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THE BARE INTERMEDIATE REACTOR: ‘THE APPROACHTO CRITICAL

Nicholas M. Smith, Jr.
Introduction

The extension of bare reactor theory to the intermediate case is here
undertaken. The usefulness of such a theory will lie in the study of the
characteristics of the intermediate reactor, in devising experimental studies

of nuclear constants, and in certain special engineering applications
Model and Assumptions

One assumes'?) that the reactor is of sufficient size so that the more
simple diffusion and slowing down theories may be applied; in particular it is
assumed that all of the dimensions are somewhat greater than the transport
mean-free-path, and that the extrapolation length is energy independent.

This latter assumption is one which makes necessary a large reactor.
This is the usual assumption for thermal reactors but is no more restricting
an assumption in this case than that for the theory of thermal reactors.

For further simplicity it is assumed that all neutrons are born of equal
energy. Thus in the present form the theory is more applicable to "slightly"
intermediate reactors. The generalization permitting consideration of the
fission-spectrum is obvious and will be deferred until needed.

The notation will be written in terms of the Fermi-Age as the independent
variable. This does not restrict the discussion to the Fermi-slowing down
kernel; the theory is equally good for any slowing-down kernel.

The slowing-down kernel is defined to include the resonance escape

probabilicy.

(1) See ORNL 672 ANP-NMS-2.

(2) The general model, assumptions, end method is similar to that employed by A. M. Weinberg in
"pile Neutron Physics Il lecture notes,



Theory

Let S(0,r) = the source distribution resulting from fissions at all
energies, (Everywhere in this paper the underscored variable r will refer to
the vector; dr will refer to the volume element and is not a vector.) The
zero refers to zero age.

Let Q(7,, r) = the source distribution resulting from an external cause.
These neutrons are takem to be born at age 7,, which may be negative. The
source may be a Ra-Be (a,n) source, for instance, or the delayed neutrons in a
heat-exchanger having circulating fission fuel as on fluid.

q(Tlf) = the slowing down density, t.e. the number of neutrons per second

per cm® slowing down past age = at a volume element at r,

P{T, T, r, r'}) = the probability per cm? that a neutron born at age T,

at r’ will reach age 7 in a volume element at r,
The differential equation describing the slowing-down process is assumed
q g g8 P

tobe linear and homogenous, i.e. it is assumed that solutions -are superposable.

Thus, one has

q(7,r) = 5¢0,r') PO, 7, r, r') dr'
R
[ QUrg,r') Plry, 7, r, r') dr’, (1)
R

where the symbol R indicates that the integration is over the volume of the

(bare) reactor.

Defining ¢(r) as the thermal flux, one has from elementarydiffusion theory

VI g(r) -~ «? g(r) + [3 q(r,, r)/\,]1 =0, (2)
where
k* =3 No /N, ,
N = no. atoms/cc,
o, © atomic absorption cross section at thermal energy,

A, = the thermal transport mean-free path, and the subscript
s refers to thermal values,



Making use of the relatioms,

q(E,r) dE
¢(E,r) dE = ,
f znc E
A dE
dr = s
3£3= E

where
¢(E,r) = the flux of energy E at r,

& = the average loss of lethargy,
u, per collision,

u= log (E,/E ),

2,. = the macroscopic scattering cross section,
E = energy,
one may write
T.'
3n (') 2, (7") ,
$(0,0) = ar ) dr
0 A (1)
k,
]
f—— 5, (7)) b (D), (3)
p (7,)

where

n (7) d7 = fission neutrons produced per absorption in
uranium of neutron of age d7 about T,

2, (1) = macroscopic fission cross section as a function
of the age T,



"

A (1) = transport mfp at age 7. (While it is assumed that
A (T) is constant outside the reactor—in computing

the extrapolation length—its variation inside is
allowed.),

k= thermal multiplication constant of infinite wmedium,

k. =7 (.7-.) P("T.) zf ("7")/2. ('7")1

Z_(7) = macroscopic total absorption cross section at age 7.

For simplicity, we write

37 (r) 2, (1)
a (1) = . (4)
A (T)

Combining equations (1), (3) and (4) one obtains

.
q (T’I)‘:—///://ﬂ' a (7') q ¢(v',r') dr' P (0, v, r, r') dr'
R T'=0
. k'_
+ — 3, () ¢ ()P (0, 7, r, ") dr’
p (t,)
R
+/ Q (t4,x') P (14, 7, r, r') dr' . (5)
R

Characteristic Functions and Fundamental Reactor Theory

Following A. M. Weinberg we now consider the solutions, Z(r), of the

Helmholtz equation

V3 Z (r) + B Z (r) =0, (6)

for which

Z (£b).

"
(=}

(7)



where r, is the vector position of the external boundary, and B? a positive

parameter called the buckling.
One gets a series of eigen values, an, and eigen functions Z (r).

In general one has three components of an,

B,* =B, * +Bg? +B *, (8)

n au

and Z_(r) factors into

zZ (r).

A, (u) Bp (v) I“.,y (w) , (9)

where a, '8, 7 are integers, u, v, w are any three mutually orthogonal co-

ordinates, and n .= n (a, B, 7).
It is demonstrable that the Z (r) form an orthogonal and complete set.

Z _(r) are defined herein as orthonormal, i.e. normalized such that

4//, Z, (r) Z, (r) dr =38, . (10)

R

One defines also a vector B,

A A
B =uB  tv

— 0 au

A
Bg, t vB (11)

where @, 5)_\, @ are unit vectors,
Consider further the Fourier Transform, En (w) of Z (r):

Z, (@) = el ' Z (r) dr, (12)

where the symbol, ®, indicates that the integration is carried out over all

space of the appropriate variable and by the Fourier Integral Theorem,

1 - ,
zZ (r)= el & - £ Z (w) da . (13)
(2m)3




Taking the Fourier Transform of equation (6) one gets
(@? -B2 Z (=0 - (14)

Thus Z (w) is identically zero unless w? = an, i.e., Z (w) exists only

on the surface of a sphereof radius B, in w: - space.

Making use of the orthogonality and completeness of the

Z (r) one makes the expansions (15)
Q (1,,r) = 5.,3 Q, 2z, (r), (16)

¢ (1,0) =L qn7) Z, (1), (17)

$ @)=L ¢, 2, (), (18)

where Q_, g(n,7), ¢  are constants.

Combining equations (5), (13), (16), (17) and (18) one gets
2 qln,7) Z(r)

g T
= //a('r')z q(7',n)dr’ /’*En ’ ."-z: () dwP (0.7, |r-£'1)dr”
® r'=0 : ®
LI 1 m-iB . _x:'
t fe—No,, D ¢, e ~° Z (w)dwP,(0,T, lr=r‘V)dr’
. a (2m)3
1 ip s —
+ >0, —— e °® Z (@) dwPy(Ty, 7, lr-p'1)dr' . (19)
n (2m)3

[+4)

1
(2m)3

Here, since the Z_(r) exist throughout all space and since the finite and
infinite slowing-down kernels satisfy the same linear and homogeneous differ-

ential equation, one may replace the finite by the infinite (displacement)



kernels, and the integral in r'-space over the column of the reactor may be

replaced by the integral over ali'spaceu'

On writing

n ._ — -B ° r-r”|
and associating the exponential e with Z (@) and e =" le-z with

the slowing down kernel one gets (as in Weinberg’s "Fundamental Pile Theorem™):

2 an,7) Z (r)

: T
= zn Zn(_L') { FQ(Bn' 0,7) :[/a('r') g(n,7') d7
T'=0
k, ‘ _
t¢  —= No,, .| *Q, PyB,, Ty, T) [ (20)
p .

By the orthorgonality of the Z_(r) one easily demonstrates that each term in

the braces is identically equal to zero.

— ) ° ks
g(n,7) = Poo(Bn’ 0, T)'[/L(I') g(n,7')dr’ + ¢n NU“ :l
. p' .

Q

+ Q. P, (B, Ty, T) . (21)

Now substitute equation (21) into equation (2), recalling that V2 Z (r)
= 8,2 2,(2),

S Z,(r) { é (-B 2 - k?) + % g(n,7,) } =0 . (22)

* The procedure followed by A. M. Weinberg "Pile Neutron Physics 11" in developing the theory
for thermal reactors is being followed.



Letting L? = x°% (L is the thermal diffusion length.) and again employing the
orthogonality of the Z _(r),

; . | :
-4, l: (L7 BT + 1) +—= P(B,, 0, 7,) }

P,(B,, 0, 7,)
+ a(t') q(n,7") dr*
NO". 0
P, (B,, T4, T,)
+ Q, = 0. (23)
NO".

Employing a modification of the usual definition,

k, (T, ,n) = - - , (24)
p, 1+L?B2?

and calling it the thermal effective multiplication constant corresponding to

the n*? mode, and

k,_(r ,n) = k ,(r,,n) -1 , (25)
one gets
Tl
¢n = - 1 { Fm(Bny 0: 'T. )/ a(T’) q(n!"!) dT’
(1 + L? B*) k(7 _,n) No, o
+ Qn Fm(Bn’ TO! Tl) } ° . (26)

10



Now, subtituting equation (26) into the expression for ¢(n,7), equation

(21), one gets

Te . .
iy ) keﬁ(‘ﬁ"n)
9(n,7) = Py(B,, 0, 7) alt’) q(n,7') dr' |1 - ————
' k, (T ,n)
0 [}
koge(7,,m) — —
e QhPQ(Bn’ TO’T.) +Qanan1'Toy7') . (27)
ke:(Tl’n) ‘
Now define
FQ(BE, TorTs)
¥a " P.(B,, 0,7) ' (28)
and
P,(B,, Ty, T)
Ylr) = = ; (29)
P,(B_, 0, T)
we note that
Y, FYlr) = @ , (30)
Thus
q(n,7) 1 3 :
— = . a(r') q(n,7') d7' + ¢4 Q, .| . (31)
P,(B,, 0, T) 1 -k (T,,n) .

The right hand side of equation (31) is independent of T and is therefore

a function of n alone, f(n):
0, ) . (32)

q(n,7) = f(n) P_(B

11



Substituting (32) into the right hand side of (31) there results

P . (33)

T

1 —
1.- / a(r’) P(B_, 0,7*) dr’
1 - k.“(-r.,n) )

The denominator of equation (33) is the effective multiplication constant
ce

f(n) =

for the entire reactor. The critical reactor will have the ettective multipli-
cation constant of its lowest ordered eigenvalue equal to zero, yielding the

characteristic equation determining eriticality of the intermediate reactor,

T

L= kggg(r,,0) = /a”’ﬁ(l’o, 0, 7') dr' . (34)

The thermal flux is found by substitution of equations (32) and (33) into

equation (26).

an { -NO'.' }
Q, 1+ L% B* Ty
/ a(r’) Py(B,, 0, 7') d =1
_ 0
= Py(B_,, Q,T,)
TI
1 -k, (T, ,n) +/a(7')?m(3n, 0, ') dr’
0
+ P (B, Ty, T,) (35)
To compléete the solution recall ‘that
(17)

g(r, r) = ) q(n, 1) Z (L),

12



‘and

#(x) = 3 ¢, 2, (r) . (18)

and that

Q,;/Q(To,_r) Z (r) dr . (36)

R

13
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