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01 APPROXIMATE RELATIVISTIG WAVE FUNCTIONS

AND INTERNAL PAH FORMATIOI

•Jo Lo Jackson

lo Introfeetiwi

An investigation was made of the possibility of extending the Born

approximation calculation for internal pair formation to take account of

terms of order diZg where Oi is the fine structure constant and %is the

atomic number of the nucleus0 A calculation of this type would extend our

knowledge of internal pair formation to higher 2 as the Bona approximation

is valid only for =£LSL=, small compared to unity» The major part of the
ir

work done involved a study of approximate relativist!© wave functions for

electrons in a Coulomb field which9 at infinity9 are moving in a fixed

direction* Such wave functions have a much wider area of interest thaa the

confines of this probleiio The results of this investigation were negative

in the sense that none of the methods considered led to a way to perform the

internal pair formation calculation Herein, a review of the various approaches

that were attempted and the reasons for their failure will be given0

In the Bora approximation calculation,, the effect of the Coulomb field

of the nucleus upon the electron is negleetedo Using Dirac plane wave functions

for the electron,, the probability for the transition of an electron in a

negative energy state to a state of positive energyp under the perturbing

action of the radiation field associated with the nuclear transition^ is

calculated„ To carry this one step further on® must improve the electronic

wave functions so that they satisfy the Dirae equation for a particle moving
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in a Coulomb field of charge Ze up to the first order of c( Z0 Three methods

of obtaining such wave functions were considered. They involved?

1) Using Sommerfeld-Maue wave functions2

2) Using the integral equation satisfied by the wave function

(obtained from the Green Function)

3) Expanding the correction to the plane wave in plane waves,,

One may obtain a Green Function for either the first or second order Dirae

relativistic equations, A proof that these both lead to the same integral

equation is given in Appendix B«

IIo Sommerfeld-Maue Functions

The Sommerfeld-Maue wave function for an electron may be written

(i) v - n>o+— -27— %

where

(2) U) m e F(- n, 1, u) P (p) .

Here u =i(pr - p»_r)„ n s d z/i^n and P(- n, 1, u) s l - -22$- *^zJl u2 +. ...
•J* o *•• O ™ 0

It is understood that in the second term of the right side of equation (2) the
ip.j£

operator "grad" does not act on the factor e of ip , as the addition of
' o

this term would change the zeroth order part of the wave function,.

This wave function satisfies the required equation

(o( . EZ3& +/? -E-JL£) f »0
-* 1 T



up to the first order of qfZ0 In addition, however, it contains terms of

higher order in oC Za One then has the choice of attempting to proceed

with the wave function as it stands and perhaps, after evaluating the matrix

elements, setting terms of order (oCZ)"1 and higher equal to zero or one may

immediately take only that part of the wave function up to the first order

of Oi Z and try to use that to evaluate the required matrix elements0

If one attempts to use the Sommerfeld-Maue wave function as it

stands, one must perform integrals of the types

dre^l4L (r) rt CO eln F(- nTTS 1, u)*/ v-V « *v- «n

No method of performing this integral in closed form was found. Apparently

the mode of procedure would be to use the Rayleigh expansion for e ^

and for the remaiming part to use the expansion

,} **l'*jim - if U) =V £0±^=J1 e"iPl1 "(2ipn r)^

XFflf^tl n9 2X+• 2$ 2ipn r)P^ (cos 6 )

where P(X) is the gamma function of /Y and 9 is the angle between the

vectors pT_ and r,
-411 -»



The performance of the angular integration leaves one with a double

sum where the range of one of the parameters of summation is infinite. The

coefficients of these sums involve the linear coefficients of vector addition

and radial integrals. The radial integrals apparently do not converge term

by term.

If, on the other hamd9 one attempts to work only with that part of

the Sommerfeld-Maue wave function that is at most of first order in <X Zs one

obtains for the wave function

V -L^u) e f(p) -/- ~F~ "Cp) £ *grad L^u)

where

Ljiu)

This wave function, however, has shortcomings. Although it satisfies the

Dirac equation to the first order of o( Z, It does not remain finite over all

space. It may readily be seen that the above function diverges logarithmically

as u approaches infinity. This difficulty may be circumverted by adding terms

of higher order im <X %so that it remains finite for large u0 A way to do this

without returning to the original Sommerfeld-Maue wave function and its

otZucomplications would be to multiply the divergent terms by B~cLZuo Again

however„ no way was found to evaluate the matrix elements.

s>



IIIo Integral "Equation

Another attempt to obtain an improved wave function was made using

the Green function of the Dirae equation. This may be obtained most simply

by multiplying the Dirac equation

by the adjoint operator «___£__„. + fl -f- eo one then obtains

(5) (V2^ p2) tf s {&JL*ZZ1 ^ + E)? p/

where we have let p2^E «= 10 The Green function of the operator p2> p2
is well known and may be written as

ip/r - r8/
(6) G(r. i-») s » _!«. g1; V-» ' 47T /r -r'/

O^ must therefore satisfy the integral equation

ip •r T ip/p = p8/
(7) <f «e"* "* p(p) - Idfc' e •* ~> '(e(. gradVi^tE)V(r»)^(p«)//r -r»/

where grad8 is the operator gradient with respect to the primed coordinate.

If one then sets V s„ <%% /rt f one may obtain the first-order approximation
ip - r!

in <%'& by setting the ^ that occurs in the integral equal toe4 "* P(p),

The resulting approximatiom wave function is



ip • t^
:s) f = »•* -» rep) +•

4^ Jr»r8| 1 - "~~-T" _. t I

In evaluating the integral over the second term in the braces, after expanding

ip|r - r° / 1|» *J*'
8 ~* //r - r8/ and e and performing the angular integration^

one is left with radial integrals of the following

r

H . (pr) J J (pr8) J (pr«) -f
£f* r»sO £H ^i

^+i J ^V* ' ^Vi

co

r

8 H^ (pr8) Jd (pr8;
I

p'sp

As the second term of this expression is divergent one apparently cannot make

use of this approach for improving the wave function,

IV, Expansion in Plane Waves

As the matrix element is readily integrated when the initial and

final states are plane waves (as is the ease in the Borm approximation),

a convenient way to express the correction term to the plane wave, LL>* s would

be as an expansion in terms of plane waves. One would therefore like to write



V
(a)

where r = J>
A r

isl

-9-

i p0- r (s)

i k • r (s)
ofk b±(k) e "* •* p (k)

and /""' (pQ) is the s-th Dirac plane wave spinor. The sum is over the four

Dirac spinors of an electron with momentum (k). If one then inserts this

(•a) "*
y into the Dirac first order equation and neglects the term V y't one

obtains

i p0< r (s)(at .EM +/? _^J?'-_ye -> -* p (po)

Inserting the expression for <^'from equation (9) and putting V = -oC Z/n

the resulting equation isg

(id ]T &\ b1^) /e1 -eJ
isl J

i k ' r i

« ~* r (k)

B+ _££L e ~» ^ T i
r ^

E1 ~+ / k2+ 1 fop i s 1, 2Here

_ - /k2+. i i s 39 A
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(i)Introducing the notation fj '(k)for the j~th component of the i-th Dirac plane
wave spinor and making use of the Fourier Transform Theorem one obtains the

following equation for the b^Ck)

i«l L J A •+ J (2^)3 r it %o>

Evaluating the integral on the right side of equation (12) and making use of

the orthogonality properties of the QT^k) one obtains

(13) bJ(k) .--2* V 14^1^ U <£p>
'-* 27/2 Z_ . I2

One may then write for the m-th component of f'

n 2ir2 —> /- i 12 -£- ~——~——J ^ /Po -_$ I J«l Ej-E.

Following a procedure identical to that of appendix B (see equations B-6

and B-9) and letting E2 2k2-/- 1, the result for ^'is

(15) f' , - « fd3k .*•* _..<$• 4*/*+'.>
2W J "* (k2 =Po2)|po=k|2

This correction to the wave function apparently is infinite due to the singularity
atk=p0.
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Conclusioa

It would seem that one can not treat a pure Coulomb field as a small

perturbation acting on a plane wave and get non~divergent answers. The only

approach considered which did not lead to divergencies was the one involving

the Sommerfeld»Maue wave functions where the Coulomb field is not part of

the perturbation but the term involving otZ/p is part of the zeroth order

equatio**, A possible method of procedure might be to use a screened Coulomb

field. This would certainly eliminate the divergencies that occur in obtaining

approximate wave functions but would undoubtedly further complicate the

calculation of the internal pair formation,

I wish to acknowledge my indebtedness to Dr„ M„ E, Rose for suggesting

this study and#for his valuable guidance while the work was in progress0
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APPENDIX A - Notation

Following the notation of M„ E, Rose1, Internal Pair Formation

one writes for the ratio of the number of pairs per second with the electron

and positron travelling in the solid angles d-/i_ and dJl respectively and

the positron energy between W^ and W_^ + dW to the number of quanta per

second

where oC is the Dirac matrix vector, p_^ and p^ are the positron and electron
momenta respectively, k is the energy of the gamma ray, and f and if_ the

wave functions of the positron and electron respectively. The radiation

field is represented by the ¥ and A in the gauge where

a) electric 2 pole

j? =1 H =1l j

(A.2) Asc x^±n IH±^1A^A + ;r (kT)

^iC^ I» ^ (kr]
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b) magnetic 2 pole

Vi •%! U - a)(^+«-fl)A ^+1 ^(kr)

A-i s(k yC^>m)U - BtD/2 ^"1^

A°s /f"m ? ^(kr)
V s 0

Here C« = / ——,2 •
* / fl-/ U+- 1)

Vl ^/J (** **V' A-l =K4"^ViAy)/o S
and

^ (x) =/5yS H^ (x)

where H^ Ax) is the Hankel Function of the first kind. The normalization
2

is l/ff k quanta/seco
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APPENDIX B - Equivalence of Integral Equation Obtained for the First and

Second Order Dirac Equations

The integral equation obtained for a solution of the Dirac equation

of second order in Section III was

(B-l) f be~ ^ p(p) -
r

- A — /£-i +/6^Ej V(p8)<^
r p- p« I i / "* 7Air

ip/$ -2
e

4Tf/r -_p»J

cos p|r - r8|
ZrFj p-p« /

sin p/r - r'^

47T|r -r»(

In order to be able to compare the above integral equation with the one which

will be derived from the Dirac first order equation, it should be noticed that

the Green Function

may be replaced by

as their difference

is a solution of the

homogeneous equation,, Making use of

(B-2) 0 s arV./£ Q^pU-J;'! v(pi)^(pi)
p = r

for a well behaved ^(r8). We may then write

(r»)
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0 =
•f cos

d-K' plr»
p - p»

oC • grad> V(p') ^(p»)

+ «' V(r>) f (pi)of. grad8 cos, P<£ ~•£'/

One may therefore rewrite equation (B-l).

(B-3) <?<$ .e^ T(p) -fe ^kp'l^Ejv(,.) f(*')
47Ti

r

dtf< V(r8) ^(r;)cy.(r8 -r)(Psinp/r -r'/ coa p|4-r'/

It will be shown that the Green Function of the Dirac first order equation

leads exactly to equation (B-3),

The Green Function of the Dirac first order equation is a four by

four matrix which satisfies the equation

4

(B-4) ]><$•*?*+/*-«o>, G(r, p., jsk)
3*1 '*J

=<f(r-r>)cf,
•* "* *k
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If one writes

(B-5) cT(r-r«)^ = J
•* ~> /k f-.

i«l

r

^3 e ^^(p)^)
(i)

where l £ (p) is the /-th component of the i-th Dirac plane wave spinor
Ti)

and f^ (p) is its complex conjugate, one sees that the Green Function may

be written as

4 p
d3p

-*» _e, ?^ r,"* ?*(B-6) G(r, p«; J, k) s y
i»l W E. -E0

Multiplying the numerator and the denominator of the right side of the preceding

equation by Ei + E one obtains

(B-7) Q(r r'jj.k) -ol
r

<2^)3 E,2-K2
i o

rj <J} rk (4>

+ 2
i-l

i=i

r 3 i^. (r-pi)

(2TT)3 E 2 - E 2
i o

n(i),. p(»
Ei r] ^ rk <5>

Equation (B-7) may be put into convenient form by making use of the orthogonality
r-(i)

of the / . and by applying the following theorems
J
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(°)(b-8) £ Eir/(4) C(p) =<i-4^)3k

This may be demonstrated most simply by observing that the result of operating

with the matrix on the left side of equation (B-8) or any of the four Dirac

plane wave spinors of a particle of momentum p is the same as that of operating

withoC' p+/* , i.e.

k«l isi ^ ->

i-1 ^

s Es P 1 (p) (s « 1, ,,4)

(J s 1, .o4)

As any spinor may be expressed as a linear combination of the four Dirac plane

wave spinors for a particle of momentum of momentum p, this proves (B-8).

Therefore we may write

(B.1G) o(„r.jJfk)S | A &Al41±ilL^^L
(27T)3 2 2

P - P,
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where we have used E2 s p + 1 and E - p -/- 1=

Making use of the following integrals

(B-ll) '

and

(B-12)

ip.(r-r«)
cos p (p- p«/

(27T)3 (p2 - Pq2) Atf/r-r'l

ip . (r - r8)
d3p cC. p e^ •* "*

^)3 (P2-P02)

ioC • (p - pi) /cos pi P - P8|
•—— -—_ j — .i. p sin p / p - p«/
47f/r-r8/2 1 / - -. I r ° P°'-> ">'

one finally obtains, upon suppressing the indices j and J&

{/8 +B0) cos P0|^- r' |
"*'"* 47// r - p«

-f"

io(.(p - r8)

47r/r - r8 p - p8

cos p I p - P8/ J
of -> ->•» . I .1 '

— 4- p sin p p - r8 /i *o ol »^ _* '
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<*. • grad
as the Green Function of the operator ^=* 1 fi - EQ, Using this

Green Function one then obtains an integral equation for the solution of the

equation

fsL^+^-Op.-vj"

which is identical with equation (B-3).
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