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THE INTERPRETATION OF EXPERIMENTAL INVESTIGAT!ONS
of
TRANSFERS WITHIN A TWO-COMPARTMENT SYSTEM, USING I1SOTOPIC TRACERS™

C. W. Sheppard and A. S. Househotder

As further biological investigations include the use of isotopic tracers,
there will be an increasing tendency for the results inmany cases to be inter-
preted in terms of the behavior of an idealized multicompartment system. With
this in mind the theoretical basis of such an interpretation was discussed in
rather general terms in an earlier paper (l). The basic postulates were out-
lined, the necessary measurements were |isted and the equations were derived
which relate the quantities transferred between compartments to the changes ob-
served within the compartments. A more elegant derivation of these equations
is presented here.in Appendix A.

There may be instances where systems of several compartments areof su%fi—
cient biological interest to justify the increasingly large number of measure-
ments necessary for their description. However, from the point of view of sim-
plicity, the two-compartment case will probably continue to be the most impor-
tant. A few typical b}dlogical systems may be cited where the behavior has
been or might be compared with that of a typical ideal system of this type.

Visscher et al. have used the concept to Lnterpret their results in the
study of the exchange of sodium tagged with Na®* between the circulation and
isolated chronic Thiry-Vella gut loops in the dog (2). Cohn and Brues (3) have
made similar comparisons in interpreting their observations of the exchange of
phosphorus tagged with P°% and potassium tagged with K*? between tissue explants
and the surrounding cufture medium,

The observations of Chambers et al. (4) on potassium and pho$phorus ex-
change between Echinoderm eggs and surrounding sea water might be considered on
the basis of an idealized two-compartment system. A typical example in the
chemical field is the study of exchange rates between two chemical compounds (5).

‘Other examples such as the theory of surface decontamination may be cited.

It will be shown below that the derivation of the usual equations used

* The writers wish to acknowledge the assistance of Dr. W. A. Arnold with whom

the following material was discussed.



for describing the variations with time of the radiocactivity of both elements
of a two-compartment system are based on the assumption that the contents of
each of the two compartments are uniformly mixed. This assumption limits the
utility of thesé& equations ininterpreting the general behavior of tagged systems
of the above type. In the tissue culture experiments on potassium transport the
deviations of the resulfs from the behavior of the idealized system may quite
easily be interpreted as afailure of the criterion ofuniform mixing within the
internal compartment, i.e. the total cellular interior. The same might perhaps
be said for the situation in the case of the Echinoderm eggs. |t can be shown
that phosphorus injected as phosphate tagged with P®? does not mix rapidly with
the total blood phosphorus in canine loop experiments (6) which leads to the
result that the specific activity of the gut perfusate is higher initially than
that of the blood. Aithough the loop experiments with sodium are probably not
subject to this objection, the existenceof other compartments with which mate-
~rial in the circulation may exchange (such as the extracellular fluid) must be
admitted to complicate the simple idealized case.

It is therefore of considerable interest that recent, improved studies of
the exchange in vitro of potassium between cells and plasma of human blood haye
been sufficiently precise and controllable to show that the cellular fraction
and the plasma formtwo elements whose behavior in all observed respects is iden~
tical with thatof the idealized case (7) {8). For this reason it is now per—-
tinent to review the theory of the two-compartment system and to discuss a few

additional theoretical aspects of the intempretation of experimental results.

The theory of the two-compariment system. - We considerasystem of two com-
partments denoted respectively by the subscripts | and 2, (Fig. 1)y, Various
quantities of a substance S (such as potassium) aremoving from one compartment
to the other and vice versa, and it is required to determine how much of § has
moved,. say, from compartment | to compartment 2 in a given small interval of
time. This is defined as dS,,. By analysis at a given instant, the amount of
S and its change in either compartment may. be determined fe.g. dS; or ds,).
Simitarly, the total radioactivity of the contents of either compartment may be

determined by familiar methods. This will be called diy or dR,. We wuse the
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Figure

Graphical illustration of changes occurring in a two-compartment system during
the simultaneous two-way transport of a tagged substance between compartment |
(left) and compartment 2 (right). The shaded portions represent the radioactiv-
ities of the various fractions. The areas of the rectangles represent the
amount of substance in each case. Since unit widths are employed the areas are

numerically represented by the heights.
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Italic R here, reserving R for radioactivity per cc, as in the earlier commu-
nication (1). Finally we define the ratio R,/S, = a,, etc. This is the relative
specific activity of the material in compartment |, etc. It is usually measured
in such units as counts-per-minute-per-millimol. [t was shown in the earlier
communication that toobtain dS,, or dS,, it is necessary 1o determine the vai-
ues of a in both compartments and the values of dR and dS in one. The final
equation is obtained by taking the general solution for the n-compartment case
and applying it to the case n = 2. In this most simple case it is more easily
seen as follows. In figure | the amount of S in each compartment is equal to
the area of the rectangle in each case. Since unit width is employed, the amount
is also given by the height. We assume -justifiable license in representing the
width of the shaded portion by the quantity a in the interests of simplicity,
although strictly it isaquantity proportional to it. The results are not af-
fected by this choice. We consider the most general situation where the exchanges
are opposite but not equal. Thus dS,; units are transferred from compartment |
to compartment 2. In the opposite case dS,, — dS, units move from cohpartment Z
to compartment |. The dS, represents the excess ‘which leaves compartment 2 and
is not made up by what arrived from |. The negative sign is used since compartment
2 suffers a decrease in the transfer process as it is indicated here. Each |ot
contains the amount ‘of radioactivity indicated in terms of the shading. Thus
the lot -dS, contains -a, dS,. By adding and subtracting the various amounts as

shown, the total change in radiocactivity in compartment 2 is

dR, = a; dSyy ~ @, dSyy + @, dS,.

We solve for the gquantity transported, dS,;, and divide by dt to obtain the

corresponding rate obtaining

a, dS,/dt — dR,/dt _ S,da,/dt

dS21/dt = a2 — a1 = al — a2 (')

“The return rate dS,,/dt is obtained similarly. As already pointed out the two
basic postulates of uniform mixing and identical behavior must be satisfied.
Effect of the failure of either criterion is shown graphicallx in figure 2.

Up to this point no law of transfer of S between the two compartments has

been postulated. As in the earlier communication the observations of S and a in



Figure 2

Graphical illustration of the failure of either of the basic postulates on

which the present isotopic method is based.
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the compartments represent the means whereby the laws of transfer are to be
elucidated. We now consider the predictions which can be made of the variation
with time of a, and a, when subject to a known law of exchange.

The most important situation biologically is thatwherethere isnodisturb-
ance of the equilibrium and thusdS; = dS, = 0. Then dS,,. = dS;4. In this case
the substance S is exchanged at equal and opposite rates for which we use the

symbol p. Thus

dR,/dt
dS12/dt = dS,,/dt = p = ——g (2)
Or alternatively
da, /dt =—FS)— {a, -~ a,) (3)
1
Similarly
da,/dt -£ (a, - a,) (3)

Sz

As pointed out by earlier investigators (9), this equation is identical in form
ito that describing the changes in concentration in a system of two compartments
separated by a thin membrane where Fick's lawof diffusion applies. This principle
will be considered further below.

It is supposed for the moment that initiallyall activity is in one compart-
ment only. The initial behavior of such a system can be analyzed in a rather
simple manner and the results will besufficient to establishthe exchange rate p
from the initial changes. Detailed study‘of the variations inspecific activity
with time at later times will be required only if doubt exists as to thevalidity
of the idealized model of the two-compartment system for the description of the
actual system under study. The initial situation is shown in figure 3. . It s
seen that the radioactivity is going one way only and in direct proportion to
the exchange rate p. Thus the specific activity in compartment | decreases
linearly with time and the exchange rate is obtained from the initial slope of

the curve of a, or R, as a function of time using the expression

—~| dR ) da
p=— —/ = : L (4)
a, dt a, dt




Figure 3

|l lustration of a system where exchange occurs at equal and opposite rates and

where initially all of the activity is in one compartment (t = 0). At final

proportion between the

equilibrium (t = 00) the activity is shared in equal

compartments.
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Figure 4

The theoretical variationof specificactivities (ordinates) withtime (abscissas)
for the two compartments when the exchange occurs at equal and opposite rates,
The curves vary linearly over any small period of time and approach the same
asymptote after sufficient time has elapsed. At any point thedifference between
the value of a, or a, and the asymptotic value (i.e. at t = 00) decreases by 1/2

during one-half-value time interval.
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At this stage, the criterion of uniform mixing in compartment 2 can be relaxed,
since it applies in the strict sense only.

As time progresses and the activity in the second compartment increases,
some of it begins to return, and the decrease in activity in compartment 1 is
less rapid. Finally after a sufficiently long time the specific activities
approach one another; thus the two compartments contain: the same fraction of
activity and no further changes occur. This is also shown in figure 3. The
typical graph showing the variations inspecific activity in the two compartments
is shown in figure 4. The generail equations describing these variations forat|
values of time will be discussed in the next section. Often the curves for the

variation of § in each compartment under conditions of equal and opposite exchange

at constant rate areof interest. On a relative basis (i.e. if R/Ry is plotted)
the curve for compartment | will be the same as that for a, (Fig. 4). Since the
total activity of the system is constant, the curve for compartment 2 will be its

mirror image.

'f the volumes of both compartments were nearly the same (e.g., cells and
plasma of a typical heaithy dog), then the curves of the radioactivity per cc
(R, and R,) would be nearly identical with those for total radioactivity. Since
R is a commonly observed quantity, typical theoretical curves of this type are
shown in figure 5. for activity of K*% in the cells and plasma of human blood on
the assumption of an ideal two-compartment system. Here a typical ratio of
concentrations of intracellular and extracellular potassium is about 2}, and the
cells occupy about 45 per cent of the total blood volume under normal conditions.
The curve forthe cellular activity per cc isobtained by taking themirror image
of that for the plasma and multiplying by the ratio of the relative volume of

the plasma per cc of blood to that of the cells (i.e., 55/45).

The over-all time variation of the specific activities. - The set of equa-
3 and 3' can be integrated by standard mathematical procedures. For the case
where initially all of the activity is in compartment | whose initial specific

activity is thus ay, the results are

s, + 5, e=PtI1/Ss + 1/55)

51+52

a,/ag =



Figure b

Theoretical prediction of the variation with time (abscissas) of the radio-
activity per cc (ordinates) of plasma and cells of human whole blood. Typical
values were assumed for the relative cell volume and the extracellular and
intracellular potassium concentrations. The circles represent calculated the-
oretical points. The time scale is arbitrary since this depends on the exchange

rate which is to beobtained from experimental rather than theoretical results.
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5, [1—e=Ptl1/5: + I/Szﬂ
S; + S, (5)

a2/ao =

The second equation is identical to that given by Cohn and Brues (3), when ap-
propriate changes in notation have been made. The expression given by Mullins
et al. (their equation 3) (l0) is dimensianally incorrect.

In Appendix B the ahalogy between Fick's law and the mixing of isotopes in
a systemis shown in the general case; this provides an altefnative method of ob-
taining the 'solution of equations 3 and 3!, Suppose we have two‘épmpartments !
and 2separated by a membrane and containing concentrations of material ¢, and c,.
The constant volumes areV, and V,. In terms of the familiar membrane constant K,

the variation in the c's with time is given from Fick's law by
dlcy Vy)/dt = ~dl(c, Vy)/dt = Klc, - ¢, ) (6)
It is seen that we obtain equations 3 and 3' by substituting
p for K, S, (i.e. ¢, Vy) for v,, a, for c,, etc.
The solutionof equations 6 is familidr in the fieldof physical chemistry (1),

After the necessary substitutions, equations 5 result.

Semilogarithmic plots. -~ Although the initial slope of the specific
activity curves (Fig. 4) would be sufficient to establish the value of p in a
given system, nevertheless in comparing experimental data with the theoretical
results a plot on semilogarithmic coordinates is useful, and the slape of this
plot will also establish the value of p. By transposing terms in equations 5

and taking logarithms of both sides,
logla,/ag -~ S;(S; + S,1] = log [52/(571 + Sp0] = pt(1/S, + 1/S,)
and
log[S,/(8; + S;) = ay/ae)] = log [S,/(S, + Sol] = ptl1/Sy + 1/S,). (7)

It is seen that in each case the logarithm of the difference between a,/a, or
as/ap and the base |ine value (see Fig.4), taken alwayswitha>plus sign is pro-
portional to the time t. When this quantity is plotted on semi log coordinates,

the result is linear. The reciprocal of the proportionality constant can be
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treated similarly to the mean |ife of a radioactive isotope. It is the time
required for the quantity (minus base line) on the ordinate scale to decline to
l/e of its initial vaiue. The abscissa scale in figure 5 is taken in units of
this time interval. More familiar is the "half-value time" (Fig. 4). This is

the time during which the quantity changes by one-half. In the present case it is
Tiy2 = 0.69 Sy S,/p(S; + S,). (8)

Another method of plotting is sometimes found; since
fog (a,/ag — az,/ag) = —pt(1/8; + 1/S,), (9)

a plot of the difference of the a's will also be linear with the same slope but
with a different intercept.

Some practical points should be considered in the construction of semilog
plots of this type from experimental data. In the first place, the results be-
come increasingly inaccurate as time progresses since the ordinate values are
established from increasingly small differences whose ‘relative experimental
uncertainty increases as the values decrease. Unfortunately, the values at in-
creasing time are often of considerable interest, apoint which will be further
discussed in a consideration of inhomogeneity of exchange rates.

If the experimental data are carried sufficiently far out in time, it may
be possible to determine with fair accuracy from the curve alone the base line
amount to be subtracted in order toconstruct the semilog plot. However one may
introduce curvature in the results or make acurved result erroneously straight
by incorrect choice of this quantity (Fig. 6). Furthermore, changes in the

slope occur.

Exchange processes during centrifugation. — The fiterature contains nu-
merous examples of the practical use of equations5in interpreting experimental
results. In addition we consider the application of these equations to the
correction of data for exchange during centrifugation. |f this method . be used
for removing cells for assay, the cells are often incompletely packed, partic-
ularly when facilities are not available for centrifugation at high speeds or
when high accelerations produce cell injury. Under these conditions, it isnot

correct to assume that the exchange processes are arrested at the beginning of



20

Figure 6
Effect of poor choice of the constant term (base line value) in making semi-

logarithmic plots of experimental data. |f too small a value is taken the

resulting curve becomes convex to the axis and the initial slope is decreased.

The reverse occurs for too large a choice.
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the centrifugation period. The cells are still surrounded by the same medium
as before, anduntil the compositionof this medium is changed by local depletion
the exchange processeswill continue unchecked. Correction can be made by adding
to the time at which centrifugation is begun an amount At' to obtain aneffective
separation time. This can be expressed in terms of the amount of material xS,
surrounding the packed cells, the exchange rate p and the time interval of
centrifugation At,

Since the exchange proceeds unchecked for a short time after the cells are
thrown down, if At is sufficiently short then the ratio At'/At = |. |f, on the
other hand, centrifugation is continued for a very long time, the cells will
come into equilibrium with the surrounding occluded suspension material.

If, at the beginning of centrifugation, the specific activity ofcells and
suspension medium are a} and a}, respectively, it is easily shown that the
final equilibrium specific activity of the cells is obtained by adding to aj)

the amount
A aj = (xS,/S,) (a) - a}). (10)
The time correction for prolonged centrifugation is thus

Atl = xS,/p.

xS
In general if xS,/S, << | then At = pl (|—e=PAL/xSy) ()

The correction is plotted in figure 7. Figure 8 shows the effect of applying

this correction to actual experimenta! data.

Swelling and leakage of cells. - It is of interest that equations 5 are
independent of the volume of either compartment. Often during in vitro ex—
periments the system is in good condition in the earlier stages but gradually
deteriorates. This may be manifested by gradual swelling of the cells and
gradual changes in the concentration of S in the two "compartments" of the
system. Although unfortunate in other respects, these gchanges in no way in-
validate the applicability of equation |, Changes in the volume of either
compartment do not affect the result as long as determinations of S and a are

obtained, since the volumes do not enter into the equation at all. Thus ifthe
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Figure 7

Correction At' {ordinates) as a function of At (abscissas). Both quantities

are In units of X S;/p.
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Figure 8

Effect of exchange of potassium between cells and layers of trapped plasma and
correction of experimental data. The circles represent the specific activities
of canine erythrocytes as experimentally determined. The crosses are corrected

points. The values of-55§1 was 40 minutes, taken from typical experimental data

for the dog.
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specific activity in either compartment is changing exponentially according to
equations 5 the exchange rate is still constant even though the cells are swel |-
ing. Nevertheless, the progressive disturbance which ensues will inall likel -
hood soon result in changes in S, and S,. |f these quantities are noi longer
constant then the exchange rates will no longer be equal and in.general they may
also vary with time. Equation | sti!l applies and if the nature of the disturb-
ance were such that the ratios (dS,,/dt)/S, and (dS,,/dt)/S, were constant then

the changes in specific activity would still be exponential in character.

Nonuniform mixing and multiple exchange rates. - The postulate of uniform
mixing must be satisfied if the unknown processes occurringin agivenarbitrary
system are to be determined by external observation. Nevertheless, the behavior
of a known system may be predicted even though uniform mixing is not fulfilled
provided that the nature of the distribution of the different species of S in
a given compartment is known. One example of the failure of uniform mixing oc-
curs when a two-compartment system contains two species of S which have differ—
ent exchange rates. Anomalous exchange curves in experiments with radioactive
isotopes (3) have led to the suggestion that in some cases there may be more
than one species of S exchanging at different rates, causing the semilogarithmic
plots of the results to deviate from |inearity.

This situation is represented by a two-compartment system containing two
pairs of subcompartments. It is assumed that the two species of S donot inter-
act. Thus exchange between the two subcompartments of a given. compartment is
prevented. (This assumption may at times , prove too stringent.) One subcom-
partment is distinguished from the other by the use of primed symbols. As be-
fore, the total amount of S in the entire celiular compartment is $,. Of this
one subcompartment contains the fraction F' and the other .the . fraction F'!
(F' + F'' = 1). Each subcompartment contains F'S,, and F''S, wunits, and the
amount of radioactivity in each case will be F'S, a, and F''S, a,. Adding and

dividing by the total amount of S in the compartment,
a,/ag = F' a) + F'! al'. (12)

Thus the over-all specific activity relative to a5 is the weighted mean of the
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specific activities of the subcompartments, theweighting factor being determined
by the fractional amount of S available in each case for exchange. |If the ex-

change rates of the two forms of S are p' and p'' then

S -(p"/F")(1/S, +1/8,)% ~{p" " /F' I 1/S + 1/S, 0] (13)
a,/a = — [J—F'e P ! 275 _prigT P ! ! 2

Sy *+ S2
in which two different exponential terms appear. |In this case, the semiloga-
rithmic plot will not be linear.

This is the most simple example of multiple exchange. Here, although there
are two exponentials, the initial portion of the curve of equation I3 is still
nearly a straight line. This can be shown as follows. Consider a series of

any number of exponentials:

Y = A + Be’—kt + Ce_Lt + De_.mt + .... etc.
Using the series expansions:
YA + B(l - kt + ...) +Cll -1t + ...) + Dl -—mt + .,.) etc,
Y~ (A + B+ C+D+...) - (kB + [lc+mD+ ...) t+ ... etc. {14)

For smal|l values of time this approximation isvery good and the variation with
time is essentially linear. Initially, when all of the activity is still in a
single compartment, it is lost to the other compartments at anet rate determined
by the arithmetic mean of the various exchange rates. Since the initial slope
gives only the arithmetic mean of the exchange rates in the case of multiple

exchange processes, it tells nothing about their individual variation.

Compartment within compartment. - Often a multicompartment system is sim-
plified because exchange between acertain fraction of the compartments is pre-
vented. Compartments may be arranged inaline so that each member of the system
can communicate only with the two neighbors on either side. Such is the case in
certain types of metabolic cycles which might be studied by the isotope method.
In another typical case aseries of compartments are separated from one another
but can al! communicate with one central compartment. Consider the system shown
in figure 9. Here a systemof n-| individual compartments communicates with one

central one, but not with one another. If, in such a system, one had access to
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Figure 9

A multicompartment system inwhichaseries of compartments (numbered from2 to n)
communicate with a central one (number one). S is exchanged at equal and op-

posite rates (p, to py) with the central compartment only.
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all compartments for analysis, then the amounts transferred between any side
compartment and the central one could be determined using only twospecies of S.
Such is the case in the in -¥ivo measurements of exchange between cells and
plasma of mammalian blood. Here, although the system is complex, the plasma is
correctly represented by the central compartment and the cells by one of the
side compartments. However, the use of the simple two-compartment analysis in
interpreting the results is incorrect since the time variation of the a's will
not be truly exponential.

The case of n compartments is treated in Appendix C. It requires the so-
lution of a system of n linear first order differential equations. The solution
for the plasma specific activity isobtained from equations 10", 18" and 19' in

the appendix with proper changes in notation:

At
a;/ag = $;/S + Fx; e ,
where the A; are the roots of
n p;/S
gin) =1 - g 20> -
2 - . .
(A = pj/85)
-1
and the x; are obtained from an expansion of [Ag(A)] in partial fractions.
They are thus defined by the identity
I —S n—1 X
____q:_i_,_z |
AgiA) T sk ] (A = Aj). (15)
The three-compartment case. - Asan illustrative applicationof equations |5,
the case of three compartments (n = 3) will be considered. The equation for A

yields two roots. Although there are only two exponentials in the result, the
half-value times are not expressible simply in terms of the exchange rates of
contents of the two pairs of compartments. The situation is thus one degree more
complicated than that of equation [3. In general the semilogarithmic plot will
not yield two exponents which can be expressed interms of independent exchange
rates. The situation is best seen in the case where the values of pk/Sk are

¢lose to one another. Here we have as a good approximation

/S, + /S +
A, = P2/, Pg/og and A, = \, +_pz Ps
2 S,

4
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and the effect of the exchange between each pair of compartments upon the proe-
esses occurring in the other pair is evident.

One case can .be found where the interpretation of the results {sstraight—
forward. |f one exchange is much more rapid than the other, the effect will be
nearly as though one compartment is not exchanging at all initially. After the
initial rapid exchange iscompleted between one pair of compa;tments, theslowly
exchanging process will proceed as though the rapidly exchanging compartment fis
always of the same composition as the central one. These two compartments then
become a single larger compartment.

We suppose that exchange proceeds rapidly at first between compartment 2

and the centra! one (compartment |). Then

! I
- + (=~ + =)t
51 + 52 e P2 (31 52)

@1/8 = 51 s,

When the exponential term has declined to anegligible valuethe exchange between
the additional compartment (number 3} has been negligible as yet because of the
slow rate. The specific activity of the first two compartments is now
ag S,/1S,+ Sg). This is now taken as a new initial specific activity -a$ and
the same equations applied as before. Considering the exchange between compart-

ment 3 and compartments | and 2 together,
o (—— ¢ L
(S, + S,) + S5 e (T3S, o)t

a,/al = 3 where S=85, + S, + §54.(16)

{f this is now referred to the original specific activity ag then

P2 = P
@y 2 ] s, . -53 + gi)t (17)
a,/ag = S,/S| | + Sg/(Sy + S,) e  os  S1 ¥ S|y s, *
1 2

An example (12) of this type of process in the exchange of potassium in dog,
blood is shown in figure 10. From the value of S,/(S; + S,) obtained by extra-
polation, the rapidly exchanging fraction represents about one-~half the plasma
potassium in this case. Although the existence of more than one type of S (say
two different molecules) whose transfer properties were not the same would ap-
pear in the results as a supérposition of the equations obtained for each type

of S separately, this is not the case when only one type of S is involved in a
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Figure 10

Application of equation |7 toactual experimental data. The points on the uppér
curve were obtained from determinations of radioactivity and potassium con-
centrations in samples of plasma separated from caninewhole blood after varying
periods of equilibration in vitro following addition of a radiocactive tracer.
The curve for cells is indicated below for comparison. |t is seen that the data
for the plasma can be reduced to two exponentials whose individual half-value
times differ by a large factor. It is evident that equal specific activity will
ndt be reached for many times the duration of the present experiment. From the
zero intercepts it is seen that S,,S, is about 0.5. Thus the easily exchangeable

fraction of potassium (S,) is about one-half the total plasma potassium (Sq).
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system of several compartments. Here, in general, the exchange of Sbetween one
pair of compartments affects the exchange between the other pairs as well. The
case just cited, where the exchange rates were widely different, represents a

particular exception,

Statistical distribution of exchange rates. - In general, a biological
system such as that of the cells and plasma of mammalian blood should be in-
homogeneous. Thus at least to some extent the exchange rates among cells will
vary statistically about a mean value. The effect of this variation on the
change of the plasma specific activity with time can be analyzed by considering
the individual cells. Since inatypical case there are roughly 5 x 10° cells in
| cc we will obtainavery close approximation for the results by replacing the
sums in equations 15 by integrals. As indicated in the appendix, the general
solution is difficult. Nevertheless an approximate treatment is satisfactory
for describing the initiat phases of the exchange process. As a representative
example we will consider a symmetrical distribution. Under these conditions the
deviation from linearity of the semilog piot of the specific activity of thecen-
tral compartment is (equation 42' with appropriate change of notation)

2 2 2
x- d” t" S {S - Syt
C(t)ﬁﬁﬁ———————————i [l + X ——————£L-J
25 38

where 0.69/x is the effective half-value time and d is the standard deviation,
relative to the meanof the distribution of exchange rates taken about the mean.
This approximation will be sufficiently accurate at least up to the first half-

time value. During this interval, an upper limit may be set

cit) < d?/3.

Since the relative standard deviation is squared and usually small, the departure
from an exponential during the initial phases of the exchange will be small.
Even for d ~~ 0.3 the net effect will be less than three per cent.

This analysis does not rule out the possibility of determining the distri-
bution of exchange rates by analysis of thecurve as it approaches the base line.
However, considerable precisionwill be required, including an accurate determi-
nation of the base line value. Unfortunately, as time progresses, the experi-

mental system will be more likely to deteriorate.
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SUMMARY

The theory of the movement of a radioactive tracer from one compartment
to another of a two-compartment equilibrium system containing a tagged substance
S is reviewed. If a, and a, arethespecific activities, and S, and S, the total
amounts of material in compartments | and 2, respectively, and if at t =20
a, = ag and a, = 0, the values of a at any later time t are related to the ex-

change rate p by the equations

S, + S, e—ptﬁg’ v )
ai/ao=-s+—S 1 2
1 2
t—|—+‘)
o5 U - e ? (51 S,/
8,/80 = <5
1 2

Methods are described for determining p from measurements of the S's and
the aft)'s. |t is shown that the results are not affected by volume changes
providing the S's remain constant. An approximate expression is derived from
the equations with which experimental results in cellularsystems may be corrected
for isotope exchange during the centrifugal separatlon of the cells. Equations
are derived for the case where two kinds of S are being exchanged.

An n-compartment system is discussed in which a central compartment can
exchange with n — | peripheral compartments and equations are derived which
describe the specific activity changes. These are particularized to the case
where n = 3. |t is shown that if the two exchange rates differ widely then the
results may be expressed in terms of two separate exponentials characteristic
of the two separate exchange rates. In the more general case each exchange proc—
ess affects the other. The analysis of the n-compartment system is applied to
the study of the exchange of S between cells and plasma of mammalian blood in
vitro where the exchange rates between the two fractions are statistically dis—
tributed. In a typical case, even though the spread is extreme, the departure
of the results from the pure exponential behavior of a two-compartment system
is less than three per cent during the initial phase where t is less than one
half-time value,

An analogy with Fick's law of diffusion is applied to the determination of
the radioactivity changes in a tagged system where the concentration of S s

held constant in time but not in space.
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APPENDIX A: Derivation of the Equations for the Multicompartment System

The original theoretical treatment of transfers within a multicompartment
system used mathematical methods which, although cumbersome, are more likely to
be familiar to the average reader. We now present a more concise derivation of
equation 10 of the earlier report.

Consider a system of n compartments containing n individual species of a
substance S uniformly mixed, and although individuany identifiable, otherwise
behaving identically. In compartment j there will be rSJ units of species rand
its fractional amount will be rAJ, If transfers occur such that dSJ-k units are
delivered from compartment k to compartment |j these quantities may be experi-
mentally determined by finding the rAk in all compartments and the changes of
all species drSJ in compartment j only.

The equation relating them is obtained as follows. In a given compartment
(say k) the amount of a given species leaving it and going to compartment Jj is
rAk dsjk' The tota! loss in species r is obtained by summing over all other
compartments. Similarly one obtains the total gain, so that the net change in

compartment j is

k=n
r = r r
d'sj =2 ("Ag A8 = TAj dSy ;) -

We define the reciprocal determinant ajr such that
- r = . r‘. . =
Taje AT S0 F A e T Brps
. = i i# ..oz .
where 6Jk 0 if j¥k and 6JJ I
Multiply both sides of. the original equation by &;, and sum over r giving

r =
2 @jp d7S; = 2 oy

Jk J

™M
=

r r
2 (TA Sk = A dSy ;)

dsji'

But from the known properties of a reciprocal determinant each term a,  is
equal to the cofactor of the corresponding rAk divided by the determinant of

all the rAk's, giving the same solution as equation |0 in the earlier paper.
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APPENDIX B: The Fick Law Analogy

Consider a system in which molecules of agiven substance Sare distributed
in space.

The distribution is such that the concentration of S varies from point to
point but S is so constrained that the concentration does not vary with time.
However the molecules can move freely by processes of exchange. We will consider
only the case where the exchange proceeds with equal ease in all directions and
at all points in space. The molecules of S include some containing a labeling
isotope so that at some point the absolute specific activity is A. Two planes
P and Q are passed perpendicularly to the direction of maximum rate of change

of A and separated a distance dx. Let the specific activity at P be A-—%ﬁ— and

at Q, A +3A

P Q
dA_ A LdA_
A 5 +5
¢ dx 3
nd
£
N
dt
The intervening layer will be bombarded by molecules from either side, What-

ever their origig,the fraction of tagged molecules in plane P at any instant is
A-dA, and this is the probability that a given molecule leaving this plane and
traversing the intervening layer will be tagged. in dt seconds dN total mole-
cule will traverse the layer from either side. Those going from Q to P will
carry with them (A+dA)dN, and those in the opposite direction (A-dA)dN. The net

rate of transfer of tagged molecules is thus dA dN/dt, and

Q.

dn*/at = B 9N ax = S dx grad A

We take the sign with the same convention as used in Fick's Law. The equation

of Fick's first law may be written

dS/dt = -D grad c.



40

We see that in the two equations equivalent quantities are N* and S, A and c,
and finally dN/dt dx and D. As a result for any system which satisfies the
above assumptions we can immediately take over bodily the results of the analogous

calculations of formal diffusion theory.
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APPENDIX C: The Multicompartment Case

The equations—-solution for a finite number of compartments. - Weconsider
here the case of asingle "outer" compartment, possibly large by comparison with
the others, withinwhich or attached to which are a number of others which do not
exchange directly with one another. We let the subscript "o" refer tothe outer
compartment. We shall come to the case of many "inner" compartments. (e.g.
erythrocytes within the plasma), but we first consider the simpier case where
these are distinguishable each one from the others. As a matter of convenience
we adopt a simpler notation.

Let
Ak=pk/so, dJ-=pJ-/SJ-,'(J',k=I, 2, ..., n) (1

where the p's and the S's represent, as before, exchange rates and masses re-
spectively. Thus the A  and the aJ represent relative exchange rates, referred
to the total contents of the outer compartment and of the inner compartments,
respectively. Let ag(t) and aJ(t) represent the specific activity in the outer
compartment and -the inner compartments. (The ag(t) here is the same as a;(t)/aq
in the original equations 5.) Then for equal and opposite exchange between each

compartment j and the central onewhen all exchanges are equal in both directions

dag/dt = Zla, - aglAy, {(2')

(ag — a;)d;. (3')

da./dt o

J
Although we are concerned with a muﬂticompartment system a simplification
exists because the exchange can only occur between the jth compartment and the
central one. Thus equation 3 permits the jth exchange rate to be determined
even though only two species of S are available, provided access can be gained
to both compartments to determine a; and ao at any time. The variation of a;
will not be exponential in this case as in the simple: two-compartment system
since the ao is affected by exchange both with compartment j énd withall others
as well.

We are interested inparticular in the case where initialiyall radiocactive

material is introduced into the outer compartment, but not insuch amounts as to
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disturb theequilibrium sensibly. in this event agy has some known value initially,

which may be taken as unity, and all the a:. are zero:

J
agl0) = 1, 2j(0) = 0. (4")
As will be shown later it is no restriction to suppose that no two a; are
equal. We may then suppose the compartments numbered in such a way that
@y <0 < ... < Ay {(5'")

By standard theorems it is known that there are solutions of thedifferential

equations that can be written in the form

ap = Po e—kt; aj = BJ e—kt’ (6")
with properly chosen A. In fact, any A for which the determinant
A - ZAi A1 o e o A"
0y AN -a, . 0
AN =
A
(l" O . )\ - d"
vanisheswill provide such asolution. Moreover, since it will beshown presently

that the equation A = 0 has n + | distinct roots, every one providing a distinct

solution of the form (6'), it follows that the general solution is a |inear

combination of these.

In order to demonstrate these assertions, one substitutes the expressions

(6') into the equations, leaving the B's and the X undetermined. The exponentials
cancel out leaving n + | linear homogeneous equations inthe n +| coefficients B,
with A(A)} as the determinant of these equations. There exist B's not all zero

satisfying these homogeneous equations, and hence providing a solution (6'), if
and only if this determinant vanishes. Hence any A satisfying A = O can be
substituted into the homogeneous equations, and aset of B!'s determined therefrom
to provide a solution (6').

An expansion of the determinant AN} can be effected as follows. First

subtract the 2nd, 3rd, ..., and last column successively from the first. The
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resulting first column hasal in every position and this is therefore remavable

as a factor, leaving a column of ones. Now divide column (j + |) by (A - aJ)'
placing it outside as a factor. In the column (j + |) one has then AJ/(A - aj)
inthe first position, | in the diagonal position, and O elsewhere. The resulting

determinant is now readily expanded, and one can write

AN = Ap(N) g(A), (8"
where

QIA) = (AN —ay) (N =ag) ... (A= dp), (9")

giN) = 1 = ZA; /(N —a;). (10"

It is now possible to show that the equation g = 0 has n roots, Ay, A,,

., Ap satisfying
By <Ay €0, €Ay € ... < dy < Ay (e

These must be roots also of A = 0, and since this has the obvious root Ay = O
in addition, we have accounted forall n + | roots of A = 0. To verify (11')we
have only to observe that g(A)} is everywhere monctonically increasing iin A

except at the points A = a: where it becomes infinite, and that

J

glo) >0, g+ =) = |,

Thus we have accounted for n + | linearly independent solutions of the form (6')
for the differential equations, and since these are of order n + | every so-
lution is a |inear combination of these.

We proceed now to construct the particular solution inwhich we are inter-

ested. This can be written in the form

ag = Boo + IBo; e~ M1, (127)

a-

-\t
j = Bjo * ZBj; e7hiY,

where we have adjoined a second subscript to each  to designate the particular

A with which it is associated. The initial conditions give us

(13")

Boo * ZBoj

|
Q

Bjo *+ 2By
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Also, for each i, the Bji must satisfy the homogeneous equations of determinant

A(Ki), These equations are seen to be equivalent to
Boo = BJo = Xo, (14"
Bo; = (o - Ap) Bji/“j = Xi,

where the x, and the x; are hereby defined. These will turn out to be the coef-

ficients in ag(t), which isthe only part of the solution required. To evaluate
the x's, we express the B's in terms of them by (14") and substitute into (13,

After trivial algebraic simplification the result is
X°+Exi = ) (|5‘)

Xo/d; + in/(a_, - A;) = 0.
1

J i

These equations inthe x's canbesolved formally by anartifice as fol lows:
Consider the fractions @(A)/A{A) whose numerator is a polynomial! of degree n
and whose denominator is a polynomial of degree n + |. The zeros of the denom-

inator are, as we know, Ao = 0 and the \;. Hence the fraction can be resolved

into partial fractions in the form

PINI/AIN) =Co/N + ZCi/ (N = Ay ), (16

where the C's are constant. By virtue of equation (8') thiscanaliso be written
(M1 = Co/h + 3C; /(N = Aj). (171

These are algebraic identities and must be satisfied for any value A may take

on. In particular if we set A = a;

jr then since @l{d;) = 0, we have

0 = Co/aj + Zci/(dj - )\i).

These equations forj = |, 2, ..., n, are the same as the last nof the equations

(15') with the C's replacing the x's. Also (17") can be written

[gM]™" = Co + ABC; /(N = A}),

and as A —> « we have the limit
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which is the same as the first equation (I5")

We may summarize as follows: The specific activity of the

will be given at time t by

aglt) = xo + Zx; e‘xit,

where the ki satisfy the equation g(A) Oand the x'saredefin

identity

ngn]—? Xo/\ + Ixi /(N = A ).

The function g(A) is defined by (10').
We have carried on our discussion as though the relative

and A; were known in advance. Ordinarify this will not be

have, instead, an empirical function ag(t), or values of it

uring the specific activity at various times t. We may then
empirical points by a sum of exponentials of the form (18'),
and the A's.

estimates of the x's By means of these we can

(19'), deriving thereby the function g(\) (after collecting
ing). When g(A) is separated into partial fractions according
cover the A's and the a's.

We remarked

Two or more identical compartments.
restriction to suppose the a's all distinct. Suppose, on the

for some i and j,

ai=aJ-=a.
I f we set

b=ai"aj’
then the two equations in a; and aJ give

= 0 and hence b(t) = 0. Consequentiy a

But since blo) 0, bg

?

above

with the C's replacing the x's.

outer compartiment

(18"

ed by the algebraic

{19")

exchange rates a;
so, but we shatll
obtained by meas-
seek to fit these
thereby obtaining
construct the sum
invert-

terms ‘and

to (10"), we re-

that ‘it is no
contrary, we had,
-(t) = a;(t) and

' J
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so far as agl(t) is concerned the system behaves as though only one were present
but with an A corresponding whose value is A; + Aj'

| f the number of compartments is relatively small, or if the empirical
curve aglt) can be represented satisfactorily inthe form (18') as the sum of a

small number of exponentials,the foregoing analysis is sufficient. Even though

there may be many compartments, an expression of the form (18') is possiblie if
they fall into a few classes, each class consisting of compartments having the
same ¢. |In other circumstances, however, the a's of the separate compartments

may have some statistical distribution, which is either known in advance, perhaps
from theoretical considerations, or which we wish to infer from the empirical

aglt). We turn now to a consideration of this circumstance.

Continuous distribution of exchange rates. —Wewishto express our relations
in terms of integrals that can be generalized to a continuous distribution.
Referring, as a guide, to our previous results, we define a step function A(a)

as follows:

Ala) = 0 for o < ay

= A, for ¢y £ 0 < Oy, (20")

= Ay + A, for a, < a < dg,

= A, + Ay + ... + Ap for oy <.
We may then define our function g(\) by means of the Stieltjes integral {13) of
the function A{a):

2 1
g(A) = | - { (A — o)™ dA(a). (21"

in like fashion we may define a step function X(u):

X(u) =0 for u < Ay,
= x, for A, £ u < Ag, (22")
= X, * Xy for A, < u < Ag,

-----------------------------------------
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Hence we have

Agin]=1 = xg/h + Z (A - u)™t dX(u), {231)
and
o
aglt) = xo + { e”Ut  ax(u). (24")

Now for the finite case the equations (21'), (23') and (24') are equivalent,
respectively, to the equations (10'), (19'), and {18'), when A(a) and X(u) are
defined by (20') and (22'). But the equations are now in a form to permit of
generalization to the infinite case, and we may say that if the exchange rates
are distributed in a manner represented by the function Af(a), then the time
course of the decline in radioactivity aglt) is given by {24'), where X{u)
satisfies the Stieltjes integral equation {23'). And conversely, if the radio-
activity aglt) can be represented in the form (24') by means of a suitable

function X(u), then thedistribution of the exchange rates is represented by the

function A(a) satisfying the Stieitjes integral equation (21'), where g\ s
defined by the equation (23'). The finding of a function A(a) necessitates the
determination of asuitable analytic representation of a function X(u) that can
satisfy (24') with reasonable approximation. From (24') (13 ) it follows that
for A < 0

@©
@©
é Mt [ag(t) - xp] dt = - g(x - u)~t dxiu)

[xg — I/g(MIN" .
Consequently for a given ag(t) we may define gtA) by

1/g(N) = xg — A Z eM [agit) - xgldt, (25")

the integration being performed with A negative. Hence if aglt) - Xo is given
analytically, g(\) is obtainable from its ordinary Laplace transform. Conversely,
if Alo) or Bla) is given anaiytically, perhaps fromtheoretical considerations,
then ag(t) is obtained from a Laplace inverse transformation.

In practice, neither the determination of X(u) from (23') given A(a), nor

the inverse determination of A(a) from (21') given X(u), is apt to be simple,
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and closed expressions, in terms of elementary functions, can be expected :in
very exceptional cases at best. In thinking of A{a) as a function which repre-
sents the distribution of exchange rates, it is natural to think of X{u) as a
function which represents the distribution of the "decay constants” A. This

suggests seeking relations between the moments of the two distributions.

The moments of the distribution functions. - For this purpose it is con-

venient to consider, in place of A{a), the related function Bl{a) defined by

d Ala) = o d Bla), (26")
with, of course,
B(O) = 0.
This function is the true distribution function for the a's. In place of (219
we write
¢ 1
giA) =1 = [ ath-a)"" d Bla). (27")
o)

We define the moments B of the function B(a) by
@
B, = [ «" d Blg) (r =20, 1,2, ...). (28")
Then g(\) can be expanded formally in powers of N7
2 2 i
giN) = | = By/A® = Ba/N = enn - (29")

We note also from (27') and (28')

-1

glo0) = | + Bg = Xo - (30')

in like manner if we define the moments

o
= r 1
Xp = [ uf dXtu), (317)

then we.have the formal expansion of the integral

w
{ (N = u)~Y d X)) = AT [xo + X /N + xp /Xy 4 ..]. (321
Hence (23') can be written formally
17gIR) = xg + Xo * Xg/N + Xp/A® + .., (33")

2
b+ Xy /N + X/N + o,
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since
Xg * Xg = agl0) = |

If we multiply together equations (29') and (33'), we obtain after a minor re-

duction
0 = (X, — By)/N+ (X, — By Xq = Bo)/A? + ...,

and siince the right member must vanish identically in A we obtain the recursion

relations
X; = By,
Xy = By X3 + By, (34')
Xr = B, Xr_1 + B, Xr—2 oL F Br’

Often the moments about the mean are more convenient. Let x and b represent

the means of the two distributions X and B. Then

Likewise let v  and b, designate the statistical moments about the mean. These

are related to the moments X_ and B_, respectively, by the relations

Xp =Xo [vp + () x vy + oo+ (5) x™% v, + x"1, (35")

and

o8}
"

Bo [byp + (1) bbby + ... + () 6™ % b, + 0], (36" )

since x, = b, = 0. These can be substituted into (34') for obtaining a series

of relations between the means and the moments about the mean. Recalling that
Xo = | = xg = Bg/{l + Bg),
we write down only the following:

b = Xg X (37')
be = Xg Vg,

b3=X°V3+B°bb2.
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Initial behavior of ag(t). - Equation (24') is equivalent to
[ag(t) - xo] Xt = Z e~ U = X1t g x(uy, (38'")
where x is any constant. |f we expand the exponential under the integral sign

in powers of t and then integrate, the coefficients of the powers of t are the
moments of the function X(u) about the point x. |In particular if we take x to be

the mean of the distribution X(u) as in equation (35') we have

[aglt) - xo] Xt = xo [1 + % v, t7 - é—va t?+ ..,

where the v's are the ordinary statistical moments about the mean. Hence

lag(t) - xol/ Xo = e X% [1 + % vp t2 - é ve t2+ ...,

so that on a semilog plot the initial slope is entirely determined by the mean

x of the X distribution. |f we write
log [ag(t) - xo] = log Xo — xt + c(t), (39")
then
clit) _ | 2 |
e = | +=v, t° - —=v, t +
2 2 6 °

and we find by successive differentiations that

c(0) = c'(to) = 0,
c't(0) = V,,
c''1(0) = —Vg, (40")
c'V(o) = v, — 3va.
By expanding around the point t = 0
2 ., 3 2 4
clt) = Vz't - Va't + (V4 '—3\’2 )t + ... (41")
2 6 24
eclt) represents the multiplicative correction fordeviation of ag(t) - xo from

exponential behavior, and c(t) the additive correction for its semilog plot.

In terms of the moments of the B function

b,t2 3
clt) = 2= _ [bg - x by (I = xo)] =t
2 X 6 Xgo

+ L (421")

“'51
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The function <c¢i(t) determines the departure of the semilogarithmic plot from
linearity. Initially the deviation is controlled almost entirely by the second
moment and issuch that thecurve is parabolic and convex to the axis of abscissas.
As time progresses the higher moments become increasingly effective. These are
determined by'the more detailed aspects of the distribution such as skew, excess,
etc. The convergence of c(t) depends to a considerable extent on the magnitude
of the higher moments. Even in the case of a Gaussian distribution these may

become quite large. Thus the approximation is usually only good for small t.

The electrical analogy. - Figure |l shows an electrical analogy to the

system in figure 9. The differential equations are

d Qordt = 3L @k - o)
Rk Ck Co
- 10 0
d Q,/dt = — o0 _ X
QJ R To C4)
J
These become identical! with equations 2' and 3' if the radioactivity Rj

is inserted in place of the charge Qj on condenser j, the capacitance 'Cj re—
placing the SJ and the exchange rate P replacing the conductance I/RJ. Thus an
electrical analog computer could be designed to reproduce the behavior of the

biological system.
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Figure 11

Electrical analogy to the system in Fig. 9. The capacitances Cj represent the

amounts SJ, the charges on the condensers er the radioactivities Rj and the

conductances l/RJ, the exchange rates Pj-
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