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EFFECT OF THE FINITE SIZE OF THE NUCLEUS ON INTERNAL CONVERSION

No Tralli and Mo E. Rose

I Introduction

In all existing calculations of internal conversion coefficients the nucleus

has been considered as a point. It was implicitly assumed that the effect of the

finite size of the nucleus would be negligibly smallo Fowler , in 1930, made

a rough calculation of the effect in the case of non-radiative transitions,

J~cO —^ J"-0» where J is the total angular momentum quantum number for the

leuso Howevers in view of the refined calculations of internal conversionnuc

(2)
coefficients a a more exact investigation of the effect of the finite size of

the nucleus is desirable»

The internal conversion coefficients depend on (l) the scalar and vector

potentials of the radiation field* (2) the initial bound-state wave functions of

the electron and (3) the continuum final-state wave functions. In the follow

ing calculations* the effect of the finite size of the nucleus on each of these

is investigated separately.

II The Effective Radiation Field

The expressions for the scalar potential <1) and the vector potential f\ at

apoint Y at time "t due to charge density J* and current density w' at a

nuclear point V~ are

Cj) (r,t) =JId dT« CD
and

A(r,t) "\ ^ dT' (2)



in which &= }~?~~ ~r'\} ar" - r'2 s]n& Ja'Jf dr' is an element of
the nuclear volume, and j>'] and [7J are, respectively, the nuclear charge

, f P/(3)and current density evaluated at the time L-A/c

For a transition in which the nuclear angular momentum quantum number goes

from J'to J w© assume that the charge and current densities are given by the

Schroedinger expressions

* s -, / s -tojt+ '<-/<R

lj v - *r

and

^•-'lf (V^^^r^V)
_Lut +tKR

e

in which £ is the total nuclear charge, the Y>s are tho nuclear *»•• functions,

uj= (W-t- WT)/lT where K- is the energy associated with the angular momentum
J" and /C =<*/c» In both of these relations, as in what follows, relativistic units

with ri = m - °- = 1 are used.

We shall outline the derivation of the electric multipole scalar potential

and merely state the result for the vector potential since it is similar but some

what more involved. The nuclear wave functions are assumed to be of the form

f -H(rO Y%;f) ana %- <RJt (*•) Yj"'(e; <f)
where H is afunction of t' only and Yj (©', f/is anormalized spherical
harmonic. Our results will be independent of the special form of the nuclear

wave functions. All that is necessary is that the Tf be eigenfunctions of the



2 T (4)
J and j, operators and of correct parity. Using the relation

L N

where ^ /„ r \ HtVyL 7r ('^

^ C^ ^^ ^ 1*(Kfi) *K^

n.fKO-^51^^;

and the addition theorem for the Legendre polynomials

2-t+l ™---Ji

in which ^ is the larger and 1^ is the smaller of T and r1 ,Q is the angle

between ~r and r BJ{ is the Hankel function of the first kind and J is the

Bessel function, substitution in (l) gives

/=o m--JL

^•vrrz

in

(3)

which «/& = sxnda&'ay' and

0 ,/JT /k>T



The integral over the three spherical harmonics is identically zero unless

U'-Jl + I ± U'+Jl
and

even integer <

This last condition is the parity selection rule.

There are three cases to be considereds

Gas© I. The electron is outside the nucleus. 0*-Y*- Ky\ and

R ^ r <*- °0 where _R.M is the nuclear radius^ so that r- ^ &nd 'r~ rL •

Considering only the lowest value of £ namely £* (J'-JI - I and writing

no -fl -Ji -U jexpression (3) becomes

where

a..|^fcr.^«r.r^a-y/y;'y;
Case II. The electron is inside the nucleus and r > f* » Then f= ^ ^

y1 - fj and (3) becomes

J =e .^jrVce-.^ftrJ Y/fr^

where

a*. = ^M^^r^^Sl'XYr V

(5)

Z



Gas© III. Th© electron is inside the nucleus and r1 > C . Here r' — y

and r - tO so that (3) becomes

•ivSt$3- e-'" ;*,*(*,£(")Y/MJ
where

(6)

n-R

Adding (4), (5) and (6) we obtain the general expression for the scalar potential

at ~r

-iuot<£ - elu> iz-rrxK<z 4, Vx (Kt) +*xWx(Kr) +«Ax(Kr)jYx%tfl

in which th© range of T is K« ^~ Y •*- °& in the first term in the brackets

and 0*- f^-j\yy in th© second and third terms.

By a very analogous procedure we obtain for th© vector potential

Ax-Mj -- e-'-Vxt {J- %.,<") +A%.,(«>* tiJuJ*)} X-,
-I

(7)



where th© range of r in the terms in the brackets is the same as in th© case

of & , The condition &±rj\ +- J- <| =. £) leads to the relations

a, =. a. e __X

b, - e 8X*

<H

d, - d* = d$ -
£ is an cons

1 V(*l+0(i2-i) V(*l-n)fa-0 |/(ai+i;(al-;J

are the transformation coefficients for vector addition. The relations fl,-^ -A;

©tooS are more special than is required. The general relations lead to the same

results o

The potentials are therefore

$ = e"W* ^ fyr <*r; ^ M] Y^Wj
.2IW

e-'"* e%"{ ' }y:;m)

e e f/i

"\

(4



in which th© range of r is o^-r^-<=o in th© first term in the brackets and

^ ^~ ^ ^-&a in th© second

g e = (2X+IJ LYL —I and comparing (9) with the expressions
\/7T Ifr-Hj

for th® electric multipol® potentials for the point nucleus as given by Rose
(2)

and Goert&el , it is seen that th© effect of the finite size of th© nucleus if

to introduce the second term in th© brackets of (9).

Th© potentials for magnetic multipol© radiation are obtained from the po

tentials for electric multipol© radiation by means of th© duality principle,

Em -2lS BaAjtM^Pe . Choosing f-"^^.-^^^-*?
so that j^T ~ 'J. n . Th© relations'*

K

_<K)TV.-A, = e- e£^{ „ „jy^
21+1

A*-.'* j s e""fli^feitd{ <« " }Y^"Wj

do)
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as th© expressions for th© magnetic multipole vector potential.

Sine© the range of Y in J^^) in (9) and (10) is 0^~ r-^-E.np for large

th® electric and magnetic multipole potentials for the finite nucleus reduce to

those for the point nucleus. Consequently, th© expressions for the Poynting flux

and th© number of gamma rays emitted per unit time are th© same as for the point

nucleus.

In th© non=relativistie calculations of internal conversion coefficients

only th© most singular term of the Hankel function is retained. In this approx

imations therefore, the effect of the finite size of the nucleus is zero. In

generals a measure of th© effect of th© finite size of the nucleus on the poten

tials is the value of th© ratio

For 1-1 o this is of order i (KKA) /9Tr ^~ c " ^X • Since the

ratio decreases with increasing jL , w® may say that the effect of the finite

size of th© nucleus on the multipole potentials is negligibly small for all I and

for all gamma rays of interest..

Ill Th© Continuum Wave Functions

In th© case of a central field one obtains the Dirac radial equations

Q' + JL Q - (V+\-Y)I's 0
(11)

p< - JL f + (W-t-VjC = 0
r



in which Q - Y4 and -L - VJ~ where 4 and J ar© th© Dirac radial functions, W

is the energy inclusive of rest energy« V - ' °^£/Y is the potential energy,

th© primes denote differentiation with respect to Y , and

rc = - (j +y*) ior j =£+y^
k -- 3+y^ " j =/->£

where A is th© total angular momentum of the electron and £. corresponds to the

orbital angular momentum in th© non-relativistie limit.

(6)
The regular solutions of (ll)» normalized per unit energy interval, are

(CJ 2(Tif)Y=- T(*y+i)

•{e-irr*'i(y+u*Vt)ffr/-n>i*Wf>>*»-'iair)'-&el la)

in whish

p is th© momentum of the electron and C.fi. represents complex conjugate. The

asymptotic behavior of (12) is given by

y irp V TTP

where

J, «ZV /„ 2fr -arc, T(H>*Z\fy) +IJ -Tj
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The irregular solutions of (ll) with the same asymptotic behavior and rel

ative phase may be obtained from the regular solutions by replacing / by -/ .

They are

in which

-y +uzW/p
Their asymptotic behavior is given by

where

The solutions in the case of the finite nucleus may be expressed in terms

©f (12) and (13),



=13=

in which

ys (fG, -&X i*y

>fiG -CiS/y
'̂•&A

u?kJ jiw u ^7..

where th© j; and G-- are the solutions inside th© nucleus, and

Mil = \r(t*uzvA)l \rt-jt* 'll
x(-y) \T(-y+>*zytf>)\ lr(3.y*>)'

J
in which

*>Vl

Jar}

t*Y> njl£A&^^

i2- fry +(«i)2-v(v+0

z>n

1 =

P

At th© nuclear radius we have

2££-) - -« _^^ -3i»Q+">n' -

with a similar expression for



We assume the extreme case of the shell model for the nucleus in order to

determine ( /C' Jv ° In th.® table below are given values of the ratio [ftG/Q J^

for Z - ** 0, fO } W~* / / , S and ft'- ± j ± S

V--/J

- 0.0012

- 0.028

0.251

- 0.065

+ 1

0.093

0.95

1.005

0.395

0.00015

0.00010

0.0022

0.133

+ 5

- 1.53

- 16.5

0.085

- 1.15

In the case of n - -) this ratio has also been calculated assuming a para-
in r^

bolic charge distribution/in the nucleus and the ratio of charge density at the

(8)
;e of the nucleus to its density at the center as given by Feenberg' *„ The

results are

2* jo ,W* s

O, 00//

-a. ooot

<?. 37?

- o. of/s-

The ratio (W) behaves in a similar manner. In those cases where the
••*••'

ratio is small, the effect of the finite size of the nucleus is small. In the

other cases it will be necessary to investigate the rate at which the ratios de

crease with increasing Y before the effect of the finite size of the nucleus
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may be determined.

IV The Bound-State Wave Functions

The wave functions for the K-shell are determined by means of a perturbation

calculation. For Y? R* the potential is Coulorabian V* -<&Z . Assuming
the extreme case of a shell model for the nucleus, th© potential for Y+ R. is

given by

where

r'-«*(*-*)
is the perturbation.

The unperturbed solutions of the Dirac radial equations are the Coulomb

functions

(15)

in which E is the energy inclusive of the rest energy, rt's. C{ li3ti) ,.,} \* VI' El
and the Jrs are confluent hypergeometric functions which terminate. For small f
the solutions reduce to

Ck? Vrfry^ ./HSZT W*-(;*>.^*£)r\ (16)
* The termination of the summer visit of N. Tralli prevented the inclusion of this
investigation in this report.
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The perturbed functions are

Tpc. jjtc+ £« ^j J,*. P,F+PY

and the perturbed energy is

£-- e. + e,
in which the unperturbed wave functions are the K-shell Coulomb wave functions

$.«-- /XT U*2)y*y[ r?
/z J(sy+i)

]/Ir(iyH)
and

**. « 7 - \//-«*2'

The perturbation energy is given by

£=fV(ff.c** JP/V-'r - «ZZ~ (*u2&Yy

F.r Z-*«, e, => :*** (%. * »•»¥) ^ u small8r for amller^ .
The perturbation to the wave function is given by

p« ~£* £*- £„
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From the orthogonality relations for the spherical harmonics, ^K vanishes un

less both wave functions belong to the same A (~"'/. Writing We,-1 as th© wave

function belonging to Kl'-O j»\"-' and ir0',-/ as the wave function belonging to

fl'j K"-/ , then

«•

in which

yr(w-) . /FT /ZIfazTXJ

The ratio of the first term of jP to the unperturbed wave function

is of the order of - 6 x 10 for % " 20 and -4 x 10 for jjf - 90 at th© nuclear

radius. Thus the first term of 2J, constitutes a negligible correction to the

unperturbed wave function T^, . The contribution of successive terms is decided

ly less. Similarly, the perturbation term ^ is a negligible correction to the

unperturbed wave function %>B ° Consequently, the effect of the finite size of

the nucleus on the K-shell wave functions is negligible.
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