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ON STRAIGHT-AHEAD ¥~ TRANSMISSION WITH A MINIMDH IN THE CROSS-SECTION

Gale Young

Under, certain assumptions about the law of scattering and the variation

of the cross-sections with energy, Greuling has obtained solutions of the attenua=

tipn problem (l, 2, 3)o His results, as they stand, do not include instances

where the cross-section can (as withy rays) go through a minimum as the energy

varies. The present note illustrates how different Greuling solutions can be

pieced together to construct cases having a minimum..

Introduction

We give here only a brief sketch of the problem, referring to the above

references for details„ Let o~ s scattering cross section, u - total cross

sectiono It is assumed that scattering distributes the energy of the emerging JT

rays (we shall here write in terms of photons, though material particles such as

neutrons can be discussed in exactly the same way) uniformly over lower energies,

and that all the rays move straight ahead undeviated by scattering. This last

assumption leads,, of course, to an over-estimate of the penetration.

Let F (x, E) be the number of photons per unit energy range at distance

Xo Then, with the above assumptions,

%
§1 +HF * fp(x, t) £il2dt* S(x) (1)

i
The source term S(x) arises from scattering out of the primary or other beams

above energy EQO



A particularly simple case is when &£_ - _ cr(E) . Then (l) can be satis-
dE E

fied by a function of x alone, becoming

or

o

?' +uF . F [ -£l£i dt +S = (« .uQ) F+
E

f' + u0 F - S . (2)

Thus all the properties of the medium disappear except Uq, and it makes no difference

how much of u is contributed by scattering and how much by true absorption. The

transmission (for secondaries) of the medium is just as if it had constant absorp

tion equal to u , and no scattering power at all.

In the case of a primary beam at E we have

o-o -K x

S = ^ e'°' (3)
Eo

and (2) has the familiar solution

<T0x -P0X ,.»
F = x S a —2— e . U)

0

The result does, of course, depend upon the strength of the scattering out of the

primary beam.

The total number of photons penetrating a distance x is given by
E

~Fox r° -"oxQ(x) = e + F dE = (l 4. <rQ x) e , (5)

so that the "buildup factor" is 1 + 6^ x„ As we have just seen, the quantity

6~ enters only from the primary beam and not at all from the secondaries.



First Example

Consider now the same situation, except that different cross-section

values apply for the primary beam, as indicated in the following sketcho

a

The source term in (2) is now

' S
fk "P1*
E.

and the solution is

with

F
0~j e

-ia0x W

E.
Ul " Po

Q ~ e
=P13C 0^ i ( •u x

r0

Considering jUj > uQ , we write (8) as

:)
>*1 " f»o " L Fi - Po

where the expression in brackets is the build-up factor referred to the exponential

taken at the minimum cross-section; it is unity at x * 0 and °i for x
IJh - II

largeo Thus, depending on the constants, it can be either a "build-up"
"Pox

or "build-down" factor„ If 0^ e px - tt0, then Q(x) 3 e everywhere,,

-(Hl=~Uo)xf
+ e 1

-U^x

- .6

h

Fc
E

£1
"Po

(6)

(7)

(8)

(9;



Second Example

We now consider a slightly more complicated case in which the energy range

is divided into two regions by E„< E_o In the top region we shall use a Greuling

case with a rising cross-section, and in the bottom region a.Greuling case with a

falling cross-sectiono

One of the simplest assumptions for the top region is to take

dE E

as may be readily verified«

This is the Greuling case cC * - 1 (see

above references), and for a source term (3) on the right side of (l) the solution is

F(x, E) = -p2- x e , (10)

In the bottom region we shall take djj - rr/E which is the case de-
dE ' '

scribed in the introductory section,, It may be noted that our assumptions regard

ing the top and bottom regions include the case with continuous l/E scattering, ab

sorption beginning at E_ and rising hyperbolically with energy, and total cross-

section continuous (though with discontinuous derivative) at EAj as shown in the

adjacent sketch

u = 2 C - cr

absorption - 2 or - 2 cr

<r = constant * E

E,



The source fed into the bottom region below E is given by

E

<% -f*ox

Ec

«r(B)F(x, E) —^ dE (11)

which with (10) comes out to be

°o "ucx

Thenj, from (4.), the solution for E<E„ is

<rn "He *

(12)

s

Eo
-°- x e ; (13)
5o

provided, as assumed here, that u is continuous across E_.

The integral fluxes are

-UqX
(primary) Qp • e

0-/i(E)x(EccE<EQ) Q± = _£*pj!c f e
Eo J

E
c

dE

(E<EC) 0^-^.o-oxe C . \ (L4)
Bo

The second of these may be written as
E.

m J

o—

i(-
~o ( EW ~Pox ~Fox . ( N

- 8



where ( ___) is evaluated at some mean energy E between EQ and E'0. If E/o"
K<rJm f-ucx -u0x\

is an increasing function of E, then Q-^ < V.e - e / . If u is an in

creasing function of E, then for x large most of the value of the integral

in (15) comes from near the lower limit, and thus asymptotically m tends to c.

For x large the dominant terra in Q * Qp + Qj + Q2 is Q2 as given in (14).

Constant Total Cross-section

The above examples have a downward pointed cusp in u at the minimum, and

so presumably give too small a buildup factor. To approach the picture from

the other side we consider the case where u is flat.

A result due to Wigner (4; 3, page 11) can be generalized by considering

the Greuling result as oC becomes infinite (3, pc15 and 18); o( is the coefficient

in the Greuling condition <X af" ~ ~ ^E ° let p. be constant, and let 6~ be
an arbitrary function of E. Then, as may be verified in a straight-forward manner

by using the recurrence relations among the Bessel functions, the solution of (l)

with a source «£— e is
o

P(x, E) = -r= x e
fl-0 -F I, (2 uT£)_

o U(f
(16)

where

° cr(t)(f>(E) = f t

r<* - -^ J (h)

9



The integral secondary flux above energy E2 is

0 I4(2VEp) crEo <- ~p
F(x, E) dE * -j- xe

En

>.

m

-ax

m J Vx<? E
2

IQ(2^)-1

dE

(18)

For x large most of the integral comes from near the bottom limit, and so

asymptotically E^ approaches E2«

In this case there is, for xlarge, a e^ factor in the buildup.

Third Example

We now insert aflat p central region between the upper and lower regions

of the second example above, obtaining

3

i

i
/1

i

; 2

i

i |

i
i t i

ET7* TTfe T7*E2 Ex E,

a shape as sketched0

Working down from the initial energy E0, and letting u without.a subscript

denote the central value ja » Pi s ft > we have

10



(primary)

(region #1)

(region #2)

°Fox
Q P a e

Sj_ -

Fl =

°« ~P„X0 rO
e

Eo
<tj -u(E)x

T~ xe
0

% * e(^r-_w5
s

2 ~
-2l 8-h*

F2 s f x.^i^pi
Q2 « •?-(4)--'"

0 BU

I0(2VT92-) -1

(region #3) Here we find

s3

E-,

S2 + [ F2(x,E) g- dE

%

Vt9 ']I0(2Vx%) - 1

^e"Flo (2Vx%-)

Then, with (2), we have F^+ uF = So , of which the solution is

%

E

^2

x e
•ux Ii (2VxTi>2)

07> xe
•ux *1 (2/x^T)

11 -

from (10)

from (15)

from (12)

from (16)

from (18)

(19)

(20)

^



For x large, Qo is ultimately the dominant term in the total Q, namely

E2<r0 1 / x± -F + 2VWX~ (22)
•5— C^2XJ 9E0 <fi2 2W
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