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ASYMPTOTIC NEUTRON DISTRIBUTION IN A THREE COMPONENT
MIXTURE WITH FOEWARD HYDROGEN SCATTERING

J, W0 Butler

I, Introduction

This report presents the results of an attempt to add to the generality

of neutron attenuation problems which can be discussed with the aid of the

assumption of straight ahead scattering by hydrogen. By the use of the Laplace

transform and real Tauberian theorems it is found possible to determine the

asymptotic space variation of the collision density with quite general energy

dependence of the three «ross sections involved., Simple bounds are also de

rived for the asymptotic spectral distribution function,

II. Formulation of the Problem

The problem treated is the ordinary one-dimensional one, referring to an

isotropics monoenergeti©, plan© sours® of unit strength imbedded in an infinite

homogeneous medium, the medium consisting of three componentss

lo "hydrogen" whi^h scatters without angular deviation but with the

correct energy speatrum after collision^

2. a substance which scatters isotropically without energy loss; and

3o a pure absorber«

For the purposes of this discussion, all cross sections are assumed to be

monotonia functions of energy, but this requirement can be relaxed to some

extent by closer examination of the analysis.

The appropriate form of the Boltzmann equation is

u

_£.£♦ S(w) -$*,$$ .fc-*W<n) +^«o(*.>♦*»«.<»),
(i)



where

$(x,u,u) is the collision density per unit range of x, u, and us
+1

%(x,u) -\an$(x,|i,u)j
-1

a(u) is the total collision cross section in units of f ly ,);
\length/

a^Cu) - the "hydrogen" scattering cross section;

0o(u) - the cross section of the isotropic scatterer*

8(») - the Dirac delta-function;

x - the space coordinate, measured from the source plane;

u - the direction cosine measured from the forward x direction;

u =log^;
E is the neutron energy; and

EQ - the energy of the source neutrons.

HI- Determination of the General Asymptotic Solution.

It is convenient first to separate the singular part of the solution of

(l). This is effected by the representation

$(x,u,u) = *P(o)(x,u) 5(u) + ¥(ro)(x,u,u) (2)

which implies, upon integration over u,

¥0<x,u) =¥00)(x) 5(u) +$or0)(x,u). (3)

.Co)Substituting (2) into (l) it is seen that SEf is the solution of the mono-

energetic transport equation

»* li-1 +z, C°)/x B).i *£sL q> (o)(v) +1t(x) w



while *U satisfies

0

+2g ^W, .-u . (5)

Although the solution of (k) is well-known, its Laplace transform will now

be derived for use in the subsequent discussion. Taking the bilateral Laplace

transform of both sides results in

where + oo

(o), . \ -sx .(o)
9 (s,u) = \ dze $v ;(x,u)

-00

and +oo +1

900)(*) =̂ dx e~SX^°>(x) =̂ du(p(0)(s,u).
-00 -l

Equation (6) yields, after a slight amount of manipulation,

To v ' aJTo) 1 - k(s,o) u;

and

(o), v_q(p) l
T ^ =*^* (su +a(o))(l -k(s,o))

.6-

(8)



where the definition

,, , a2(u) s + o(u) o2(u) 8
k(s,u) =-—- log -— = arth -7—- (9)

2s _s + a(u) s a(u) v?/

has been used.

Returning now to equation (5), the substitutions

$v '(x,u,u) = $(x,u,u) 0(u)e"u

and

+1

(ro) P
9Q (x,u) = §0{x,u) a(u)e~u « \ du $(x,u,u) a{u)e"u (11)

-1

cause this equation to assume the simpler appearing form;

u

u3+o-(u) $(x,u,u) .Idn 0^) $(x,u,n) +ia2(u) §0(x,u) +S^. $(o)(x,u). (12)
«x J ^ or(o)

Upon taking the bilateral Laplace transform of equation (12) and inserting the

expression (8), the equation

u

(su +o(u))f(fl,|i,u) =\d^ 01(y1) cpfs,^,^) +I02(u)po(s,u) +I0^0) _ _ 1

is obtained, where
+ 00

CD(s,u,u) = I toe* $(x,u,u)

-CD

and

+ c» +1

%(s,u) =\dx e™" $o(x,u) «Idu<p(s,u,u),
-00

-7-

O))(su+0(o))
0

(13)



It will now be assumed that the transform <^(s,u) has a finite and non-zero

convergence strip and, until stated otherwise, that s has a real value interior

to this strip. Under these conditions, it is permissible to differentiate equation

(13) with respect to u, leading to the equations

SU + 0(u) d SU + ff(u)

<p(s,u,o)^- •—— — 7 —^ __ , (15)
2 au + 0(0) 2 Cl-k{s,o))(isu+0(o)<)2

Formal solution of this system, regarding (p(s,u,u) as the unknown function,
yields, after some reduction,

(i5)

u u

+"~S~ s|1+a(u) ex* p ^e^) +"T" (l^(s,o))(su+0(u))(su+0(o)) *"*! ^S^'
0 0

where the integral fosmula

u

f «s'Cn) s|a+0(u)
exp \ dn 1 , / \ - r—r- (17)\ I 3ji+a(iry) su+a{£) v 'y

J
has been used. Partial integration of the integral term in equation (16),

followed by integration of the resulting equation over u(-l,+l), now results

in the form



u

(1 - k(e,u)) <f> (s,u) = dn^(s,u^) 0^) 02(t^) 90(s,n) +̂ (o) ^.sffg°o)

in which the definition (9) has been employed and the new definition

+1

r

A(s,U,Y\) = -
i rflC °iV

*» (in +0(u))(su +0(vx)) 6XP d> su +0(f)

1

has been made. A slight additional simplification may be effected by the sub

stitution

A(s^,u,o)

¥o(B'tt) =01(O) (IT^7o))(l -k(a,u))
X(s,u)

and the new definition

A(s^u,rj)
H(b,u,yj) =—— oi(>\) o2(i\)

ACs^o)

yielding the final form

u

A(s,n,o)
Y(s,u) = Idn J ' 7H(e,u,»|)X(e,>i) + 1

1 - k(s,*})
0

(18)

(19)

(20)

(21)

(22)

which will serve as a basis for most of the remaining discussion.

Two additional restrictions will now be placed on the cross section functions

0(u) and 02(u)o These are

a«(u)>0 (u>0) (23)

0'(u) 028(ai)
0(u) " 09(u) ' (u>0) (2k)

-9-



and may be shown to be sufficient for the truth of the following statements about

the functions A(s,u,v^) and k{s^u):

(a) A(s*u,-n) and — AC^u,*]) are continuous functions of s, u, and r) on the

set (|s| < 0(0), u > 0,^| > 0) and are therefore bounded on any interval

(|s| < 0(0) - £, £ > 0) for finite values of u and i) .

(b) A(s,u,T|) and J- A(s,u/n) satisfy the inequalities

A(s,u,Y)) >0 <25)
and i. A(B,u,yj) <0 (26)

an

for Isi < 0(0), u>0^ and lr)^0o

(s) k(s,u) and J- k(s,u) satisfy the inequalities
6u

0 <k(s,u)< 1 (27)

and -£- k(s,u) < 0 (28)
3u

on the half strip (I si < s0, u >0)^ if 02(u) f 0.

(d) The equation

1 - k(s,o) =0 (29)

has simple roots at s = + sQ, where sQ (> 0) satisfies the inequality

s0< 0(0)0 (30)

(e) The equation

1-k(-s0,u) =0 (3D

has a simple root at u = 0.

If the symbol JH(°) is used to denote the linear integral operator

u

JH(f(u)) = dr\~tSQ'loS}) H(sjM) f(Y\^ (32)

-10-



then the Neumann solution of equation (22) is

oo

y
.U) =Z__X(e,u) =-/- JS(1) (33)

n=0 H

where jS(") is the nth iterate of the operator (32). By making use of (a) above

and inequalities (27) and (30), it is now possible to show from the series (33)

that X(s,u) is a continuous function of s and u in the region (|s|^ s0, u ^ 0)

and is therefore bounded on any interval (|s|^ sQ - £, O 0) for finite u. It

is also seen from the series (33), by employing (e) and inequalities (25) and

(27), that

X(a,u) • + 00 (s *-- sQ +) (&)

for u > 0.

According to the definition (21),

H{s,u,o) = ff2_(°) ff2(°)> (35)

and by using (25) and (26) the inequality

0< H(s,u, )< ff^) <x2(yj) (|s\ < 0(0), u^O, ^>0) (36)

is established. It is therefore possible to find functions h^s,^) and hgts,^)

such that

1^(3,0) = hg(s,o) = Ojio) 02(o) (37)

and, for a preassigned neighborhood of u = o,

o< ^(b^) < E(s,u,»|) ^ ^(a,^) < 0^) ff2(v\) (ls|<ff(o), u >,v\ > 0);
(38)

and if X-^s,^ andXsCs^u) are the solutions of the equations
u

%i(s,u) =f d* MB>y°\ h^a,*) X±(aA) +1 .(i =1, 2), (39)
J l 1 - k(s,yw

-11-



it may be seen by comparing the Neumann series solutions or otherwise that

%x(s,u)^ X(b,vl) <&2(s,u) (ls\<s0)

over the range of u values for which (38) holds. Equations (39) are easily

solved by differentiation, resulting in

u

Xi(s,u) =exp dn A(S^'0) h,(s,«) (i =1, 2).] l1-k(s,^) x '

These functions may be written in the forms

f U
Xi(s,u) =exp Ia1dv^

,.0 0

or

where

va

^(8,11) - i_z^u) g(fl,u)J
A \1 - kfs.o)/ 1

u

(ho)

(M)

(te)

Bl(s,u) =exp Idn]_-^_^ ^(s^o^s^) +a|j k(s,7))J , (43)
0

and if the constant a is chosen by the formula

a _ A(s,u,o)h-sCs,u)

-^ k(s,u) s - -s0, u =0

(by formula (37) this is independent of the index i), then application of (31)

shows that the functions g^(s,u) remain bounded and >0 as s >--s0+> Thus

*)6(s,u) can be presented in the form

*^ -(h-lfef}) G(s*u)

m

(*5)



where G(s,u) satisfies the inequality

g^flj-u) ^G(s,u) ^ g2(s,u) (46)

and hence is also bounded and —/—*• 0 as s >--s_+. From (25), (28), and

(38), a is seen to be necessarily positive, thus verifying (34).

Introduction of (45) into (20) yields

<po(s,u) -0x(o) A(s?u,o) G(s,u) f m
(l -k(s,o))1+a(l -k(s,uf-n

and if this is written as

<p (8,u) - 0X(O) —^ ( sJs°X+a fa^o) G[s?u) \, m1 (8 +S0)1+a Hi -Hb,o)J ^ .k(s,u))l-* '

-a

then the quantity in w is seen to remain bounded and )0as s—^-s0+

(u > 0) and the asymptotic relation

<p0(s,u)~01(o)*I+a - 1 /A°(u) Go(^J (8—*-80+, u>0) (49)
(s + s0) +a I(1 - k(s,o)

is obtained, where

(50)1

E "
=- £ k(s,o)

"so

Ao(u) = A(-s0,u,o),

*o(u) = k(,-SQ,uJ,

0o(u) = G(-s0,u).

(51)

(52)

and G-(u) = G(-s_,u). (53)

-13-



Application of a suitable Tauberian theorem to (49) and reversal of the sub

stitution (11) now yields the final result

Explicit formulas for a and E are easily found from the definitions; they are

ffl(o) 02(0)
a = • (55)

ff.(o) 02(o) -̂ (^(°) "4)
aJo) x 0/

and E= " , (56)
02(o) 0(0)

<*2(o) - s2

and if the notations

hiQ(u) = hi(-so,u) (57)

and gjLo(u) = gl(-s0,u) (58)

are introduced, then the inequality to be satisfied by GQ(u) appears, according

to (46), in the form

glo(u) < Go(u) < S2o(u) ^9)
where

u

f A0(v))hi0(^) +ako(>))
gio(u) = exp dv] — __ __ (60)

J 1-kQ(n)

by (^3)« Suitable functions hio(u) may be found analytically or numerically

in various ways. One such set, which satisfies the inequality (38) (with s = -s )

-14-



for all values of u, is

(-l)is0 +0(0) /? 01(>l)
h± (u) = 0x(u) 02(u) -—j 7— exp - \ &*] : / (i = 1,2). (6l)

(-D %+<*(*) y j (-D^o +ff(^y

IV. Tabulation of Special Cases.

Most of the previous results on this problem appear to have been obtained

under assumptions which cause H(s,u,t\) to be independent of u or, in other words,

to satisfy the differential equation

-2. h(b,u,Y|) = 0. (62)
3u

Equation (22) can, of course, be converted -into an ordinary differential

equation whenever H(s,u,y^) satisfies any differential equation of the form

Y~ fi(s,u) JL\h(8,u,^) =0, (63)

and some solutions of this type with n > 1 have been obtained by Welton.

These will not be considered here.

There appear to be four simple cases in which equation (62) is satisfied;

these are characterized by the necessary additional assumptions presented in

the following tabular form.

Case 0'(u) 0i(ti) 02(u)

= 0A. = 0

B. = 0

C. >o

D. = ax(u) = 0«(l

-15-
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These cases will now be investigated in some detail.

Case A.

This is rather trivial but is included for completeness. Substitution

of 01(u) = 0 into (54) yields

*ir0)(*,u) =0, (64)

while use of 0g(u) = 0 in (7) leads to

f<°'(s) .2t2l .^^ . (65)

The exact inversion of (65) is
00

f \ 1 \ 1 \\ _1rlk(o)x|^°}(x) =2Me1(|0(o)x|) =°M drjie ' (66)
1

which has the asymptotic behavior

^o)(x)~ A e-a(o)x (x *+oo). (67)

Therefore, from (3),

\J>o(x,u)~A e"a(o)x 5(u). (x v+00). (68)

Case B.

Here (64) again holds and ty (x) is given by the known inversion of

(7), the asymptotic part of which is

,(0)I?* (*) ~$fa *e"8^ (x ^+ 00)o ' ' 0o(o) (69)

where K is again given by (56). By (3), the result for this case is then

ty (x/u) ~ 2(oL e e'8°X 8(u) (x v+oo). (70)
zo ®o\°)

-16-



Case C.

In this case the expression (54) becomes meaningless and it is necessary

to substitute 02(u) = 0 directly into the definitions (9) and (21), yielding

k(s,u) = 0, (71)

H(s,u,vj) = 0, (72)

and, according to (22) and (20);

X(a,u) = 1 (73)

and

<Pq(s,u) =01(o) A(s,u,o). (74)

By Ill(a), A(s,u,o) is continuous function of s on the interval (|s|<0(o))

for u ^ 0, and analysis similar to that used in discussing (4l) may be used

to show that

^°>^~*fcr* (. +»(o))h (0(a) !°l(!))i-a I—**")*, «>0),
(75)

where a is given by

0X(o)
a =

a'(o)

and u

(76)

Qo(u) = exp I dyj —• (77)

Therefore

o(v^) - 0(0)
0

(o) 2 0(0) p(l+a) (o(u) - a(of-

(x y+ 00 , u > 0)

-17-
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and, since the singular part of the solution is evidently given by (67),

the complete result is

lT. . . 1 -0(o)x 1 0]_(o) ! a-l -0(o)x , >. -u %(u*W (x,u) ~ — e 5(u) + 5 -f-r- „. . x e o(u)e ^——T-*° ' 2x 2 tf(0) f(i+a) (0(u) . a(o))1

(79)
(x >>+ 00).

This is equivalent to a result obtained by Hurwitz for a different angular

distribution of the source.

Case D.

The general solution (54) holds in this case and an exact formula may be

written for GQ(u). It is easily verified by direct differentiation of (19)

that, under the assumptions for this case,

-jL-A(s,u,Y|) =0. (80)

Hence (62) holds,

H(s,u,yj) =H(s,o,yj), (81)

and the functions hio(u) may be selected as

hlQ(u) =hg^u) =H(-s0,o,u). (82)

Moreover, use of the integral

A(s,o,o) =-Tj-4 o (83)
02(°) s

-a

leads to

H(-s0,o,u) =(02(o) -s^At-s^u^u) 02(u) (84)

and also

A (u) =AQ(0) =-g-i g; (85)
0 ° 0^0 - s*2

. ' o

and substitution of (84) and (85) into (60) yields, by the use of (59)

-18-



u

'd^ i-k(y\) (^("flo'°'Y|? ai(Yl} ff2^ +**©(*) j)G0(u) = exp

Here the singular component is given by (69) and the complete asymptotic

formula is therefore

(86)

o 02(.oJ
ox 5(u) +0x(o) Tj-i 2p^r xae~soxa(u)e-u ^-^

1 » (o) - s0 Rl+a) (1 . v (u))1 a
-s^x

(x >+ 00)

(1 - kb(u))-

(87)

with GQ(u) given by (86). This result includes a case discussed by Murray

in which the assumptions were

0x(u) = 0x(o)eu ,

0p(u) = 0p = constant,

and 0(u) = 0-1 (u) + 02»

-19-
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