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A PROPOSED PARTICLE ATTENUATION PROBLEM

G. Goertzel, HM

Abstract

An attempt is made to present in some detail a practical method of applying

stochastic methods with quota sampling to an attenuation problem. After a

discussion of background material, a specific computation set-up is given

in Section 5„ This is sufficiently detailed that, using Section 5 as a

guide, an actual computation may be prepared.

1. The Problem

The problem considered is that of the transmission of particles through

a slab of homogeneous and isotropic material. The physical arrangement con

sidered (see Figure 1)

S

(Vacuum)

Z=0

E

Z=L

i«f*£""2 Source

Figure 1

is a semi-infinite region extending in the direction of positive Z from Z » 0.

A source of particles, invariant to displacements in its own plane, exists at Z = L.



The question to be answered is:

What is the expectation value ^g(E^) of the function g(E) where

g(E) = a specified function of the energy E for those particles

which are transmitted

= 0 for those particles which are not transmitted.

In the particular case

g(E) = 1 for transmitted particles

- 0 for particles not transmitted

the expectation value of g(E) is the probability that a particle is transmitted

through the medium.

2. The General Method

The problem is to be solved by Monte-Carlo procedures using the quota

sampling procedure discussed in a previous report. The general procedure

to be used, as applied to the present problem^ is repeated here.

A point (E^Z) in phase space Just prior to a collision is denoted by

a, 0, etc. E is the particle energy and u the cosine of the angle between

the particle velocity and the Z-axis. The source is described by a function

S(a) such that

J S(a) da -1
All a

and S(a) is the probability density for the first collision position. More

detail is given in later sections.

(!)"Quota Sampling and Importance Functions in Stochastic Solution of
Particle Problems" by G„ Goertzel, mj*, June 21, 19^9.



If further, ^(a) is the probability density for the n'th collision

position in phase apace and if E denotes that region in phase space where

0 < Z, one has

-^(a) =S(a)

£ (a)
n+1

whence the function

r

^n(P) p(P>a)dp

E

co

n=l

satisfies the integral equation

*(o) - $(p) p(0>a)dP + s(a),

n. — JLp c.p •••

In these equations, p(0,a) is the probability density for an (n+l)st collision

at a for a particle whose n'th collision was at 3.

In terms of the above definitions,

<g(E)> = g(l){ Ĵ 0)pO,n)dp +S(a) Jda

if
where a denotes (E,(i,Z) and

0 0 oo

da = I dfil dZ I dE
S -1 -co 0

-6-



The stochastic process for estimating ^g(E)^> without quota sampling

is given below. A particle is started according to (0) and at each step

the computation either ends or proceeds from (n) to (n+l).

(0). Select a0 from the distribution S(a)da.

If aQ lies in B, i.e. if 0< Z, proceed to (l).

If aQ lies in S, i.e. if Z < 0, set N = 0, g(E) = g(E0) and start over,

(ny, n = l, 2, o.ooo

Select Oq from the distribution vi^-lf a)da.

If otjj lies in E, proceed to (n+l).

Ifcflfe lies in S, set K * n, g(E) » g(%) and start over.

If Ofa corresponds to an absorption process, that is, if

J p(a,p)dp <1
(E+S)

set N = n and g(%) = 0.

Clearly

<g(E)> = <g(%)>

whence an estimate of ^g(E)^ is given by the average of ^g(%)/ over all
particles considered.

The modification of the above procedure caused by quota sampling requires

the introduction of an importance function Q(a) such that

Q(a) is arbitrary for a in E

Q(ct) • g(I) for a in S.

One now proceeds as follows z

-7-



(0)s Select ou from the distribution

S(a)da • i- S(a) Q(a) da

N» s J S(a) Q(a) da
(E+S)

Compute the weight

S(a) Q(a) daW0 mS(a0)/S(Oo) --^
(B+S)

If a0 lies in E, proceed to (l).

If a lies in S, set N » 0, and start over.

(n), n = 1, 2, eooa

Select an from the distribution

¥(Gfe„i,«)aa *& P(On-i,«) «(a)

N* = p(an.1,a) Q(a) da

(E+S)

Compute the weight

wn 5Vl P^n-l'^^K-l'0^ "

» W,
n-1 d70^7

(an4,a) Q(a) da

(E+S)

-8-



If c/^ lies in B, proceed to (n+l).

If O^ lies in S, set N = n and start over.

Clearly

<g(3)> -<% g(%)> - <WN Q(0fc)>

whence an estimate of /g(E)^ is given by the average of WuQ(ojt) over all

particles considered.

As was demonstrated in reference (l), it is of interest to consider what

happens if Q(a) satisfies

Q(a) « g(E), a in S

p(a,p) Q(p) dp, a in B.

(B+S)

In this case, one has

W _ 1
H0

(B+S)

S(a) Q(a) da

"n-Vl^Vl^K)*

Thus it follows

(E+S)



and on© has the zero-variance estimate

<g(E)> « I S(a) Q(a) da .
(B+S)

3- Discussion of General Method

One should note that a variance is defined as positive or zero, so that

the statement that the ideal Q(a) gives zero variance implies that a neighboring

Q(a) will give small variance and further that the variance will depend on the

square of the departure of Q(a) from the ideal.

Thus a reasonable estimate of Q(a) should improve the variance of the

computation greatly. I think one should go to great trouble to select and use

a satisfactory Q(a). This philosophy is reflected in the details described in

Section 5.

The reason that use of an importance function is significant is that in

the stochastic experiment one no longer requires that a particle is or is not

transmitted, but rather permits all particles to be transmitted. Thus in the

non-quota sampling procedure one had

<S(E)> =<«<%>)
with most of the g(^) zero. That is, one had <VNg(%)^ where for most experi

ments WN was *ero and for a very few W^ was unity. The quota sampling has the

effect of permitting the WN to take a continuum of values so that the Wjjg(Ejj)

may have a smaller spread.

The efficiency of the quota sampling will thus be partly indicated by the

spread in values of %£(%). It is clear, however, that if all % lie in the

range 0 < Wn < 1, the variance is less with quota sampling than without quota

sampling.

-10-



h. The Importance Functions

The first task to be considered is the selection of Q(a). Since a denotes

the position just prior to a collision, unless anisotropic scattering is very

important one may neglect the dependence of Q(a) on the velocity direction, u.

Further, an exponential dependence of Q on Z would seem to express our present

state of knowledge adequately.

We thus take for Q the form*

«- x • ^ -T*w(E)Z
Qia) - G g(E) o o < z

• g(E) Z < 0

where G is a constant between l/2 arid 1 and is necessary to fit the Q(a) on

both sides of the plane Z = o. w(E) is the reciprocal mean free path of the

medium for particles of energy E andTK is a number which in general should

depend on E. W© will take~K independent of E and such that 0<"X< 1. Clearly,

the larger ~K, the stronger is the effect of Q(a).

In the detailed treatment of a collision, one does not in general construct

p(a,P) and use this. One rather considers a collision in stages, say as follows:

0. Position just prior to collision is (E0, u0, ZQ).

1. Choose collision type or; one may have various kinds of collisions

of which the following will be considered:

a) Inelastic and isotropic.

b) Elastic and isotropic in the center of gravity coordinates for

collision with any element but H.

c) Collision; of type b) but with H.

d) Absorption.

* This choice of Q is not adequate if g(E) varies rapidly with energy, especially
if g(E) decreases drastically for large E.
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2. Select E and n, energy and angle after collision.

3. Select Z;. Kxiowii^j Z0, E, u.

Clearly, for step 1, one needs the relative importance of collisions of

types a, b, 5, do The importance of type d is zero, so this poses no problem.

To obtain the importance of types a, b, c, one.needs

r

Ma) Pff(a,p)Q(p)dp

where pa ifl the probability density for going to p if a collision of type 0 is

made at a= Similar quantities are needed in step 2.

We will not attempt to uae an exact value for qff(a), etc. since this is

based on our approximate Q{p), so that the work would not be justified. None

theless, a large amount of effort will have to be expended in evaluating and

using the importance functions appropriate to the various steps.

In Section 5, a detailed procedure is suggested. The various considera

tions leading to these choices are outlined in Section 6. Of course, the choices

of Section 3 are not unique — they are merely ones that seems practical to me.

Before begirding Section 5, a few remarks are in order. First, the handling

of type a collisions (inelastic and isotropic) is the most difficult for several

reasons, one of which is the greater detail needed in presentation of the physical

data. Thus, the treatment of these in Section 5 is based on a particular repre

sentation of the data and should be modified if this representation is inadequate

or inconvenient.

Second, since the quota sampling procedure does not affect the expectation

value of the final answer, it will be clearly advantageous, wherever tables are

needed for the quota sampling, to use fairly coarse tabular Intervals. In this

•12-



case, however, it is necessary to use care that the weights computed in each

choice are consistent with the sampling procedure used.

5. Detailed Computation Procedure

5.1 Physical Data

For the particular computation considered, one needs specify g(E)

and L. One needs also specify, for the source neutrons, the energy and angle

distribution s(E,p.). In addition, one needs a table, as a function of energy,

of the quantities

w(E) The reciprocal mean free path at energy E

a (E) The probability that a collision is of type a

OyjE) I'fce probability that a collision is of type b with a nucleus
of mass Mj_

a^l'E) The probability that a collision is of type £

a^(E) The probability that a collision its an absorption

aa+cbl+0!t2+"' + ac + ad » X

We call this TABLE A.

Further, for the inelastic process, one needs specify the energy

distribution after the collision. It will be assumed here that this, or our

knowledge of this, can adequately be represented by a set of quantities y v

such that if a neutron has energy E before a collision, such that

E < E -€ E ,or v * v *cf+l

it will have one of the energies Er after the collision with the probability

of a specific E given by yQZ» Thus ? 1q-c~ 1o ®* course* tt&B representa

tion is useful only if the variables a and ? need not take on very many values.

-13-



In addition a logarithmic and exponential table will be needed.

Also a table of square roots (or squares) and of sines and cosines.

5.2 Quota Sampling Tables

A choice is made for G and 1L. Once these are selected, the following

tables are prepared.

QI. •,F(ti,X)

If £(X) denotes the function

£(X) =0 X < 0

= 1 0 <x

we define

F(u, X) w f(u«,X) du«/ f(u',u) du«

1

F( X) = 1/2 f(u',X) du1

f(!i,A.) !J« + £(-")U -M) e

js
1 + Th

F(*i, X) «ay be expressed in terms of exponential integrals.

We will need to tabulate, for various values y0 of uand \ot Xthe

following quantities:

i> v *w - *[)>o> - 2 ) '> -mzi ?-., ^ - f

Herein, a = 0, 1, ...... (^-*~ 1) *^-*

Fo* = °

*Z = 1 ^r =1
-ifc.



yZ will be approximately ten. It seems to me that no more than some forty

values of 2T will be necessary.

ftll. H(E,x)
E

H(E,x) = dE« g(E«) e_w(S')x
0

We tabulate;

xr+X\ AE0 Eq+1 - Eg
E„j x„ ', n„^ = J^i^d, 7—" I> Xw ~ « w

It again seems likely that no more than some forty values of t should be needed.

For o, one needs specifically consider w(E) and g(E) as functions of E, so that

.no estimates for the number of values of o will be given here.

QUI. GaY>>

T-l

<w - iitr^ 70r'F[y(V' zv]«(V>
tTsl

<W - 0 '

r

We tabulate thus:

V \+1* ZJ> ' ?0T' AGaT>> =G0,r+1,^ ' G0r?> •

As was stated before, this particular method of handling inelastic collisions

will be feasible only if both a and r take on at most a few values.
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QIV. KqtJ

We tabulate: E0, Z^> , K^^j

<4V. Fr

+nVm"l«+.«! i\>_„ F_ a F(——

Ar+ A. \
We tabulate: Xz, F^ »F( £±i) (cf. ftl)

5.3 The Computation Procedure

In the following, "select $" will mean select ^ at random from a

population equidistributed in the interval (o, l). The initial or (0) atep in

following a particle proceeds as follows;

(0): 1) Set EQ = Es, uQ = ufl.*

2) Look up w(EQ) and g(Eo) in Table A.

If 0 < |i0

3a) Select £
-1 tk&) Compute s = -——— log |

1 +^l1o

5a) Look up e^°8 and compute.

WQ =e^°V(l +>0s)

Z0 " L + uo8MEo)

6a) Proceed with step (l)

If Mp< 0

3b) Look up e"'B'(Eo)Ij g^ ew(Eo)L/Ho and CQmpute

D=tj-^(E0)L _(l.lj ^EoJL/n,,
J

kh) Select ft and compute

w(Eo)L/u0 -Tw(So)L
p = D^ + e - e

*We do not consider here other forms of source than the monochromatic, unidirectional
one with energy E8 and angle ufl. For other sources the necessary modifications are
not difficult.
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If .0 <J>

5ba) Compute Wjg(%) = JqB gCio), (H * 0)

6ba) Start a nev particle.

If jp <0

.**>) s . ^_ iog(l - a****^ DS)
1 +*Xu0 *

,, % T&r(E0)Zo
6bb) Z0 • L + u0s/w(E0)| look up e

*Kw(E0)Z0
Wrt =

1 +T^0

7bb) Proceed with (l).

All steps subsequent to the (0) step follow the same procedure, as

given below for the (n) step- We know EQ_1, u^, Z^, Wn_1.

(n)% n = 1, 2, ooo<> o

1) Look up in Table A the quantities*

v(Bn-l)* Oa^Vl^ «bl<Vl)> ° ° ° >«c<Vl>

2) Look up in Table QIY

K^ such that $a < E^ < Eff+1

^ < Vl < Vn

«*a " *V

3) ,Look up in. Table QY

^ such that A^< Zn.x WCE^i) <A^+1

. %- «(**-!> **/ •

4) Using Table QII

a) If u0 > 0 determine *, X> »ucn **>**

*<r <*n-l < Vl *z <,1En-l^ ^+1

* This is partly a rapatition of Step 11 in (n - 1),

-17-



b) If u0 < 0 determine 0, v$ t, such that

e<t <vi <e0+i «t <-vyi%-i <^t+i
«t <"*Vl •< *t+r

Then compute
AHar

V ' H0r + 3^.<Vl " E)
If u^ < 0

5) Compute N»^ o& +9.b(°bl +°b2 +°b3 +*'^ +Vo

Then select 5 and determine

case a) N£ < qaaa

case bl) qaOa< Nl* <qfta& +a^O^

case b2) q^ +q^ < N^ <o^ +qb(abl +a^)

case c) N - qcac < Hi- < N

Case a

6a) •W-l =J- Wn-1
-1- q&

7a) Using Table QUI, select £ and find

B~, yav, AG^^y such that

E0 <*-l < E0+l> Z>> <^-1< V*l

<W <*{ <G0,?:+1,*>
Ejj • E^

w - w y0rW2 - wl -2J3
0rP

-18-



8a)' Look up W(En) in Table A.

9a) Using Table QI, select £ and find u ,. 2_ ,Fax , such that
Ap0r

F*r« $F0+i,r i \< w(%)Vi 4 \r+i

10a) Compute

AFcrr

AF0r
W3 * V2 -r^ W2

Case bi

6bi) wx =-S. wn.x
x <lb

7bi) Using Table QI, select £ and find ua, ~*^c , Far such that

*** <\< *„!,*V v(vA.i<Vi

8bi) Compute

/>. v Au
<•» - m. ♦ <v- ***> s^

9bi) Salact £_, look up cos«£_ and compute

tt =%-l ^n + Vl " Kg.1 AA - n5' cos*?2

lObi) Compute

,,. Vli -^g^2-^g
M± + 1

&*« (o>+]/<»2 +4-,y
2

3 AP•* 2% /w2 +̂ - 1

-19-



Case c

6c) w1 =J-wn_1
He

0 < ^n-1

7ca) Using Table QII, with H as found in h, select £ and find
Ae

H< '̂ AH ° ' E<" such that

Ear ^ ?Ar < H0+l,r * *r<~1En-l '< xr+l
Ae8ca) Compute 1^ - E + g (H^f - Hff)

9ca) Compute W3 =Wx -1- H^ ^gr—

Mn-i < 0; 1 - Jn.i >0

7cb) With R^. and H_. as found in k, select ? and compute

/> -Vl \z "?i(jn-l \r 4 "Jn-]KtJ
8cba) jo >0

Select |_ and, using Table QII, find

Ae
a f H07> ^a* such that

H07J < Hmr ?2 < H0+i,r; xr <^-1 « Vi

Compute En =Eff +_2- (l^ ?2 -ij
** 0t

Look up in Table QII

Ae

771- 8UCh that xt <~8Zn-l< *t+l
*"*n0t

-20-



8cbb) jo < 0

Select € and, using Table QII, find

AEa
31^'HoV V such tbat

aat "* ^1t 72 < H<H-l,t'.:x. <

•" Z7i *"**
Compute

^> =** +Z3^ (B»t ?2 -H0t>

Look up in Table QII

AEC
AH0r euch that "t- <*V-I •* *r+i

9cb) Compute

v3 =vl F^~
Jn-l\ + (1 - Jn-l) \t

J ^ +^ AE0 " +(1 - J ,) AH{rfcn"l} AEff
Mn-1 0; i - Jn„i 0

7cc) With B^v and ^ as found in k and using Table QII,

select £ and find

Ae ae-

**Z < fA * Hwi,T "r <'Hln-l4» Vl

*t <"VA-i <xt+l
8cc) Select £ and compute

'2

-° *•* AiT" %"|aec Jn-1 +(1 "Vl> ^
If jo ^ 0 compute

AE

* - *+ zr2"(?^ -V
0r

and continue.
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Ifp y 0, start agate at 7cc.

9cc) Same as 9db,

10c) Compute a = ySa/^^l • Select <**. Look up cos* f. Compute

11) Look up w(l!^) and g^) in Table A.

If Ma>0

12a) Select 5.

13a) Compute s = * log if..1 +'EUn 7

lUa) Look i^p 3^9

15&) Compute

Wn = w3 1 + -^
S

V" V .1 + ^ tot*r>)

16a) Pro5 eed With (fi + I),

» Mn «o

12b) Look up e-^^2-! ^ «*>WHn ^ co>anite

D- e^^^l - (l - ±\ e^^^-l/^
13b) Select € and compute

jo •« D£ +j4*n)**-l/vn . 0-v(%)Zii-i

If/> > 0

lfcba) Compute

Wn g(En) - w3 JuP g^) (H - n)

15ba) Start a new particle

-22-



It jo < 0

Ifcbb) a « - _™i__ i0fi (i . e^^nJZn-l Dfc )
1 +~KUn 7

15bb) Zn - Zn^ + uns/w(En)

Look up e^^Zn and compute

W„ = w,
D -Kw(En)Zn

e

n 31+~*Kx

l6bb) Proceed with (n + l)

Note that the thing determined by all this computation is the

value of WQg(En) averaged over all particles treated.

6. The Why's and Wherefore?s

The importance function Q has been previously selected as

a „ /t,\ -~Kw(E)Z , .Q = G g(E) e £(Z)

+ g(E) £(-Z)

where

£(Z) - 1, Z > 0

= 0, Z < 0.

In examining the prescription of Section 5, we will state the probability

functions p as determined by the physics and will also state the %as determined

by the prescriptions in Section 5- The weights (w) of the particles must be

multiplied, at each random selection, by the corresponding value of p/p. This

will be compared with the instructions given above.
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Further, the reasons for the choice of the various p used in Section 5

will be given. In many cases it was necessary to select a p which was relatively

easy to compute, rather than one which might have been desirable for other reasons.

Since the process of determining the p proceeds best in the reverse order from

that of Section 5, we discuss Section 5 in reverse here.

6.1 Steps 11 through 16

We are concerned with determining Z^, already knowing En and u and,

of course, Z •,. One may write

Zn -Zn-1 +[y^Vjs
and determine s. Clearly

p(s) • e"s

Q(s)«Gg(En)e-'Br(Ea)Zae(Zn)

+ g(ln) 6(-Zn)

-Gg(Bn) e^^-l e-^8 g^v^) +̂

+ g(Sn) ^(-Vl^^n) " >%»)•

On the basis of the general principles of the quota-sampling procedure, one

wants

p(s) -p(s) Q(s) / fp(s) Q(s) ds.
/ 0

Steps 12 -15 in Section 5^(n) correspond to a choice of sat random

according to the probability density p(s). Then, one should have

JP(s) Q(s) ds
V3 p(b) Q(s)

-2k-



That this statement is true for 15a, l^ba, and 15bb is easily verified.

6.2 Steps 6bi throngh lObi

The importance of a particle at En, Mn, Z^i is given by the

oo

p(s) Q(s) da

00

J:
C

of Section.6.1, i.e. by

*(SW -gCEa) (jn «p(--Br(^)Vl)'

+(1 -̂ ) exp(Zn.1w(En)/un) €i-vjl
Thus, one should use

p(E,u) - p(E,u) q(E,u) (normalized)

to select En, >%• Now, for type bi collisions*

. (M± + l)2 ( p p p 'J-1/2

CO

It is clear that the use of p(E,u) q(E,u) for p will involve great effort.

On the other hand, except for H one expects no M^ less than 8, and usually-

higher. Thus E will often not change much from E_i, so that the major emphasis

is on the angular change. Also, the average of p(E,u) over all E is Independent

of u. Thus, if one selects u from

£(u) » qCEn.!,^) (normalized)

* See Appendix I.
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this modification should not materially reduce the efficiency of the quota

sampling. Of course, this choice of p(u) corresponds to quota sampling as if

the collision were elastic and isotropic in the laboratory coordinates.

The choice of ^ from this distribution is effectively carried out in

(n), 7bi and 8bi. One should note that what actually is used in Tbi and 8bi

is not

but

^\-l^V a(En_1>fOdn

%+l

qCE^uJdn /(Ha+1 -*%)
^ /A?

oZ

} Au0
JtC^-i^)^
-i

for u0 < I* ^ ^0+1« tShiB is a consequence of using a coarse tabular interval.

Once ^ is chosen, we still need 1^. Thus, we select eo according to 9bi,

so that*

-1/2•M-i [l ~u2 -u2^ -co2 +2unVl co
and compute, according to lObi,

These steps assure that ^ is consistent with |i_. Nov then

p(co,u) =AVr.^j
Am-

See Appendix I, p(u |<o), since an interchange of « and u is permissible there.
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p(e,u) - £(.<* ,u) as .
dE

„AFar , t , CMi +I)2 / t42 +Mf;rl

Thus, as in lObi

2-Ptt.u) -I l^^/^2^?-lj Au0
Wt ^/1 *,,„> 2% ^7^77 AF„

6.3 Steps 7a through 10a

Type a collisions ere Inelastic and isotropic, so that

p(E,|t) * f(E) g(n) where g_(n) . 1/2

expresses the isotropic nature of the collision. Furthermore, we have assumed

that the possible final energies E form a discrete set, E», such that if

E0 < Vl < E0+i

the probability that 1^ = 2 is yffr . Thus we have

v(\ ,n) =1/2 yav

and using q(E,u) as defined in Section 6.2, should use

p(Er ,n) • —£_

2 -r"'^ JI ZI>W f ^Er,n)du

A selection from this distribution can conveniently be effectuated; this is

carried out in (n), 7a - 10a. The procedure is based on the equation
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p(E~ ,|i) « p(uJEr) p{Er,l*)dp

where p*Cu hT) - -jfe? ^} . ., *('r^>
J P(Er ,H>dp | q(Er ,*)du

Thus, we first selest J^ frem the discrete distribution

and then select p^ from p*(|t|Er ).

Step 7a is concerned with selecting E^ and steps 9a and 10a concern the

selection of i^. The remarks in Section 6o2 on the coarse tabular interval used

in selecting ^ from q(J,ji) hold here also. In fact the u^ choice is carried

oiit here in the same manner as in Section 6.2.

It follows that, for our detailed method of choice,

k^Un) -KnJlJ P^)

-%**!,»-G«To *°*\~*v
'» r s>

This gives afactor in the weight of w^ as in 7a. Further (note a and r have
nev meanings here, not as above)
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whereas Pdia) - 1/8.'

Thus

Wg
^ l Anff

9Pf

6,h Steps 7® ttooush lOu

We are w consider^ 1 collisions. Here the argument differs In

extreme from Section 6.2. We select the energy in an Icollision as it t|e

process were straight ahead. Tale is plausible, since in general ahigh energy

particle is more important than alev energy one, and the particles losing least

energy in acollision are those most forward. Further in an I collision ^he
angular distribution is markedly forward.

. Thus, rather tham use

JdEjdp p(E,n) q(E,fx)

to select Ejj and jj^, we select 1^ from

i-l)/p(E,u) du

J fiiKtt^) Jdn p( |̂i)l dl*
and then select p^ from

that is, from the actual probability density for ^ if En is known.

Now, from Appendix I it is apparent that, with M « 1,

J**0*' 4rx j—2 f-s —., o<vx)

q(s*
»(*)

1_

-1
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so that

"Vl
[(BSMn-l)^' .

This function cannot be tabulated directly as it depends on the four variables,

\-ls> Z, Pn-i, E. Bovewer, if we define H(E,x) as in Section 5 (see discussion

of Table QII) we have

P(E»

m

J^ifB^J + 5C»%-l) (1 Ja»l' 5(1, ——•— J

Jn-1 "(Vl^-l) +fi(-Mn-l) Cl -Vl) H^.i,^=i^

The procedure of (n), steps ?ca - 9ca, 7cb - 9cb, and 7cc - 9cc, are

concerned with selecting E^ from p(E), including, of course, the necessary modi

fication to permit the use of a coarse eet of tabular intervals for H(E,x).

Thus for 7ca - 9ea, where p^-j, } 0 the procedure of 8ca gives

AEffr ^
p*(I) -r_£L _i_ for Eff < E < I,

and, since

p(l) - 1/Fv^-,

one has wj/w^ as in 9<5a<,

For 7cb - 9cb, the distribution used is

«»* « Ja-1 ggr + C1 ~ Jn.x) H^
Jn-1 %r + C1 ' Jn-l) \t
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for E0 < I < X ^ and t and t are so selected as to correspond to Z_ •, and

Vl/ha-l" *

Since here 1 * &nJ\ is, by hypothesis, positive, one has to select

E from a sum of two distribution. This is carried out by deciding on one or the

other with one game of chance and then selecting E with a second game of chance.

Thus, which of the two distributions (the t or ?) is decided in 7cb by the sign

of o. For these results, one has the next steps in 8cba or 8cbb.

Now clearly

P(B) *%:> 0) p(l|js > 0) • ,

+1Kf< 6) ?(x|j»<o).

>0) *1- %(f <0) -

Ĵn-1 V/fn-1 V +Cl -Vl) *mt] >

K«!P >0) "it^ V*<W
and from 8cbb

p(8|f <0) -JL^st *ff<*<Vl
so that ^H A.S-t

-^ ^-1 7S^~ +(1 "^lJ ^^P(E) • ___

from 8cba

Jn~l \t + (1 " Vl} V

whence, with p(E) - 1/%-!* the value of W3/W1 specified in 9«b is easily seen

to be pf
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When 1 - 7T^_i < 0, the device used above is no longer applicable.

The procedure used in this case, in steps 7cc - 9ce, consists of selecting

E as follows?

Select E from the distribution

AHffr j

but

AE7"~%mr for E0 <E< Eff+1 •

Keep this E if, and only if

where 4 is a random variable equidistributed in the interval (o, l). Thus
<2

p0(») p(f < o|e)
p(l) . -—-~— ——• ;

J« P0(E) p{jO <OlE)

AHgt> + (1 j ) AH<rt
Al7~ Jn-X { ' n~l} "SETJn-1 + (1 - Jn-l)

p(p< 0|E)
AHgr

fdi ?0(i) p(p <o|i) - 3=
J Vi *Wr

Vl Vr + (1 " Vl) Bmt

From this we have a H ^U
t 07 . /t t ^ o"

i 7567" + (1 " J*-l} TSi?
p(b) =

Jn-1 **t + (1 ' J->1) ^rt
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This iff the result desired, so that W^ is correctly the same in 9cc as in 9cb.

6.5 Steps 1 through 6

The eonsideratioxts of Sections 6.2 - 6,k have given us, to the degree

of approximation used therein, en estimate of the importance of types a, b, and c

collisions. The scheme -used in 6.2 gives equal importance to all type b collisions,

independent of the mass ¥,± Involved.

Thus, from 6=3 the importance of a type a collision is

| \> 7<n% = -r 4^> "(7t
w

q(Er,8i)J|i « Egy

\ <Vi <Vi aBd V < Vi < Vi •

Similarly, from 6.2 one has for the importance of a type b collision,

sonsistent with the modifications of 6.2,

1

%

1

- ^-i^* *gCVi)Fr for xr< ^-i ^Vi* *\+i

Further, from 6.%_

%-3qc-rr I *<*M«n-i>«'

i

%-i
Jn-1 *mr +fi<-»*n-l) <x " Jn-1> Vl

Tbe validity of the shoi'.'ps of rstep 5 srr! the v-j/w^.j of 6a, 6b, and 6c are clearly

consistent with the albove.
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7° Conclusion

I hope that following the above procedure will enable the estimation of

^g(E)> for aparticular case to an accuracy of some 10$, say with somewhere
around 2.00 particles. An experiment carried out in this way will be extremely

informative* Of course* one will study in some detail the distribution of the

values of «£${%} for the mrioue particles to discover the efficiency of the
technique and the error in ^g(E)^ „

Furthermore, while no mention of the possibility has been given above,

it is clear that *©re the* one problem can he solved at a tiata or, in other

words, given the eolwtios of am problem, one can change the physical para

meters &M octal*, the atipver to the problem thus defined by merely recomputing the

weights. This is not mat* urork ©oapared. with the total effort involved in a

computationo

Ciearty, the limitation to "he imposed on this procedure is that as the

modified problem differs more from the maaodified, the variance of the answer

increases, provided the original, quota sampling procedure was reasonably effi

cient.

•3fc-



APFBTOIX I

Collisions Elastic in'the Center of Gravity Coordinate System

Assume aneutron haviag avelocity initially of t0 collides with anucleus

of mass Mo We wish to find the probability.density for the energy and direction

cosine, E and p, of the neutron after the collision. We have, in the center

of gravity system before the collision, for the neutron velocity,

M + 1 o

whence after the collision

M + 1 © 1

where |" is aunit vector selected at random from an isotropic population.
Hence, converting hack to the laboratory reference frame,

Now let X, -~ |70

ao taat -l< X < I p( X.) « -
2

and let ~£ _V2 E

so that ^I2 c|Li_) |M2 +1+2MXJ

fe»d g..1.4 <-£ >x, u(T^) .-iiU-iL »E

Further^ if eo « _1_ y y

Gi 3. JL± 1^- M - 1 l
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U- "|loe> +l/l - p| </l - CO2 cos £

p(^) - ~ 0 < £ <* .

• t r r1/2Thus* p(u Ito) - -p(2j) ^J- - i ll - u2 - W2 - u2 +2uttocoj

1-1/2
and p(E,5,u) » p(E) p(pU) - <* +^- 1 - »l - co2 - u2 +2uu0co

p(u |co) means probability density of u if CJ.
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APPENDIX II

Attract Beport on aSmall Monte .Carj^CgaBgbation

Asemi-infinite homogeneous sad isotropic plane slab was studied. Asource

of particles was placed in this slab sixteen mean free paths from the boundary
of the slab* Isotropic scattering was assumed, and no energy changes were

considered. The Prides leaving the aource were directed toward and normal

to the boundary of the slabo

Fifty partielea were considered. Importance sampling was used throughout.
The computation, was carried out on ahand machine in somewhat less than two
msB weeks. The result, obtained are giTen below, as afunction of probability
of survival in acollision Thus, aparametric sfedy in terms of change in
composition has been carried out. It is hoped, at some future date, to find the
effect of varying the scattering law from the isotropic cue.

Probability of Survival
in ajtolllfllon

0

•3

,k

•5

.6

«7

Probability of Penetration

-6 / -16\0.113 x 10 D (e )

0»260 x 10"°

,-6
0.335 .x 10

0.V?8 X 10
-6

O0863 x 10"

2.Mi x 10
-6
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