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ASYMPTOTIC NEUTRON DISTRIBUTION IN A THREE COMPONENT
MIXTURE WITH FOURWARD HYDROGEN SCATTERING

J. W. Butler

I, Iotrcduction

This report presents the results of an attempt to add to the generality
of neutron attenuation problems which can be discussed with the ald of the
assumption of straight ahead scattering by hydrogen. By the use of the Laplace
transform and real Tauberian theorems it is foumd possible to determine the
asymptotic space variatiom of the collision density with quite general energy
dependence of the three ¢russ sections involved. Simple bounds are also de-
rived for the asymptotic spectral distribution function.

II. Fo:mulation of the Problem

The problem treated is the ordinary one-dimensional one, referring to an
isotropic, monoenergetic, plame scurce of unit strength imbedded in an infinite
homogeneous medium, the medium consisting of three components:

1. "hydrogen” whick scatters without angular deviation but with the

correct energy spectrum after collision;

2. a substance which scatters isotropicaily without energy loss; and

3. & pure absorber.

For the purposes of this discussion; all cross sections are assumed to be
monotonic functions of energy, but this requirement can be relaxed to some
extent by closer examimation of the analysis.

The appropriate form of the Boltzmann equation is

u

3 - - gp(u)

0(’:1) 3% + Stf(x»llyu) - S an 035:11)) e(“ u)Q(xDu”Yv + %%qo(x»u) ¥ % Sx)8(u),
0

(1)



where

P(x,u,u) is the collision demsity per unit range of x, p, and u;
+1

\I'o(xyu) & % d#‘l’(xsllau)ﬁ
-1

o{u) is the total collision cross section in units of ( 1 ) H
length

o1(u) - the "hydrogen" scattering croes section;
aa(u) - the cross section of the isotropic scatterer'
&8(-) -~ the Dirac delta-function;

x - the space coordinate, measured from the source plane;

# - the direction cosine measwred from the forward x direction;
u = log EEQ 3

E is the neutron energy; and

E, -~ the emergy of the source neutrons.

IITI. Determination of the Gpneral'Agmtotic So}ution.

It is convenient first to separate the singular part of the solution of

(1). This is effected by the representation

P (xohow) = 90 (m,) 8(w) + F7O) (zp,0) (2)
which implies, upon integration over u,

¥ (50 = 79 5w + 25w (3)

Substituting (2) into (1) it is seen that \P(o) is the solution of the mono-

energetic transport equation

(o)
Ay S+ 1w -1 28 90 4 Lo, “



ro)
vhile @( satisfies

u
p 395 o) ) = ai(n) (n-u)g (o) 1 0p(u) o (xo)
a(0) oz .. @ (xpmpu) = d”t'—(ﬁy P (z kM) + 5 P b, (xu)
0]
a1(0) o
%)Tm“m°u- (5)

Although the solution of (%) is well-known, its Laplace tramsform will now
be derived for use in the subsequent discussion. Taking the bilateral Laplace

transform of both sldes results in
(o) _192(c) (o) 1 (6)
(77+9@ (350) = 3 2 P () + 5 »

where +

o0
<s,u)- Saxe ¥ (x,0)
= Q0

and +00 +1
cpf,")-(a) = de e""gx\?‘(f)(x) = g duCP(O)(s,u)-
- -1

Equation (6) ylelds, after a slight amount of manipulation,

) k -
967 (e) = 32 Mol (7)
and
(o) - (o) . 1
(P (s51) - (sp + o{0))(2 - k(s,o)) (€)
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vhere the definition

ao(u) s + o(u) op(u) 8
k(s,u) = 5s 108 — proes Sl h e (9)
has been uaed.
Returning now to equation (5), the substitutions
{ro) -
\2 (x»u»u) = @(x,p,u) U(u)e u
and
+1
(z0) -u u ‘
o (zu) = P (x,u) olu)e™ = S dp §(x,u,u) ofu)e (11)
-1

cause this equation to assume the simpler appearing form:

u
(5 %2 + o(u) @(x»u»u) = g a"\ Ul(*l) @(quan) + % 02(11) @o(xyu) + %]%(;0)_) Q(O)(x:}‘-)- (12)
0

Upon taking the bilateral Laplace transform of equation (12) and inserting the

expression (8), the equation

u
1
(su + o{u))P(s,1,u) =& dn o1 () plasem) + 5 op(u)Pyls,u) + % y{0) (l_k(s’o:;)(spw(o»
0

(13)

is obtained, where

+ Q0

Q(s;1,u) = g ax e %% P(x,uyu)

- 0D
and

+ o0 +1

Q)o(s,u) = g dx ¢"8% @o(xgu) = S du P{s;i,u).
- -1



It will now be assumed that the transform ceo(s su) has a finite and non-zero
convergence strip and, until stated otherwise, that s has a real value interior
to this strip. Under these counditious » it is permissible to differentiate eguation

(13) with respect to u, leading to the eguations

J
% o'(w-oy(u) . 13 (Rgle) ()
Bu sp + o{u) Plasuru) = 3 su + a{u)
and =
(Piasp-»o) = 2lo) q’O(b’O) () - ° (15)

2 s+ ofo) 2 (l~k(syo))(su+c(0))2

Formal solution of this system, regarding ¢(spu,u) as the unknown function,

yields, after scme reduction,

u [
1 1 w3
plessw) =3 | 4 e B &dn e ER <2(§)%(B»§)) |
’ ° ‘ (16)
u u
. ax{0) @,(s;0) N a1(M) N a1\c) 1 S . o (n) ’
T Gro(w) o\ sp+a(n) 2 (l»»k(s,o))(su+a(u))(su+o(o)) i Su+crz*\)
o 0

where the integral forumila

u

o'{n)  su+olu)

eXp g dn ST ) = P Cy) (17)
£

hes been used. Partial integration of the iutegral term in equation {16),
followed by iutegration of the resulting equation over u{-1,+1), now results

in the form

8-



u
(lf k(s,u)) @,lz) = j\ anAls;um) o3(n) op(n) Polem) + ay(o) —-i—'—'—“_sk‘(ls‘;’o)
0

in which the definition (9) has been employed and the new definition

+1
1 1 a 7,(§)
Als;um) =5 | & s o) (e + o) o | 4 s o)
~1 )\

has been made. A slight additional simplification may be effected by the sub-

stitution

A(s;,u,0)

T e, (1~ Eew) e

q’o(ssu) = O'l(o) (

and the new definition

A(Syuﬂ])

o1t aaln) s
A(s;u,0)

H(syus’]) =
yielding the final form

X(ssu) =1 dn "'_‘_""""""3' H(Byuy’]) X(B;"() + 1

u
A(Sy’bo)
1 - k(s,n
0

vwhich will serve as a basis for most of the remaining discussion.

(18)

(19)

(20)

(21)

(22)

Two additional restrictions will now be placed on the cross section functions

o(u) and oo(u). These are
o'(u) » O (u » 0)

o'(u) op'(u)
a(u)” "~ o,(u)

>0 {u30)

(23)

(24)



and may be shown to be sufficient for the truth of the following statements about
the functions Als,u,n) and k(s,u):

(a) Als,u,m) and %A(s,um) are continuous functions of s, u, and n on the
set (18| < a(o); u» 0, n} » 0) and are therefore bounded on any interval
(1sl € o(o) - € € > 0) for finite values of u and m .

(b) A(syu,m) and .éa_ (s,u,v) satisfy the inequalities
n

Alsyum) >0 (25)

and 8 D(s,um) L0 (26)
an

for 1sl < a(o), u) 0, and M > 0.

(¢) k(s,u) and 3 k(s,u) satisfy the inequalities
du

0 <k{s,u)< 1 (27)

and g—u k(s;u) € 0 ‘ (28)

on the half strip (Isl < sg, u P 0), if oy(u) # 0.
(d) The equation
1 - k(s;0) =0 (29)
has simple roots at s = + s,, where s, (> 0) satisfies the inequality
Bo < G(O)o (30)
(e) The equation
1 - k(-ggsu) =0 (31)
has a simple root at u = O.

If the symbol Jy(-) is used to denote the linear integral operator

Jg{£(n)) = S dn H(s,u,m) f(*\)g. (32)
0
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then the Neumann solution of equation (22) is

e o]
X(s;u) =Z (1) (33)
n=0

where Jg(v) ig the n'® iterate of the operator (32). By making use of (a) above
end inequalities (27) andb(BO)y it is now possible to show from the series (33)
that X{s,u) is a continuous function of s and u in the region ([s|< sg, u )y 0)
and is therefore bounded on any interval (ls| s, - €, €> 0) for finite u. It
is also seen from the series {33), by employing (e) and inequalities (25) and

(27), that

X(s,u) —> + @ (8—>- 85 +) (34)

for u > 0.

According to the definition (21),
H{s,u,0) = a1{0) ox(0), (35)
and by using (25) and (26) the inequality

0 < H(s,u, ) < Ul(*\) @2(7\) (1s} € o(0); u >/0, ']>0) (36)

is established. It is therefore possible to find functions hy(s,h) and hy(s,m)
such that
hl(SgO) = hQ(S,O) = 0’1(0) 02(0) (37)

and, for a preassigned neighborhocod of u = o,

o < h.l(s"l) < H(syuwn) < hg(ss"\) < Gl(y‘[) 0'2("() (1sl< (o), u >/Y\ > 0);

(38)
and if X;(s,u) and X»(s;u) are the solutions of the equations
u
A(S 9 ) s
Xi(s,u) = g d*‘z“:—‘i?;-;—);)- hi(S,Y“) xi(ss"\) +1 (i =1, 2), (39)

-11-



it may be seen by comparing the Neumann series solutions or otherwise that

Xy (s,u)  X(8,u)  Xp(s,u) (1sl < 55) (ko)

over the range of u values for which (38) holds. EQuations (39) are easily

solved by differentistion, resulting in
u

Xi(S,u) = exp g d'\ A(sﬂbo)

-(8; i =1, 2). L
Ty e (1=1,2) (41)

These functions may be written in the forms

[ -gxw . ;
Xi(syu) = expéa dv\m + dqm (A(S;)‘];O)hi(s,"\) + a Eﬁk(sm))
0 0
or a
Xi(sﬂu) = i—?%%gjg% 8i(59u)9 (k2)
where
u

Si(ﬂsu) = exp | dn ﬁm (A(Sy"):o)hi(sy‘l) + a % k(ﬂ:'))) P) (43)
0

and if the constant a is chosen by the formula

- A(svuﬁo)hi(ssu) (h’l")

a
- é% k{s,u) 8= -8 u=0

(by formula (37) this is independent of the index i), then application of (31)
shows that the functions gi(s;u) remain bounded and >0 as s—»-8 o+ Thus

%(s,u) can be presented in the form

a
x@ﬂ>=ﬁ'k8“) 6(s,u) (45)

- kis,o
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where G(s,u) satisfies the inequality
g1(s,u) {G(s,u) gyls,u) (46)

and hence is also bounded and —f—» O as §——>-8,+. From (25), (28), and
(38), a is seen to be necessarily positive, thus verifying (34).

Introduction of (4#5) into (20) yields

A(s,u,0) G(s,u)
(s5u) = ay(0) s (47)
® ' (1 - k(sgo))l+a(l - k(s,u)l'a
and if this is written as
() (s,u) = o,(0) 1 8 * B9 )l+a A.(Syu,;o) G(s,u) s (48)
° 1 (s + So)l+a 1 - k(s,0) (l - k(s,u))l'a

then the quantity in {} is seen to remain bounded and >0 as s—» -5+

(u > 0) and the asymptotic relation

O o(u) Go(u)

P (5,u) ~ gy ()K" 1 (s— -85+, u>0) (49)

(s + so)l+a (1 - k(sgo)l-a
is obtained; where
% = - é‘-; k(SQO) (50)
-84
AO(U) = A("So»uﬂo); (51)
ko(u) = k("soyu)y (52)
and Go(u) = G(wsoyu)a (53)

«13-



Application of a suitable Tauberian theorem to (49) and reversal of the sub-

stitution (11) now yields the final result

(x—>+®, u > 0).

(54)

(ro) gl+e -5.x - Zﬁo(u) Go(u)
Vo (xu) ~ g (o) Froy e Melu)e A

Explicit formulas for a and K are easily found from the definitions; they are

. a1{o) oo(o0) (55)

; a3(0) 2
o' (0) ay(0) - ) (03(0) - s2)
So
= b (56)
and K 02(0) a(0) ]
02(o) - sg
and if the notations
hio(u) = hi(wsoyu) (57)
and gio(u) = gi(msoju) (58)

are introduced, then the inequality to be satisfied by Go(u) appears, according

to (46), in the form

g,(u) < G {u) g g5 1) (59)
Wwhere
0 (n) + aki(n)
(m)byo(n 3
gio(u) = exp | dn Boln)Bio (60)
J 1 - k,(q)

by (43). Suitable functions h; (u) may be found analytically or numerically

in various ways. One such set, which satisfies the inequality (38) (with s = ~84)

=1k



for all values of u, is

. u
(-1)"s, + (o) g o, (m)
. = ; - i=1,2). 61
th(u) Ul(u) Ue(u) (..l)lso N a(u) € " (_l)iso . 0'(71) ( ) ( )

¢]

IV. Tabulation of Special Casges.

Most of the previous results on this problem appear to have been obtained
under assumptions which cause H(s,u;q) to be independent of u or, in other words,

to satisfy the differential equation

gi H(s,u;m) = 0. (62)

u

Equation (22) can, of course, be converted .into an ordinery differential

equation whenever H(s,u,n) satisfies any differential equation of the form
n ai

Z £,(s,) Z5|E(s,0,n) = 0, (63)
i=1

and some solutions of this type with n > 1 have been obtained by Welton.

These will not be considered here.

There appear to be four simple cases in which equation (62) is satisfied;
these are characterized by the necessary additional assumptions presented in

the following tabular form.

Case ag'(u) o1 (u) ag(u)
A. =0 =0
B. =0
C. 50 =0
D. = 0y (u) = a'(u)

-15-



These cases will now be investigated in some detail.
Cage A.
This is rather trivial but is included for completeness. Substitution

of ol(u) = 0 into (54) yields

9w = o, (64)

while use of oz(u) =0 in (7) leads to

gO)(s) = ago) arth U?o) . (65)

The exact inversion of (65) is

00
-lo(o)=l
9o z) = %o) g (Jo(o)x) = 91291 an %\ e (66)
1
which has the asymptotie behavior
i@~ L o0 (x—> + 00 ). (67)
Therefore, from (3),
\Po(x,u)fv 2—]; ¢~9(0)x 3(u) . (x——>+ ). (68)
Cage B. :
Here (64) again holds and Q?£°)(x) is given by the known inversion of
(7), the asymptotic part of which is h
P gy ~ o) g o5ox (x—>+ 0) (69)
o 02(0
where K is again given by (56). By (3), the result for this case is then
?. (x,‘u)~ % K ¢ 50% 5(u) (E=—>+ @ ). (70)
© 2

-16-



Case C.
In this case the expression (54) becomes meaningless and it is necessary
to substitute ce(u) = 0 directly into the definitions (9) and (21), yielding
kl{s,u) = 0, (71)
H(syuﬁ”]) =0, (72)

and, according to (22) and (20);

Xs,u) =1 (73)

1l

¢o(s;u) 01(0) A(Syuyo)“ (7h)

By III(a), A(s,u,0) is continuous function of s on the interval (|s| < (o))

for u ) 0, and analysis similar to that used in discussing (41) may be used

to show that
1 1 Q(u) )
N(s;u,0) ~ 56(0)a (5 + o(o) )% (o(a) - o(o))i-a (s——>-0(0)+, u> 0):(75)
where a is given by
a1(o) 6
T S) (76)
and u n) )
Qo(u) = €Xp g d1| i n i rl . (77)
s(y) - o(o)
Therefore
(ro) 1 01(0) 1 a-1 -0(o)x -u Q (u)
\P(o) (zw)~ s o Py = ° o(u)e (s > 0
(78)

(x—>+ 00, u »0)

-17-



and, since the singular part of the solution is evidently given by (67),

the complete result is

-g(o)x 1 a(o) 1 a-1 -o(o)x -u Qo(u)
3(u) + 2 g(o) [(1+a) x © olu)e (a(u) - a(o))l'a

(79)

1
X,U) ~ — ©
G (x,u) ~ 2

(x—>+ 00).

This is equivalent to a result obtained by Hurwitz for a different angular
distribution of the source.
Case D.

The general solution (54) holds in this case and an exact formula may be
written for G (u). It is easily verified by direct differentiation of (19)

that, under the agsumptions for this case,
_a%A(\s,u,q) = 0. (80)

Hence (62) holds,
H(Ssu:']) = H(S)O:‘]): (81)

and the functions hio(u) may be selected as
hlo(u) = h20(u) = H(-so,o,u). (82)

Moreover, use of the integral

A(s,0,0) =

1

;gzgs—j—;§ (83)

leads to
H(-8,,0,u) = (6°(0) - 85) &(-85,0,u)a1(u) op(u) (84)

and also

1
= = em———— 8

Zlb(u) 4L, (0) o) - 55 (85)

and substitution of (84) and (85) into (60) yields, by the use of (59)

-18-



u

G’o(u) = eXp d'\l———i;-—(—\\j (A("’SO,O,Tl) 01(71) 02(71) + ak.é(n)) . (86)
T fo
0

Here the singular component is given by (69) and the complete asymptotic

formula is therefore

q'} ( ) 2 Ke-sox 8(u) + o5(0) 1 Kl+a xae—soxa(u)e‘u Go(u)
AE, 1)~ 02205 u 1\° 02(0) - 53 M(1+a) (1 - ko(u))l'a
(x—>+ ) (87)

with G,(u) given by (86). This result includes a case discussed by Murray

in which the assumptions were

o1(uw) = al(o)eu 5
02(u) = 0, = constant,
and o(u) = cl(u) + Opo

-19-
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