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Asymptotic Distribution of Neutrons From a Point Source

In a llfedium Containing Hydrogen and an Isotropic Scatterer
To A, Walton =• Go Goertzel

(1)
It has apparently been pointed out by many authors that in neutron

stopping calculations the effect of hydrogen can, to good approximation, be

taken as a slowing of the neutrons without angular deflection,, A simple

justification for this assumption can be giveno A neutron which suffers

a small fractional energy loss in a hydrogen collision is deviated only by

a small angle„ A neutron which is deviated by a large angle (>qp, say) loses

a large amount of energy,, and because of the general trend toward larger cross-

sections at lower energies,, stops quickly without contributing in an important

way to the transmission. This assumption (in future referred to as the "straight-

ahead" assumption) will be here accepted without cheeky although a test of its

validity is not difficulty and certainly important,
(2)

Greuling has pointed out that there exists a family of energy dependences

for the hydrogen cross-section which lead to analytical solutions of the "straight-
(3)

ahead" problem in terms of the confluent hypergeometric function Young has

given a useful summary of the available knowledge on this point„

If hydrogen is combined with material which scatters isotropically (approx

imately), with OP.without true inelastic scattering, we obtain an interesting

shielding material We may expect that the "straight-ahead" approximation will

here be much better than in the case of pure hydrogen, since any small hydrogen

scattering will be masked by isotropic deflections „ It is then to be hoped

1) Wignar C-137, Hon P-283

2) Hon f-172

3) Hon f-293

-A-



that a simple treatment of such a material can be given by combining the

"straight-ahead" approximation for hydrogen with some simple treatment of

the isotropic processes, As a first step in such a program, G„ Young^

has proposed the treatment of a material composed of hydrogen plus an iso

tropic, elastic scatterer, whose cross-section is independent of energy.

Under these conditionsj, the processes of degradation by hydrogen and diffu

sion through the material are independent in the following sense, let -

S(E,JL )dE be the number of neutrons in the energy range dE, at a distance X

from a point source of neutrons in pure hydrogen of the same atomic concen

tration as prevailing in the actual shield material. Now consider a problem

in which a plane, isotropic source emits neutrons at a steady rate into a

medium consisting of the isotropically scattering nuclei, with the hydrogen

removed. Let P(x,A)dX be the density of these neutrons at a distance x from

the source which have travelled a total path-length>l in the range 6.X, from

the source. It is then clear that, because of the independence of scattering

cross-section of energy, the resultant density of neutrons in space and energy

at a distance r from the source is given bys

P (x, E) = fdjl P(x?!) S(E,Jfc) ' (1)
o

The function V is of course zero for JL < x ,

The function P can only be calculated with difficulty, but its Laplace

transform with respect to X can be simply calculated in many situations.

Imagine that a capture eross-seetion (X is added to the isotropic scattering

cross-section «r, and a unit plane isotropic source is present at x ~ 0,
s

Neutrons which arrive at x with a path length ~b will be attenuated by a

4.) Discussion with F, H„ Murray



factor a"* „ Therefore, if we defino;

q(x,<*) * r&ii*x p(x^)
0

then Q(xsc() is just the neutron density at x which would exist in a medium

with scattering cross-section .Og , capture cross-section ocs and a unit plane

isotropic source at x ~ 0„

(5)Murrayv' has proposed an ingenious method for calculating P(x,yl),

Consider an isotropic plan6 source (in the pure scattering material) which

emits a single neutron per unit area with unit velocity, at time zero. The

density of neutrons, N(x, t) at time t and distance x is just P(xpt)„ This

must be true to within a constant factor since time of flight and path length

are directly connected (are in fact equaL, with unit velocity). To show that

the factor is unitys we note that the time integral of N(x, t) is just the

total density at x which would result if one neutron were emitted per second

per unit area. It is' obvious from the definition of P(x,-£)that its integral

over allA must be just the total density at x, with the same steady source.

Therefore P(xj,X ) s N(x,X), The equivalence to the previous recipe is

obvious as soon as one attempts to calculate the time dependent problem by "

the method of Laplace transformation

We now calculate S(EgJt ) and T(xsXX The function S(E,ij)satisfies*

dS(dS/} +<rH (E) S(E,i) ,J ^r o>E (E') S(E\Ji) +o(E~E0) «(j&)
Here dft (E) is the hydrogen cross-section. The source term on the right gives

5) CL-FHM-1
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a unit point source at X - 0 with energy E0, We write:

iwiS(B,A ) h JV*' T(B,a)>

Equation (2) becomes)

^Wo^ (B) *itoj T(B, oJ) ^ fy o-H (E7) T(Ey, u>) +£(E=E0)

The solution of (4.) is easily shown to bes

E0 |0'H(Eo)fiaJ|pi(E>ica

E0

>E

(3)

(-4)

*<«.«>. "isyiic+ (Eo) JEE' <UeO+1o) (5)

where l(E0-E) is the usual unit step function.

It follows directly from the previously mentioned observation of

Greoliag that a simple expression can be obtained for T(E<,co) if «; varies as a

power of Es

Og(E) • AS
•l/a

(6)

Here A and n .are arbitrary constants, with n restricted to be a positive number

(not necessarily an integer), if or is to decrease with increasing energy. We
H

take o~ as the. integration variable in (5)s

d, Oh dE
a

B

;
E

!S_

*H
E

<$(E)

n i2H_

°H(Eo>
Ori+ iCOJH

= log
aftfcfri

n

CO

«h(E0;+ i co (7)



We then have

n-1

VsUi> crHCE0)+iu, + EQ oH(E0)+ico * X W

Th6 Fourier inversion (3) can then be obtained in terras of the confluent

hyp6rgeometric function, which has extremely convenient expansions in powers

of x and of 1 . For our purposes, however, we shall restrict our attention
x

to the cases n = 1 op 2, since these yield reasonable/1 or 1 \ representa-

tions of Og and simplify the further analysis considerably." For n = IflV

, , 6(E>Eo) l(E0-E)ofc(B0) 1

For n • 2

0&(Bo)+i"> E0 p-H(E0) + iaJJ*

s^x, =*t) JS<**) - Kso-E)^) ^y^U (9)
\w)1

T<E^ =or (B>ioo + E0p<Eo)+ia>-]B ^H(E)+iu>J

S(E-E0) l(Bo-B)cte(B0) \ - .1 + Qh(B)-Oh (Eq)
" orH(B0)+ia> + E0 | [crH(E0+ iw]* [crH(E0)+ico]3

^ . l(E0-B)oft(E0)[ot(E)-oH (Epjls^1a)[^-iMyi *<*> +

8



Now, referring to equation (l), we hav6 for the final energy and

space density of neutrons at distance x from the source?

p(x}E) =Jkdi P(x,^)S(E,i)

o

-<%(e0H='(^ *&)£*«-*•

=*(mc^rrr) QUo-h(e0) (11)^(B0)/ "V~HV

where F is the differential operator appearing in (9) or (10), and Q is the

Laplace transform of J?, previously defined.

Our only remaining problem is to determine Q. From the arguments

given earlier, Q(x,qO is related to the solution of the following plane

transport problem,

1

HbN>,p<*3 +og N+ct N=^-Jdp'Ntx,^) +i6(x) (12)

In order to find Q, we integrate N over p to obtain a density in the plane

problem,

That iss
1 .

Q(x?o() - Pdu N(x,p,oO (13)

This is the standard problem of a plane isotropic source in a homogeneous

medium which has isotropic elastic scattering cross-section crQ and capture

cross-section <x . We sketch the solution. Writes



I r ikx r(jj q.)
N(x,p,cc)= "27fJdke oi^tikiT U)

Equation (12) becomes;

ROvO - iHtan"1 ^~^(k,«) +i-

R(k'°° =i °s /-1 k• (15)1 Ftan o^oT

The function Q becomes

ikx

Q(x,oc)

• M

, -tan _
k °g+«

Ik^T

ikx i
dke — (26)

, -1 k " °a
tan ^

This function has been studied by several authors. For small x, it yields

the first collision density, while as x increases the solution goes over

into a diffusion type density. The diffusion density arises from the pole

of the integrand of (16) in the upper half-plane, while the solution for

small x arises from the integral along the cut required to make the integrand

single-valued, We make the explicit assumption that x is sufficiently large

so that the pole contribution dominates the cut contribution. The condition

on x for this to be true will be examined later.

- 10 -



The pole isatksiK, withs

I

•1 K ' &B (17)
tanh

Evaluating the residua^ we obtains

~Kx

Q(x ,o0 e

^ fyaj,+« 1 (18)

GemMming «ur results thus far, the final answer is to be writtens

-Kx

^foB) -P(lE9E., -C~\ J-«*o» asfi o;—^t: (19)
s s/«fs**

1
(«rs4 <*- i

with o{ set equal to c^(EQ) after the performance of the indicated differentia

tions« It must be remembered that K is a function of <*, in performing the

differentiations,

It is now desirable to indicate several generalizations of the previous

work. Firsts a constantsr6als capture cross-section (which may be introduced

to simulate the effect of inelastic scattering by heavy elements) is simply

treated by evaluating (19) for o< s^j(E0) +••&» Avariable capture cross-

section can be taken into account by modifying the function S(ES£)appropriately,

Seconds n need not be taken to be an integer0 The function F is then a

non-terminating power series^, which converges for all values of the argument.

11



Its properties are well known (see Reference 3), and it possesses an

asymptotic expansion which (for n not unduly large) is extremely con

venient to ewe. If n is of order unity and

what larger than unity, thens

d£(E) - dfc(E0)

FO^x). ^ ^[^)- ^Vj^/jl^

x is some-

(20)

It is clear (by consideration of the cases of integral n, for example) that

for large x, the dominant term in (19) is obtained by taking all differentia

tions to operate on the exponential. The resulting series will have for its

asymptotic form justs

Wx,E)
J>)

^(Ep)
En

n-1

0H(E)- Og (E0)
K/X

S/Og+C* (*-)"
-kx

- 1

(21)

A further useful extension is to include the effect of anisotropic elastic

scattering by recalculating the function Q(x,c* ) with the appropriate scattering

law, This is quite simple to carry out if only the "pole" contribution to the

solution is required, and if a few spherical harmonics will suffice in the expansion

of the anisotropic differential cross-section. This has not been don6, but

seems capable of giving, in a simple way, reliable information on the effect

of "shadow" scattering, for example.

It is well tc examine the conditions under which the "pole" solution

- 12 -



will sufficeo This question amounts to comparing the first collision

density from the source with the expression (18). The first collision

density (and in fact the exact pole contribution) vanishes more rapidly

than exponentially, in fact just as the exponential integral with argument

equal to (•£ +*) x« Qfo* )varies exponentially with K< <rQ +o^ , The

coefficient of the exponential in Q is less than unity and becomes very

.«

small •» * approaches unity. If we call- <* _ f for any f
°s+* °s+«"

(in the range zero to unity) and sufficiently large x, the pole solution

will dominate. For f s .5, this will'occur at an x of approximately one

mean free path, while for f = ,6.x must be about eight mean free paths.

The situation rapidly becomes unmanageable past this point.

For water at 10 Ifev, f is so large that the "pole" contribution is

completely useless at any reasonable distance, and Q must therefore be

written in terms of a few collision densities. The first collision density

is simple, and a few more terms are probably manageable. With this treat

ment, the "relaxation length" will be very nearly the total mean free path

at the source energy, and the general picture will be very similar to the

common approximation to the slowing kernel for water by means of a trans

port kernel with a Gaussian correction.

Finally, it is useful to indicate the order of magnitude of the

error incurred by the use of the "straight-ahead" approximation. From some

work of Wick, it is possible to show that for large X , the function S

should go as X s~ % ° ^ ,where n" would be n if there were no angular

- 13 -



effects. Following Wick, it can be shown that for 8 Mev neutrons, n' is

about 0.83, whereas n is 1.43 •>

TAWslg
9/17/4-9
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