC COLLISIONS

Following Brown ll), we estimate this energy loss in inelastic collisions
of carbon atoms traversing graphite by multiplying the observed losses of carbon

atoms in air by a factor 16355 representing the difference in densities of the ma

terials, and a factor due to the different scattering cross-sections for carbon atoms

and "air atoms." The latter factor, ranging from 0-97 for the lowest energies, to

0.94 for the highest, is extrapolated from observations quoted by Brown. The re

sults are given in Table I. The first two columns give the velocity and energy of

the ions, and the last two the rates of energy loss per centimeter and per layer (H£).

The method of estimation is certainly unreliable at the lowest energies, where the

energy transferred in a collision becomes comparable to the differences in energy of

a valence electron in the gas and in the solid, or to the electronic band widths in

the crystal.



TABLE I

RATES OF ENERGY LOSS BY CARBON ATOMS MOVING THROUGH GRAPHITE. INELASTIC COLLISIONS ONLY.

V*10"^cm/ sec) E(ev) r dE 1 t i \• [ (mev/cm)
I dx Jx

H .(ev/layer)

0.5 5,230 524 10.8

1 20,900 1,350 27.8

2 83,700 3,900 80.5

3 184,200 7,650 157

4 335,000 11, 500 237

5 523, 000 13,800 284

6 753,000 15,150 312

7 1 030, 000 15,400 317

8 1 340,000 15,500 219

SEC. III. ELASTIC COLLISIONS

The formulas given by Brown and by Seitz for the transfer of energy in

elastic collisions between atoms can be reduced to the following form.

Let the incident particle have mass Mi, atomic number Zi, energy Ei,

and the (originally stationary) scattering atom mass M2, atomic number Z2. Then
the cross-section for a collision involving transfer of energy greater than e is

(for e < SE)

where

8 = MiZ» 4'"'a|
M2

E«

Ei + E

I.

Ei§ + e

E =

aH =

8 =

Ei =

Ionization energy of hydrogen atom

Bohr radius,

4M1M2

(Mi + m2;

0.229
{ Z1/3 + Z1/3 }

m

M'
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ES

13.54 ev,

(5)

(6)

(7)



m being the electronic mass.

In what follows a will always be expressed as a multiple of the

geometrical cross-section A, so that it becomes numerically equal to the

probability p of collision per layer, and energies will always be expressed

in volts. It will be convenient to write

cr e r 1

Ei + E EiS + e ES
(8)

where

r

Mi

M2
1 2

4'"'a;

K (9)

is a constant with the dimensions of energy-squared.

The values of the constants for the problem at hand are given in

Table II. For a light fission fragment (LFF) we have taken Mi = 95,

Zi = 38; for a heavy fission fragment (HFF), Mi = 139, Z.i = 54.

TABLE II

VALUES OF CONSTANTS IN ELASTIC SCATTERING FORMULA

C in Graphite LFF in Graphite HFF in Graphite

r
fev2"

1.96x105 6.20x107 1. 84><107

Ei(ev.) 0.00185 0.00943 0. 0151

8 1. 0.399 0.293

The following derived formulas may be noted.

The probability that an incident atom with energy E will transfer

to a lattice atom an energy e to within de is

dcr =

Tde

E(EiS + e)2

do- = 0 ,

e < 8E ,

e > 8E .

(10)



The average energy transfer to the crystal, per layer traversed,

in processes involving transfer of energy greater than em is

e » m'

SE do-

J e— e
e de

r

In

SE + SEi

e + SEi

The following approximate forms are useful:

H.(0

H.(0) = He
r

E

r
In

SE

In
E 1

17

, if

, if

8E1 SEi

8E + SEi e + 8E3

SE, e » SEi
7 m

E » Ei

SEC. IV. PRELIMINARY DISCUSSION OF ELASTIC COLLISIONS

(11)

:i2)

(13)

Collision producing Heat

When a particle passing through a crystal undergoes an elastic

collision with one of the atoms of the lattice, it may knock this atom from

its position in the lattice and cause a more or less permanent change in the

structure of the crystal.

If the lattice atom acquires only a small amount of energy in the

collision (distant collision) it will be set into vibration, but will not be

able to leave its cell in the crystal. Most of its vibrational energy will

very quickly be shared with neighboring atoms; the energy transferred to the

crystal by the colliding particle is harmlessly dissipated in heat.

In other collisions a lattice atom may acquire so much energy that

it is driven far away through the crystal, coming to rest in an interstitial

position, and leaving behind a more or less permanent hole.

When a lattice atom acquires enough energy to remove it to an inter

stitial position, but not a great deal more than the required amount, it may

or may not leave its position, depending on the circumstances of the collision.

Its energy may be quickly shared with other atoms and converted into heat. Or

the struck atom may be moved only to an adjacent interstitial position. Re-

•7-



arrangement of one or two other atoms in the lattice will then fill the original

hole, allow the displaced atom to fall into a lattice position, and thus restore

the perfection of the crystal lattice with all the energy transferred in the

collision transformed into heat. The greater the energy acquired in the collision,

the farther will the struck atom move through the lattice, and the smaller will be

the probability that such a "healing" process will occur during a given period of

observation.

We now define the energy et such that the number of collisions producing

displaced atoms is equal to the number of collisions in which the energy transfer

exceeds et. A collision with energy transfer et will actually have about an even
chance of producing a permanently displaced atom. We shall, however, treat all en

ergy transfers greater than et as leading to displaced atoms, and all transfers of

less energy as resulting only in the production of heat. The quantity et thus plays

a very important role in the analysis which is to follow.

For purposes of calculation we shall take et = 25 ev. It will be evi

dent from the discussion above that this does not represent the minimum energy re

quired to displace an atom, or the energy stored in the crystal per displaced atom,

but a quantity which may be several times as large. Even in a very favorable

collision resulting in a permanently displaced atom a good deal of energy will be

wasted in heat.

Residual Energy

Let us now consider a very energetic charged particle moving through the

graphite lattice. The probability that it will knock an atom out of a given layer

will be given by Eq. (7), with e = et. Since EAS « et' < SE, one will have

with good approximation

ar(et) = r/Eet (M

A very energetic particle will leave behind widely-spaced displaced atoms, but as

its energy decreases these will occur closer and closer together. When cr(et) = 1,
(that is, when on the average there is a displaced atom per layer) the trail of dis
placed atoms will be essentially continuous. Indeed, some of the displaced atoms
will in turn have enough energy to displace other atoms, and a very high probability

of displacing such atoms from the very next layer. Thus when the energy of the

particle has been reduced to about

Ec = r/et (15)

by elastic and inelastic collisions, this residual energy will very quickly be

-8-



dissipated in a series of elastic collisions which produce an essentially continuous

damaged region in the crystal, One finds for

carbon atoms in graphite, Ec = 7850 ev.

LFF in graphite,

HFF in graphite, E.

2.47*10° ev.

7.36x10 ev.

Slow and Fast Knock-Ons

The energy Ec computed for a lattice atom passing through the lattice (here,

carbon passing through graphite) marks a second important division in the range of

energy transfers e. A knocked-on atom with energy e, where et < e < Ec, will be

called a slow knock-on. It may have only enough energy to reach a nearby interstitial

position, producing a single vacant lattice space, or it may have enough energy to

knock on other lattice atoms, producing a single continuous damaged region, as described

above.

A knocked-on atom with energy £ > Ec will be called a fast knock-on. The

dissipation of its energy in producing heat, slow knock-ons, and even fast knock-ons,

can be discussed as though it were a primary particle.

The dissipation of the energy of a primary particle can then be described,by

the following diagram.

Heat

Heat

The primary particle (fission fragment or neutron) produces heat, slow knock-ons,

and fast knock-ons, until its energy is dissipated. The fast knock-ons in turn pro

duce heat, slow knock-ons, and fast knock-ons, until their energy is reduced to the

"residual" value Ec expended in producing a continuous damaged region. This new

generation of fast knock-ons dissipates its energy in the same way, and so on.

The energy of the primary particle ultimately appears as heat, the energy

of the slow knock-ons, and the residual energies Ec of fast knock-ons. How much of

this energy is quickly dissipated as heat, and how much is stored in the crystal as

lattice imperfections, will be discussed in Section VI.

-9-



Low Energy Cut-Off

Equation (8) gives a finite total cross section,

o-(o) = r/EiS(Ei + E) , (16)

for all collisions, however small the transfer of energy. For small E, however,

this total cross section becomes very large. For instance, if E = Ec one has

r ^ r et
o-(O) = = = (1?)

EiS(Ei + Ec) EiSEc EiS

For carbon knock-ons in graphite this is about 13,500 : that is, the formula indi

cates that there are some 13,500 collisions involving transfer of energy per layer

traversed by the carbon atom! Of course the vast majority of these collisions in
volve a very small transfer of energy; they represent "collisions" with lattice atoms
in the layer that are quite distant from the point where the carbon atom passes

through.

Equation (8) is based on the consideration of a collision between two

isolated atoms. It might reasonably be applied in treating the collision of a fast

particle with the lattice atoms nearest the point where it passes through a crystal
layer, but its application to the collision of two atoms separated by many inter
vening atoms seems to be quite unjustified. One would anticipate that the reaction
of the intervening atoms would prevent energy transfers directly to the more distant

atoms. In using this formula one is therefore led to consider the possibility of
applying a cutoff, neglecting all collisions with a collision parameter above a given
value, or all energy transfers below a given valueT

What type of cutoff should be used is an interesting fundamental problem
that can not be considered here. It is evident that any cutoff of the low-energy,

heat-producing collisions will increase the fraction of the energy going into high-
energy processes which produce lattice damage. The possible importance of this factor
has been explored by introducing a low-energy cutoff limiting the total cross section
to a definite multiple of A, nA. The minimum energy transfer considered, em, then de

pends on the energy E of the fast particle. If SEi « em « ES , one has, by

Eq. (8),

- cr e

or

r/Eem (18)

T/nE (19)

-10-



The condition for the validity of this approximation may be written as

(r/nS)M « E « T/nSEi (20)

and is satisfied for all reasonable choices of n and E > Ec .

In the calculations with cutoff to be presented later, n has been chosen to

be 5, as representing a probable minimum value. The introduction of this low energy
cutoff changes the results of the calculation appreciably, but not radically.

SEC. V. METHOD OF CALCULATION

Here there will be indicated very briefly the methods employed in the cal

culations on which the later discussion is based.

The cross section for energy losses e such that et 4 e 4 e2 is obviously

Ar = o-(ei) - a{e2) . (21)

le define special cross sections, for layer traversed, as follows.

cti : for 0 < e •$ et . Heat-producing collisions without low-energy
cutoff.

o-[ : for em >< e •< et . Heat-producing collisions with low-energy
cutoff.

cr2 : for e ^ e <• E . Collisions producing slow knock-ons.

cr3 : for Ec >< e . Collisions producing fast knock-ons.

One can obtain simple formulas for all these quantities by introducing into Eq. (8)

approximations appropriate to the values of E, e± and e2 under consideration.

o"i = etEc/SEiE (22a)

o-i = n - Ec/E , ES » et (22b)

a-2 = Ec/E , E8 » et (22c)

0-3 = et/E (1 - EC/SE), ES > Ec (22d)

The energy loss per layer, in elastic collisions with £i ^ e ,< e2 ,

is

AH = H (£i) - H (e2) (23)

-11-



We define the energy losses per layer traversed, Hi, Hi, H2, H3, corresponding to
the cross sections au a[, cr2, a3, respectively. Then, by Eqs. (12) and (13), we

have for all SE > Ec:

Hi = etEc/E £n(et/SeEi) , (24a)

Hi = etEc/E J.n(nE/Ec) , (24b)

H2 = etEc/E in(Ec/et) , (24c)

H3 = etEt/E in(SE/Ec) . (24d)

The total loss in elastic collisions, per layer, without cutoff, is

He = etEc/E Zn(E/eEi) . (25a)

With cutoff, the total loss becomes

H; = etEc/E in(8nE2/etEc) (25b)

We define also Hi? the total loss in inelastic collisions, per layer.

Let the total loss of energy per layer be H:

H = H. + H (no cutoff) , (26a)

H = Hj + H; (with cutoff) . (26b)

A particle then loses energy dE in traversing dE/H(E) layers. As its energy de

creases from Ei to E2 it will produce, on the average,

E2 <rg

"• = I UiiT "1E) (27)

slow secondaries having a total energy

E2 d.E
Hs = / —— Ha(E) . (28)

El H(E)

[A more rigorous justification of these expressions is easily given.]

The amount of energy going into heat or fast secondaries, and the total number

of fast secondaries can be computed similarly. Because of the rather compli

cated form of H(E), such integrals are often best obtained by graphical integration.

-12-



When H. (E) is negligible, as in the case considered in the next section, analytic

results are conveniently obtained.

SEC. VI. ENERGY STORED IN THE CRYSTAL

In discussing the actual damage to a crystal traversed by fast particles

one needs to know how much of the energy of the knocked-on atoms is eventually

stored in the crystal in the form of lattice imperfections, and how much is quick

ly dissipated as heat. The following discussion of this difficult problem is highly

tentative, because the low-energy cutoff is not introduced, despite its evident im

portance for the low-energy processes under consideration. Furthermore, it is not

known how much "healing"- of the crystal arises from atomic rearrangements taking

place soon after the disturbance occurs.

Slow Knock-ons

Since et » EiS , it follows from Eq. (lO) "that the probability that a

slow knock-on has an energy e will vary with l/e2 , whatever the energy E > Ec, or

the distribution of energies, of the primary charged particles. The average energy

of the slow knock-ons from fast particles is thus

Ec 1
f £ •—- de

'Nj

et in Ec

Ec 1
et

(29)

For slow knock-ons in graphite this is about 144 e.v.

We now compute the number of secondary knock-ons due to a knock-on of

initial energy E as its energy falls to the value et. The loss of energy in inelastic

collisions by these particles will be neglected, thus limiting consideration to slow
knock-ons and the fast knock-ons with E ~ 10,000 e.v. In Eq. (27) we then replace

Ei by et, E2 by E, H(E) by He (E) , and write

<t2(E) = o-(et) = EC(E - et)/E2 , (30)

avoiding the approximation of Eq. (22c). Let

g = E/eE7 , £o = et/eEi , £i = Ec/eEi . (3l)

-13-



Then, on repeated integration by parts, one obtains a convenient asymptotic ex

pansion:

E

N-.(E) = J dE
E - et

E et in(E/eEi)

et Jn£
l! 2!

1 + —— + +.
InH

- In

Ing

In £

In go

Lrn £° ez/£o - 1
J dz — •
In £ z

(32)

In^o

l! 2!
]_ + + +.

in^o lnzg0

In computing the energies of these secondaries one must avoid the use of Eq. (24c),
valid only for E > Ec. Instead, one has simply

H2 = H.(et) = etEc/E in(E/et)

since 8=1 here. Then (an asymptotic expansion!

H (E)
E

I
£ .

Ingo

"Tnf

dE

1 +

*n(E/et)

Jn(E/eEi)

1!

Tnf
2!

ln2£

(33)

l!

Inge ln2g0
(34)

Calculation shows that the fastest of the slow knock-ons in carbon,
E = E = 7850 e.v., produce on the average 23.2 secondary knock-ons, with an
average1energy of 119 e.v. Aknock-on with the average energy, E = 144 e.v.,
produces on the average 0-31 secondary knock-ons, with average energy 43 e.v. The
fastest knock-ons use 35*2% of their energy in producing secondary knock-ons, but
the knock-ons with average energy lose only 9.3% of their energy in this way.

One can easily average these results over the energy distribution of the
primary slow knock-ons. The average number of secondary knock-ons pe^yy^mry

-14-



knock-on is

N.

E.

E.

Similarly

H

?c dE ?
J J dE'
{ E2 i

E' - €t
E'e. in E'/eEi

In
Ingo

In

Ec
J" dE/E5

Ingo

N. (Ej +

In go In

l! 2!

in^o ln.2£0

2!

1 -
LnSi £n2<f3

'ingi

lngo_

(34)

H.(EC)

Calculation with these formulas shows that there are 0-545 secondary

knock-ons per primary knock-on, with an average energy of 47 e.v. Since a
secondary knock-on with energy 50 e.v. has, by Eq. (32), a probability of only
0.045 of producing a tertiary knock-on, it is evident that second-, third-, and
higher-generation knock-ons will together total about six-tenths of the number

of primary knock-ons.
The energy stored in a crystal when an atom is displaced to an inter

stitial position is a fraction of et which we shall here take, for purposes of
estimation, as £. The energy stored per slow primary knock-on will then be a-
bout £ ••e 1.6 = 20 e.v., if no immediate healing takes place. Comparing
this with the average energy of 144 e.v.. expended in producing slow knock-ons,
we would conclude that about 14% of the energy expended by energetic (E>EJ
particles in producing slow knock-ons will be stored in the crystal. This es
timate would be raised by introduction of a low-energy cutoff, and lowered by

healing.

-15-
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Fast Knock-ons

As was noted in the preceding discussion, a knock-on with energy Ec

will produce 23.2 secondary knock-ons with average energy 119 e.v. A secondary

with this average energy will, by Eq. (32), produce on the average 0.232

tertiary knock-ons with average energy 40 e.v.; later-generation knock-ons will

be negligible. The total number of displaced atoms produced by the residual

energy of a fast carbon atom will thus be roughly 1 + 23. 2 + 0. 24 x 23.2 = 29.8 ;

the stored energy will be 29.8 x 12.5 = 370 e.v., which is only 4.7% of the orig

inal energy Ec.

In Eq. (32), for E >> et the first term is very much the most important.

Thus, for a moderate range of E about Ec the number of secondary knock-ons produced
by a fast knock-on is nearly proportional to E, and the fraction of its energy
stored in the crystal will be nearly constant, being roughly ^ In gi. For higher
energies the proportion of stored energy will decrease, principally because of the

effect of inelastic collisions.

A calculation of the average energy ef of secondary knock-ons due to a

fast knock-on of energy E shows that ef rises from some 11,400 e.v. for E - 20,000 e.v.

to 18,900 e.v. for E = 500,000 e.v. (In this calculation, account was of course taken
of the effect of inelastic collisions.) As a round figure, to within the accuracy

of these considerations, one might expect that 4% of the energy given to fast secon -

dary knock-ons will eventually be stored in the crystal. This is the figure assumed
in the next Section.

SEC. VII. NEUTRON DAMAGE IN GRAPHITE

Discussion of neutron damage in a pile will proceed in three stages:

1) Calculation of the energy stored in the crystal due to a single knocked-on
carbon atom, as a function of its energy.

2) Calculation of the stored energy per neutron collision, as a function of
the energy of the neutron involved in the collision.

3) Calculation of the total stored energy due to the distribution of neutron
collisions predicted for various points in a pile.

The division of the energy of an initially fast neutron between stored energy and

heat will also be indicated.

Figure I shows the energy loss per layer of a carbon recoil passing
through agraphite crystal. The loss in inelastic collisions is shown separately,
and the losses in elastic collisions are computed with and without cutoff. It is
evident that, while at high energies the loss of energy takes plape primarily in
inelastic collisions, elastic collisions still occur with appreciable frequency.

-16-
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Table III deals with the effects in graphite of a fast carbon atom of

energy E, computed with the low-energy cutoff described in Sec. IV (cut) and

without (uncut). It shows the total energy Hs of the slow knock-ons produced

as the energy of the primary particle falls to Ec; the number Nf of fast knock-

ons per primary particle; the average energy Hf of the fast knock-ons (computed

for a type of cutoff intermediate between no cutoff and the kind considered

here); and the total energy stored in the crystal, computed as

0.14 Hs + 0.04 NfHf + 370 e.v.

These terms represent the stored parts of the energy of the slow knock-ons, the

energy of the fast knock-ons, and the residual energy of the original particle,

respectively.

TABLE III

KNOCK-ONS IN GRAPHITE DUE TO CARBON ATOM OF ENERGY E

ENERGY OF SLOW NUMBER OF FAST AVERAGE ENERGY OF STORED ENERGY

E KNOCK-ONS(e. v.) KNOCK ONS FAST KNOCK-ONS (e.v. ) (e. »•)

fe.v. 1 Uncut Cut Uncut Cut Uncut Cut

104 270 1000 410 510

2><104 1700 4100 0.039 0.087 11, 400 610 984

4><104 3600 7200 0. 198 0.343 13, 100 978 1560

6X104 4720 8640 0»302 0.476 14, 300 1200 1850

8X104 5430 9480 0.374 0.560 15,200 1360 2040

106 5920 10030 0.435 0.627 15,700 1470 2170

1.5X105 6700 10830 0.513 0.709 16,700 1650 2360

2X105 7130 11270 0. 574 0.751 17,300 1760 2470

3X105 7600 11750 0.625 0.802 18, 200 1890 2600

5X106 8050 12200 0.676 0.851 18,900 2010 2720

The most striking result of this calculation is the slow increase in

the stored energy as the energy of the primary carbon atom is increased; a

tenfold increase in E from 5X104 e.v. to 5X105 e.v. scarcely doubles the stored

energy.

This table makes it possible to analyze the loss of energy by a fast

particle in different parts of its range, by taking differences in consecutive
lines. For instance, during the time that the energy of a carbon atom falls from
5xio6 e.v, to 3X105 e.v. it produces slow knock-ons with a total energy averaging
450 e.v. (uncut), and has a probability of only about 0.051 of producing a fast
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knock-on; on the average only 120'e.v. of the 200,000 e.v. energy loss will be
stored in this crystal. In this sense, the energy losses in inelastic collisions

will be completely dominant. On the other hand, the accumulated effect of the

elastic collisions at high energies is important; a major fraction of the damage

done to the crystal by an energetic particle is done at energies so high that the

inelastic collisions far outweigh the elastic ones.

It will be noted that the change in stored energy due to the low-energy

cutoff is almost constant for energetic particles. The low-energy elastic

collisions involved in the cutoff are quite negligible so long as losses in in

elastic collisions are dominant; they affect only the estimate of the damage done

by the particle at the very end of its range.

Conversely, it is evident that a change in the assumed inelastic losses

at low energies, such as might be due to the special structure of the crystal,
will not change the estimate of stored energy by a large factor, since the energy
loss in low-energy elastic collisions is dominant in this range. Even radical
assumptions, such as that all energy losses for E < 40,000 e.v. take place in in
elastic collisions, would only change the estimate of stored energy by a factor
of 2. It therefore appears to the writer that Seitz (loc.cit.) has somewhat over
estimated the difference in neutron damage to be expected in insulators and con

ductors.

The carbon atoms discussed above may be carbon atoms knocked on by

energetic neutrons. Neutrons of energy E in collisions with carbon will produce
knocked-on atoms with all energies from zero to 0-284 E. If one considers only
s-wave scattering (as we shall here) these knocked-on atoms will have all energies
in this range with equal probability. The average energy stored in the crystal
ner neutron collision can then be obtained as the numerical average of the stored

energies per carbon atom, taken over the range of carbon-atom energies from 0
to 0.284 E. The results of this calculation are presented in Fig. 2-

It is of interest to see how much of the original energy of a fast neu

tron will eventually be stored in the crystal, as a result of all the collisions
it undergoes. On the average, the neutron will lose a fraction 0-142 of its
energy per collision. It will thus undergo one collision for each range of
0-0665 = - logio (1-0. 142) in logioE. On plotting the energy lost per collision
against logic E, and summing areas under the curve, one finds as the total stored
energy per neutron of energy E the values shown in Fig? 3.

As to magnitude, the results given above should be regarded as no more
than careful order-of-magnitude estimates, subject to serious uncertainties due
to the unknown degree of "healing". The qualitative features of these curves
should, however, be fairly reliable, and so should the following estimate of the
relative neutron damage at several points in a pile.
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Our estimation of neutron damage in a pile is based on the calculation

of Weinberg, Stephenson and Goldberger (3) on a particular pile arrangement.
They compute the flux density of neutrons, per unit range in inE, for a source
giving 2.347 neutrons/cm.sec. On multiplying this by <x(E) and integrating over
a given range of InE, one obtains the number of collisions per atom per second,
within this range of neutron energies. If the integrand contains as an additional
factor the energy stored per collision, the summation yields the energy stored per
atom per second. The results of graphical evaluation of these integrals are shown
in Tables IV and V, which give the number of collisions and the energy stored for
several ranges of E. Since almost all damage to the crystal is due to neutrons
with energy greater than 104 e.v.,.the total stored energy is essentially the total
for the range > 104 e.v., as given in Table V.

TABLE IV

1024x Collisions per atom per second for a Source (Cf. Weinberg, et.al.) Giving
2.347 neutrons/cm.sec.

104<E<10
s^TP^-m610S<E<10

Surface of Slug 0.97 1.29

Center of Lattice 0.88 0.63

TABLE V

1022X stored Energy (e.v.) per atom per second for a Source Giving
2.347 neutrons/cm.sec.

104<E<10E l0s<E<10e 106<E

NO CUTOFF

Surface of Slug 1.8 12.7 10.4

Center of Lattice 1.5 5.5 3.0

WITH CUTOFF

Surface of Slug 3.7 19.4 14.5

Center of Lattice 3.1 8.7 4.4
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108<E

0.62

0.17

Total

24.9

10.0

37-6

16.2



Calculations have been made of the rate of storage of energy at the

surface of the slug, and in the center of the lattice. The effect of the low-
energy cutoff is most marked in the treatment of the low energy collisions,
and for the center of the lattice, where the low energy collisions are more

important. The estimated stored energy is increased 50 to 60$ by the intro
duction of cutoff, and, in addition, may be radically modified by healing. On
the other hand, the rate of storage of energy at the two points, which is
2.49 without cutoff, is reduced only to 2.32 by the introduction of cutoff.
There is little reason to expect the degree of healing to vary much from one
point to the other. Thus one can conclude, as perhaps the most secure result
of these considerations, that the ratio of neutron damage at the surface of
the slug to that at the center of tne lattice considered by Weinberg is about

2.4.

The writer is indebted to Dr. Sidney Siegel for the calculation of

the results given in Table III.
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