


UNCLASSIFIED
ORNL=476

This document conszists of
pages,

Copy_ 7 _of 139 s:ries 4
ISSUED:

oY

£

¢

Contract No, W=7405, eng 26

PHYSICS DIVISICN

ON APPROXIMATE RELATIVISTIC WAVE FUNCTIONS
AND INTERNAL PATR FORMATION

J. L., Jackson

Date issued
JCT 25 194¢

OAK RIDGE NATIONAL LABORATORY

operated by
Carbide and Carbon Chemicals Corporation
for the
Atomic Energy Commission
Post Office Box F
Oak Ridge, Tennessse

UNCLASSTFIED

TR

3 445k 030457 O




UNCLASSIFIED
ORNL~=479
Physics=General

N

OAK RIDGE NATIONAL LABORATORY INTERNAL DISTRIBUTION:

1. G. T, Felbeck (C&CCC) 11, Central Files 21, A, M, Weinberg

2, 706=A Library 12, Central Files 22, J. A, Lane

3, 706-A Library 13, J. A, Swartout 23, A, Hollaender

L. 7T06=B Library 14, J. H. Gillette 24, R, N. Lyon

5, Biology Library 15, A. S. Householder 25, M, M, Mann

6. Health Physics Library 16, J. H. Frye, Jr. 26, M. E. Rose

7. Training School Library o J. Murphy 27. C, E, Larson (Y-12)
8, Training School Library M, D, Peterson 28, W. B, Hume (K=25)

9. Central Files 19. C., N, Rucker 29, Central Files (O.P.)
10, Central Filss 20, W, D, Lavers 30, Central Files (0.P,)

OAK RIDGE NATIONAL LABORATORY EXTERNAL DISTRIBUTIONs

31-38, Argonne National Laboratory 10/, North American Aviation,
39, Armed Forces Special Weapons Project Inc,
4L0-41. Atomic Energy Commission, Washington 105, Patent Advisor, Washington
42, Battelle Memorial Institute 106, Rand Corporation
43=50, Brookhaven National Laboratory 107, Sandia Base
51, Bureau of Medicine and Surgery 108, Sylvania Electric
52, Bureau of Ships Products, Inc,
53=56, Carbide & Carbon Chemicals Corp. (K-25) 109-123, Technical Information
57-60, Carbide & Carbon Chemicals Corp. (Y-12). Branch, ORE
61, Chicago Operations Office 124, U. S. Public Health
62, Cleveland Area Office Service
63, Columbia University (Dunning) 125, UCLA Medical Research
6. Columbia University (Failla) Laboratory (Warren)
65, Dow Chemical Company 126-130, University of California
66-71, General Electric Company, Richland Radiation Laboratory
72, Hanford Operations Office 131-132, University of Rochester
73, Idaho Operations Office 133, University of Washington
74=75, Iowa State College 134-135, Western Reserve Univer-
76, Kansas City sity (Friedell)
77-80, Knolls Atomic Power Laboratory 136-139, Westinghouse

81-83, Los Alamos
84, Mallinckrodt Chemical Works
85, Massachusetts Institute of Technology (Gaudin)
86, Massachusetts Institute of Technology (Kaufmann)
87-89, Mound Laboratory
90-91, National Advisory Committee for Aeronautics
92-93, National Bureau of Standards
94,-95. Naval Radiological Defense Laboratory
96-97, NEPA Project
98, New Brunswick Laboratory
99-103, New York Operations Office

UNCLASSIFIED



ON APPROXIMATE RELATIVISTIC WAVE FUNCTIONS
AND INTERNAL PAIR FORMATION

d. L, Jackson

I. Introduction

An investigation was made of the possibility of extending the Born
approximation calculation for internal pair f@rmati@ml to take account of
terms of order of %, where OC is the fine structure constan® and Z is the
atomic number of the nucleus, A calculation of this type would extend our
knowledge of internal pair formation to higher Z as the Born approximatiom

o

is wvalid only for U(Lx small compared to unity. The major part of the

work done involved a study of approximate relativistic wave functions for
elsctrons in a Coulomb field which, at infinity, are moving in a {ixed
direction. Such wave functions hava a much wider area of interest than the
confines of this problem, The results of this investigation were negative

in the sense that none of the methods considered led to a way to perform the
internal pair formation caleculation., Hersinm, a review @f the various approaches
that were sttempted and the reasons for their failure will be given.

Tn the Borm approximation calculatiom, the effect of the Coulomb field
of the nucleus upon the electron is neglected, Using Dirac plane wave functions
for the electrom, the probability for the transitiom of an electrom in a
negative energy state to a state of positive energy, under the perturbing
action of the radiation field associated with the nuclear transitionm, is
calculated, To carry this one step further ome must improve the elsctronic

wave functions so that they satisfy the Dirac equation for a particle moving



e

in a Coulomb field of charge Ze up to the first order of o Z, Three methods
of obtaining such wave functions were considered, They involved:

1) Using Sommerfeld-Maue wave functions®

2) Using the integral equation satisfied by the wave function
(obtained from the Green Function)

3) Expanding the correétion to the plane wave in plane waves,
One may obtain a Green Function for either the first or second order Dirae

relativistic equations, A proof that these both lead to the same integral

equation is given in Appendix B,

II. Sommerfeld-Maue Functions

The Sommerfeld-Maue wave function for an electron may be written

1 & grad W

(1) Y = qlo‘/' 1 SE
where
ip-x
(2) Y = e " F(-n, 1, u " (p) .
o >

Here u = i(pr =£¢_¥’), ns Az/1V, and F(= n, 1, u) = 1 - B Bn = 1)

1t 21 21
It is understood that in the second term of the right side of equatiom (2) the
ip -~
operator "grad® does not act on the factor e of "Uo” as the addition of
this term would change the zeroth order part of the wave function,

This wave function satisfies the required equation

. grad W E .. 2d
(4 i-z-,<?E 1.)51/0

+ oo o
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up to the first order of Q' Z, In addition, however, it contains terms of
higher order in A Z. One then has the choice of attempting to proceed

with the wave function as it stands and perhaps, after evaluating the matrix
elements, setting terms of order (o Z)2 and higher equal to zero or one may
immediately take only that part of the wave function up to the first order
of o 2 and try to use that to evaluate the required matrix elements,

If one attempts to use the Sommerfeld-Maue wave function as it

stands, one must perform integrals of the type:

oip - i A
jd'fe ‘31’37& () Ty (a,) o3I g n oy 1,

No method of performing this imtegral in closed form was found, Apparently

’jﬁI.—I;
the mode of procedure would be to use the Rayleigh expansiom for e

(3)

and for the remaiming part to use the expansion

oo

iBrr"L + X . “ippp ¥ A
(3) e I _’F(“’ nIIg 19 ‘Ul) = ;O :A(%:F(l - ;?’)‘ e (2ipII I")

P_ (cos 6)

XF(1+Ad + n, 21+ 2, 21p__ 7) )

where [7(X) is the gamma functiom of X and © is the angle between the

vectors_gn and};o
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The performarce of the angular integratiom leaves one with a double
sum where the range of one of the parameters of summatiom is infimite. The
cosfficients of these sums involve the linesr coefficients of vector additiom
and radial integrals, The radial integrals apparently do not converge term
by term,

If; on the other hand, one attempts to work omly with that part of
the Sommerfeld-Maue wave fumction that is at most of first order im %, one

obtaing for the wave fumctiom

83 33
(4) % Ly(u) e [ f(};) + %E‘F‘ /-'(_g) % ¢ grad Ly (u)
where
u

9

L) S1-n =1 4x
©

This wave function, however, has shortcomimgs, Although it satisfies the
Dirac equation to the first order of o Z, it does not remain finite over all
space, It may readily be seen that the above function diverges logarithmically
as u approaches infinity, This difficulty may be circumverted by adding terms
of higher order im & Z so trat it remains finite for large u, A way to do this
without returning to the original Sommerfeld-Maue wave functiom and its
complications would be to multiply the divergent terms by @icLZuo Agaim,

however, no way was found to evaluate the matrix elements.



ITI. Integral Egquationm

Another attempt to obtain an improved wave function was made using
the Green function of the Dirae equatiom. This may be obtained most simply
by multiplying the Dirac equation

(g 8210 .m¢ a-v¢

by the adjoint operator imgfg +/ + E, One then obtains
i

? 2 :‘2 ’ d
(5) Virsuy s (ELEZ Lo+ By

where we have let p2 s E:2 = 1, The Green function of the operator 72+ p2

i2 weil knowr and may be written as

X ip/r c_r“/
) g8 = €

({/ must therefore satisfy the integral equatiom

ip.r . ip,r = p!
(M ¢=e>2 ) =fdt s 7 7 g eradt /1A EN ()Y (1) /| - v

where grad! is the operator gradient with respect to the primed coordinate,
If one then sets V & - qZ /x', one may obtain the first-order approximation
ip- »!
in A& by setting the ¥/ that occurs im the integral equal to eg ~ Mip).
-

The resulting approximation wave functiom is
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K]
ip- z
a >

8 Y= 7 Mip ot

ip/ = U . Pl . pd
w33 2 43 24 ei}; 3 r (p)
R 5

In evaluating the integral over the second term im the braces; after expanding

tplz =z / ip - 1!

= /ﬁi m_gﬂ/ and e > and performing the angular inmtegration,

one is left with radial integrals of the following form

.
H, ~ {pr by 1y v
Lei {pr} Jieo Zf%(pr’ ! Z+%(pr }+

=
=

oo

g T dp? 1) §
Z+'2L(p : f - H,Zwl(pr ’ JZ+-L(pT )

2 2
ri=p

As the second term of this expression is divergent one apparently cannot make

use of this approach for improving the wave functiom,

IV, Expansion in Plane Waves

As the matrix element is readily imtegrated whem the initial and
final states are plane waves {(as is the case in the Borm approximation),
a convenient way to express the correctiom term to the plane wave, ?”9 would

be as an expansion im terms of plane waves, OUne would therefore like to write
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() _ 1 Po- () /
r (}3,,)1‘-5”

4
, ik-r (s)
where Y’ = z ‘ﬁ;{bi(.],c) e 77 [ (}_g)
i=1

(s,
and /7 on) is the s-th Dirac plane wave spinor. The sum is over the four
-

Dirac spinors of an electron with momentum Qc)o If one then inserts this

(s)

4 into the Dirac first order equation and neglects the term V ¢/, one
obtains
ipo-p (s)
7 rad ‘=
(10} LB+ p =B Z-ve = T [ (g

Imserting the expression for ¢/”from equation (9) and putting V= - & Z/n

the resultirg equation is:

-

u ik- i
(11) Z qikbi(_})c)[Ei=EO]e}£ M )

i=1
: (s)

o
5 + e I —?/—’ (ps)
r >

i ¢ 2 =

Here E- =+/ kK +1 for 1212
2



i
Istroducing the motatiom r'§ )(l_g)for' the j-th compoment of the i-th Dirac plane

wave spinor and making use of the Fourier Transform Theorem one obtains the

following equation for the bi{k)
-9

4
(12) i i S -ik-x ip -3, (s)
eren] (Ve B s s (0

Evaluating the integral on the right side of equation (12) and making use of

i
the orthogonality properties of the [ l( )(}g) one obtains

&
Jipy & L Bt O

mo a2 —-)/eg]_/p -kT 351 E, - B
X - J o 7o

Following a procedure identical to that of appendix B (see equations B-6

and B=9) and letting E° = k2+ 1, the result for (P’is

159 v's. 2[5 B3 (£ kX+4+E)
—~ap —
2T (k2='P02)|Po"kl2
-

This correction to the wave function apparently is infinite due to the singularity

tk=p.,
at k Eﬁ’
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Conclusion

It would seem that one can mot treat a pure Coulomb field as a small
perturbation acting om a plane wave and get non-divergent answers, The omly
approach considered which did not lead to divergencies was the ome involving
the Sommerfeld-Maue wave fumctioms where the Coulomb field is not part of
the perturbation but the term imvolving o(Z/r is part of the zeroth order
equation, A possible method of procedure might be to use a screened Coulomb
field. This would certainly sliminate the divergencies that occur im obtaining
approximate wave functions but would undoubtedly further complicate the
calculation of the imternal pair formationm,

I wish to acknowledge my indebtedmess to Dr. M. E. Rose for suggesting

this study and for his valuable guidance while the work was im progress,
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APPENDIX 4 - Notatiom

Following the notatiom of M. E. Rose19 Internal Pair Formatiom

one writes for the ratic of the number of pairs per second with the electrom
ard positron travelling in the sclid angles d/_ and ﬂ.ﬂg‘reSpectively and
the positron energy between W+_ and W4.'* &W+ to the number of gquanta per

second

(A1) aY, (W9 4 s g )= —?-(-% D P Zl’w_ v+o(-AM)'2 dn - aw
327 > *

where C( is the Dirac matrix wector, p, and p_are the positron and electrom

momenta respectively, k is the energy of the gamma ray, and ?Q_ and Y. the

wave functions of the positrom and electrom respectively, The radiatiom

field is represented by the V and_ﬁ in the gauge whers

£ 5ol

a) electric 27 pole

2L+ Sl Len-1 _m+l ﬂ
= Y kr)
H £ Yz ,Z +1)(2 4 = 1) L =1 );e=1( ’

QQ/Z'?"l) /(/Z-/-m)&j_* me 1 m+1 /
f17° = X X, ., ()
-1 (2£+1(24+2) 21 Y1

ﬁgﬁ;i;ll Af + m)\/? = m} Ym ;{ (kr)
bo e (24+1)(24 -1y A1 TX-L

V-E-’iclﬁ yi?‘ Zz {kr)
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b} magnetic 2 pole

4, =¢, [ (L - m)(Ltn+1)/)2 Y;H'l Ay ()

+1

hj=c, ﬂ£+m)(£ - m+l)/2 YE’IZ_A (kr)

c
ho Fm T X, ()

V=0

- 2
Here C.C FELFT 9
A :—L(x&-/-iA) Az =ie(a _3a)A =4,
+1 Yz Tl oy VX Tylvo
and

Z,Z (x) = 'W"/2X H£+ _é_(x)

where Hﬁ %(x) is the Hankel Function of the first kind, The normalization
+

is 1/1T2k quanta/sec,
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APPENDIX B = Equivalence of Integral Equation Obtained for the First and
Second Order Dirac Equations
The integral equation obtained for a solution of the Dirac equation

of second order in Section III was

-i 1 ip/r-r'l ad !
('U:e P3 I-r()_ dat e /3( grad +/8+E) V(r')%(r')

L rar“
$

In order to be able to compare the above integral equation with the one which

will be derived from the Dirac first order equation, it should be noticed that

the Green Function

ol - 3

z

may be replaced by

cos ;Jgi-qu

as their difference
IEREY

oin g - 2]
‘g -3

is a solution of the

homogeneous equation, Making use of

(-2) o= |ad ' [ 2 BE 2 v e
|5-3

for a well behaved {/(r'). We may then write
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o
0z | gg o8 plz‘, l;, of o grad' V(z') ¢ (z')
——y > - -
— -)’

+ | & V) Pl g graat cos p|z - x'/

13-

One may therefore rewrite equation (B-1).

ips r ¢
= 55 _ | 4% cosp - 3" 1 1
(B-3) (,V(_I;) e F(g) 7 Iil;"lf;'/ 5+E} viz) ¢ ()

- v Y g iy - p sl gl e sl -

+
L1 /};_};,/2 /3;-};,3

It will be shown that the Green Function of the Dirac first order equation
leads exactly to equation (B-3),

The Green Function of the Dirac first order equation is a four by
four matrix which satisfies the equation

A
(B-4) 2 (g(> . %59' + 4 - E, G(r, »', §, k)

)
Ja1 £

= $(3-_§;')J2k
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If one writes

4 ips (r=r') (1) (i)
_ ot - Z d3g 253
e I3 )cf;k =i | (2m)3 ° Mg ® r e B

(1)
where [ l. (p) 1s the £ -th component of the i-th Dirac plane wave spinor

and r (p) is its complex conjugate, one sees that the Green Function may

be written as

4

(B-6) oz, 55 1, 1) = Z

=1 (27r)3 Ey - E,

ip - (r-r!)
Py

Multiplying the numerator and the denominator of the right side of the preceding

equation by Ei+ Eo one obtains

4 —_—
3 ip* (z-z') (1) (1)
(8-7) G(r, r'; j, k) = E i “S >
il ° ;1 (7 )3 Eiz _ E02 F.‘I S—E) r'k (g)
4 ip « (r=-r') 7T
a3 B" \5L (1) (1)
+Zl (2%3 eEiZ 52 "y n )
(o]

Equation (B-7) may be put into convenient form by making use of the orthogonality

of the F (1) and by applying the following theorem:



=] T

4 : —_—
(1) (1)
(B-8) ; 50 @ N ggea),

This may be demonstrated most simply by observing that the result of operating
with the matrix on the left side of equation (B-8) or any of the four Dirac

plane wave spinors of a particle of momentum p is the same as that of operating

—’
with _o_()a};-i-,@, i.e,
4 4 S
(1) (1) {s)
(B-9) E TG 7w | T (o) =
kzﬂl ; i j -> k - k
{1)
- )
= 1 '3 1
2 e
= E, F§s)<_p>) (o= 1, ..4) ‘
(3 21, ..4)

As any spinor may be expressed as a linear combination of the four Dirae plane
wave spinors for a particle of momentum of momentum p, this proves (B-8),
-’

Therefore we may write

3 5+ (")
B (KR +L+Ey)y e
(273 p2 - p02

(B-10) G(_I;,g'; Jy k) =
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2

where we have used E2 gz p?-+ 1 and E_ Poz'* 1.

[ 1]

Making use of the following integrals

g ei-B' (z-z')

cos P, lr - r'l

(B-11) ° B =
(277)3 (p2 - poz) 47 [r - x|
and
ip.{r -r!)
3 R
(B-12) "R &3 e -

1% (p-x") cos pol%';f}."'l .5, sin po/
7f/r - r'/ 2 r - !
4 > / -»> - l

one finally obtains, upon suppressing the indices j and L

G(r, rt) = (@ +Eo) cos po,:zéﬂ—z;'l
o er 4 L7r/3;°:£'/

iy =7 ¢os - !
9(>\—> »> Po'j; ->‘I

arls - 55



=19~

A » grad
28 the Green Function of the operator 2—1———- -+ A& - By. Using this

Green Function one then obtains an integral equation for the solution of the

equation
o + grad '
NPT

which is identical with equation (B=3).
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