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THE BARE INTERMEDIATE REACTOR§ THE APPROACH TO CRITICAL

Nicholas M. Smith, Jr.

Introduction

The extension of bare reactor theory to the intermediate case is here

undertaken. The usefulness of such a theory will lie in the study of the

characteristics of the intermediate reactor, in devising experimental studies
(i)

of nuclear constants, and in certain special engineering applications

Model and Assumptions

One assumes'3' that the reactor is of sufficient size so that the more

simple diffusion and slowing down theories may be applied; in particular it is

assumed that all of the dimensions are somewhat greater than the transport

mean-free™paths and that the extrapolation length is energy independent.

This latter assumption is one which makes necessary a large reactor.

This is the usual assumption for thermal reactors but is no more restricting

an assumption in this case than that for the theory of thermal reactors.

For further simplicity it is assumed that all neutrons are born of equal

energy< Thus in the present form the theory is more applicable to "slightly"

intermediate reactors. The generalization permitting consideration of the

fission^spectrum is obvious and will be deferred until neededo

The notation will be written in terms of the Fermi-Age as the independent

variable,, This does not restrict the discussion to the Fermi-slowing down

kernel; the theory is equally good for any slowing-down kernel.

The slowing-down kernel is defined to include the resonance escape

probability,,

(1) See ORNL 672 ANP-NMS-2.

(2) The general models assumptions, and method is similar to that employed by A- M- Weinberg in
"Pile Neutron Physics IX lecture notes.



Theory

Let S(0sr) a the source distribution resulting from fissions at all

energies. (Everywhere in this paper the underscored variable _r will refer to

the vector; djr will refer to the volume element and is not a vector.) The

zero refers to zero age.

Let Q(t.,j_) = the source distribution resulting from an external cause.

These neutrons are taken to be born at age r9, which may be negative. The

source may be a Ra-Be (a,n) source, for instance, or the delayed neutrons in a

heat-exchanger having circulating fission fuel as on fluid.

q(r,_r) - the slowing down density;, i.e. the number of neutrons per second

per cm slowing down past age r at a volume element at_r0

P('T9! T,_r,_r') s the probability per cm3 that a neutron born at age r0
at r' will reach age r in a volume element at r.

The differential equation describing the slowing-down process is assumed

to be linear and homogenous, i.e. it is assumed that solutions are superposable.

Thus i, one has

S(0,rl) P(0, r, _r, _r') oV'

Q(r0,z') P(r0, rtJL, r') dr1, (1)

R

where the symbol R indicates that the integration is over the volume of the

(bare) reactor.

Defining <^(_£) as the thermal flux, one has from elementarydiffusion theory

V2 <£(£) •— k2 4>(L) + [3 g(r<f_r)A,] = 0, (2)

where

x2 = 3iVaaAs ,

N •- no. atoms/cc,

or .-• atomic absorption cross section at thermal energy,

k .- the thermal transport mean-free path, and the subscript
s refers to thermal values.



Making use of the relations,

q(B,r) dE

where

, r) dE -

= s e
E

k dE

di -

3 £ 2
3 sc

E

4>{Esr) = the flux of energy E at_r,

t; - the average loss of lethargy,
u, per collision,

a = log (EJE ),

2 - the macroscopic scattering cross section,
s c r '

E •- energy,

one may write
T

where

3 r, (r') 2f (r')

5(0,r) .= / '^'^ ^
^ (r' )

+ ! 2a {tu) <f> (r) , (3)

17 (r) dr - fission neutrons produced per absorption in
uranium of neutron of age dr about r,

2. (t) .= macroscopic fission cross section as a function
of the age T,



X (r) •= transport mfp at age r. (While it is assumed that
k (r) is constant oatside the reactor*-in computing
the extrapolation length—its variation inside is
allowed.),

k - thermal multiplication constant of infinite medium,

*. -= r, (t.) p{rt) 2, (T.)/Sa (T,),

2 (t) •= macroscopic total absorption cross section at age t.

For simplicity, we write

3 7} (t) 2, (r)
a (t) = . (4)

*• (r)

Combining equations (1), (3) and (4) one obtains

q (T,r) •= / / <-• Ct') gOr'.rJ) dr' P (0, r, _r, _r') dr'
]? r»» 0

k

'—' 2 (r.) <p (r') P (0, t, x. i') dr'
P (T.)

+/ Q̂ otL') P(r0, r, lts') dr1 . (5)

Characteristic Functions and Fundamental Reactor Theory

Following A. M. Weinberg we now consider the solutions, Z(r)., of the

Helmholtz equation

V2 Z (£) + B2 Z (^) .= 0, (6)

for which

Z (_r. ) = 0, (7)



where r. is the vector position of the external boundary, and B2 a positive
— b

parameter called the buckling.
One gets a series of eigen values, Ba2, and eigen functions Za(r).
In general one has three components of Ba ,

V =*aU2 +V2 +V- '

and Z (r) factors into

ZB (r) .= Aa (u) Bfi (v) ry (») ,

(8)

(9)

where a, '/8, y are integers, u, v, » are any three mutually orthogonal co

ordinates, and n = n (a, /3, 7).

It is demonstrable that the ZB(r) form an orthogonal and complete set.

Z (r) are defined herein as orthonormal, i.e. normalized such that

Zi (l) Zi (I) dr .= SM

One defines also a vector B_,

A A A
la=JLBau +±Bpv + j»Brw

, A A /\
where u, i>, » are unit vectors.

Consider further the Fourier Transform, Z (co) of Za (r):

Za («) i1- ' - •Mr) <*r,

(10)

(11)

(12)

where the symbol, °°, indicates that the integration is carried out over all
space of the appropriate variable and by the Fourier Integral Theorem,

Z (r) =
• i O) . T

{2vY
- * - ZB (o>) dw . (13)

00



Taking the Fourier Transform of equation (6) one gets

{co2 -Bn2> Tn (oj) .= 0 • (14)

Thus Za(o)) is identically zero unless ti>2 •- fina, i.e., ZB{co) exists only
on the surface of a sphere of radius BB in to - space.

Making use of the orthogonality and completeness of the

Zn(>r) one makes the expansions

Q fr0.r> = E Q„2„ d) .
n

9 (r,r) .= J] o(n,T) ZB (r) ,
n

<£ (j) =E tf>0 2n (I) ,

where Q , q(n,T), d)Q are constants.

Combining equations (5), (13), (16), (17) and (18) one gets

D q(n,r) ZJr)

,T

(15)

(16)

(17)

(18)

a(T')2 g(r',n)dr'
(277)'

e'1** '-S Zn(a>) dajP^O. t, |r-jr'[)drJ

00 T =0

(277)'

iB ' r

Zn(a))da>Pto(0,T, |r-r'|)dr'

So.
.-1*-

(2?r);
Zn(a>)daP^(Tt,T, Ir-j'Ddr' . (19)

Here, since the Za(t^) exist throughout all space and since the finite and
infinite slowing-down kernels satisfy the same linear and homogeneous differ

ential equation, one may replace the finite by the infinite (displacement)



kernels, and the integral in_r'-space over the column of the reactor may be

replaced by the integral over all space.*

On writing

•r' = -r + r - r'

and associating the exponential e

the slowing down kernel one gets (as inWeinberg's "Fundamental Pile Theorem")

*!„ ' i —— -B * \ t mT \
with Z (cti) and e ~n with

£ q{n,-r) Zn(r)
n

=S zB(D | ?„(*„, a,t> a{r') q(n,r') dr'

T'= 0

+ 4B rtr„
p.

+ Qa *>»(*«, r0, r) , (20)

By the orthorgonality of the Zn(_r) one easily demonstrates that each term in

the braces is identically equal to zero.

q(n,r) = Pm(B. 0, r) a(r') q(n,T')dr' + <£n Ncr.

+ <?. ->„ (B.. T0, T) . (21)

Now substitute equation (21) into equation (2), recalling that V2 £„(£.)

-V z.d).

S. Zn(r) I<M"V •- *2) +— ,(n,T.) ] =0
k

(22)

* The procedure followed by A. M. Weinberg "Pile Neutron Physics II" in developing the theory
for thermal reactors is being followed.



Letting L2 - k"2 (L is the thermal diffusion length.) and again employing the

orthogonality of the Za(r_)f

<t>« (L2 BD2 + 1) + —- PJBB, 0, r,)

P«(Bn» °' T.) ,+ J a(.T«) q(n,r') dr'
No

P» W«> t». T.)
+ Qn = 0.

No..

Employing a modification of the usual definition,

ktli(rt,n) m
K PJBa, 0, t.)

1 + L2 fin2

(23)

(24)

and calling it the thermal effective multiplication constant corresponding to

the nth mode, and

kex(rB,n) .= *.lfCTh,n)- - 1 , (25)

one gets

<P '-
(1 + L2 £2) *„(T.,n)-*rB<

V-. o. V <x(r') q(«,r) dr'

+ Qa P^Ba, r0, r.) (26)

10



Now, subtituting equation (26) into the expression for q(n,r), equation

(21), one gets

and

q(n,r) = PJBB, 0, r) S I a(r') q(n,r') dr'

or

"Q*P.(Bn. T0,Ta) \ +QAPJBB,r0,r) .
kex(rt,n) J

Now define

*.

PJB^.r^r,)

P«(BB, 0,rg)

P»(BB, r0, r)
•0(r) .= —

PJBB, 0, r)

we note that

xjjt .- </,(T) * *\>

Thus

q(n,r)

Pa>(BB, 0, r) 1 - t.a/r,,!!) L
a(r') g(n.r') dr' +0 Qn

(27)

(28)

(29)

(30)

(31)

The right hand side of equation (31) is independent of r and is therefore

a function of n alone, /(n):

q(n,r) .= f(n) PJBn, 0, r) (32)

11



Substituting (32) into the right hand side of (31) there results

700 •=
<A Q. (33)

1 -

1•- *.,f(-Tt,n)
a(r') P(BB, Q,*r*) dr

The denominator of equation (33) is the effective multiplication constant
.., , • Excess , . ,.

for the entire reactor. The critical reactor will have the e-tiective multipli

cation constant of its lowest ordered eigenvalue equal to zero, yielding the

characteristic equation determining eriticality of the intermediate reactor,

1 - *.„(t,,0* .= / a(r') P(Ba, 0, r') dr'
o"

(34)

The thermal flux is found by substitution of equations (32) and (33) into

equation (26).

<Pn '**„

2 R2Q I 1 + L2 B

" PW(BD, Q,rg)

air') PJB. 0, r') d .= 1

1 " fc.f,(\.«) + / <*(r') PJBa, 0, r') dr'
o-

+ PJBB, r0, t.)

To complete the solution recall that

q(r, r) .= £ q(n, r) Zn{£),

12

(35)

(17)



and

*<r> = 2 < Z« <Z> (18)

and that

Qn = Q(r0,s) ZJD dL . (36)
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