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Approximate Analysis of the Penetration of Neutrons
Through a Thick Shield Composed of Non-Hydrogenous
Materials

By F. H. Murray

This report is chiefly concerned with extensions of the analysis
of thick shields by methods related to those of ORNL 218, and of Bethe
(KAPL 56), The emphasis is on the development of methods of calculation
by which significant results may be obtained with a comparatively small
amount of labor, at least in some idealized cases approximating actual
mixtures used in shields.

In sections A and B the general equations for constant cross sections
are worked out more completely than in ORNL 218, and a brief derivation
is given of the asymptotic expression for the flux nv when a finite number
of spherical harmonics is assumed to be sufficient.

In section C the method of moments is developed, from which one can
obtain the form of the energy distribution of nv at a fixed distance from
a plane source if, as in much statistical analysis, only a few terms of a
Gram-Charlier series expansion is considered to be sufficient. 1In this
method all cross sections are assumed constant, and some "absorbing"
material is present. Applications can be made to mixtures not containing
nuclei scattering inelastically.

In section D a generalization of the age equation is derived in the
simplest extension of the more common ecuation for variable cross sections,
which permits the derivation of asymptotic expansions for nv at large

distances. The general form of the extension of the age equation leads to



a system of equations of a type studied by Birkhoff if the number of
spherical harmonics is limited in advance. Here some general equations
are set up; the behavior of nv at large distances from the source
requires considerable further analysis if the methods of Birkhoff are
applied.

In section E there is developed an approximate analysis for
absorption and isotropic scattering by a simple method which has the
advantage of being carried through to the end without difficulty; this
leads to the diffusion equation,; giving the correct diffusion length.

Section F is concerned with mixtures of nuclei for some of which
the only scattering to be considered is the shadow scattering according
to the Bethe-Placzek formula. Some methods of approximate analysis are
developed, which lead to solutions after certain characteristic numbers
and functions have been found for a form of Schroedinger equation similar
to Wickis. Two approximate solutions for a mixture of water and an
inelastically scattering heavy element are indicated.

A, General derivation of the Boltzmann equation

When a neutron is scattered by a nucleus, and has the initial value
u' for u = 1In(Eo/E), in the laboratory system of coordinates the probabil-
ity that it will be scattered through an angle of cosine .4, into an

infinitesimal solid angle d(} is equal to fg/Jo)dfl ; and

ztr[lf(,uo) A, = 1
1

If F(z,/%“,uv) represents nv, then the number of particles scattered from

the initial infinitesimal range du' dfl' into the range d) becomes

Pz, ) d ot an? Tulu) gy (uyie) an



Let 1, N ' be independent directions; the angle/l-o is a function of ut-u;

-hence when /Mo is held fixed, du' = du, and the expression above becomes

F (z,,0u') dﬂ'U-M(u') fy (n',/bta) du dNl

u! = Y/ {,m).
Hence, the total probability of scattering into the range dudfl per second

from a particle of mass M becomes du dft times the quantity

=) an F (z,M', u)T(u') £,( 0,
qu (z, ', u")T(u u (utops) = Yiu,, w).

If /,(°= Z(u'-u), this can be written

IM "/‘Q"(u') F(z, 1!, u') £y (u',2) %g(z =) du' aqr,

.;F/((u') F (z./w', u') g (u'.u)o/(Z-/u,) du' da.n'.

S Iy
= 2 f,
&y M S

Then from 1
TT_T'-Z (20 +1) ¥, (z, u') P, (W)

F (z-/u.'o u')
d(z-4,) = 33 (2nt+1) By (2) Py ()

and the addition theorem for the legendre functions, we find

1, = "!'I'T‘Fz (2n+1) GiM)Pn ()

QoM 1y gy (atiw) P (% ) P (z,at) du’
n -u-a;ru(u)g“ u',u) P (3, ) F, (z,u!) du'.

In ordinary scattering,

2 '
+1 u'=u (M) (M)

n.



Generally, let

o= ¥ ) <M (g,

For heavy elements, with ay very small, [aM = 21n (M+1)/M - 1)]

one may take out QEK Fn from the integrand, whence

i [P g 22 2 (g)ant = Tyry (M
=1 Q u' n )
and
M
I, = 41Tr > (2n+1)¢ucflu)li‘n P, (@)., c =ff? P, (2) 401
Then if

] (M”)
(2)  Toy = (2m41)| 3, e M) = q.,n

n M n
we have

(
zlu = | 2T Zn Cph Fn Py 9*)
and the Boltzmann equation can be written
(3) 2 F=_
p2-tT) T % Y caT2y (W
similar to equation (2) of #218.

B. Formulas for constant cross sections (See Bethe KAPL 56.)

If Fn can be represented as a Laplace transform

n 271 |,
-] o2

one can substitute Hn(s)exp(su) in the various integrals and obtain the

1 'IDO su . oo-su
F_= Hy(s) e ds, H (8) = e  Fp (zu)du
O



final representation of F, by integration. 1In the case of ordinary

scattering,
2
" .dy H, (s) & = (f—;) B, (s) e™ ., e(s+1)(uu - w

and from the definition of‘1 &y > E

Jury? T (s7)E (g 1)

B, S Po (2 )2y a2y
A
1
2 =X
N =9
g(u,ml) . i e j\ ® Py (Q) az,. x 3 (s+1)g
=1

From Watson, Theory of Bessel functions, p. 369, equation (3),

¥ = 5 (2m+1) £ (x) P, (2)
(4

X

t, (x) = 277; In«l—% (x), I, (I)"“-;l%#-;a > x)) 1.

Hence

In particular,

f (x) = sinh x
° X

I sinh
£, (x) = 3 [“’h x= ""’i“"‘x"]
£, (x) = 2 sinhx(1+3 )=3coshx



1f 5{}) 1, thé 1/2x = O‘M /(8+1). This approximation is limited by
the é: it assumption that F can be adequately represented by a finite
number of Fp functions; a method which avoids this limitation is that of
Wick (On the Space Distribution of Slow Neutrons, P. R., Mar. 1, 1949,
p. 738).

Referring to (2), one finds that in the absence of inelastic

scattering nuclei,

JCp s[si G—MO{M/ (s+1)] (2n+1) = .i_g_} (2n + 1)

and from (3) one obtains the asymptotic form

GRS S R

Operating on both sides by (s +4 1) and noting that sFg is the Fourier trans-

form of dF/du if F = O when u = O, one obtains the equation equivalent to (4)

S
(5) (.éa_ﬁ-,- 1)(,.65 + P === aau + 1) Q+cdr.

Taking the Fourier transform with respect to z of both sides, (Fp-—)G),

and replacing G by gexp(-u) one obtains
- < u
.a_.é.u—(/,bp-l-(r)g-cqg -?-a (Q e

whence
J’u cqéau [du f“ cq’au'
- /u;,+q" : 1
g e

d
b 4TTWP+<I’S du

(Q'e®')au'
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if Q is continuous in u but different from O only in a very small neighbor-
hood of u = 0. It is to be remarked that these assumptions are possible
if the operations above are applied to the asymptotic form of the equation
(4) even if the definition of hy, requires an integral over a finite range
(u-ay,u); when the Fourier transforms of the original functions Fp are
introduced, all values of u are included in the domain of definition of

the functions fg.

The function g can be integrated over the unit sphere, with the result

. cT Cvu
T=F _ .IFT
2pu
For a plane source'ﬁp is independent of p, and
ptiss cJ-
-u : Cqu u
_ o 1 éaﬂ=fp :?'1’1? Pz dp
(6) Fo (z,u) = % 2 u 21 )

p= 1o
The function dF,/dz can be evaluated with the aid of the tables of Campbell

and Foster, # 654.2 with the result

_ 9% = EP o " 1, CTu e..Q'z I, (2'\' cquz) dz
o 2 2u z

o0

.
F = 'q"P e cd : e,.<rz z"%' Il(z"{c<ruz) dz
° 2w

The method of steepest descent applied to (6) also gives the asymptotic
solution which is found to be 5
4T (Tm)”/*

The expression above, multiplied by 2z, has been derived in the analysis of

(7) ?, (zu)~

a beam source; see Marshak, Review of Modern Physics, July 1947, p. 230 (161).
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The factor (2z)~1 has 1/2 due to the propagation in two directions (+z, -2)
from the plane source in an infinite medium, and 1/z resulting from the
isotropy of the radiation from each point of the plane.

C. The double Fourier transform of F and the method of moments

Returning to (3), and taking the Fourier transform with respect to z
of both sides, also the Laplace transform with respect to u (already per-

formed), and dividing both sides by ¢g- , with p=0 P

My (9r8) = G5) [P 7 o (10) dake

we obtain equation (2) of #218:

D (1auP = L Te, My B (A)

A continuous source distribution will be assumed of such a character
that only a small number of the quantities Cpn need be assumed different

from zero. As in #218 preceding equation (5), one obtains by the same

¢ = A
algebra Hm = _(Q/g-co) PLY
ao co-l aoi c‘_ aﬂb az'
D= :10 Co R11C-t ag e, ...

2L0C o a
where 2101 g QL

Arp = agy (P) P (-2/p), M % n,
Go+Phy=d, nP/(2nt2)A, , +a,n+_‘.’li'l-]2

Let ama an+d +.1-
Ho (ps) = [#2 @, (29)dz
e, S
Go (z28) = 'f'e-s« Fo (2,4)dus
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m “m -
<- 45 > G" (215) ‘—'IL( Me SKFO (Z}“)M
Evidently,

o . A e 6ol fat

and the moments (u™), .o can be calculated from Go(z,s) which in turn is
found from H(p,s) and the inverse Fourier transformation; assume that

Go(z,s) is defined by the pole sol%}ion (D = ge and that
o Z Inf(s)-Prz
Qo (2,8) =¢(s)e . )

-_a__c_°__ £ [G'Z-g—E- "‘F'(SB/‘F (s)]Go

65s
2*C . [z -3—"5—7“’;, f;(?%@)]c,-;@ sz-{(s%us)]

8s%

The average value of u becomes

— . P _f)
(9) L STtae Flajp )

and the standard deviation squared

T — =g ZJ—E—}-(F/-F

(10) = Ut T MU a5

We have evidently for the ratio of the standard deviation to the average

z - [ﬁ/;zzﬂ ﬁ(’%']s:o “

2L {?(5/{(5)

w

1/2

and for very large z this ratio decreases like 1/z With some approxi-

mation, then, one can represent Fy(z,u) for large z in the form

-r2P(o) -(W‘i)%Z'z
~ o 1
(11) F(zu)~ flole 'ZVZTr"‘e

One can compute Fo from Go by the method of steepest descent also, from

Fo(z,u) = £ eM“ -eaP(s)+ SuU

4T,




In the method of steepest descent define S by assuming the derivative of

the exponent to be zero:u+F7F -a-z'P'(S) =0 s S (K;Z)
) ~
e bt -gc2P(e)+su _ g le(S)—¢¢?(5)+54 X

e g@.s)’*[ig-(f-) 2?19]

b (5)-2 P(S) + Sy @ _tre¥

&(@u)=€ B cdt
Y 1 e,z,,..F(S\’-o'z'P<5)+5K
* Tar =

From the equation defining S, expanded to first powers in S,

L — LA OL 7 DR

oz P (o)ojf;(F /;) N
- ]

Hence 4 C%F(o)_a-z?(o)‘;-fi%(?—)-rz? (0)_]

.FD(Z/“>-' zﬁ_ﬂ-'—

= £ PO gy
S e A

(12)

which is the same as (11).
In case Co and C] are the only non-zero constants to be retained, a
useful method of calculating P(o) is obtained from the equation D = O

written in the form

1 = CO + C4
Zo (P-4 1-C.  P*

13

The left-hand member is plotted as function of x = l/P2; the right-hand side

represents a straight line in x, defined at x = 0 and x = 2; and the inter-

section of the curve and line defines P.
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D. Ageneralization of the age eguation

If it can be assumed that the quantities hpy may be evaluated in terms
of Fn and its first derivative F! with sufficient accuracy, and if the cross

sections are functions of u for which only the first derivative need be

considered, then it is found that % E
Koy =4- iy LRF) - i“m—ﬁ— "
TmFo
Aom = M [:l+ L‘:’-"—EL] _M_[J.M'ML.,.'FA_
3 M Fa 3 aTm Fu

Then we have

- ) %
0O, = do+ ZTp~ 2% o3 'O'VF°7F°, Ty = 2ok

sl 4T ML +°’/"1//Fi

or, co 2 c_o- -\/-Fo/-FO

!
s — + /
) ¢ gtV
From the equations obtained from the Fourier transformation with respect to z

one obtains immediately

Qo= 0, Qr+ 4, (To 6o =Y Go ') +ay, (3,6,+76,)
Gy =y Q/’/a" + 04, (€G- YGo ') "'_441.<5-_1_G1*"7G’1)

/
Letﬂl—t:d«/7/ ; these equations may be transformed into the system of

equations _ :

(E%Ll_ +4- c°)co+’PG1 ) Qf’/{-

-Pe + (?‘535_"'—0:4 +P¢°/d-i)¢1= o
Pepfr, 2o- T—-ﬂ"“" |
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Now ¢— is variable, and it is more convenient to write these

(ﬁ+a—-c—&)a¢,+¢ai=¢¢
‘;ﬁGL:+r(;fﬁ?"'+ di Eﬁ:+7°avyékx)éa-=cj

(- + A)e, +G, = OF
-¢Go+(ﬁ~+B>6.=

(15) [( B) ]G'o )Q»F

(14)

Hence the equation of the second order for Go,

ao  [FT D F gt Mo Doy

Since ¥ dt = du/~ and Y is the average value of ® which may be assumed

a small quantity, this equation is approximately

R i S R L

which is of the type studied by Birkhoff for which approximate éolutions

may be obtained easily, IAy being a large quantity. For a first approxima-

tion one treats the eguation in G, as if all coefficients were constants.
Let g1(t), g2(t) be solutions of the homogeneous equation; then one

can write the s olution of the non-homogeneous equation in the form

£ 449, (¢ w + P )Rplw)
G gy (D43, >+f[m< 8-, (g )J{ﬁa g

Let S5 be a root of the equation

S+(A+B)5+¢F +A ‘}'AB O
S = - *'B N(A“'B (»f’+A+AB)

R 2 O

(17)
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Approximately, f 55 LW

1

?’1 =€ 7’3,
and s ) g(ms)w
.1.?'_7, 7= S e
f ﬁ?’ — ﬁA+B)JLV/

L'{g_f)l' 10+A+AB> e”

551“’ ff 4w j[,{sltw)zw JS;,LW)aLw jsl(w)lw Js (w)ﬂxi]

Finally,

w
f(Si-n—SL)J.V (j‘ + B(W»@.P(_\A’)&W
(18) zf(’”ﬂf (fs’q-A T+ AG)
j&& js,,.w ‘ ‘—_j s;_(w).izw fS;,Lw')J.wJ(fW,r BW) Qp(w)dw
Yo

= +Pe
YR~ [+ 4+ 48)

If Q is a function different from zero only within a small interval

(0L u< ¢) one obtains by an integration by parts b o

' T4 dw
cr,-.ogefs {y@efs Lfg—[(m%)cf " (6+s) S5 [(——5) (2w +4@

Let
**% (8¢5)=0, (-0 c
_Q(sta,) _OJSL v
(19) Q’VG‘_E?'(T +A'x A

From the analysis for constant cross sections, it is necessary to consider
solutions which may give S = O, or Sp if A4+ B L 0; and S, = O requires
/
that f"-r AB+A: 0O,
Finally, the inverse Fourier transformation of G, gives F:
P+iloe
JS d.w tpz
(?O)F( 9 ~Q(B+S,) c° d
/
°7'-"—' TJ) - (/ao + AB+A)
B-ioe
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A considerably more complete treatment of the general age equation for
a limited number of spherical harmonics might be developed with the methods
of Birkhoff (On the asymptotic character of the solutions of certain linear
differential equations containing a parameter, Trans. Amer. Math. Soc.,
vol. 9, pp. 219-231 (1908) ). The preliminary analysis for such a treat-
ment is presented below; the application to a system of equations instead

of to a single equation offers no new difficulties.

One can writeg~y, Fp = f(p,u), and expanding f in a Taylor series,

ﬁzf-‘:—(u w) ] e 'Pn(z)”“*

+ (2-1)
: zf‘_""_iv_’f‘__ f (2-1) "D (2)dz

4
Mg M 0n) o (2-4
mir:! ii“j ™ )?nmu

- 2 z i@'ﬂ)} ms IMHH c{j
43"

In the partlcular case f exp(su), the integral is

23 EIT T (9 :] ey [6+9) e

_%,(4+5)

Hence in the elastic scattering, obtains

0" ol ] w)““"‘ £ i b ™)

{l (*> V é, )
%MlﬁltM;‘-l_, i%‘;'_)—

(s ) , 1 w -I -%M
As before, ’ﬁn)/"\ Mg i'___._:\v:'a) fw (ﬁM)&
(M) O AVMEm) ™y () (¥n)
o jsn m! Adu™ d %M

(21)



If several nuclei are present; leti@r1 = ngsthe last equation can

be written

™ 5"y "ruFa) b” A%y M (b mE)
M T oM mt AT

=T AR 2 Aau(bmS)

™ du ! ALSM
Let 1&: ﬁ?ég
(M) ,
Then G n = Z 4 dm ﬂnm (5/‘1 E) d,m(o-M Fw)
oL ! asm dt™

This can be written

(M) L
G, =5 Afmm ﬁﬁ—(o'mfﬂ)
"

™

“: Somm /Lo

One can write this also

(M)
(22) Q -gL B
m

g3

(M) AME,
2 P

Consider the solutions of the type
- Jsdt
F. e

Frn =Fn,

- Pt

* £
Lf Sdt - ‘—Z‘—fg “adu

Since

18
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in general, the variations of the exponent with t predominate so that

approximately,
hence daizm
(M) m m )

The function S is still to be determined. Considering S as a parameter,
independent of z, one can solve the equation D = O, where D is defined in
terms of P,S in the same manner as for the case of constant coefficients.
In particular, P is defined as function of S near S = 0. We now define S
as a function of P by the inverse relation from D = O, taking the root near
S = 0, or which may be made O for suitable values of P, with u arbitfary,
Then S becomes a well defined function of (p,u). Also, for constant

coefficients, from (5) of #218, or from the dduble Fourier transform

= - (Q/r Co) Aoﬂ/ﬁ)

Qn =4 wo Ao *
n Pra ,Hni du—-(&/rco)——'&——e
- ! as

The quantities Fp considered above are defined similarly to this G,, and

(section C),

4

with the change exp(su)aexp(%dt) we fiig immediately.

(23) [(Q/d‘co) Ao'fu] ,g,f

&3¢ Deo

With another Fourler inverse transformation one obtalns

- £( 50&)‘}191
(24) 'Fn"“‘) i (Q/C) A”“ e. -Fy 4f

_, 0 35 D=0

This may be evaluated with the aid of a saddle-point method.
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E. Absorption and seattering, with isotropic scattering after
each collision

We consider an infinite medium with macroscopic cross section for
scattering ¢ and with total cross section o~ = g + 4gz. It is
assumed that scattering is isdtropic in the laboratory system to a
sufficient approximation; if '5’ is the average value of the change in
log E for one scattering collision, the energy distribution after one

collision is approximately™

f1 (u) du =1 du, 0¢u<2%, =0, [u<do
2% uy27?
and after n collisions
u
(25) fh’(u) du, fy,'u) = Ty q(ut)fy(u~ur)dut , 04 ud2%
o o
hence ?
(26) Yo (s) = | fp(u) esuau, W (8)=e 7% sinngs
7 ]

o

‘Pn,‘,s) z e rns sinhsE s |

One can obtain the distribution in space and in energy after n colli-

sions by considering the (n-1)th distribution in space and in energy as the
source funqtion for the distribution after one more collision; the energy

distribution results from that of the (n-l)st distribution according to the

combination equation (25). Assuming that the numerical values of the cross

sections do not change appreciably in any interval (0 u< 2 ‘?’), let

*(A very similar problem was treated by Ericksson, On the Stationary Energy
And Spacial Distribution of Neutrons in a Medium of Infinite Size, Archiv for

Mat., As och Fysik, Band 34 B, N:02.)
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F ‘z, o ,u) be the flux nv after n collisions, while FJ represents F

n
integrated over the unit sphere. One can employ the equation similar to

the Boltzmann eguation

S(u) §(z)

-0 I
QFn+ ¢Fp= 1 G- F A dFo 4 0F -1
dhry T 0 o T °T T

-0 Y
if F,_j indicates FO_; with f . replaced by f;,. Let
]
Gpn = F, eP%dz

- DO
and assume

Gy = gn (P,psu)fpn(u)

- The equation above becomes

(27) (upto) gy =1 s %1 » PP+ &1 = 75 g°
LT Lir

1
where g% = 2Tr‘§ gn (Pspsu) du , g% = an(p/o) /o
-1

From (27) dividing both sides by gp p 4+ 0~ ) and integrating over the unit

sphere,

where gg = s ag (p/0) 83-1 s
r

ap (P) =1 log 1+ g =

Let A zlog | Os a, (p/c)

=

We have gi = ,efkgg
«L

g = L™ ed



and for the total flux

The approximate value of f, for large n may be obtained as follows:

‘Pn(s) = S fn (u) e™5% du;
)
- d(\fsn = =| f, (u) . udu =iy th (.D)
)
oo
dzgén = fr () u? du = ufy l)yy\(o)
ds 5=0
o
‘f n
a, = - dyn =-d iy -ns I sin¥ s =n¥
ds 5=0 Eg 3 ‘g 850

Also,
W 2§ 5

and the standard deviation results from the identity.

Hence g2 = ng< = ui - T

3
fo (W) T f-(u=-n ) z<g_§i>

aa

and the total flux becomes

22

Since
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When n is large, the sum can be replaced by an integral which may be
evaluated with the aid of Campbell's tables, #807 (Collected Works of

G. A. Campbell).

Comparing
pev-
2 (3 - &\n - _3 v
GO 3 8 e e <1 ‘)’1 —2u 1
o 7n

with the integral

"

oo
e"/a;:/e -pg—_%_ 4
L Vs

we obtain

_af 3o
o % e °§ ?""§32(2 )
Z - A
2

" & 631[1— L%’J
=
l -2
-/ EPN

7ith g2 = eo‘\/a—s, we find for nv,

[+

koo
o= 1 1 epz-+ o~ %?,[; - J[I_:Té::i]
3 ,

-gg—é 2771
Lioco d
7/1 - 24
3

} o0
= 1 1 [ Petld+ 3w 1-}/1-@,('
o5 2mi| 2 H 3 | ap.

- be



2L

If this is evaluated by the method of steepest descent; p 1s determined

from the equation { & & <&, 1)

Substituting in the exponent in the intsgrand, with

1 - m - 3
3

9~

+

Mia

?.

i

wof -

+
\//J—T\

r
L
vj} ©
~to

Near oA\

it
(@]

A= dag p Mo
)

~(;. i ) A EPS P
7Y

A

F. Application of a method of Wick™ in case the scattering from a heavy

-2 =

element can be represented by the diffraction formula [RJl(kR sin @) /Sin?] 2

*G, C. Wck, On the Spacc Nistribution of 3low Neutrons, P. R., Vol. 755
p. 745 (1949)



25

The formulas to be given apply only to the case of constant cross
sections; with total cross section assumed unity, the double Fourier trans-

form with respect to the space variable of equation (3) yields

(28 (1t 2p)K = ﬁ"'—j:rzc fn B )

Multiplying each side by‘Pn(}b) and integrating over the unit sphere gives

KoreK = Q+CK,
(29)

Nt Ky FK F VR K L =0 0K, [(ant )
;“’H'H In+} (M) ' ( )
K Z O'Ar\ Z_mL)l J

W , .
Formulas for hn(M ) were derived in B; it remains to derive approximate

l

formulas for the quantities

(M) _,_J/ 7_) J %Rsmeﬂ Lo 4= AamEfk

gin @

which is the same as evaluating K, in equation (1) with
- .
Gz TR, qm= LT 2L (_L)<  (# Rsm&})
Jw (|, n e
Here it is assumed that K, {p,u’) retains approximately the same value as u’
varies over the range umaM,é.u? é:u9 which is justified if M is very large.

Now if the product kR is large, one can write for small angles
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from which
(M) (_&&» o~ (n:") L4,
(30) 27T AR e * “** _/{__B_) e £% 4 R“

Hence in case a large number of equations (29) have to be solved, writing
¥n = 1-Cn/(2n + 1), one obtains Wick's equation
-
Ak, +_L dKn +(.‘L-:Lf \}n) i, =
LW aw

with p determined from the boundary conditions K, bounded,lJn) K = 0,
nave

The asymptotic expansion of the Bessel functions may be derived from the

formula

(9. (a2 j(; ) E 2Tt
A TAT

(Watson, Theory of Bessel Functions, p. 79) for large n, with the ratio

h*l eg;,“ + A A = h/z’)
Ihﬂ[»l (1-)/'\./
’/_—Z Al -~ t, T, 2o+ A,

Employing the expansions of all Bessel functions involved, one cbtains for

n/z constant

eachel L 1,
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When this expression is introduced on the right of (28), it is seen
that for n + 3/<kR, the contribution of the diffraction scattering is
nearly constant; if G can be represented by a small number of terms, the
diffraction scattering terms on both sides of the equation cancel, and
one is left only inelastic scattering, considered as absorption; and
normal collisions with other scattering nuclei., This problem can be solved
by other methods, giving the ordinary diffusion length for the total energy,
with total cross section obtained by omitting the diffraction scattering
terms, The condition n £ kR, or that a smsll number of spherical harmonics
will be sufficient, requires that the ratio (inelastic scattering cross
section) divided by (total cross section of normal scatters) be not too
large. If g—,is the total cross section minus the diffraction scattering
cross section, the argument used above does not apply when the value of p
from the diffusion equation ao(pﬂr!) = 0’70‘5 is so close to G'Ithat
functions Kp (n+ % > kR) are not negligibly small compared to those for
which this inequality does not hold; since X, 1is proportional to an(p/&‘3,

For lead at 10 Mev the value of kR is nearly 6; in those cases in
which a large number of spherical harmonics need be considered, for the
fission spectrum with inelastic scatters present; the characteristic numbers

and functions of the differential equation need detailed examination.

The case of variable cross sections

Here it is convenient to start with equation (3) and definitions (1)
and (2); each component of the expression (™ Cth is represented by an

integral over ¢~ Fp which is a function of u'; multiplied by a function of

u-u'; taking the double Fourier transform of both sides of (3) one obtains
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on the right

(31) T (~C, 7,)= ( :,w)[ (f )+ T/,s T 7)7’( ﬂ

" et 0

Instead of (29) we obtain the system (p = -k)

(32) - n# ’7},5( ,)+717.s(r;h) (h+/)7( 7}',5(71)”-/) - 711‘ (0‘(‘ :}"')

int ) an+l an+|

For small u,

= 0"(0)-!- WSI(D))

hence 7:;,3 (0’ ?n>= JE-Sw(o‘; + u,q-—o,) Tf‘ (:)n)iw
0

S [Tfas\ﬁn)‘%jﬁ Tf’s H”%]

If the terms of (31) are expanded in the same manner, the right-hand side

of (32) becomes (P = k/r3)

in+| 2n+|

i(%_é_)_z%(m')(g) Z(%__ é z?}JxM
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Even in the case of hydrogen the expression for T (gP,(Z)) contains
a factor l/xlg if all these terms are neglected in first approximation,
for xM-l small, there remains o

Tpe (6, 3,)= (ene) T Tpe (%)

Now ch') is independent of Xyi; hence one can immediately take the inverse
Laplace transform of this term, and of the right member of (3), also in (32),
to give the system corresponding to (32) with coefficients depending on u,
for small u., In this approximate system the normal scatterers appear as
absorbers. It results that when Tp(Fn) = Kp» p/f' = -k, one obtains as before

Lo + L Ao + (2-2Ky,) £, =0

T v dw f

For small u, one can expand ( Vﬁ|/”—) in powers of u and apply a
perturbation calculation. Without this calculation, a particular approximate
solution of the problem is obtained by determining k as function of u over
the entire range of u, from a solution of the eigenvalue problem for the
preceding equation, or from a solution of the determinant equation D(k,u) = 0,
where D is defined under (7.1). With the employment of the Fourier transform
with respect to the space variable alone, this method is similar to that
described in ORNL 218, where k is determined from D(k,u) = O,

Methods of calculating perturbations undoubtedly vary considerably with
the mixture in a given shield, and these will be considered later.

Tt is clear that the scattering is overestimated (for a given energy
loss) if in the expression Tps(an(Z)) the exponential function is replaced
by unity. One can then proceed as in the last section of ORNL 218, solving
first for the functions Fnexp(u). This has the effect of replacing s+ 1 by s

in the definitions of Xyn e Multiplying through by the parameter s has the
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effect everywhere of replacing the transforms Tps(f) by sTps(f) = Tps(df/du),
except in the last terms of (31). One can thentake the inverse Laplace
transforms of both sides of the equations, to obtain eguations involving
only the Fourier transform with respect to the space variable z. For a
mixture of a heavy element and water, the hydrogen terms on the right

cancel with terms on the left, as in the case of no diffraction scattering,
and in principle the solution of the equations for quantities d/du(Fpexp(u))
can be completed, if 57* is of the form bexp(u). This approach corresponds
to forward scattering in collisions with hydrogen nuclei; the characteristic
number k and the characteristic function is the same as if a collision

with a hydrogen nucleus were equivalent to absorption.
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