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Approximate Analysis of the Penetration of Neutrons

Through a Thick Shield Composed of Non-Hydrogenous

Materials

By Fo H„ Murray

This report is chiefly concerned with extensions of the analysis

of thick shields by methods related to those of ORNL 218, and of Bethe

(KAPL 56)„ The emphasis is on the development of methods of calculation

by which significant results may be obtained with a comparatively small

amount of labor, at least in some idealized cases approximating actual

mixtures used in shields„

In sections A and B the general equations for constant cross sections

are worked out more completely than in ORNL 218, and a brief derivation

is given of the asymptotic expression for the flux nv when a finite number

of spherical harmonics is assumed to be sufficient

In section C the method of moments is developed, from which one can

obtain the form of the energy distribution of nv at a fixed distance from

a plane source if, as in much statistical analysis, only a few terms of a

Gram-Charlier series expansion is considered to be sufficient„ In this

method all cross sections are assumed constant, and some "absorbing"

material is presents Applications can be made to mixtures not containing

nuclei scattering inelastically0

In section D a generalization of the age equation is derived in the

simplest extension of the more common equation for variable cross sections,

which permits the derivation of asymptotic expansions for nv at large

distances„ The general form of the extension of the age equation leads to



a system of equations of a type studied by Birkhoff if the number of

spherical harmonics is limited in advance„ Here some general equations

are set up; the behavior of nv at large distances from the source

requires considerable further analysis if the methods of Birkhoff are

appliedo

In section E there is developed an approximate analysis for

absorption and isotropic scattering by a simple method which has the

advantage of being carried through to the end without difficulty; this

leads to the diffusion equation, giving the correct diffusion length„

Section F is concerned with mixtures of nuclei for some of which

the only scattering to be considered is the shadow scattering according

to the Bethe-Placzek formula„ Some methods of approximate analysis are

developed, which lead to solutions after certain characteristic numbers

and functions have been found for a form of Schroedinger equation similar

to Wick!s„ Two approximate solutions for a mixture of water and an

inelastically scattering heavy element are indicated„

A« General derivation of the Boltzmann equation

When a neutron is scattered by a nucleus, and has the initial value

u! for u = ln(Eo/E), in the laboratory system of coordinates the probabil

ity that it will be scattered through an angle of cosine ju\o into an

infinitesimal solid angle dfi is equal to f(/-/0)djfl ; and

277-/ f(/g d/40 * 1

If F(z,/^»,u*) represents nv, then the number of particles scattered from

the initial infinitesimal range du» dA8 into the range dil becomes

F (z,/J.'t u») d u» d/l« v"M( ul ), fM ( u%A>) dA



Let fl, fi ' be independent directions; the angle M0 is a function of u'-u;

hence when iAo is held fixed, du' = du, and the expression above becomes

I (ZyU'.U1) dA'(TM(u«) fjj (U',/^) d U dil

Hence, the total probability of scattering into the range dudJl per second

from a particle of mass M becomes du dA times the quantity

IM»ldA» J (z,yW-«, u')tf(u') fH( u«,/a^

If n - Z(u'-u), this can be written

u« =^0, u).

IM " /<f(u») »<«./«.•. u«) fM <u«,Z) S-S-^CZ-aO du' dA'
au»

, _L_/<f(u') I (y^*, u») ^ (u«,u)^(Zy^) du» dJl'.
Sw s 2TT fu5_5L

.9-u'
Then from

F(z,A', u')r -^r (2nfl> »n <•• »'> *n $^>

^(Z-yU,) = ££<2n+l) Pa (2) Pn (A,)

and the addition theorem for the Legendre functions, we find

(1)

X« - nrX <2»^ GiM)pn^)

,(M) _ Ou

u

(T^u1) &, U'.u) Pn (^ ) Pn (z,u«) du',
u- an

In ordinary scattering,

, «iilil2 e2 tx'-u G(M)- h(M) <r *



Generally, let

For heavy elements, with aK very small , Ia.- s 2 In (Mf 1)/M - 1) J

one may take out <T|j Fn from the integrand, whence

4M)« 277"W^ %|fr Pn <%>«*• »̂ n 4M!
and

ip- E(2n+l)<TM ciM)Fn Pn ^)., c^ sj/l pn (z) dIL
lM 4TT

Then if

(2) tfCn = (2nfl)

we have

il<F(M,L £.,«;„ h(M,,)ti* Mn -r ijii NM" n

^MS -£r,? cnFnpn^
and the Boltzmann equation can be written

(3) ^f(r) "^^VA^^ z 4-rr • 4-rf

similar to equation (2) of #218<>

B. Formulas for constant cross sections (See Bethe KAPL 56.)

If Fn can be represented as a Laplace transform

Fn S 271*1

poo

°° H (a) e™ ds , H (s) = e"8* Fn (z,u) du
/_/ ©o

one can substitute Hn(s)exp(su) in the various integrals and obtain the



final representation of Fn by integration. In the case of ordinary

scattering,

e " .°IM Hn (s) e
su° . (M4-1) su (s+l)(u8 - u)iff B^ (s) e .

Xand from the definition of
Zsl "

u (8+1)5 (%-!)
e

P>

*ut»

.(M+ l)'
411

pn (Zm)Cm dZH

£Ltil!. 111! | •** *a <%> d%. xS (.4.i>5
4M M

From Watson, Theory of Bessel functions, p. 369, equation (3),

o©

exZ . X (2n+l) f (x) Pn (Z)

fn (x) sXteT in+i cx)9 in (xy-^?

Hence

h « t£j±) *~* fn (x)

In particular,

f^ (x) s slab x
x ^

*1 (x> = I
cosh x - 8lnh x

x J

f2 (x) s *
3

sinh x (14- )= 3 „ 1<=> COSJ1 II o

x J

x » 1.



If

the'1

number of Fn functions; a method which avoids this limitation is that of

Wick (On the Space Distribution of Slow Neutrons, P. R„, Mar. 1, 1949,

p. 738).

Referring to (2), one finds that in the absence of inelastic

scattering nuclei,

xJ \\ 1, h„n= l/2x =°| /(s+1). This approximation is limited by

tacit assumption that F can be adequately represented by a finite

SA s[5 <TMofM/ (•+!)] (2a+l) = ££ (2n4 1)

and from (3) one obtains the asymptotic form

Operating on both sides by (s-f 1) and noting that sFs is the Fourier trans

form of dF/du if F • 0 when u = 0, one obtains the equation equivalent to (4)

(5) (̂ L+ iJ^ff) I--^r( ^L-+ DQ+o<T?.
Taking the Fourier transform with respect to z of both sides, (Fp—>G),

and replacing G by gexp(-u) one obtains

^l- ^P4<r) e - c^rg =£rfz <*w
whence

P^CCTdu Au -fu' CCfdu«
g = .* F&*T / e "° ^^ , 1 , /. (Q'e '̂)du'

J 4-rr^-p+cr) mT

0*Tu «£ ,
- 0^, a*1*^ , K, eU du« = 5p •
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if Q is continuous in u but different from 0 only in a very small neighbor

hood of u = 0. It is to be remarked that these assumptions are possible

if the operations above are applied to the asymptotic form of the equation

(4) even if the definition of hMn requires an integral over a finite range

(u-aM,u); when the Fourier transforms of the original functions Fn are

introduced, all values of u are included in the domain of definition of

the functions fs.

The function g can be integrated over the unit sphere, with the result

G0 (P.u) s % P «

2 p u

For a plane source ^D is independent of p, and

.-•a 11

SttT(6) FQ (z.u)
2 u

— iw>u e

C<Tn 0<Tu
TT7

- e

pz dp

The function dFo/dz can be evaluated with the aid of the tables of Campbell

and Foster, # 654.2 with the result

„<fz
Fo = * e~U J C0"u e~N T (2 ^1 C<Tuz") dz
T~ TP*Tu~ 1 z

/3
oo

r..^^J31 .<fz z~* I ( 2 1 GTtiz) dz

<J

The method of steepest descent applied to (6) also gives the asymptotic

solution which is found to be &

4f7f (<Tzu)°/4(7) I0 (z.uW

The expression above, multiplied by 2z, has been derived in the analysis of

a beam source; see Marshak, Review of Modern Physics, July 1947, p. 230 (161)
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The factor (2z)-1 has 1/2 due to the propagation in two directions (4 z, -z)

from the plane source in an infinite medium, and l/z resulting from the

isotropy of the radiation from each point of the plane.

C. The double Fourier transform of F and the method of moments

Returning to (3), and taking the Fourier transform with respect to z

of both sides, also the Laplace transform with respect to u (already per

formed), and dividing both sides by <r , with >t> * <r P

we obtain equation (2) of #218;

(7.1)

A continuous source dis'tributiori will be assumed, of such a character

that only a small number of the quantities Cn need be assumed different

from zero. As in #218 preceding equation (5), one obtains by the same

algebra

where

Let

UWW-^ +fcZVW'")

w, - -f<?AcO if
Aec0'l aotct a.

el.

£2 *ioC0 KuCj-* ala,cA....
to do a.xx Cl *** v*.

a.o+V\*±; nP/fan+4-Uft.! +.<U+ft±ilPa *0
1\T/A-

0



Evidently, .

w iF = [(-ft)1" &(*>•)... Au«)
and the moments (um)aveo can be calculated from G0(z,s) which in turn is

found from H(p,s) and the inverse Fourier transformation; assume that

Go(z,s) is defined by the pole solution (D = 0) and that

-ISf. «[Vzff- -f'(«yf (»)]g,
6 S

^ - C« S -is-(^J >=+c° fcs-^H
as

The average value of u becomes

and the standard deviation squared

(10) u. * w - K 2SX ds

We have evidently for the ratio of the standard deviation to the average -jT~

95
ftsj/f(*) JS-0

and for very large z this ratio decreases like l/z ' . With some approxi

mation, then, one can represent F0(z,u) for large z in the form

«! . O(ii) F6(i,u)~f(«)e.
One can compute Fo from Go by the method of steepest descent also, from

12



In the method of steepest descent define S by assuming the derivative of

the exponent to be zeros ^j.ntJL ^(rZ'P'(<,) -O £s S(u,,1*)

kM-e . TfrJ *

"fair £•

From the equation defining S, expanded to first powers in S,

Hence

13

which is the same as (11)„

In case C0 and Ci are the only non-zero constants to be retained, a

useful method of calculating P(o) is obtained from the equation D = 0

written in the form

1 =Co + &

The left-hand member is plotted as function of x = l/P*$ the right-hand side

represents a straight line in x, defined at x = 0 and x = 2, and the inter

section of the curve and line defines Po
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D. A generalization of the age equation

If it can be assumed that the quantities h^ may be evaluated in terms

of Fn and its first derivative F' with sufficient accuracy, and if the cross

sections are functions of u for which only the first derivative need be

considered, then it is found that ^j -cf

Then we have -

Co • cl -y-Fo/Fo

(13) 4 « 31 */ ^' /Fl
From the equations obtained from the Fourier transformation with respect to z

one obtains immediately

Let<nfct ?aL4<./at ; these equations may be transformed into the system of

equations



Now <r~ is variable, and it is more convenient to write these

(H) r ** '

(15) [(^^)(^^>tA]^-^+3)^

15

Hence the equation of the second order for G0,

Since Ydt = du/r and y is the average value of "*» which may be assumed

a small quantity, this equation is approximately

which is of the type studied by Birkhoff for which approximate solutions

may be obtained easily, \/y being a large quantity. For a first approxima

tion one treats the equation in G0 as if all coefficients were constants.

Let g]_(t), g2(t) be solutions of the homogeneous equation; then one

can write the solution of the non-homogeneous equation in the form

Let S- be a root of the equation
i

&•V*>Wl Uh.[^WfcW-fcfr-^J^Sg^j

(17)



Approximately, A

and

16

Finally, ft

\J 0

(is) x^^j^T^m

If Q is a function different from zero only within a small interval

(0 < u < £) one obtains by an integration by parts X -\ X

Let

(19) ^^^-(fVV+AB)

From the analysis for constant cross sections, it is necessary to consider

solutions which may give S = 0, or S2 if A+-B4 0; and S2 = 0 requires

that +** + Ab +A'z 0,
Finally, the inverse Fourier transformation of G0 gives F0:

(20) j^ 4(^JcjU_i
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A considerably more complete treatment of the general age equation for

a limited number of spherical harmonics might be developed with the methods

of Birkhoff (On the asymptotic character of the solutions of certain linear

differential equations containing a parameter, Trans. Amer. Math. Soc,

vol. 9, pp. 219-231 (1908) ). The preliminary analysis for such a treat

ment is presented below; the application to a system of equations instead

of to a single equation offers no new difficulties.

One can write^ Fn = f(p,u), and expanding f in a Taylor series,

In the particular case f = exp(su), the integral ie

Hence in the elastic scattering, obtains

1 AM M*

As before, ^<W JS*^^'^
6

(21)



If several nuclei are present, let*^ = bjjg, the last equation can

be written

Let J. /

Then a^K r \±_ d*LA^) i «t*fap^>

This can be written

G» •X>4nw^B-(<rwF»)

One can write this also

Consider the solutions of the type

_ - isd±

•a
^F*, = SF^e +fe

Since ,

J3 *t - Af>'

18



in general, the variations of the exponent with t predominate so that

approximatelyt

hence vr\

19

The function S is still to be determined. Considering S as a parameter,

independent of z, one can solve the equation D = 0, where D is defined in

terms of P,S in the same manner as for the case of constant coefficients.

In particular, P is defined as function of S near S = 0. We now define S

as a function of P by the inverse relation from D = 0, taking the root near

S = 0, or which may be made 0 for suitable values of P, with u arbitrary.

Then S becomes a well defined function of (p,u). Also, for constant

coefficients, from (5) of #218, or from the double Fourier transform

(section C), / / \ /

The quantities Fn considered above are defined similarly to this Gn, and

r^with the change exp(su)-*exp(idt) we find immediately.

A 1 S^
(23)

S*S

e

With another Fourier inverse transformation one obtains

;24) ^(x»"=l
XT?/

U

(Q/rCa) i* crv

3D.

Z& J

k^Um) +f-"Jbf

This may be evaluated with the aid of a saddle-point method.



E. Absorption and scattering, with isotropic scattering after
each collision

We consider an infinite medium with macroscopic cross section for

scattering (Tg and with total cross section *f~ - &£ -f" tfa". It is

assumed that scattering is isotropic in the laboratory system to a

sufficient approximation; if f* is the average value of the change in

log E for one scattering collision, the energy distribution after one

collision is approximately*"

fl (u) du = 1 du, o < u < 2 T , = 0, /u 4 oW ~ /u?2f
and after n collisions

u

(25) f^(u) du, f*,'u) = J fn ,1(u«)f1(u-u»)du« so4u^2f
oo O

hence / <•

(26) //^(s) = f/u(u) e-su du, v^ (s) r e" >s sjnh.* a
J Ts

f rbs) =*-*$* (sinh gsy1

20

fs /
One can obtain the distribution in space and in energy after n colli

sions by considering the (n-l)th distribution in space and in energy as the

source function for the distribution after one more collision; the energy

distribution results from that of the (n-l)st distribution according to the

combination equation (25)» Assuming that the numerical values of the cross

sections do not change appreciably in any interval (0<^.u< 2 T), let

*(A very similar problem was treated by Ericksson, On the Stationary Energy
And Spacial Distribution of Neutrons in a Medium of Infinite Size, Archiv for
Mat., As och Fysik, Band 34 B, Nso2„)



^K. z> J*" »u) ^e ^e ^lux nv after n collisions, while F^ represents F

integrated over the unit sphere. One can employ the equation similar to

the Boltzmann equation

A * F" +«~Fn =_1_ <TS F° ,/A j>£o 4- (TF =1 £(u) £(z)
a z 4r n_1 9 z ° w

if Fn_]_ indicates Fg_]_ with fn-1 replaced by fn„ Let

Gn = 1Fn e"Pz dz

and assume

Gn = §n (P^>u)fn(u)

The equation above becomes

(27) (jip tcr) gn z l (^ gOn_1 , Qip ^(f) gi = _££_ go
^"rr 4tt

where g°n = 27T J gn vPs>l3u) du , S°0 =a0(p/(T) /(T
-1

From (27) dividing both sides by (u p +- <r~) and integrating over the unit

sphere,

where g° = jTs &Q (p/r) g°_± f

a0 (P) = 1_ log 14- p = i tanh-1 P
2P 1 - P P

Let at =log ) <?j_ a0 (p/tr)

We have g° = jtf*g%

21



and for the total flux

0° = gg *i Xnofn (u)

The approximate value of fn for large n may be obtained as follows:

o«

y>n<s) - f fn (u)

*o

OO

in°i

e~su dus

- d^n
ds S-O

fn (u) . u du =un fh (?)

oo

d2^n
ds2 I s=0

fn (u) u2 du =u]f fnC0)

u = - d^n
n —J—

ds

Also.

—2"
UrT

s-o

= - d_
ds

(n f )2+ n X
3

' sm 2 s£ ~ns MsinT s)""l = n^
T s-o

and the standard deviation results from the identity.

Hence <r2 - n -f2
3 >

u2 ~ u
n n

fn (u) ^ >£- (u - n )2 2 ( n 2)

"/2 1T 1/£ |2"

and the total flux becomes

G° =
o

So

5/f?
<£- n4i n/.-(u-n?)y|n J

22

Since



When n is large, the sum can be replaced by an integral which may be

evaluated with the aid of Campbell's tables, #807 (Collected Works of

Go A. Campbell).

Comparing

G° = go
3u

e1i
-jC\n -

2t T

with the integral

--/of

we obtain

r/T gg - ^G° =

-pg - <r
4g

6— e_l

AlL

7f g

rf|"
/F^

= «§
ff-y1-2*,

-no^

<AWith„g0 = e /(j~~S) we find for nvs

o iF" =

jr-s 2TTi

J*s 2Tfi
vi

pz + 4 ^ + 3u
••- 3 ""

: >•

u

3 u-2 1
2? 2 n dn

V^

23



If this is evaluated by the method of steepest descent, p is determined

from the equation ( e< 4, 4. 1)

L

pz 4. 4 (A + 3u 1 - -j/l. - 2c<
3 T [ 3

= c

'J
3u 1 <^"oz + 4 / 1 _g^.;!f' t.

3 \ a° ^ P/ Sp7^ vv p *> p

- z rp - / 4 + e)ao , P = p £0.
3 |yr^~25737ao ^

Substituting in the exponent in the integrand, with

we have

~ \fi - iU, » ^/3

3 S
2 -K

3 X

A+-t)

Near ^ = 0

oL - Ao(P-F0) - A'o (P™F0)*\

- z (T* ~ § t)A

J

^aoi
_

A « _1_
ci rj

dac

"dP"
P >0

F. Application of a method of Vfick*' in case the scattering from a heavy

element can be represented by the diffraction formula RJ]_(kR sin 6 ) /sin

*"G. C. Wick, On the Space distribution of Slow Neutrons, P. PL, Vol. 75,
p. 745 (1949)

24

in©/
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The formulas to be given apply only to the case of constant cross

sections; with total cross section assumed unity, the double Fourier trans

form with respect to the space variable of equation (3) yields

(28) (i+^r)K -- -± +-t ^ c«- ^ ^ ^v ' ' ijTT if. IT

Multiplying each side by Pn( /*>) and integrating over the unit sphere gives

(29> jU./^^K^O^lOtKu -C^JUv+O

Formulas for hn^M ' 'were derived in B; it remains to derive approximate

formulas for the quantities

1

•^ _l [\^ (z)\iMi^\ in A=nfc^t/t
"ft tt / *- sin© J

which is the same as evaluating Kn in equation (1) with

Here it is assumed that Kn(p,ur) retains approximately the same value as u>

varies over the range u-a,, ^ u? <^u, which is justified if M is very large.

Now if the product kR is large, one can write for small angles

7T s'm& J ,.-rr

1"1r

» A,



from which

f«K ~ so -W% trrt* :L^£- jjl-i.<i.
(30)

26

Hence in case a large number of equations (29) have to be solved, writing

yn = l-cn/(2n +1), one obtains Wick's equation

Aw1 » Tw T *
with p determined from the boundary conditions Kn bounded, W"> A,. -V,

The asymptotic expansion of the Bessel functions may be derived from the

formula /

r(y+j)ro/*) J,
(Watson, Theory of Bessel Functions, p. 79) for large n, with the ratio

n/z constant,

Employing the expansions of all Bessel functions involved, one obtains for

eachoi. 4.4. 1,

^4j ai ^x n
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When this expression is introduced on the right of (28), it is seen

that for n 4- £^<kR, the contribution of the diffraction scattering is

nearly constant; if G can be represented by a small number of terms, the

diffraction scattering terms on both sides of the equation cancel, and

one is left only inelastic scattering, considered as absorption, and

normal collisions with other scattering nuclei. This problem can be solved

by other methods, giving the ordinary diffusion length for the total energy,

with total cross section obtained by omitting the diffraction scattering

terms. The condition n <C kR, or that a small number of spherical harmonics

will be sufficient, requires that the ratio (inelastic scattering cross

section) divided by (total cross section of normal scatters) be not too

large. If 0— is the total cross section minus the diffraction scattering

cross section, the argument used above does not apply when the value of p

from the diffusion equation a0(p/<r-) = 0~/<rs is so close to <T that

functions Kn (n+J; kR) are not negligibly small compared to those for

which this inequality does not hold, since Kn is proportional to an(p/<T")°

For lead at 10 Mev the value of kR is nearly 6; in those cases in

which a large number of spherical harmonics need be considered, for the

fission spectrum with inelastic scatters present, the characteristic numbers

and functions of the differential equation need detailed examination.

The case of variable cross sections

Here it is convenient to start with equation (3) and definitions (1)

and (2); each component of the expression 0~ CnFn is represented by an

integral over 0" Fn which is a function of u», multiplied by a function of

u-u»j taking the double Fourier transform of both sides of (3) one obtains
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on the right

&)(3D rfAk, v- (>*+>)[&"%(<?,• \hiTtA^\)Ts[t^)
where

iA ,

Instead of (29) we obtain the system (p = -k)

w-^7M(\J +%*irlJ-teQA %>(*»+')*&, V^V-
For small us

hence

If the terms of (31) are expanded in the same manner, the right-hand side

of (32) becomes (P = k/(^)

in +) "•' AH +I
Z^)+I(^W

&KcWH&W"tf
[ J

x A,
IT

K«
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Even in the case of hydrogen the expression for Ts(gPn(Z]_) contains

a factor l/xy, if all these terms are neglected in first approximation,

for Xw~ small, there remains

7>« K ?J= tx*ti) Icr 7>« (r„ \).
Now c^M'^ is independent of xjji ; hence one can immediately take the inverse

Laplace transform of this term, and of the right member of (3), also in (32),

to give the system corresponding to (32) with coefficients depending on u,

for small u. In this approximate system the normal scatterers appear as

absorbers. It results that when Tp(Fn) =Kn, p/f = -k, one obtains as before

For small u, one can expand ((j-j ,/#"") in powers of u and apply a

perturbation calculation. Without this calculation, a particular approximate

solution of the problem is obtained by determining k as function of u over

the entire range of u, from a solution of the eigenvalue problem for the

preceding equation, or from a solution of the determinant equation D(k,u) = 0,

where D is defined under (7.1). With the employment of the Fourier transform

with respect to the space variable alone, this method is similar to that

described in ORNL 218, where k is determined from D(k,u) = 0.

Methods of calculating perturbations undoubtedly vary considerably with

the mixture in a given shield, and these will be considered later.

It is clear that the scattering is overestimated (for a given energy

loss) if in the expression Tps(gPn(Z)) the exponential function is replaced

by unity. One can then proceed as in the last section of ORNL 218, solving

first for the functions Fnexp(u). This has the effect of replacing s-4- 1 by s

in the definitions of a^,,. Multiplying through by the parameter shas the
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effect everywhere of replacing the transforms T (f) by sTps(f) =Tps(df/du),

except in the last terms of (31). One can then take the inverse Laplace

transforms of both sides of the equations, to obtain equations involving

only the Fourier transform with respect to the space variable z. For a

mixture of a heavy element and water, the hydrogen terms on the right

cancel with terms on the left, as in the case of no diffraction scattering,

and in principle the solution of the equations for quantities d/du(Fnexp(u))

can be completed, if <T^ is of the form bexp(u). This approach corresponds

to forward scattering in collisions with hydrogen nuclei; the characteristic

number k and the characteristic function is the same as if a collision

with a hydrogen nucleus were equivalent to absorption.
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