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THE INTERPRETATION OF EXPERIMENTAL INVESTIGATIONS

of

TRANSFERS WITHIN A TWO-COMPARTMENT SYSTEM, USING ISOTOPIC TRACERS*

C. W. Sheppard and A. S. Householder

As further biological investigations include the use of isotopic tracers,

there will be an increasing tendency for the resuIts in many cases to be inter

preted in terms of the behavior of an idealized multicompartment system. With

this in mind the theoretical basis of such an interpretation was discussed in

rather general terms in an earlier paper (I). The basic postulates were out

lined, the necessary measurements were listed and the equations were derived

which relate the quantities transferred between compartments to the changes ob

served within the compartments. A more elegant derivation of these equations

is presented .here, in Appendix A.

There may be instances where systems of several compartments are of suffi

cient biological interest to justify the increasingly large number of measure

ments necessary for their description. However, from the point of view of sim

plicity, the two-compartment case will probably continue to be the most impor

tant. A few typical biological systems may be cited where the behavior has

been or might be compared with that of a typical ideal system of this type.

Visscher et al. have used the concept to interpret their results in the

study of the exchange of sodium tagged with Na between the circulation and

isolated chronic Thiry-Vella gut loops in the dog (2)-. Cohn and Brues (3) have

made similar comparisons in interpreting their observations of the exchange of

phosphorus tagged with P and potassium tagged wi th K42 between tissue explants

and the surrounding culture medium.

The observations of Chambers et al. (4) on potassium and phosphorus ex

change between Echinoderm eggs and surrounding sea water might be considered on

the basis of an idealized two-compartment system. A typical example in the

chemical field is the study of exchange rates between two chemical compounds (5) .

Other examples such as the theory of surface decontamination may be cited.

It will be shown below that the derivation of the usual equations used

The writers wish to acknowledge the assistance of Or. w. A. Arnold with whom
the following material was discussed.



for describing the variations with time of the radioactivity of both elements

of a two-compartment system are based on the assumption that the contents of

each of the two compartments are uniformly mixed. This assumption limits the

utility of these equations in interpreting the general behavior of tagged systems

of the above type. In the tissue culture experiments on potassiurn transport the

deviations of the results from the behavior of the idealized system may quite

easi Iy be interpreted asafailure of the criterion of tin iform mi xiing within the

internal compartment, i.e. the total cellular interior. The same might perhaps

be said for the situation in the case of the Echinoderm eggs. It can be shown

that phosphorus injected as phosphate tagged with p32 does not mix rapidly with

the total blood phosphorus in canine loop experiments (6) which leads to the

result that the specific activity of the gut perfusate is higher initially than

that of the blood. Although the loop experiments with sodiurn are probably not

subject to this objection, the existence of other compartments with which mate

rial in the circulation may exchange (such as the extracellular fluid) must be

admitted to complicate the simple idealized case.

It is therefore of considerable interest that recent, improved studies of

the exchange in vitro of potassium between cells and pIasmaof human blood hav«

been sufficiently precise and controllable to show that the cellular fraction

and the pIasma form two elements whose behavior in all observed respects is iden

tical- with thatof the idealized case (7) (8). For this reason it is now per
tinent to review the theory of the two-compartment system and to discuss afew
additional theoretical aspects of the interprets ion'of experimental results.

The theory of the two-compartment system. - We considera system of two com
partments denoted respectively by the subscripts I and 2, (Fig. |)„ Various

quantities of asubstance S (such as potassiurn) are moving from one compartment
to the other and vice versa, and it is required to determine how much of S has
moved, say, from compartment Ito compartment 2 in agiven small interval of
time. This is defined as dS21. By analysis at agiven instant, the amount of
Sand its change in either compartment may. be determined (e.g. dSl 0r dS )
Similarly, the total radioactivity of the contents of either compartment ma/b
determined by familiar methods. Th.s w,)l be cal led d^ or d*,. We use th

2 I .

e
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F i g u re I

Graphical illustration of changes occurring in a two-compartment system during

the simultaneous two-way transport of a tagged substance between compartment I

( left) and compartment 2 (right). The shaded portions represent the radioactiv

ities of the various fractions. The areas of the rectangles represent the

amount of substance in each case. Since unit widths are employed the areas are

numerically represented by the heights.
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Italic R here, reserving R for radioactivity per cc, as in the earlier commu

nication (I). Finally wedefine the ratio Rj./S^ = al7 etc. This is the relative

specific activity of the material incompartment I, etc. It is usually measured

in such units as counts-per-minute-per-mi IIimo I. It was shown in the earlier

communication thattoobtain dS12 or dS2^ it is necessary to determine the val

ues of a in both compartments and the values of dff and dS in one. The final

equation is obtained by taking the general solution for the n-compartment case

and applying it to the case n = 2. In this most simple case it is more easily

seen as follows. In figure I the amount of S in each compartment is equal to

the areaof the rectangle in each case. Since unit width isemployed, the amount

is also given by the height. We assume -justifiable license in representing the

width of the shaded portion by the quantity a in the interests of simplicity,

although strictly it isaquantity proportional to it. The results are not af

fected by this choice. We consider the most general situation where the exchanges

are opposite but not equal. Thus dS21 units are transferred from compartment I

to compartment 2. In the oppbs ite case dS'21 - dS2 units move from compartment 2
to compartment I. The dS2 represents the excess which leaves compartment 2 and

isnotmade up by what arrived from I. The negative sign is used si nee compartment

2 suffers a decrease in the transfer process as it is indicated here. Each lot

contains the amount of radioactivity indicated in terms of the shading. Thus

the lot -dS2 contains -a2 dS2. By adding and subtracting the various amounts as

shown, the total change in radioactivity in compartment 2 is

d/f2 = a, dS2J - a2 dS21 + a2 dS2.

We solve for the quantity transported, dS21 , and divide by dt to obtain the

corresponding rate obtaining

dS21/dt =-
a2 dS2/dt - d/?2/dt = S2da2/dt ( ()

a, - a.

The return rate dS12/dt is obtained similarly. As already pointed out the two

basic postulates of uniform mixing and identical behavior must be satisfied.

Effect of the failure of either criterion is shown graphically in figure 2.

Up to this point no law of transfer of S between the two compartments has

been postulated. As in the earlier communication the observations of S and a in



Fi gure 2

Graphical illustration of the failure of either of the basic postulates on

which the present isotopic method is based.
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the compartments represent the means whereby the laws of transfer are to be

elucidated. We now consider the predictions which can be made of the variation

with time of at and a2 when subject to a known law of exchange.

The most important situation biologically is that where there is no disturb

ance of the equi Iibrium and thus dSj = dS2 = 0. Then dS12. = dS2t. In this case

the substance S is exchanged at equal and opposite rates for which we use the

symbol p. Thus

_,. / , dff./dt
dS12/dt = dS2,/dt = p = • (2)

Or alternatively

Similarly

_£_

Si
dat/dt =-5- <a2 - a1) (3)

da2/dt =— (a± - a2 ) (3)

As pointed out by earlier investigators (9), this equation is identical in form

to that describing the changes in concentration in a system oftwo compartments

separated by a th in membrane where Fick's Iawof diffusion appl ies. Th is pr inci pi e

will be considered further below.

It is supposed for the moment that initia Ily aIIacti vity is in one compart

ment only. The initial behavior of such a system can be analyzed in a rather

simple manner and the results will be sufficient to estabI ish the exchange rate p

from the initial changes. Detailed study of the variations in specific activity

with time at later times will be requi red only if doubt exists as tothevalidity

of the idealized model of the two-compartment system for the description of the

actual system under study. The initial situation is shown in figure 3. It is

seen that the radioactivity is going one way only and in direct proportion to

the exchange rate p. Thus the specific activity in compartment I decreases

linearly with time and the exchange rate is obtained from the initial slope of

the curve of z.x or Rx as a function of time using the expression

-I dff,. -S« da,

at dt &! dt



Figure 3

Illustration of a system where exchange occurs at equal and opposite rates and

where initially all of the activity is in one compartment (t = 0). At final

equilibrium (t = 00) the activity is shared in equal proportion between the

compartments.
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Fi gure 4

The theoret ical variationof spec if ic act iv it ies (ordinates) with time (abscissas)

for the two compartments when the exchange occurs at equal and opposite rates.

The curves vary linearly over any small period of time and approach the same

asymptote aftersufficient time has elapsed. At any point the difference between

the value of ax or a2 and the asymptotic value (i.e. at t = 00) decreases by 1/2

during one half-value time interval.
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At this stage, the criterion of uniform mixing in compartment 2 can be relaxed,

since it applies in the strict sense only.

As time progresses and the activity in the second compartment increases,

some of it begins to return, and the decrease in activity in compartment I is

less rapid. Finally after a sufficiently long time the specific activities

approach one another; thus the two compartments containi the same fraction of

activity and no further changes occur. This is also shown in figure 3. The

typical graph showing the variations in specific activity in the two compartments

is shown in figure 4. The general equations describing these variations foralI

values of time will be discussed in the next section. Often the curves for the

variat ion of R in each compartment under conditionsofequal and opposite exchange

at constant rate are of interest. On a relative basis (i.e. if R/R0 is plotted)

the curve for compartment I will be the same as that for ax (Fig. 4). Since the

total activity of the system is constant, the curve for compartment 2 wi II be its

mi rror image.

If the volumes of both compartments were nearly the same (e.g., cells and

plasma of a typical healthy dog), then the curves of the radioactivity per cc

(Rt and R2) would be nearly identical with those fortotaI radioactivity. Since

R is a commonly observed quantity, typical theoretical curves of this type are

shown in figure 5 for activity of K in the cells and plasma of human blood on

the assumption of an ideal two-compartment system. Here a typical ratio of

concentrations of intraceIIular and extraceI IuIar potassium is about 21, and the

cells occupy about 45 per cent of the total blood vo Iume under normaI conditions.

The curve forthe cellularactivity perccisobtained by takingthemirror image

of that for the plasma and multiplying by the ratio of the relative volume of

the plasma per cc of blood to that of the cells (i.e., 55/45).

The over-all time variation of the specific activities. - The setofequa-

3 and 3' can be integrated by standard mathematical procedures. For the case

where initially all of the activity is in compartment I whose initial specific

activity is thus a0 the results are

St + S2 e-°tM/Si + US*}
ai/a° = s, + s, "



Figure 5

Theoretical prediction of the variation with time (abscissas) of the radio

activity per cc (ordinates) of plasma and cells of human whole blood. Typical

values were assumed for the relative cell volume and the extracellular and

intracellular potassium concentrations. The circles represent calculated the

oretical points. The time scale is arbitrary since this depends on the exchange

rate which is to be obtained from experimental rather than theoretical results.



1.0

0.8

o

or

cc

0.6

04

0.2

0

RELATIVE CELL VOL 45%

<r- CELLS

iS
PLASMA

TIME IN ARBITRARY UNITS

~7F —

ASYMPTOTES

IN RATIO 21.5 TO I



a2/ac
"Sl [|-e-Ptll/si + l/Ss>]
Si + S2 j^ j

The second equation is identical to that given by Cohn and Brues (3), when ap

propriate changes in notation have been made. The expression given by Mull ins

et al. (the i r equat ion 3) (10) is dimensi ana Ily incorrect.

In Appendix B the analogy between Fick's law and the mixing of isotopes in

a system is shown in the general case; th is prov ides an alternat ive method of ob

taining the solution of equations 3 and 3', Suppose we have two cpmpartments I

and 2 separated by a membrane and contain ing conpent ravt ions of mater ial cx and c2.

The constant volumes are Vx and V2 . in terms of the fami I iar membrane constant K,

the variation in the c's with time is given from Fick's law by

dUj. Vi)/dt = -d(c2 V2)/dt = K(c2 - cx) (6)

It is seen that we obtain equations 3 and 3' by substituting

p for K, Si (i.e. ca Vj ) for V1; a± for clf etc.

The so Iution of equations 6 is familiar in the f ie Id of physicaI chemistry (II).

After the necessary substitutions, equations 5 result.

Semilogarithmic plots. - Although the initial slope of the specific

activity curves (Fig. 4) would be sufficient to establish the value of p in a

given system, nevertheless in comparing experimental data with the theoretical

results a plot on semilogarithmic coordinates is useful, and the slope of this

plot will also establish the value of p. By transposing terms in equations 5
and taking logarithms of both sides,

iog[ai/a0 - SiiSi + saj] = log [$2/[S1 + s2)] - ptu/Sj + I/S2)

and

logtSi/JSi + S2) - a2/a0] = log [Si/IS* + S2)] - pt(|/Sa + I/S2 ). (7 )

It is seen that in each case the logarithm of the difference between a±/a0 or
a2/a0 and the base line value (see Fig.4), taken aIways with ApIus sign is pro
portional to the time t. When this quantity is plotted on semilog coordinates,
the result is linear. The reciprocal of the proportionality constant can be
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treated similarly to the mean life of a radioactive isotope. It is the t

required for the quantity (minus base line) on the ordinate seale to dec Iine to

l/e of its initial value. The abscissa scale in figure 5 is taken in units of

this time interval. More familiar is the "half-value time" (Fig. 4). This is

the time during which the quantity changes by one-half. In the present case it is

T1/2 = 0.69 S, S2/p(S! + S2). (8)

Another method of plotting is sometimes found; since

log (a^a,, - a2/a0) = -pt( l/S,. + l/S2), (9)

a plot of the difference of the a's will also be linear with the same slope but

with a different intercept.

Some practical points should be considered in the construction of semilog

plots of this type from experimental data. In the first place, the results be

come increasingly inaccurate as time progresses since the ordinate values are

established from increasingly small differences whose relative experimental

uncertainty increases as the values decrease. Unfortunately, the values at in

creasing time are often of considerabIe interest, apoint which will be further

discussed in a consideration of inhomogeneity of exchange rates.

If the experimental data are carried sufficiently far out in time, it may

be possible to determine with fair accuracy from the curve alone the base line

amount to be subtracted in orderto construct the semilog plot. However one may

introduce curvature in the results or makeacurved result erroneously straight

by incorrect choice of this quantity (Fig. 6). Furthermore, changes in the

slope occur.

Exchange processes during centrifugation. - The literature contains nu

merous examples of the practical use of equations 5 in interpreting experimental

results. In addition we consider the application of these equations to the

correction of data for exchange during centrifugation. If this method ,be used

for removing cells for assay, the cells are often incompletely packed, partic

ularly when facilities are not available for centrifugation at high speeds or

when high accelerations produce cell injury. Under these conditions, it is not

correct to assume that the exchange processes are arrested at the beginning of

ime
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Figure 6

Effect of poor choice of the constant term (base line value) in making semi

logarithmic plots of experimental data. If too small a value is taken the

resulting curve becomes convex to the axis and the initial slope is decreased.

The reverse occurs for too large a choice.
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the centrifugation period. The cells are still surrounded by the same medium

as before, and unt iI the compos ition of this medium is changed by locaI depletion

the exchange processes wi IIcontinue unchecked. Correction can be made by adding

to the time at which centrifugation is begun an amount At' to obtain an effective

separation time. This can be expressed in terms of the amount of material xSx

surrounding the packed cells, the exchange rate p and the time interval of

centrifugation At.

Since the exchange proceeds unchecked for a short time after the cells are

thrown down, if At is sufficiently short then the ratio At'/At = I. If, on the

other hand, centrifugation is continued for a very long time, the cells will

come into equilibrium with the surrounding occluded suspension material.

If, at the beginning of centrifugation, the specific activity ofce IIs and

suspension medium are a2 and a}, respectively, it is easily shown that the

final equilibrium specific activity of the cells is obtained by adding to a2

the amount

A a2 = (xSi/Ss ) (aj - a2 ). (10)

The time correction for prolonged centrifugation is thus

At". = xSj/p.

xS
In general if xSi^ « I then At' = - ( |-e_PAt/xSi] (ll)

P

The correction is plotted in figure 7. Figure 8 shows the effect of applying

this correction to actual experimental data.

Swelling and leakage of cells. - It is of interest that equations 5 are

independent of the volume of either compartment. Often during in vitro ex

periments the system is in good condition in the earlier stages but gradually

deteriorates. This may be manifested by gradual swelling of the cells and

gradual changes in the concentration of S in the two "compartments" of the

system. Although unfortunate in other respects, these changes in no way in

validate the applicability of equation I. Changes in the volume of either

compartment do not affect the result as long as determinations of S and a are

obtained, since the volumes do not enter into the equation at all. Thus if the
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Figure 7

Correction At' (ordinates) as a function of At (abscissas). Both quantities

are In units of X Sj/p.
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Figure 8

Effect of exchange of potassium between cells and layers of trapped plasma and

correction of experimental data. The circles represent the specific activities

of canine erythrocytes as experimentally determined. The crosses are corrected

XS,

for the dog.

points. The values of ai was 40 minutes, taken from typical experimentaI data
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specific activity in either compartment is changing exponentially according to

equations 5 the exchange rate is still constant even though the ceI Is are sweI I-

ing. Nevertheless, the progressive disturbance which ensues will in all likeli'-

hood soon result in changes in S± and S2. If these quantities are no longer

constant then the exchange rates will no longer be equal and iin,general they,may

also vary with time. Equation IstiII appl ies and if the nature of the d isturb-

ance were such that the rat ios (dS21/dt)/S2 and (dSia/dt)/Sj. were constant then

the changes in specific activity would still be exponential in character.

Nonuniform mixing and multiple exchange rates. - The postulate of uniform

mixing must be satisfied if the unknown processes occurring in ag iven arbitrary

system are to be determined by external observation. Nevertheless, the behavior

of a known system may be predicted even though uniform mixing is not fulfilled

provided that the nature of the distribution of the different species of S in

a given compartment is known. One example of the failure of uniform mixing oc

curs when a two-compartment system contains two species of S which have differ

ent exchange rates. Anomalous exchange curves in experiments with radioactive

isotopes (3) have led to the suggestion that in some cases there may be more

than one species of S exchanging at different rates, causing the semi Iogarithmic

plots of the results to deviate from linearity.

This situation is represented by a two-compartment system containing two

pairs of subcompartments. It is assumed that the two species of S do not inter

act. Thus exchange between the two subcompartments of a given compartment is

prevented. (This assumption may at times prove too stringent.) One subcom-

partment is distinguished from the other by the use of primed symbols. As be

fore, the total amount of S in the entire cellular compartment is Sj. Of this

one subcompartment contains the fraction F' and the other the fraction F''

(pi + F*' = I). Each subcompartment contains F'S2, and F''S2 units, and the

amount of radioactivity in each case will be F'S2 a2 and F''S2 a2. Adding and

dividing by the total amount of S in the compartment,

a2/a0 = F' a2 + F'' a2'. (12)

Thus the over-all specific activity relative to a0 is the weighted mean of the
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specific activities of the subcompartments, the weighting factor bei ng determined

by the fractional amount of S available in each case for exchange. If the ex

change rates of the two forms of S are p' and p'1 then

Si f -<p'/F' )( l/Si + l/S2)t , -<p"/F" )( I/Si + l/S2)tl
i0 = Jl-F' e -F''e

S. + S„ L J

( 13)
a^/a,,

^i

in which two different exponential terms appear. In this case, the semiloga

rithmic plot will not be linear.

This is the most simple example of multiple exchange. Here, although there

are two exponentials, the initial portion of the curve of equation 13 is still

nearly a straight line. This can be shown as follows. Consider a series of

any number of exponentials:

-kt -It -mt
Y = A + Be" + Ce + De + .... etc.

Using the series expansions:

YJ^LA + B(I - kt + ...) + C(I - It + ...) + D(I - mt + ...) etc.

Y^=£(A + B + C+D+...)- (kB+ic+mD+ ...) t+ ... etc. (14)

For small values of time this approximation isvery good and the variation with

time is essentially linear. Initially, when all of the activity is still in a

single compartment, it is lost to the other compartments at a net rate determined

by the arithmetic mean of the various exchange rates. Since the initial slope

gives only the arithmetic mean of the exchange rates in the case of multiple

exchange processes, it tells nothing about their individual variation.

Compartment within compartment. - Often a multicompartment system is sim

plified because exchange between a certain fraction of the compartments is pre

vented. Compartments may be arranged inaline so that each memberofthe system

can communicate only withthetwo neighbors on either side. Such is the case in

certain types of metabolic cycles which might be studied by the isotope method.

In another typical case aseries of compartments are separated from one another

but can all communicate with one central compartment. Consider the system shown

in figure 9. Here a system of n-1 individual compartments communicates with one

central one, but npt with one another. If, in such a system, one had access to
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Figure 9

A multicompartment system in whicha series of compartments (numbered from 2 to n)

communicate with a central one (number one). S is exchanged at equal and op

posite rates (p2 to pn) with the central compartment only.
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all compartments for analysis, then the amounts transferred between any side

compartment and the central one could be determined using only two species of S.

Such is the case in the in vivo measurements of exchange between cells and

plasma of mammalian blood. Here, although the system is complex, the plasma is

correctly represented by the central compartment and the cells by one of the

side compartments. However, the use of the simple two-compartment analysis in

interpreting the results is incorrect since the time variation of the a's will

not be truly exponential.

The case of n compartments is treated in Appendix C. It requires the so

lution of a system ofn linear first order differential equations. The solution

for the plasma specific activity is obtained from equations 10', 18' and 19' in

the appendix with proper changes in notation:

-A:t
ai/a0 = Si/S + 2x: e

where the Xj are the roots of

n p,/S.
g(X) =1-2 -J L

2 (A-Pj/SjJ

and the Xj are obtained from an expansion of [Xg(X)] in partial fractions.

They are thus defined by the identity

I — Sj n-l X,_ i + 2 i
Xg(X) SX i (X - Xj ). (15)

The three-compartment case. - As an illustrative appIication of equations I5,

the case of three compartments (n =3) will be considered. The equation for X

yields two roots. Although there are only two exponentials in the result, the

half-value times are not expressible simply in terms of the exchange rates of

contents of the two pairs of compartments. The situation is thus one degree more

complicated than that of equation 13. In general the semilogarithmic plot will

not yield two exponents which can be expressed in terms of independent exchange

rates. The situation is best seen in the case where the values of o /S are
k k

close to one another. Here we have as a good approximation

p2/S2 + P3/S3 p2 + ps
Xi = and X2 = Xi +

Si
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arvd the effect of the exchange between each pa irof compartments upon the proc

esses occurring in the other pair is evident.

One case can be found where the interpretation of the results is straight

forward. If one exchange is much more rapid than the other, the effect will be

nearly as though one compartment is not exchanging at all initially. After the

initial rapid exchange iscompIeted between one pair of compartments, the sIow ly

exchanging process will proceed as though the rapidly exchanging compartment is

always of the same composition as the central one. These two compartments then

become a single larger compartment.

We suppose that exchange proceeds rapidly at first between compartment 2

and the central one (compartment I). Then

_ si + S2 e Si S2
ai/a0 = Si + s2

When the exponential term has declined to anegI igibIe vaIue the exchange between

the additional compartment (number 3) has been negligible as yet because of the

slow rate. The specific activity of the first two compartments is now

a0 Si/(Si+ S2). This is now taken as a new initial specific activity al0 and

the same equations applied as before. Considering the exchange between compart

ment 3 and compartments I and 2 together,

(Si +S2) +S3 e"p3(Si +S2 + ~3)t
a /ai = i _ J where S = S± + S2 + S3 . (16 )10 s

If this is now referred to the original specific activity a0 then

r _t(|t +y-pv-jl s. eSt +i7}t ,l7)ai/a0 = Si/S LI + S3/(Si + S2) e Sbs bi + b2yJ + s» + Sg

An example (12) of this type of process in the exchange of potassiurn in dog

blood is shown in figure 10. From the value of Sj/iSj.. + S2 ) obtained by extra

polation, the rapidly exchanging fraction represents about one-half the plasma

potassium in this case. Although the existence of more than one type of S (say

two different molecules) whose transfer properties were not the same would ap

pear in the results as a superposition of the equations obtained for each type

of S separately, this is not the case when only one type of S is involved in a
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Figure 10

Application of equation 17 to actual experimental data. The points on the upper

curve were obtained from determinations of radioactivity and potassium con

centrations in samples of plasma separated from canine whole blood after varying

periods of equilibration in vitro following addition of a radioactive tracer.

The curve for cells is indicated below for comparison. It is seen that the data

for the plasma can be reduced to two exponentials whose individual half-value

times differ by a large factor. It is evident that equal specific act ivity will

not be reached for many times the duration of the present experiment. From the

zero intercepts it is seen that Si/S2 is about 0.5. Thus the easi ly exchangeable

fraction of potassium (S2) is about one-half the total plasma potassium (Si>.
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system of several compartments. Here, in general, the exchange ofSbetween one

pair of compartments affects the exchange between the other pairs as well. The

case just cited, where the exchange rates were widely different, represents a

particular exception.

Statistical distribution of exchange rates. - In general, a biological

system such as that of the cells and plasma of mammalian blood should be in-

homogeneous. Thus at least to some extent the exchange rates among cells will

vary statistically about a mean value. The effect of this variation on the

change of the plasma specific activity with time can be analyzed by considering

the individual cells. Since in a typical case there are roughly 5 x 10 eel Is in

I cc we will obtain a very close approximation for the results by replacing the

sums in equations 15 by integrals. As indicated in the appendix, the general

solution is difficult. Nevertheless an approximate treatment is satisfactory

for describing the initial phases of the exchange process. As a representative

example we wi II consider a symmetrical distribution. Under these conditions the

deviation from linearity of the semilog plot of the specific activity of the cen

tra I compartment is (equation 42' with appropriate change of notation)

(S - Si)t
C(t)^

2 A2 4.2 Cx d t Si

2S
I + X

3S

where 0.69/x is the effective half-value time and d is the standard deviation,

relative to the mean of the distribution of exchange rates taken about the mean.

This approximation will be sufficiently accurate at least up to the first half-

time value. During this interval, an upper limit may be set

C(t ) < d2/3.

Since the re Iat ive standard deviation is squared and usual ly smal I, the departure

from an exponential during the initial phases of the exchange will be small.

Even for d <-n^ 0.3 the net effect wi II be less than three per cent.

This analysis does not rule out the possibi Iity of determining the distri

bution of exchange rates by analysis of the curve as it approaches the base line.

However, considerable precision wi IIbe required, ihc luding an accurate determi

nation of the base line value. Unfortunately, as time progresses, the experi

mental system wi II be more'Iikely to deteriorate.
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SUMMARY

The theory of the movement of a radioactive tracer from one compartment

to another of atwo-compartment equilibrium system containing atagged substance

S is reviewed. If a± and a2 are the specific activities, and Si and S2 the total

amounts of material in compartments I and 2, respectively, and if at t = 0

ax =a0 and a2 = 0, the values of a at any later time t are related to the ex

change rate p by the equations

_Sl +s2 e-pt ^ + jj
10 Si + s2

SiM-e-pt(i +T?).
as/a° = Si + s2

Methods are described for determining p from measurements of the S's and

the a(t)'s. It is shown that the results are not affected by volume changes

providing the S's remain constant. An approximate expression is derived from
the equations with which experimental results in ce IIular systems may be corrected
for isotope exchange during the centrifugal separation of the cells. Equations
are derived for the case where two kinds of S are being exchanged.

An n-compartment system is discussed in which a central compartment can

exchange with n- Iperipheral compartments and equations are derived which
describe the specific activity changes. These are particularized to the case

where n = 3. It is shown that if the two exchange rates differ widely then the
results may be expressed in terms of two separate exponentials characteristic
of the two separate exchange rates. In the more general case each exchange proc

ess affects the other. The analysis of the n-compartment system is applied to

the study of the exchange of S between cells and plasma of mammalian blood in
vitro where the exchange rates between the two fractions are statistica Ily dis-

tributed. in a typical case, even though the spread is extreme, the departure
of the results from the pure exponential behavior of a two-compartment system
is less than three per cent during the initial phase where t is less than one

half-time value.

An analogy with Fick's law of diffusion is applied to the determination of
the radioactivity changes in a tagged system where the concentration of S is
held constant in time but not in space.
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APPENDIX A: Derivation of the Equations for the Multicompartment System

The original theoretical treatment of transfers within a multicompartment

system used mathematical methods which, although cumbersome, are more likely to

be familiar to the average reader. We now present a more concise derivation of

equation 10 of the earlier report.

Consider a system of n compartments containing n individual species of a

substance S uniformly mixed, and although individually identifiable, otherwise

behaving identically. In compartment j there will be rSj units of species rand
its fractional amount will be rAj. If transfers occur such that dSj k units are
delivered from compartment k to compartment j these quantities may be experi

mentally determined by finding the rAk in all compartments and the changes of

all species drS: in compartment j only.

The equation relating them is obtained as follows. In a given compartment

(say k) the amount of a given species leaving it and going to compartment j is

rAu dS-i,. The total loss in species r is obtained by summing over all other
k jk

compartments. Similarly one obtains the total gain, so that the net change in

compartment j is

dfSj =JT" (rAk dSjk -rAj dSkj).
We define the reciprocal determinant <Xj r such that

2ajr rAk =6jk, 2 rAj (Xjp =6rp,

where 6jk = ° if J*k and 6jj = ''

Multiply both sides of. the original equation by ajr and sum over r giving

2 «ir drSj =J«lrg (rAk dSjk- rAj dSkj)

= 2 (6ik dSjk - fltj dSkj)

= dSjI.

But from the known properties of a reciprocal determinant each term akr is

equal to the cofactor of the corresponding rAk divided by the determinant of
all the rAk's, giving the same so Iution as equation 10 in the earlier paper.
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APPENDIX B: The Fick Law Analogy

Consider a system in which molecules ofagiven substance S are distributed

in space.

The distribution is such that the concentration of S varies from point to

point but S is so constrained that the concentration does not vary with time.

However the mo Iecu Ies can move freeIy by processes of exchange. We will consider

only the case where the exchange proceeds with equal ease in all directions and

at all points in space. The molecules of S include some containing a labeling

isotope so that at some point the absolute specific activity is A. Two planes

P and Q are passed perpendicularly to the direction of maximum rate of change

of A and separated a distance dx. Let the specific activity at P be A—4p- and

at Q, A +dA

A -%-a 2

dx

A +dA_
+2

dN

dt

The intervening layer will be bombarded by molecules from either side. What

ever their origin.the fraction of tagged molecules in plane P at any instant is

A-dA, and this is the probability that a given molecule leaving this plane and

traversing the intervening layer will be tagged. In dt seconds dN total mole

cule will traverse the layer from either side. Those going from Q to P will

carry with them (A+dA)dN, and those in the opposite direction (A-dA)dN. The net

rate of transfer of tagged molecules is thus dA dN/dt, and

-dN*/dt = {••• d{ dx ={jj£ dx grad A

We take the sign with the same convention as used in Fick's Law.

of Fick's first law may be written

dS/dt = -D grad c,

The equat ion
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We see that in the two equations equivalent quantities are N* and S, A and c,

and finally dN/dt dx and D. As a result for any system which satisfies the

above assumpt ions we can immed iate ly take over bod ily the resu Its of theanalogous

calculations of formal diffusion theory.



APPENDIX C: The Multicompartment Case

The equations— solution for a finite number of compartments. -We consider

here the case of a single "outer" compartment, possibly large by comparison with

the others, with in wh ich or attached to which areanumber of others which do not

exchange directly with one another. We let the subscript "o" refertothe outer

compartment. We shall come to the case of many "inner" compartments (e.g.

erythrocytes within the plasma), but we first consider the simpler case where

these are distinguishable each one from the others. As a matter of convenience

we adopt a simpler notation.

Let

Ak = pk/S0, «j = Pj/Sj, (j, k = I, 2, ..., n) (l»)

where the p's and the S's represent, as before, exchange rates and masses re

spectively. Thus the Ak and the aj represent relative exchange rates, referred

to the total contents of the outer compartment and of the inner compartments,

respectively. Let a0(t) and a:(t) represent the specific activity in the outer

compartment and the inner compartments. (The a0(t) here is the same as ai(t)/a0

in the original equations 5.) Then for equal and opposite exchange between each

compartmentj and the centraI one when all exchanges are equaI in both directions

da0/dt = 2(ak - a0)Ak, (2')

da:/dt = (a0 - a:)«j. <3')

Although we are concerned with a multicompartment system a simplification

exists because the exchange can only occur between the jth compartment and the

central one. Thus equation 3 permits the jth exchange rate to be. determined

even though only two species of S are available, provided access can be gained

to both compartments to determine a- and a0 at any time. The variation of aj

will not be exponential in this case as in the simple two-compartment system

since the a0 is affected by exchange both with' compartmentj and with all others

as we II.

We are interested in part icu lar in the case where in it ia My al I rad ioact ive

material is introduced into the outer compartment, but not in such amounts as to
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disturbtheequilibrium sensibly. In this event a0has some known value initial ly,

which may be taken as unity, and all the a- are zero:
J

ao(0) = I, a:(0) = 0. (4' )

As will be shown later it is no restriction to suppose that no two <X: are
J

equal. We may then suppose the compartments numbered in such a way that

a, < a, < ... < a„. 5')

By standard theorems it is known that there are so Iut ions of the d ifferent ial

equations that can be written in the form

>-Xt ,-Xta0 = 30 e"*\ a- = (3j e"*\

'ith properly chosen X. In fact, any X for which the determinant

X - 2A.

A(X) =

Ai

X - cti

0

An

0

X - an

(61

7' )

van ishes wi II provide such a so Iut ion. Moreover, since it will be shown presently

that the equation £ = 0 has n + I distinct roots, every one providing a distinct

solution of the form (6'), it follows that the general solution is a linear

combination of these.

In order to demonstrate these assertions, one substitutes the expressions

(6') into the equat ions, Ieaving the |3' s and the X undetermined. The exponentials

cancel out leaving n + I Iinear homogeneous equations in the n +1 coefficients |3,

with A(X) as the determinant of these equations. There exist 3's not all zero

satisfying these homogeneous equations, and hence providing a solution (6'), if

and only if this determinant vanishes. Hence any X satisfying A = 0 can be

substituted into the homogeneous equations, and: a set of (3's determined therefrom

to provide a solution (6').

An expansion of the determinant A(X) can be effected as follows. First

subtract the 2nd, 3rd, ..., and last column successively from the first. The
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resulting first column has a X in every position and this istherefore removable

as a factor, leaving a column of ones. Now divide column (j + I) by (X - <Xj),

placing it outside as a factor. In the column (j + I) one has then A:/(X - <Xj )

in the first position, I in the diagonal position, and 0 elsewhere. The resulting

determinant is now readily expanded, and one can write

A(X) = Xcp(X)g(X), (8')
where

<p(X) = (X-oti) (X-a2) ... (X - an), (9')

g(X) = I - 2A,/(X - a; ). MOM

It is now possible to show that the equation g = 0 has n roots, X±, X2,

..., Xn sat isfy i ng

<*i < Xi < a2 < X2 < . . . < an < X„. (II')

These must be roots also of A = 0, and since this has the obvious root X0 = 0

in add it ion, we have accounted for a II n + I roots of A = 0. To verify (II')we

have only to observe that g(X) is everywhere monotonically increasing iIn X

except at the points \ = a• where it becomes infinite, and that

g(0) > 0, g(+ °°) = I.

Thus we have accounted for n + I linearly independent so Iutions of the form (6')

for the differential equations, and since these are of order n + I every so

lution is a linear combination of these.

We proceed now to construct the particular solution in which we are inter

ested. This can be written in the form

a0 = 3oo + 23o: e~M, ( 12' )

*J ^J ° ^J io + 2PN e"Ai\

where we have adjoined a second subscript to each |3 to designate the particular

X with which it is associated. The initial conditions give us

Poo + 2Poi = !, (13')

Pjo + 23j j= 0.
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Also, for each i, the |3: j must satisfy the homogeneous equations of determinant

A(Xj). These equations are seen to be equivalent to

Poo = Pjo =xo, «I4')

3oi = (Oj - X, ) pj ,/otj = x,,

where the x0 and the x; are hereby defined. These will turn out to be the coef

ficients in a0(t), which isthe only part of the solution required. To evaluate

the x's, we express the |3's in terms of them by (14' ) and subst itute into (13').

After trivial algebraic simplification the result is

x0 + 2x, = I, (15')

x0/a- + 2xr/(a - Xj ) = 0.

These equations inthe x's can be so Ived formal ly by an art if ice as fol lows:

Consider the fractions <p(X)/A(X) whose numerator is a polynomial of degree n

and whose denominator is a polynomial of degree n + I. The zeros of the denom

inator are, as we know, X0 = 0 and the Xj. Hence the fraction can be resolved

into partial fractions in the form

<p(X)/A(X) HC0/X + 2C;/(X - Xj ), (16')

where the C's are constant. By virtue of equation (8') this can also be written

[Xg(X)]-1 = C0/X + 2C,/(X - X, ). <I7')

These are algebraic identities and must be satisfied for any value X may take

on. In particular if we set X = a:, then since qHctj) = 0, we have

0 = C0/a: + ZCj/(<Xj - Xj ).

These equations for j = I, 2, ... , n, are the same as the last nof the equat ions

(15') with the C's replacing the x's. AIso (17') can be written

[g(X)]-1 = c0 + X2C;/(X - X, ),

and as X —I °° we have the Iimit

I = C0 + 2C,
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which is the same as the first equation (15') with the C's rep lacing. the x's.

We may summarize as follows: The specif ic activity of the outer, compartment

will be given at time t by

a0(t) = x0 + 2xj e-Xit, I18' )

where the Xj sat isfy the equation g(X) = Oandthe x' sare defined by the algebraic

identity

[Xg(X)]-1 = x0/X + 2x;/(X - X;). (19')

The function g(X) is defined by (10').

We have carried on our discussion as though the relative exchange rates a;

and Aj were known in advance. Ordinarily this will not be so, but we shall

have, instead, an empirical function a0(t), or values of it obtained by meas

uring the specific activity at various times t. We may then seek to fit these

empirical points by a sum of exponentials of the form (18'), thereby obtaining

estimates of the x's and the X's. By means of these we can construct the sum

(19'), deriving thereby the function g(X) (after co IIecting terms and invert

ing). When g(X) is separated into partial fractions according to NO'), we re

cover the A's and the a's.

Two or more identical compartments. - We remarked above that it is no

restriction to suppose the a's all distinct. Suppose, on the contrary, we had,

for some i and j,

a, = ttj

f we set

b = a, - a.,

then the two equations in a- and a- give

db/dt = -ab,

b = b0 e~at,

But since b(o) =0, b0 = 0 and hence b(t) = 0. Consequently a;(t) = a:(t) and
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so far as a0(t) is concerned the system behaves as though only one were present

but with an A corresponding whose value is A; + Aj.

If the number of compartments is relatively small, or if the empirical

curve a0(t) can be represented satisfactorily in the form (18') as the sum of a

small number of exponentials, the foregoing analysis is sufficient. Even though

there may be many compartments, an expression of the form (18') is possible if

they fall into a few classes, each class consisting of compartments having the

same a. In other circumstances, however, the a's of the separate compartments

may have some statistical distribution, which iseither known inadvance, perhaps

from theoretical considerations, or which we wish to infer from the empirical

a0(t). We turn now to a consideration of this circumstance.

Continuous distribution of exchange rates. - We wish to express our re Iations

in terms of integrals that can be generalized to a continuous distribution.

Referring, as a guide, to our previous results, we define a step function A(a)

as fo I Iows :

A(a) = 0 for a < oil

= Ai for a± < a < a2, (20' )

= Ai + A2 for a2 <. a < a3,

= Ai + A2 + ... + An for an < a.

We may then define our function g(X) by means of the Stieltjes integral (13) of

the function A(a):

g(X) = I - / (X - a)-1 dA(a). <2I' )
3 o

In like fashion we may define a step function X(u):

X(u) = 0 for u < Xi,

x
i

for Xi < u < X2, (22')

Xi + x2 for X2 < u < X3,

Xi + x2 + ... + xn for Xn < u.
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Hence we have

[Xg(X)]_1 =x0/X +7 (X - u)-1 dX(u), (23')

and

a0(t) =x0+| e"ut dX(u). (24')

Now for the finite case the equations (21'), (23*) and (24') are equivalent,

respectively, to the equations (10'), (19'), and (18'), when A(a) and X(u) are

defined by (20') and (22'). But the equations are now in a form to permit of

generalization to the infinite case, and we may say that if the exchange rates

are distributed in a manner represented by the function A(a), then the time

course of the decline in radioactivity a0(t) is given by (24'), where X(u)

satisfies the Stieltjes integral equation (23'). And conversely, if the radio

activity a0(t) can be represented in the form (24') by means of a suitable

function X(u), then the distribut ion of the exchange rates is represented by the

function A(a) satisfying the Stieltjes integral equation (21'), where g(X) is

defined by the equation (23'). The finding of a function A(a) necessitates the

determination ofasuitable analytic representation of a function X(u) that can

satisfy (24T) with reasonable approximation. From (24') (13 ) it follows that

for X < 0

I eXt [a0(t) - x0] dt =-J(X - u)"1 dX(u)

= [x0 - l/g(X)]X_1 •

Consequently for a given a0(t) we may define g(X) by

l/g(X) = x0 - X ? eXt [a0(t) - xjdt, (25')

the integration being performed with X negative. Hence if a0(t) - x0 is given

analytically, g(X) is obtainable from its ordinary Lap lace transform. Conversely,

if A(a) or B(a) is given analytically, perhaps from theoretical considerations,

then a0(t) is obtained from a Laplace inverse transformation.

In practice, neither the determination of X(u) from (23') given A(a), nor

the inverse determination of A(a) from (21') given X(u), is apt to be simple,
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and closed expressions, in terms of elementary functions, can be expected in

very exceptional cases at best. In thinking of A(a) as a function which repre

sents the distribution of exchange rates, it is natural to think of X(u) as a

function which represents the distribution of the "decay constants" X. This

suggests seeking relations between the moments of the two distributions.

The moments of the distribution functions. - For this purpose it is con

venient to consider, in place of A(a), the related function Blot) defined by

dA(a)=adB(a), <26*)

with, of course,

BIO) = 0.

This function is the true distribution function for the a's. In place of (21)

we write

g(X) = I - J a(X - a)~ d B(a).
o

We define the moments Br of the function B(a) by

B =7 ar d B(a) (r = 0, I, 2, ...
r o

Then g(X) can be expanded formally in powers of X :

g(X) = I- Bi/X2 - B2/X2 - -

We note also from (27') and (28')

:27')

28'

:29' )

g(0) = I+ B0 = Xo-i- (30'

In like manner if we define the moments

X = / ur d X(u),
< o

then we have the formal expansion of the integral

{(X-u)-1 d Xlu) =X-1 [x0 + Xl/X + x2/X2 + •••]• (32M

Hence (23') can be written formally

l/g(X) = x0 + X0 + Xi/X + X2/X2 + ... (33')

= I+ Xi/X + X2/X2 + ... ,

:3 I' )
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s i nee

x0 + X0 = ao(0) = I

If we multiply together equations (29') and (33'), we obtain after a minor re-

duct ion

0 = (Xj - Bi)/X + (X2 - Bi Xi - B2)/X2 + ... ,

and since the right member must vanish identically in X we obtain the recursion

re I at i ons

Xi = Bi,

X2 = Bi Xi + B2, (34')

2 + ... + BrX_. - Bi X__i + B2 X~_

Often the moments about the mean are more convenient. Let x and b represent

the means of the two distributions X and B. Then

Xi = X0x, Bi = B0b.

Likewise let vr and b_. designate the statisticaI moments about the mean. These

are related to the moments Xr and Br, respectively, by the relations

Xr = X0 [vr + (r) x vr_i + ... + (£) xr"2 v2 + xr], <35')

and

Br = B0 [br + ({) b br_i + ... + (£) br"2 b2 + br], (36')

since Xi = bi = 0. These can be substituted into (34') for obtaining a series

of relations between the means and the moments about the mean. Recalling that

X0 = I - x0 = B0/( I + B0),

we write down only the following:

b = x0 x (37' )

b2 = x0 v2,

t>s = x0 v3 + B0 b b2.



Initial behavior of aQ(t). - Equation (24') is equivalent to

[a0(t) - x0] ext =7 e_(u _ x)t d X(u), (38')

where x is any constant. If we expand the exponential under the integral sign

in powers of t and then integrate, the coefficients of the powers of t are the

moments of the function X(u) about the point x. In particular if we takexto be

the mean of the distribution X(u) as in equation (35') we have

[a0(t) - x0] ext = X0 [I + 1 v2 t2 - 1 v3 t3 + ...],
2 o

where the v's are the ordinary statistical moments about the mean. Hence

[a0(t) - x0]/ X0 = e"xt [I + i v2 t2 - i v3 t3 + ...],
2 o

so that on a semilog plot the initial slope is entirely determined by the mean

x of the X distribution. If we write

log [a0(t) - x0] = log X0 - xt + c(t), (39')

then

ec<t) = | +iV2 t2 - iv3 t3 + ...
2 6

and we find by successive differentiations that

c(0) = c'(0) = 0,

c'MO) = v2,

c'" (0) = -v.8, (40' >

iv,~. - -.2clv(0) = v4 - 3v 2 •

By expanding around the point t = 0

c(t) = v*t2 - Jzll + (v* ~ 3v* '** + ... (41')
2 6 24

ec(t) represents the multiplicative correct ion fordeviation of a0(t) - x0 from

exponential behavior, and c(t) the additive correction for its semilog plot-

In terms of the moments of the B function

dt) = ^-' - [b3 - X b2 (I- x0)J -^ + ... (42')bof2 +3r- - [b3 - x b2 (i - x0)j _i_
2 x0 6 x0
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The function c(t) determines the departure of the semilogarithmic plot from

linearity. Initially the deviation is controlled almost entirely by the second

moment and is such that the curve is parabolic and convex to the ax is of abscissas.

As time progresses the higher moments become increasingly effective. These are

determined bythe more detailed aspects of the distribution such as skew, excess,

etc. The convergence of c(t) depends to a considerable extent on the magnitude

of the higher moments. Even in the case of a Gaussian distribution these may

become quite large. Thus the approximation is usually only good for small t.

The electrical analogy. - Figure II shows an electrical analogy to the

system in figure 9. The differential equations are

d Q0/dt = 2 1 (2-k - 9.0 )
Rk VCk C0

d Q;/dt = 1 (Qp Q\,
J R- vr"- T,J)RJ K°o CJ

These become identical with equations 2' and 3' if the radioactivity R:

is inserted in place of the charge Q- on condenser j, the capacitance .C: re

placing the Sj and the exchange rate pj replacing the conductance \/R-. Thus an

electrical analog computer could be designed to reproduce the behavior of the

bi olog ical system.
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Fi gure

Electrical analogy to the system in Fig. 9. The capacitances C: represent the

amounts Sj, the charges on the condensers Q-, the radioactivities R- and the

conductances l/Rj, the exchange rates pj.
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