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ORNL-403

SOLUTION OF THE DIFFUSION EQUATION WITH STREAMING FOR THREE BASIC

TWO MEDIUM GEOMETRIES

1
D. W„ Whitcombe and Nicholas M. Smith, Jr.

INTRODUCTION

The need has long been recognized for a report containing the

solution to the elementary diffusion equation (more properly called the

2 2Helmholtz equation), y (f> .k p 0, for various two medium geometries

where some of the boundaries are not perpendicular to the diffusion current,

i.e., where the boundary is not co-incident with an equi-flux surface.

When this more general condition exists there is a net current parallel

as well as perpendicular to the boundary; and this condition is designated

as "streaming". This report presents many solutions of this type for three

different basic geometries encountered in practice. Although there are

several other interesting geometries which could be studied, among them the

elliptic cylinder and the rectangular cylinder, the three chosen should be

sufficient to obtain an approximate answer to a general problem in this

class.

The boundary conditions at the interface between the two media

require continuity in flux and in the normal component of the current.

The source of neutrons (say) is plane and uniform, either finite or infinite

in extent. The constant current leaving the source is designated by n0, and

is negative. All /'s in the report are transport mean-free-paths; the k

is the reciprocal of the diffusion length,,

On loan from the Fairchild Engine & Airplane Corp., NEPA Project.
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The method of separation of variables and the theorems of Fourier

series and the Fourier integral were used to solve the partial differential

equations occurring here. When one has solved a problem in complete detail

and analyzed the solutions obtained, he readily develops an intuition that

will enable him to write down a solution with undetermined coefficients

almost at once for a given problem. This intuitive approach is used to

some extent in this report„

The authors wish to express their appreciation to Willard Bouricius

for his critical reading of the manuscript and his many helpful suggestions.
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A„ Infinite in the x - direction

The differential equations and boundary conditions for the ease that

is infinite in length are the followings



(1) if + <f> -k2 tfm 0
*xx 7yy 1

(2) + f\,-v?roxx 7 yy 2

(3) lim f(x,y) = finite
y-»£<*>

(4) lim ?(x,y) =0
x' -**-<*>

(5) if (0,y) = n ,a constant

-6-

(6) f (x, Of) = f{x, 0- )

(7) A1r7(i,oO--A2fy(x,o.)

I-A

y2. 0, x?0)

7^0,12 0)

x£ 0)

- co < y < oo )

-cP < y < oo )

xZ. 0)

x> 0)

To solve this problem let us assume that the variables separate, i.e.

(f s X Y

Substitute in equation (l) where y> 0, divide through by X Y to get

or

X" . YB _ v 2 (y> 0, x 2 0)

-_£ «JCL •-• t2 . or2 or -^2t, s or
X Y 1

« 2
where of and ^ are independent of x and y and are therefore constants.

Further, these constants are real since X and Y are real functions.

That is, o( is restricted to the positive real axis, and -/8% t© the

negative real axis. This device is adopted to permit more simple notation in

equations to follow.



We may then write

x» + oC X = o

(8) T« - (k,2-f. cC2) Y =0

and

2„ _fv> -4 x = o

(9) r« . (k 2 - 42)y = o

The solutions to (8) are

X 5 A . cos oC x •+ B•, sin o( x

-7-

(xi 0)

(y^o)

(x* o)

(7i0)

(x£0)

I-A

- /k 2+ od2 y /k^TotTy
=Cae X + D> e' X (74 0)

The solutions to (9) are

V + T/t e

-/kT2 -/32 y +/k.2 -
I =G- • •"• +H^ex

^y

(*£ o)

2 2
(y s o, /? < k, )

=I^j cos/4 - ^ y^ j^ gin/^ - ^ y (y> 0, ^ ^ k^)

sLy+i (y^o,//^/^ k^
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Since these are solutions for every d and every /S the sum of all such

solutions is a solution,, We then have the integral solution for y^, 0.

t93 -b2+ *2y /k2+*2y
<f s J (A cosOfx+B^ sinrfxMC^ e ± +D^ e )d<*

/kl * a* -/k,2 - /*2 y /k,2 -rf2 y+/ 0^.-^+^ e^)(G/f . !* ^ J^ V
k.

k^ '- oo
(10) + I andJ and f (E^ e~^X+?0 <?*)(% cos/tf2 - k-^ 7f. J^ sin/tf -kx y)d/Cf

+ (Ek e !f!k e 1 )(Iy+M)
Kl 1

From the boundary conditions we may say

H^ , D^ , Ls 0 by (3)

F^ s 0 by (4)

Then we have

Cf ~ J (A.. cos o( x-f- B^ sin d x)C^ e

k.

-+ G-E,. e e * d^

=kl

h

/CD "k^ - / 2 2 /~2 2and f E^ e"P (1^ cos//* - ^ y+J^sinfa - ^ y)d/f

-h Efe Me x
Kl
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Now

00 ~^*+<XZ7
fx *J ( -^A^ sin rfx^-cfB^ cos qf x) C^ e x doC

f1 -/?x -W-fj+ \ -G E^/fe e d^
-kl

=ki.

I-A

—k _ j-

+J and f -E/? e"'** (1^ cos (V?2 - k^ yf J^ sin// -^ y)d^
*1 - OD

-k_x

- Ek Mkx e X

And from (5) we have

r°° -/k2+*2y /kx -|i2-/*2y
"o'j^Bct^6 dCtW -G^E^e d/f

^03 ^~kl

r& -*i /"2 ? /2 2J and J - Eg/tfd^ cos/^ - 1^ y^J^ sin//? - ^ y) d^

-Efc Mkx

Since the left member is a constant the y-derivitive of the right member

must vanish, or when y> 0
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r. ( ^ vn r /T"2"^ "Pl^***0 3 | -#B. 0^ [k^ f- <* e d<X

~ oo

kl

.v^*/:72 .-^'"'"v
1.

S^ rf (- X^/V - kx2 sin/*2 -\7+Zft1fi -kx2 cosjltf2 - kx2yE )d/f

The above identity must be satisfied by a proper choice of coefficients,

If Ex> SO aad B, 0/ is odd the above requirements are met. Then (11) becomes

-R7&^/ SSk Me 1f- I (A^ cos of x+B, sin of xJC^ e do( (y 2 0)

Btxfe if Brf Crf is odd then the integral of the sine function vanishes and

we have (12) with the constants renamed.

cP

(i) -V. f AV-i - -Z*!2**2*"•/^SB e "** J A (Of ) cos of x e d<£ (y-2. 0)
CD

similarly

o©

'„ oo

(2) -k-x / (2) -jtgVof y
SB 'e * + \ A (oC) cos Ofx e ' dcC (y£ 0)

An examination of these solutions will enable one to develop an intuition

(i) "V
that will be useful in more complicated problems. The B e would be
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the solution if only one medium were present. The integral specifies the

streaming between the two media. An intuition of this sort is desirable

because it enables one to write down the solutions immediately. This

procedure may be used in the following more complicated problems. It is

successful if one can determine the coefficients under the integral sign.

Let us now evaluate the coefficients.

From (5) we find that

k.
B^' s--2- 9 B

Ll *2

Then (6) and (7) give the following two simultaneous equations!

* no "klX no '**( [f-U) - i2U)] cos <*x d* s-kj
- CO

e --J-.

(P\<* )A1 h2+QL2+ &2U )*2J*2Z-hC(2) cos OC:

Them using the Fpurier integral theorem we obtain

m (2) no 1 no ^P(0L) - ld\c() s -^ z 2 - ~2- =g, say.
fir k^ +ct* 7T 1s.2* +ct

P\*) >i /^+i2)(0( )>2 ^^2 so
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Solving these we get

(14) A% ) =
g \^F

\2U22t«2+ \i£+*

(15) A^OC) s
- g xlh>+

\itf+<x*+X1h12+ *2

Substituting the values for the coefficients into (12) and (13) we obtain

no /kl* "o>2(16) <f c - r2 e x -f-

(17) ^:-J
no -kgx

e
k

it

n A,
o 1

It

00

-y^vFfCC)/^2-/-*2 cos oCx e
2

ary
d<* (y*o)

- oo

cP

T(oi )Yk^y-cf 2cos Ctf xefif+^T
d« (y£ 0)

- oo

where F(oC) s

kl><*2 k22"^cx2 ^2/k2Vo(V^1/k1Vo(2

The solutions (16) and (17) may be simplified further. Since the integrand is

even in c( , the integral from - oo to f oO may be replaced by twice the integral

from 0 to oo.
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I-A

I-B

The results in (16) and (17) have been arrived at only formally. One should

now check them to be certain that they satisfy the differential equation and

all the boundary conditions. This may be down in a few minutes for the

above solution and is indeed actually the case.

I Bo Finite in the x-direetlon

If the length in the above problem should be finite in the x-direction,

as in Fig, IB then we would use the extrapolation length and the boundary

n

>x

Fig. I-B

condition that

(18) <f{A, y) =0,

where Ji is the extrapolation length. Because the flux will be small on the

far boundary, it is possible to approximate X> by analogy with the one-

dimensional problem*. If we define an average transport mean-free-path, ^ ,as

)' = ^1* ^2

G„ Placzek, Phys. Rev0 72, 556 (1947),
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the approximation would not be good in the case when one of the media was a

much better absorber than the other. A better definition of the average

transport mean-free-path, ^ ,that considers this variation in absorption

would be

;> . ^ A1-^k1A2
k2*kl

Th® extrapolation length would them b®

(19) jt z x •+• .7104 ^ ,
o

the constant being derived in the reference. As an example, consider the

ease where medium (l) is air| then k^ would be very large and X. would be

£ s %0+ .7104A2 »

which is reasonable.

The condition (18) then replaces condition (4). A simple modification

of the work done above in I-A will result in the desired solution. If

cos c( i is to be zero when z s JL and still vanish when we find the z-derivitive

then we must use

(20) of -(n + i) &• ,

where n is any positive or negative integer. Then the integral collapses to

a series since it has discrete values only at a countable number of points.

The solution to the one dimensional finite problem (i.e.) without a second

mediua9 hence no streaming, would be
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(o t-\ ---f£» M*- -x)k7 W - k ch k^ »

I-B

(0< x±i)

since it satisfies the one-dimensional differential equation and fxSn0*

Cf(JL) s 0. The hyperbolic sine and cosine are abbreviated by sh and ch.

The solution to this new problem may then be written as

(21)
n sh(^ -x)k, £ (i) _ -f& +k, y

7 v, ^h ir. y ^ / neh k-, ^ £_

and

(22) <f-
n sh(*£ =>. x)k,
o _^________

kg ch kg &
2 <4(2) _, .* • An cos 0( x e

— oC

V^W*

(y* o)

(74 0)

where oC is defined in (20) „ The A£ ;and A^ are determined using the

boundary conditions (6) and (7) as before. Write them as

- m |5A n sh(^ -x)k n sh(^ -x)k
(23) J <An "V*> occtxs^ ehk^ " IJ eh k2 jt

(24) ^ (^Ax/oC2^ k/+ An2)A2/o(2 - kj2) cos «x s0
Using the orthogonality of the Fourier series, we obtain

X

(1) (21 n« / Tsh^ " x)kl sh(^ - x)k.

kg ch kg^
cos of x ddC
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The integration here is facilitated if one notes that the integral is in

convolution form0 It may then be integrated using the Laplace transform,

indicated by the operator, L. Using the theory of the Laplace transform

we find

1

L

f 3h{jt -' x)fc|

ki eh

I
*_/

3S c(x dx( e2 eh k-j^ s2 -k2 s2+ cC

The inverse Laplace transform of this expression is found in tables to be

\*

(26)

k„ ^ - cos cc -£

2 2

(1) A2)a%
a " n ~ ji

< *t|

oC r ki

1

< +

.^iCW +^AW
Solving (25) and (26) simultaneously we obtain

U)

since cos c£-*> s 0

gy say

>/«V k12"^>2/^ V*

Kc Vo Churchill- Modera Operational Mathematics in Engineering. McGraw-Hill,
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Substituting these back into (21) and (22) we obtain the solution to the

finite problem„

When y£ 0

, n.—:
n, -Ml • s)k n^ gn 1 ~] /a >k/ coa c( x. 1

^ k, eh*kl X L^t^ T^jJJ^^T^W
when y_c 0

2

1 l/oC-M^ -J^Jy
n sh(/ - x)k n«^i ^ / 1 1 KoC + k, cos cC x e^ . - __ __J««___«_____. ^. ° x > / - =__—_= I ±,

kg chkg^ t L\^\y2 tc2+*£\ ^lAVk^Ag/^kg2

There is again a symmetry which allows replacing _^ by 2__, . The series
— oO o

should converge rapidlyj probably several terms will be adequate.
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I-B«

The methods used above in I-B for the finite case involves an

extrapolation length approximation that is perhaps a poor one when x approaches

xQ0 a more exact scheme is suggested by an examination of the derivation of

the extrapolation length. The return neutron current is given by elementary

diffusion theory to be

(31) J.J. s—- -t r— <fx +• terms involving higher derivatives.

At the boundary this return current must vanish. Disregarding the terms in the

higher derivatives negligible, the well known condition is derived

(32) -£- =--Mt.V* 3
x

In the more accurate transport theory the —=-. was replaced by .7104,

The problem is now solved by applying (31) directly rather than

using the modified version of (32) as in I-B.

The statement of the problem is the same as in I-B except that

f{^s7)-° becomes

(33) fix*, y) =--j- A± fx(xQ, y) (i =1, y> Oj i=2, yiO)

which is medium dependent. This is a better approximation for values of x near

x0 since when y is large and positive the extrapolation length should depend on

/.g and when y is small the extrapolation length will be some complicated function

of A and A9o The present theory will do this and will be better than choosing
1 ^
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a single average of A. and A- that is expected to hold for all values of y.

Proceeding as before the solution is written with undetermined coefficients in

medium (1) where y 2t 0 as

(34) <f ~ Ash(xQ - x)^-!- B ch(x0 - x)^

+T C(0f ) cos C(x f- B(0C ) sin 0( xj -U2+ \2 7
— oo

nX
co

where <X (n) s ILiL . Then

(34A) fx = " Aki ch(*0 - x)kx - B kx sh(xQ - x)k±

00 r I-f Y / - C(4) OC sin 0(x + Of D(<X) cos tf x/
-oo

when x - 0, ^x(0) - n hence

-n2+*2 7

(35) n0 s - Akx ch x0 k-L - Bk]. sh ^ k-L +2.<* D(Ct ) e -1
-oo

From (33) there results

(36)

2. . 2
^ r i - /<** k,'B+^_ IC(CC) cos QC x0 -/- D(PC) sin C3C xj e 1

-03

Z~~J~ \ I- Â +V(- C(rf )Q( sin q( x •/- Of D(of ) cos of x)
-00

-£**?
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Equations (35) and (36) are now to be satisfied by a proper choice

of A, B, 0(CO, D(#) and C( . It is seen from (35) that the sum must vanish

because of the y-dependence. This may be done by choosing D(tf) an even function.

When this is done it is noticed that the second sum in (34) vanishes so there

is no loss of generality in assuming V(<X) = 0. Similarly the sums in (36)

must vanish. This is accomplished by choosing C(#) to be an even function,

when <X - n7f/x0<,

A and B may then be determined from (35) and (36) written with the

sums absent as

(37) n0 s - A ^ ch x0 kx - B kx sh x0 kx

(38) Bs-f-2-AxAk!

These have solutions

(39) a - - 2a
k-L ch xQ kx -f a-j^ sh xQ ^

no al(40) B = - Q "
k, ch x k, + a- sh x^ k.

1 oil o 1

where a^ s -yA^ ki ^Tom diffusion theory

(41) = .7104 A1 K from the more accurate transport theory.
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By defining fj%

(42)

(43]

I
n^ sh(x0 - x)kx-f axch(x0 - x)kj

x L f a. sh x k
oil o1 .

similarly, $> the solutions result in the form;

oo

7*= ^+7a(1) cos*
1 *- n

— OO

QO

x e

/oL2+ k^

I,Z , .2

^"$2 *]> ^ cos of xe
-oo

I-B»

(y-to)

(yio)

where <X. s „ The coefficients have been renamed to coincide with the
de

notation of I-B. Note that <$ would be the solution if the medium were

all (1) and $> would be the solution if the medium were all (2); the series

represents the streaming. This bears out the intuition developed in the

report,

There remains now the evaluation of the even functions An and A^

such that the boundary conditions I=A-(36) and -(37) can be matched. These

give

CO

(45) ^ (An1} "4^) cos *x="^i* ^j
and

-co

cO

2, v2 .(1)(46) ^ CA1 Ko(2^ kx2 A^VAg VOL + kg2 A^2') cos <*x =0
-oo
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>!^? ^1)+^2^?42)=0

X

To perform this integration we need determine

eh(x - x)k cos 0( x dx S I, say

Again using Laplace transforms we have

L(l \ sLjch kxQ cos qf xQ I

2 .2 2 ,2
s - k s + esc

2 w2k .__!_ -/. d
k2+ ot2 s2 - k2 oL2-f k2 s2 + q£2

(48B) I « k - sh x0 k
k2^ oC2

and from p. 1 we have
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?o k/ch kxnt (-l)n J
(49) \ sh(x0 - x)k cos of x dx = -J~ 2-

since Ol
xo

If we substitute the results of (48) and (49) into (47) we obtain

<5°) , <. , •
xo d. + K I eh x0 ki+ ai sh x0 ki

- Isame expression with the subscript changed to (2)/

= g, say.

These are in the same form as equations I-B-(25) and -(26) p. 14. Hence AR

A^ are given by I-B-(27) and -(28) where the above g is indicated and
n

Of sJilt. . The solution is then obtained by substituting for A* and A^
x
xo

in (43) and (44) of this appendix.

r- kx ch kx x0+(-l)n+1 kx sh xQ kx 1
I -* s 5 — -J- ax « 5-
1 „ w2-u k 2 x k. + d~(1) (2) _ 1 \ n rf"+• K, k, •*- ot

An " ^n " "T"
no ^^&1 i
k^ ch x ^ /- aj sh xQ k^

-[same expression with the subscript changed to (2)1

.=0 _± i^ fcu!li
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II-A-1

II. The two medium problem with two boundaries;

The geometry is infinite in the z-direction as in the problem above.

It is pictured below in Fig. II-A.

n

> *

Fig. II-A

The problem is solved with the variations stated in the introduction.

A-1. Infinite in the x-direction; Infinite plane source;

Solve the following problems and boundary conditions.

(1) if + if -k2 f =0
x ' Txx 7yy 1 '

<2> r~+r„-hrm0xx / yy

(3) » (0, y) = nc

(4) f(x,y) s #x,-y)

(5) lim f (x,y) - 0
y->«s

(x £ 0, - y0 ^ y _; y0)

(x*. 0, y> yj

( -od< y <.<*> )

( - y0s y<.y0)

(ye o)
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(6) lim f(x,y) = finite (x > 0)

(7) ?(x, y0-) = 4?(x, y.*-) (x i 0)

(8) *1fy(Xs V* =A2 ^y (x' V> (x *0)
Benefitting from the intuition developed in section I, we may guess the

solutions as

<p

i e~klX4 / A^oOcos ofxch( ii\ k2 y)d <* (-y * y0 _s j)
k- / w,

(10) fs-̂ 2 e" %. J B#)eos rf xe * drf (y _; y0)
*_. oo

The cos Qfx in the integrand is chosen so that the x-derlvitive of the integrand

will vanish. The y-factors in the integrand are chosen from the class of ex

ponential functions to satisfy the symmetry condition in (4) and the finite

condition in (6), The abreviations ch and sh are used for the hyperbolic

cosine and sine. A(qf) and B(0 are determined using the Fourier theorem

as before. Boundary conditions (7) and (8) then give the following two

simultaneous conditions.

r-—- -vAk22y0
(11) (A(qf) ch/tf -ft, y -B(d)e ) cos qf x do/ =

o

. n0 °kix „ n0 "V
*1 kg
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and

•** , — i / 2 .2 7
lk{oC)\U2-h kx2 */ot +l^2 yo+ B(flf )X2/oC2f kg2 eH*^ °} costfxdof «
oO

Using the Fourier integral these reduce to

fl "2 -/cC2+k2% nft 1 n. 1A(Cf ) ch/* * k, yo-B(0Oe SJ _- - -y-j =g, ^

and

2.

(U) A(cC) A^ofVkx2 sh U2+ k!2 V B(c* 5V*2*- k;

Solving these we get

Z*2^2kg g
(15) A(oO =

-$+K27„2 - i« - 2 *o .
2 • - 0

A2/oC2 +kg2 ch/o(2+^ y0 * ^-fi^Tk2 ah{di2+ k2 yc

(16) B(Qf) =

^2 y
2 o+ Aj/cr * k-f shfoC V- ^ yQ ge

x/*2^2 oh/ct2*^ yo+ V*Wsh/<*2+ */ *c

These results should be substituted into equations (9) and (10) to give the

solution to problem II-A-1.



-27- II-A-2
H-B-l

II-A-2. Finite plane source

If the above problem (II-A-1) be modified so that the plane source is

into medium (l) only, the solution has the form

cP

(17) 4fs
no /*£
k,

A(cf) cos Of x ch (U2+ ki2y) doc (-y0< y*y0)
L<P

(18) f
,* -Ki

rn B(QC ) cos of x e

k 2y
2 ' doc (y£y0)

(19)

where the A(o(), B(0() are the same as found in II-A-1 except that g becomes

g =

* *?+ +

B-l, Finite in the x-directions infinite plane source

If the media are finite in length the problem can still be solved.

The geometry is shown in Fig.IT.4B. The integral again beeomes a series as in

-> x

\ \ \° V \ \ \ ^
i

Fig. II-B
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I-B. The extrapolation length is again used as in I-B. The only change in

the statement of the problem occurs in boundary condition (5) which now becomes

(20) If {4, 7) =0

where Ji is the extrapolation length. If x0 is the actual thickness of the

media the X is given by,

<2D £ = x0 -h .7104 A .

The solution with the undetermined coefficients with a plane source of

infinite extent at x = 0 is then

(22) ?s -̂2 *<* X̂)kl+J An cos C(x ch/oC2 +*? 7 i^70±7±%)
1 1 — o4

n„ ah(/ - xjk, r2 -lfet2+fc,2y
<23' f - -% ch.g *>, +2-Bn cos*"e <7S To)

Proceeding now as in I-B we obtain

/ 2 2
rr 2 -"* ^ ko y0An chYoC y- kx yo " Bn e s g» defined in I-B- (25).

^ A^of2* kx2 ahjdf+k2 y0-f BB Ag^t^2 e" 7° =0

Solving these we obtain

(24) J^s
A2/oC2-y-k22 ch42 - kj2 y0^ ^rfl^ sh/d.2-/- kx2 y£
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^ L2 2 7/2L 2 Vof2-f- k22 yQ- \x gU + k± sh/qf + k± 7Q e ^

A2/o(V kg2 eh/42 - kx2 y0+ V<*2^ k!2 *&V kx2 y£

If these are now substituted into (22) and (23) the complete solution is

obtained.

II-B-2, Finite plane source

The above problem may be solved with the plane source finite in extent.

In many applications it is desired to have the constant neutron current

restricted to the inner medium. The boundary condition (3) would then

become

(26) (f z n (- yci y - y0)
x o

s 0 (y> y0, y*--y0)

The solution with the undetermined coefficients to the above problem, finite

in x-length is

pO

n« sh( Ji = x)fci \ ,/ 2 2 / »(27) ^s - =§ L4 J An cos qf x chKcf + kx y (-yQ£y£y0, 0±x±xo)
1 1 ,*o

(28) ^ s > BB cos 0( x e Z (y> 70> 0ix<xo)
•—00

The KL and B are then the same as those in II-B-1, (24) and (25) except that

g is now given by



f
ji

k-i

I
ch ji kj_

n.

P J- 2

cos Of x dx

II-B-2

n-B'-i

where Of s(a -h •§) ~^-

Using the geometry of Fig„ II-B the finite problem above is treated

with the more exact boundary condition that the return current at x - x0

in each medium must vanish,, or

/ •-?x*i ^i

where i* 1or 2depending as /j\ < JQ or Ijj > yQ<

Benefitting from the intuition developed in I-B the solution may be

writtem

co . .

31) f s £ -h y A cos Ux Qh1oL2+ K'
1 __- a x

yi

(32) f

where

l

00

cP

B cos 0( x e
n

Gs 2
kg y

n0 sh(xo - x)k£ f- a± eh(xQ - x)kt

% ch xo ki * ai sh xo ki

/ y/ £• ye

/y/ £ y,
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Setting the return current equal to zero at x s x0, one verifies that the

above equations are solutions if the An and Bn are even functions since

nff
d »

xo

as in X=B!„

Imposing the usual conditions at y • y0 of continuity of flux and

current the following two simultaneous equations results

(33) An ch l/flj2^2 J0 -Bn e 2 -J-. \ [- fx+ fj cos oC xdx
o J

o

g, defined in I-B'-(50)

27./ 2 o / o 2 v _/ 2 2 •= rol "^ kJ(34) An A1Vo( + kj sh/oC f* k2 y0-^Bn Ag/c^f k2 e ^ ° = 0

The solutions to these equations are given in II-B-(24) and II-B-(25). The

problem is then solved when A"n and Bn are substituted into (31) and (32).

II-B»-2„ Finite plane source

The above device may also be applied to the problem described in

II-B-2. Then the solution with the undetermined coefficients becomes

CO

(35" M \-
-C0

f" ^l*" J An cos of xeh/c(.2+- k2 y (/y/ _f yQ, 0±x±xQ)
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II-C-1

Jf -{dS^k2 7(36) f £/ Bn cos o( xe 2 (y2 y0, 0_V x<x0)
-<P

The A^, and Bn are then the same as those in II-B-1, (24) and (25) except

that

(37) —i— 1 - X- cos of x dx
*o J -1

Xo <*• "*" ^1 L °h X° kl * &1 Sh X° kl

II-C-1. Bare eases infinite in x-direction

A special ease of interest is the one where the outside medium is a

vacuum or a perfect absorber. This is approximated by air or by media with

small albedo. The differential equation and boundary conditions are written

as followss

fxx^fyy-kl2^s0 <**0, -y^y-y^

lim ?(x, y) s o ( - yo^ 7-iyJ
x-»oo

^ (x, h) s 0 (x 2 0)

f (x, y) - f (x, - y) (x_0,-yo£y£y)

^s«o (-y0£yiy0)

where h is the extrapolation length or

h=70-h .7104 Ax

(- «n+1
1 T-
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The solution is the same as that found earlier to be

o©
—k x ( ___———

(38) f:-2a . *^ A(o() cos o£i ch (/c(2y- k* y)doC (-y0« y* y0)
kl -L

We have one equation and one coefficient to determine. The Fourier integral

gives us immediately

(/5V 2 _ _ nrt 1
(39) A(tf )ch (/<*> k_~ h) =-f - _ 9

so putting A(c( ) from (39) into (38) we obtain the solution,

n0 -k x n f ch|foT + k, y
(40) ^> s - r- e l - ~ y a ~ cos of x dot

' kl ^ I eh/oC. + k 2 h
-oo

II-C-2. Finite in x-direetion

The above problem may be solved if the medium is finite in the x-direction.

The solution then is

n„ sh(x - x)ki r* / 2 2
if z .-& x+ >a^ cos of x ch (foe t V y) <-y0* y-yQ» °*x±*0)

k^ eh < k^ *--

where q( s (n +• £) -21

Then

(42) An ch d<L2-t ki2 *0 55s 2 o
* dC+ k2

the solution is then obtained when An from (42.) is substituted into (41).
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III-A

III. The two medium problem with cylindrical geometry

The coordinates used are cylindrical and the solutions are independent

of the angle because of the symmetry. See Fig. III-A.

(2)

Fig, III-A

A, Infinite plane source and media infinite in a-direction

The differential equations and boundary conditions when there is a

constant neutron current over the plane z § 0, and the media are infinite in

^-direction are the followings

If +~ *P + <f = k,2 ^ s 0
»rrfr7r7 ' zz 1 >

<2> ^rx +r y,^f..-^2r=0

(3) lim tf(r9 z) s 0
Z-»oD

(4) lim ^(rs >) = finite
r-»oo

^ (0, z) - finite

(rir0, zSO)

(r*rQ, z20)

(r_>0)

(ISO)

(a 2 0)
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4rs<*p o) snQ <* * 0)

0 f(r0+ ,>) sf(r0 -, z) (•* 0)

Although the solution to the above problem could be written down as in II, it

will be more instructive to write it down in detail. First let us assume

that the variables separate and write

(9) ^ a R Z

Substituting this into the differential equation for say r^ r0 we obtain

(10) E+i. ftL+Ji.^.o (r<r0)
R r R Z J-

2

.£ BBi y. JL _£ -k2.o(2 or -/*2| *2* °

The choice of the separation constant here is the same as in Section I. We

$M<y-0( Z s0 (z i 0)

RM-t JL. rs .(k^ -f- c(2)R. s0 (r_r r0)

;» » / zgo (z £ o)
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(15) r« f-1_ ri -(k2 - jS2)n so (r*r0)

The solutions Z(of p2) are trigonometric and Z(/f9 z) are exponential or

hyperbolic. The solutions R(c( ,r), R(/?9 r) belong to the class of Bessel

functions of index zero. When r ± rQ we choose R a JQ or IQ because these

are the only Bessel functions with finite value for r • 0. One

such that its argument is real. When r 2 r0, we must choose a

or I0(z), since these are the only Bessel functions that

vanish for an infinite argument. We choose IQ and K0 in this report since

then no imaginary functions will appear.

With the above statements in mind, let us write down the individual

solution® when r £• r0.

From (12) and (13) we get

"Z S A(cf ) cos Of 11 B(<* ) sinaC z

R

R

(2C

(«) I0l/k2t-oC2 t)+ D(tf) K0( /k2+ OC2 r)
15) we get

=>/^a , . a%
ZsE(/e)ert *V) **

)u^^\2*> *- =V} V^2 -ki2 r) (^ ki2)
K/y) i0( /k7^7 ')*• J</*) Ko^ki2 "** r) (,A ki2)
Klog t + H fy^1* kl)
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<• T^ we

(22) D(flC) s 1 g H(/J) s J(^) § 0 by (5)

F(ytf) §0 by (3)

,ce we are left w

(f &R

f CK) l&ih2+ cC2 r) [a(c<) cosc<z+B(o() sin Of zjdod

=/ffz») */ K/?) 1^/k/ -y r) E(^;

oo

-/- 7
-oO

j and f 6V?) V>A =kl2 *) U/S) e d/f

-JJtL'Ti ad

^- HEli^) e

By a suitable choice of coefficients the above expression must be made to

satisfy the differential equation and all its boundary conditions. Notice

that if the second9 third and fourth integrals vanish we can again apply the

Fourier integral theorem^, as in Part I. Let us choose l(^) and G(^) a 0

and see if the problem can still be solved. The following integral remains;

-k-ja
y§8 E(k_) e L

<P

f- JC(cC) \ih2+<i} r) [A(flC) cosoCz V-B(cjC) sin <rtzjdcC (r £rQ)
-co
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III-A

Boundary condition (6) may be satisfied by taking

the product
n

M E(k,) = = -2 and4 0(4 ) B(4) an odd function. Then the
1 kl

sine integral will contribute nothing to % and there remains

00

4>s~£2 « 1^f A(<X) cos* a I0(hf+oC2 r)dc( (r_Vr0)
% J

A similar procedure may be followed when r_5 r0 to obtain

°° ^_——
=>k»^ / /"""^2

(26) U> m- =2 « 2-_( b(oC) cos oC a I (hJ'-t oC r)dai (r> rQ)
7 *2 io,
low the boundary conditions (?) and (8) will determine A(U ) and B(oC ) in

(25) and (26)0 Thea

(27) j [a(oC) l^fi^+d?" r0) -B(0t) Zju/k£+*? r0)J cos* ad<*

and

(28 ([a(*C) ^ ijfefT*? *0) -B(<X)A2 Kor(/k22 y.*2 rQ)j dOC =0
'-dO

where the subscript r indicates the r-derivitive0
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From Watson's Bessel Functions we find that

Kou(u) a - %(u)

Hence (28) may be simplified to

III-A

[A(4)A1/k12v- oC2 \<J*£+ oi2 t0)+ B(o6)>2^2V at2 ^(I^Voc^JJdof- 0
_«p

Using the Fourier integral theorem, we get

A(o() Itfkf+cC2 rj - B(OC) KA&J+42 rj =
o% 1

n0 1 n„

^ k^-foc2 Tt kf+d-
2 s g, say.

and

W) \{k£+d2 \dk£+ ai2 Po) * B(oC) A^VoC2 Z^kjf+oL2 r0) =0

Solving these simultaneously, one obtains

51) A(0C) =-£• [>2glkf+ct2 kJ,2+ cC2 r0)j



•2fi-

and

(32) B(Ot) =~J [ax gh2+ OC2 I^-hoi2 vj[
where

III-A

III-B

D•Xi22-hQt2 IQ{{k2+oL2 r0) YL^kf+oL2 rJ+Xjk2**.2 I^kj2**2^) Z^l/^+cL2^

If these are now substituted into (25) and (26) we obtain the desired solution

to the differential equation and boundary values listed in (l) through (8).

Before we can accept this solution it must be shown that there is no

real value of o(s o( >> 0, that causes the denominator in (31) and (32) to

become zero„ That this is the case may be seen from the tables in Watson's

Bessel Functions„ All functions that appear in the denominator are positive,

hence, it cannot vanish.

III-Bo Finite cylinder

If the above geometry be finite in the z-direction (see Fig. ni-B)

(i)

-> %

Fig. III-B
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the solution is modified in the manner of the previous sections. In

this problem the boundary condition (3) becomes

(33) ^ (rp J. )£0 (r > 0)

wherep if %q is the actual length9 of the cylinder

Jl aa0 + oTlOi ^ p as in Z-B-(19)

low write down the solution with the undetermined coefficients as

* r < r0P 0 i a ± a0

u.- eai <* <= * j&o r— •—- tt

35) «"-:" •S7r3^».o-«c.«0(/«tay-^')
— oo

kg ©n ^

when r > tq9 0 _r a f- a@

ft*
where o{ S (af ^ ~9 as in I-B .and U-B.

The ©©efficients are determined using boundary conditions (7) and (8) and the

orthogonality of the Fourier seriesc We obtain the two simultaneous equations

(36) A^ Ijjd^+k2 r0) - Ba K@(/o<V kj2 r0) •

Jt
'o

g9 as defined in I-B-(25

sh(J? - s)k, ssh(^ - a)k2

h ^ kj- eh ^ kg
cos o( a dz
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and

(37) kjijk^772 ijkf+d2 r0)y-Ba>2/k2V <t2 ^(^oC2 r0) =0
Solving (36) and (37)9 one obtains

(38) A^ - 1- (X2 gJk^+d2 I^+cL2 r0))

and

(39) Ba aii. (>i g/k_2^42 1^/kf+dL2 r0))

where

D=\)/^di2 \i^+d2 r0) Ko#^2 ^ .^

>2 /k/**2 l0ik2+*? p0) Vl/fcg2^2 r0)

If now (38) and (39) be substituted into (34-) and (35), one obtains the

solution to the problem where the source is plane and the media are finite

in extento

thf-;
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III-B'.

Using the geometry of Fig. III-B the finite problem above is treated

with the more exact boundary condition that the return current at z - z0 in

each medium must vanish, or

(40) ^ a- fz\>±

where i - 1 or 2 depending as

0£r6ro or r _» rQ

Benefitting from the intuition developed in III-B the solution may be

written

cP

(U) f >$i+J \ eos at a IQ()/di2-h k2 r) (0 <• r<r0, 0_r z±z0)
-<P

<0

4? s ^2+y"Bn COS * ZKo^2+- % r)
-oP

where

(r_t rQ, 0£- z^-z.)

T n sh(zQ - a)k£-/- a^ ch(z0 = z)k^
(43) <$ s - -2 —_— —

1 i kj eh zQ k^ +• a^ sh zQ k^

Setting the return current equal to zero at z a zQ9 one verifies that the above

equations are solutions if the An and Bn are even functions since

Oi - —-
zo
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III-C-1

Imposing the usual conditions at y s yc of continuity of flux

and current the following two simultaneous equations result

An I0C/g(.2t- kX2 r0) -Bn K0(/k2 i-k2 r,) =

t [[-*!+*]-* z dz

S g as defined in I-B'-(50)

and

(45) 1-, \ Y\2+ OL 2l^fk2**2 r0) +Bn X2Y£?+el2 K^/k^c*2 *0> =0

The solutions to these equations are given in III-B-(38) and (39).

The problem is then solved when An and Bn are substituted into (4-1) and

(42).

III-C-1. III-A with a plane source

If the plane source of III-A be replaced by a finite source over

the end of the cylinder the modification is slight.
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Boundary condition (6) becomes

=4-5- III-C-1
III-C-2

?,('» 0) s »o <r± ro>

•a 0 (rZr0)

and the solution with undetermined coefficients is

oo

tfs -̂2 « 1*+. IA(C<)cos Of aI^Vd2**2 r)d* (a20, r_= p0)

^-tj B(0() cos 0(z K0(f4(2^ k22 r)dpC (a 20, r__.r0)

A(oC ) and B(O^) are the same as determined in III-A except that

n

g = -i
IT k2f d2

III-C-2 0 III-B with a finite plane source

If the plan© source of III-B be replaced by a finite source over the

end of the cylinder the boundary condition is again changed as in III-G-1

and the solution with undetermined coefficients is

x)kn £? -'2,250) if a - -2 1+S ^ cos d• I0(K4 y- V r) (0*« A«0, rfr0)
k, eh ^ k» -C
T. - »c



and

oO

(51) f =V Bn cos<* zKo(/4"f- kg* r) (0 <z- z0, r 2r0)
-co

The equations (50) and (51) have the same coefficients as those determined

in III-B except that g must be replaced by the g found in II-B-2-(29).

III-C»-2o III-B with a finite plane source

The above device may also be applied to the problem described in

III-C-2. Then the solution with the undetermined coefficients becomes

-4.6- III-C-2
III-C-2

III-D

/77«2

CP

7* »$1+5 An coS *zIo^ot2-|tki2 r> (06^zo,r2 ro)
-00

and

oo

(53) tf _£ Bn cos Oi zK0( /oC2-f-k22 r) (0 *a*z0, rer0)
-CP

The equations (53) and (52^ have the same coefficients as those determined

in III-B1 except that g must be replaced by the g in II-B'-2-(37) where z0

replaces x0.

III-D. Special case where outside medium is a perfect absorber, i.e.. bare case

1. The medium infinite in the z-direction

Boundary conditions (7) and (8) then become

(54) f (h, a) a 0
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III-D -1

III-D-2

Where h * r •+ constant A-,* The constant here for cylindrical

geometry is a function of rQ and has never been worked out exactly. An

approximation may be made on the basis of diffusion theory and the value will

lie between .5 and 1.5. The equation for the above problem with the un

determined coefficient is

(55) f

Then

n. =k.z

2 e 1-

cO

r / 2 2k(Oi ) cos OC zI0( /d -/-^ r) dc( (ri rQ, asO)

J
-co

(56) A(rt )IQ( /oL2+ k^2 h) -Z2n.

Hfi "klZ nr

fcf + oL

If now (56) be solved for A(OC) and this put into (55) we obtain

oO

cos d z t( /c*2 + ki2 r)
(57) ^s.r^ex + — I —3 -^ 9 I j imAij dCt^ kl 7T J kx2 -<*2 I0(/oC^ V h)

- CO

1II-D-2. The medium finite in the z-direction

The change in bounday condition is the same as in III-D-1. The

equation here with the undetermined coefficient is

nQ sh(^ - z)kxn sn^— z^k-, r— I—

(58) r"°kJ ch Akx ^) ^ C°S *ZX°{ /oC +kl r) (r-r0, O^ziz0)
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Then

(59) An Io( f^2+ k2 h) a g, as found in II-B-2-(29)

and

nn sh(^-s)k, r-°° , I0( fcL2 +k2 r)aps__o i^YgcosOtz _, (O^ziz, r2r)r h ch^kl Z^ io(/^T^h)
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