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EFFECT OF THE FINITE SIZE OF THE NUCLEUS ON INTERNAL CONVERSION

N. Tralll and M. E. Rose

I Introduction

In all existing calculations of internal conversion coefficients the nucleus
has been considersd as a point. It was implicitly assumed that the effect of the
finite size of the nucleus would be negligibly small. Fowler(l), in 1930, made
a rough calculation of the effect in the case of non-radiative transitions,

J=z0 > J=0» where \j_ is the total angular momentum quantum number for the
nucleus. However, in view of the refined calculations of internal conversion
coefficients(z , & more exact investigation of the effect of the finite size of
the nucleus is desirable.

The internal conversion coefficients depend on (1) the scalar and vector
potentials of the radiation field, (2) the initial bound-state wave functions of
the electron and (3) the continuum final-state wave functions. In the follow-
ing calculations, the effect of the finite size of the nucleus on each of these

is investigated separately.

II The Effective Radiation Field

-
The expressions for the scalar potential g? and the vector potential /A at

. — N [ . N
a point Y at time t due to charge density f and current density g' at a
-
nuclear point V' are

@ (r,t) = ui_:l 2T (1)

and

Alr,t) = g Lsio g7 (2)



in whiek R~ [1?’~ r'| 5 dv' = ? s;ne'de’dgﬂ'dr‘ is an element of
the nuclear volume, and [/o'] and [3'_] are, respectively, the nuclear charge
, (3)
and current density evaluated at the time t‘R c .
For a transition in which the nuclear angular momentum quantum number goes

from J "to J we assume that the charge and current densities are given by the

Schroedinger expressions

[p1-€Q " () 7{/()6

-iwt+tKR

and

,Lwt + LKR

[ -1 € (v, 54 ¥, ¥, gred ) ¢

in which & is the total nuclear charge, the 11f’5 are the nuclear wave functions,
W= (WJ--’ WJ )/ 7{ where W‘]’,is the energy associated with the angular momentum
J, and K= uu/c, In both of these relations, as in what follows, relativistic units
with R=m=c=1 are used.

We sh/a.;l.l outline the derivation of the electric multipole scalar potential
and merei\y gtate the result for the vector potential since it is gimilar but some-

what more involved. The nuclear wave functions are assumed to be of the form
Ml
Y NONACY?
TR ()Y (o) and - Ry () i (ery

M
where R is a function of r only and YJ" (9'7 (P') is a normalized spherical
harmonic. Our results will be independent of the special form of the nuclear

wave functions. All that is necessary is that the q}:] be eigenfunctions of the



2
4
J and J operators and of correct parity. Using the relation(

R Z (ot+1) B (cos @) n,(k) P, (K1)
Rk
L-0

M) R A ()
Velkrs) = JTE% T, (k)

and the addition theorem f"or the Legendre polynomials

Pleos ®) - L Y ") Y, (6,9)
2/+/ )

-

in which I is the larger and Iy is the smaller of I and ' , @ is the angle

— - !
between vy and r' , _H()ig the Henkel function of the first kind and J is the

Bessel function, substitution in (l) gives

o0

@ = e-iwtturzké (‘9 ‘p)ff%('(ﬁv) 9/('%)@ @ Lt

JAS?Y Y"*YM

(3)
in which AR = sineﬂJQ'a’{ﬁl and

(l)

Je (k) - Ty, (K] and  #(kg)" H g (k%)
K vV KI




The integral over the three spherical harmonics is identically zero unless
!
m= M-M
|
7-31 = £ 13+ 7|
and

!
J+ J+ £ = even integer.

This last condition is the parity selscticn rule.
There are three cases to be considereds
Cass I. The electron is outside the nucleus. O0<«r<R, and
R, ¢ < o0 where R, is the nuclear radius, so that r'= Yo and I'= .
Considering only the lowest value of Z namely {= lJ"J' z I and writing
m=M'-M E)J, expression (3) becomes
@| = e—lwtt'2772/<6 a, %(KI’) Y;M(e)éﬂ) (4)

where

Rn a2 ! » ¥
a, = J}I(KT') ® Rpor AY'PR'Y.M YJM YIM ‘

Cese II. The electron is inside the nucleus and ¥ > r e Then Y= )
=ry eand (3) becomes

_“wt
§ = iamkea, Y (k) Y. (6. 4) (5)

where

oo [ Jaterr & e [a2 YTLTLT
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Case III. The electron is insids the nucleus and ' > ¢V ., Here r' = YL

and ¥ = 'y so that (3) becomes
-t‘lA)‘t , M
b, = e iapke 43}I(KY)Y; (6,¢) (6)
whers

R, I ¥
4= [ e £ 8, w%ﬁ:&?' VAR G A

Adding (4), (5) and (6) we cbtain the general expression for the scalar potential
at -F

' M
@ = ,G_Mt/,zszé {q, j”z (kr) + a, Hy (kr) +a$)»'1(”)j_l; (e,;ﬁ) )

in which the rangs of ¥ is Ra < ¥ < o0 in the first term in the brackets
and O0< I’<Rn in the second and third terms.

By a very analogous procedure we obtain for the vector potential

A et ke b gl (o + by A (ke)+ b I:/(Kr)} Y:),J

‘;Wt +1
Ax+£A:’ = € W%G{Cl 7’&-/ (Kr) "‘Cz'%-/(/(r)‘,-c#z-/(’(r)}z: ®)

¥
Ax - Aj - e_ZWfFZKG {4" %_’(KY) +d’ %-., (kr) + Jg «I‘/(m)j Y.'Z‘I
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where the range of ¥ in the terms in the brackets is the same as in the case

of @, The conditiom div A + -é- a = 0 leads to the relations

a, = di, = 45 = e_ I
2(xT+1)
M
b‘ = bl = b'}- = e 81_
M
Q, = C?. = C3 = “8 'DI

d' = 4/2 = ‘JB = e lﬁjik1

where (@ is an arbitrary consteant and

B = \/_7:+ I- , _DIH-_-_ /{I-E)(I-H-J , j‘}“; (Zm)g-rg-lz
' (T +1)(2I-1) (:<I+i)(aI-l) (

2T+1) (2I-1)

ars the transformation coefficients for vactor addition, The relations az=a4,: 43)
ste., are more special than is requirsd. The general relations lead to the same
results.

The potentials are therefore
b = o el (A )] Kag)

21+ /
e-z’wl" o BIH {//&é—,/ (Kr) ./_éﬂl__/ (KY)}YJ':: (0, éﬂ)

&

~iwl +1
eiAy = e Y ey

Ay =€ e 1Y eg)



in which the range of ' is 04V <£o0 in the first term in the brackets and

0<r <R, in the second term.

Taking €@ = (3T+1) /2 1 and comparing (9) with the expressions
VT 1(z+1)

for the electric multipole potentisls for the point nucleus as given by Rose
and Goertzel(z)g it is seen that the effect of the finite size of the nucleus is
to introduce the second term in the brackets of (9),

The potentials for magnetic multipole radiation are obtained from the po~

tentlals for electric multlpole radiation by means of ‘bhe duallty principle,
--\

_bfe andﬂ o Choosing _&QM'O f’m— —-L-Am= e K AM

- 17 (5)
so that _A = - 7_,1‘ o The relations

-
K

o+ 3 (G 2) A ) -H ) e
POLE) < (2 ) A - et )

then yield

A = melT S Rt e n Y e g)
ot
; - e- (z- )(I'f}‘i'_’). i n »
Acvi Ay S { |pagey)

11

+
~lw EL/I*)"(I')"'“){ "
2RI+

Ax-i A

1Y ey

(10)
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as the expressions for the magnetic multipole veztor potential,

Since the range of r in }(KF) in (9) and (10) is 0« FLR,,) for large '
the electric and magnetic multipole potentials for the finite nucleus reduce to
those for the point nucleus. Consequently, the expressions for the Poynting flux
and the number of gamma rays emitted per unit time are the same as for the point
nucleus,

In ths non-relativistic calculations of internal conversion coefficients

only the most singular term of the Hankel function is retained. In this approx-
imation, therefors, the effect of the finite size of the nucleus is zero. In
goneral, a measure of the effect of the finite size of the nucleus on the poten-

tials is the value of the ratio

)’I(KR") ~ < (1-44) (-zﬁkn) 2T+
Mo (KR.,) {T(z+34)}*

. 3 F k3 nd
For I=1| , this is of order ¢ (KR,) /777' < ¢ K* 3x/0 - Since the

ratio decreases with increasing I » We may say that the effect of the finite
size of the nuclsus on the multipole potentials is negligibly small for all T and

for all gamma rays of interest.

III The Continuum Wave Functions

In the case of & central fisld one cobtains the Dirac radial equations

C'" + K 0 -(W+1-V)F=0
- (11)

F' - K F+ (W1-V)E =0
r
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in which G = l’j and £~ r} where (j and j’ are the Dirac radial functions, V
is the emergy inclusive of rest @nefgyg V= "Xé?//r is the potential energy,
the primes denots differentiation with respect to ¢ , and

K = —(:]'+y2) For j=£+}_/2_

K=  4+0 A
where j ig the total angular momentum of the electron and zf corresponds to the
orbital angular momentum in the non-relativistic limit.

(6)

The regular solutions of (11), normalized per unit energy interval, are

iFj _ e (-lpr)y e”“ZmPIT(VHxZV/p)/
G 2 (mp)r2 T(2v+1)

{7 Ny i) E 14032301 ,20p)7 0 )

in which

62“)? = - K_I‘O(Z/ﬁ and r)/: //—V'Z-O(ZZZ ;
)/-/-z'o(Z;"%

F jg the momsntum of the slectron and C.C. represents complex conjugate. The

asymptotic behavior of (12) is given by

F== WL sinlpr+S) awd G, = Sl cos(pr+J)
TP TP

whera

e W ZW Lo - arq T ZVW5) +n -T2
5 o(P fz/Dr mg‘ P ’7 >
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The irregular solutions of (11) with the same asymptotic behavior and rel-
ative phase may be cbtained from the regular sclutions by replacing Y by -:Vn

They are

{Ff i m(:‘?’)—y 67ro<ZVAP ,T’(—V-f MZV%’)J_
z (e Tlav+1)

X {e“f"’“’1'(:)/+l'°(Z'LJ/P)F(—'}’+/+/b(ZV/;>)"27"")"“/”) + C'C'f (13)
13

in which

ea;,,l' _ eaiq(-v) - K-L'O(24D_
4 +1'o(ZW/P

Their asymptotic behavior is given by

};=- /'I;:;I sin(PH-;y ond éd): /_11_777%_/_ aas(;)r+57

where

5'=36v) - 4Z¥ th apr - arqTCVraZWf ) vy v

The solutions in the case of the finite nucleus may be expressed in terms

of (12) and (13)9(7)

FF+HE  and == C+HC

(14)



in which
- (FC—’: “CA | o (apR,)T N0 4 e
HET-¢,F/, Niy) = e

wheres the f: and C‘. are the sclutions inside the nucleus, and

A rimieZWp) Tl
N (-v) lr(_wgdgw/;))’ IT(2v+1)

- 'Z'anr) cos (w 9) + sin(w- 8)
j tan )? ot (w+€) + Jm(w+§’)

fom n = _(KWry)*E/p
Y2 _ kv +(o(2)2'V(W+/)
+an )7' = (KV-7)O<ZZ?L

Ve KV 4 («Z ) W)

b 4B o [E ()
P NG R,

At the nuclsar radius we have

He 7038 -s"nG’f“m»,?'A
(), = g cedmiion

with a8 similar expression for (-H‘It—;/f')
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We assume the extreme case of the shell model for the nucleus in order to
determine (F'/G‘. )_K . In the table bslow are given values of the ratio (HG/G )Rn
"

for Z=.20,70,W=/,/35 and K=t/’i-5'

\K =] +« 1 -5 + 5

Z220 W= 5 = 0,0012 = 0,093 0.00015 - 1,53
W W= - 0,028 = 0,95 = 0,00010 - 16.5
Z-90, w35 0.251 1,005 0,0022 0.085

u W=l = 0,065 = 0,395 = 0,133 - 1,15

In the case of K: -) thizs ratio has also been calculated assuming a para-
inr
bolic sharge distribution/in the nucleus and the ratio of charge density at the
(8)

edge of the nucleus to its density at the center as given by Feenberg o The

results are

Z=20, W= § 0.00//
" W= /1 -0, 000/

Z=70, W=35 0.377
- w=11 -0. 0915

The ratio (7'[;7/:) behaves in & similar manner. In those cases where the
S
ratio is small, the effect of the finite size of the nucleus is small. In the
other cases it will be necessary to investigate the rate at which the ratios de-

crease with increasing I before the effect of the finite size of the nucleus



-15-

may be determined.”

IV The Bound-State Wave Functions
The wave functions for the K-shell are determined by means of a perturbation
calculation. For r7ﬁn the potential is Coulombian V = - °..(.g o Assuming

the extreme case of a shell model for the nucleus, the potential for rAK,\ is

given by

R

n

where

V' = —o(Z(.é--_'l:) -

is the perturbation.

The unperturbed solutions of the Dirac radial equations are the Coulomb

functions

Cn =t ﬁ(-l'?}i-n'-u) | £ £y )\% (2)\")'7,( e_,\r
Fe Tlye+1) V! Y2aZ (22 -AK)

Xi; n'j-'(-n'+/’ lVK.;/jzAY) +(§i_’ - K)F(‘h', ny.* ’; a)\r)f

in which E is the energy inclusive of the rest energy, n's 0,23, , ATV /- £+
)
and the fg are confluent hypergeometric functions which terminate. For small r

the solutions reduce to

f Ckf = VT (% 4n'+)) 1 £y .z"")\""*%(;n‘-ng) rr, (16)
Fe T(ow+1) yn'7 V3xZ (< Z-A K) A

* The termination of the summer visit of N. Tralli preventsed the inclusion of this
investigation in this report.
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The perturbed functions are
F =
'YJC‘-‘ZD,,C+3P,G and DF- '_?P, +j,’

and the perturbed energy is

£=F+ £,

in which the unperturbed wave functions are the K-shell Coulomb wave functions

Do = ity (axB) 7
V2 T(2v+1)

PR -imy (20 Z)7R Y
V2 Tl2r+)

and

E'o-‘- 7 = \//"O(zzz

The perturbation energy is given by

R 2 2 27y
£ (V@ B )dr - 222 (@uZR)
o Y T2v+2) (a7)

E/ -~
For = 70, £, > 0.03% (/fo = ”’M/ and is smaller for smaller 2 .

The perturbation to the wave function is given by

V7 Vel G, ad P V£
g AZ("£:1 " f:K '45;
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/
From the orthogonality relations for the spherical harmonics, V;n( vanishes un-
less both wave functions belong to the same K (=")° Writing lpo,—l as the wave
function belonging to n'=o, K=-1 ang ant)_, as the wave function belonging to

n', K=-1 , then

/ / - C
pe - Z Vo Y.
" 7‘51

in which

Ra
‘V’;'.lo - J; V’(:lph'c;z" @oﬁl + wn',: @O,Z)Jr

- (;(oLZ)%’%' Pﬂzﬂ r—__——_T(ng'-H) az'y-a ()‘”')'Y-f-%.
v 7(2v+2) n'{ Vi Z (A2 +A,)

AL [ he+ 4 2] + =L ieni s «Z] (12)

The ratio of the first term of :'P'G to the unperturbed wave function

. =5 -4 )

is of the order of = 6 x 10  for Z = 20 and -4 x 10 = for Z = 90 at the nuclear

radius, Thus the first term of @'C constitutes a negligible correction to the
G

unperturbed wave function II_;, . The contribution of successive terms is decided-

F

ly less. Similarly, the perturbation term P, is a negligible correction to the
F

unperturbed wave function Pa . Consequently, the effect of the finite size of

the nucleus on the K-shell wave functions is negligible.
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