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A DIFFUSION SOLUTION FOR A BLACK THERMAL NEUTRON PIPE DUCT CONTAINING
A PURE SCATTERING MATERIAL.

David W. Whitcombe*

Much interest has been directed toward ducts containing liquid
metals as both a coolant and moderator. It is the purpose of this paper to
consider the effectiveness of these metals as a thermal neutron pipe considering
them to be pure scatterers. The solutions all contain the parameters Tys the
extrapolated radius and Zgs the extrapolated length of the duct. It is clear
that these are the important parameters in the design of the duct, since Ty
and Zg mist be chosen to maks the duct a poor neutron pipe and still function
as a satisfactory means for carrying the heat away. Since the absorption
cross sections for the materials under consideration are of the order of .0003
barns the assumption shall be made that the liquid metal is a pure scatterer
and then Laplace's equation represents the diffusion. The case 1s analogous
to the problem in steady state heat flow,

THE PROBLEM

The geometry and coordinates of the problem are shown in Fig. 1.

Fig. 1.

#0n loan from Fairchild Engine and Airplane Corporation; NEPA Project.
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The differential equations and boundary conditions are written as:

A A A
(2) @(r, z) = O (0 2z = 2)

(3) @(0, z) = finite (0 = 2z = 3

(%) @, (xr,0) = -n, © £r = 1)

(5) @z, z) = © (02 r S ).

THE SOLUTION

The problem is solved by means of separation of variables, i.e.,

assume

(6) ?:Bz.

Then the two equations ar. obtained

(7)

Z"

. 2
where a? is the separation constant and o may be positive or negative, i.e.,

@ may be a pure real or a pure imaginary. The solution to (7) 1is

o)
]

I (a r)

ch Z
£ F7  or {a

(8)

[\
1}

sh az

where ch;, sh refer to the hyperbolic cosine and sine.

b



Since @ = ip is still a separation constant. Other solutions are

B = I,(pr)

(9) cos B 2
Z = °

{;in Bz

Also @ = O is a separation constant but the solutions of (7) then include
R = log r which is ruled out by (3), and @ = constant which is ruled out by

(2)end (5. So the following is a solution to (1) for all real a and B.

(10) QD = (Aa chaz + B, sh o z) Jo (ar) +

+ (CB cos Bz + D, sin B z) IB (Br) .

B

The solution corresponding to the case when the separation constant is zero
has already been eliminated using boundary condition (3). Now Aa’ o CB’ DB
mist be determined so that all the boundary conditions are satisfied. 1In the
majority of problems one may take Aa = Ba = 0 or CB = DB = 0., In
some special problems all four coefficients will have to be evaluated. Let
us take CB = DB = 0 and see if a solution to (1) - (5) may be obtained.
New @, = (Aa ashaz + Byacha z) J, (o r) and using boundary

condition (4) this becomes

- no = Ba @1 JO (a I") °
Now let ai be the roots of
(11) Iy (o ro) = 0
then
-n, = zg: By @ I, (ai T)



and since the J_ (ozi r) form an orthogonal set one obtains

I

o) T
o)
'C‘)f norJo(air)dr=Biaibf rJ2 (g r)ar
or
-, Ty g ( ) = By 04 ro2 72 )
1 (@ = 5 1 airo o
a
i
Hence
( ) =2n°
12 B =
i 2
ro ai Jl (ai ro)
oo
Z 2n°shaiz
(13) @= (A, cha z - YJ_ (o, T) .
i=1 1 i a2 J.(a T o
r,0 i 1YV o)

Tt is seen that boundary condition (2) is satisfied because of (11) and it
remains only to determine A, in (13) in accord with boundary condition (5).

Then write

o0
2n_sho, z
O=Z A cha z - ° L J_ (o, )
i=1 1 1 © ° 1

2
I"O ai Jl(ai I‘o)

and from the orthogonality of the Bessel function one gets

2
(14) Ai _ n, th (ai zn) ’
2
r, o Iy (ozi ro)

6=



where th refers to the hyperbeolic tangent.

The complete solution to (1) - (5) may be written in the form

O
2n -sh (a; z) + tha 2z cha z
(6} i
(15) @= > o HE 5 (g 1)
i=0 czi2 Jy (a r, )
but since

sh [czi(zo - zﬂ

- sh (Czi z) + th (ai zo) ch (ai z) = +

ch oy Zo
the solution (15) may be written as
h o -
(16) @ (r,z) = +2 1, s l (2 z Iq (a1 r)
r, i=o o 2 ¢ch (a z,) 3y (cz1 r,)
where @, are roots of J (a ro) = 0, i.e., T = 2,405,
02 I‘o = 5052, aB r = 8»65, ah I‘o = 11079, soo6 o

Since the oy increase so rapidly it may be found that one or two
terms of the series is sufficient. It is noted that o) > 2 ol and since
the a's occur in an exponent one term will be sufficient in the case when

Z = zg and z, > > 1. Then in this case
2n sh o (zo - 2Z) Jq (Cl.l r)

(17) (r; z2) =
f? i r, 0412 ch o Z, I, (al ro)




Since Jl(aé ro) will be negative the above expression represents an upper

tound. Now @ .1, = 2.4 so (17) may be written as
2. hr [2,14 ]
2 T - -
(18) Qe - —moTol (T ) o |w, (- .
(2.4)2 7, (2.h) cn 2% %
I“O

Only the extrapolated boundaries have been used in the above analysils,

and not the actual dimensions which will be designated by zq and e This was

a convenient manipulation because it allowed the use of boundary condition (5)
rather than the following more complicated expression for the return current,

J. s Which 1is

@>(r1 zl)

(19) s —pk __6>_\_ @, (= 2) .

Let us now determine z, assuming (5) is equivalent to (19). Then

(20) @, z) + EAQ, (5z) = 0.

Now, writing (18) as

2.4 (zo - z)
(21) @ (r2) = Q(x) sh >
where
2.4 p
Qlr) = ? Bo To %o ( To )
(2.5)2 3, (2.k) ch 2 %o
1 r,

-8-



and cancelling the Q(r) (20) becomes

2.h n 2 2.4 2.k
(22) sh —— ..-3->\_, ch 2B _ g
o r, T,
where the extrapolation length h = z, - z,. Now (22) may be written as,
1.6A . 4y 2-4n
) To
Since th 2.4 h mist be less than one, a condition on the above analysis is

)
that r, be greater than 1.6 A . The condition, r, > 1.6\, is not a

troublesome one since the diffusion theory doesn't apply in cases where s
boundary sepaeration is of the order of a mean free path.

Then h may always be solved for, to obtain

(25) h = ) th-l }_‘é_A.

—— r > 1.6 A

Now for the design of a neutron pipe one needs to know the relation
between r, and Z, that gives the exit current at z = zq and r = 0. The

expression for this exit current, Jj, , 1is

(24) i, = o) . A @, (0 z;)
b 6
- @(0, z, - b) - :ZL_ e, (0, z - h)
I 6 °

and using (21) this may be written



0 h2.bnh 2 2.4
(25) 3, = gé-l Seera _ )\ 2.3 p 2:hn
To 3 L r_
but by (22) this becomes
Q(0) 2.4 h
(26) ), = -
To
r, (5
= ° o] 3
(2.k)2 g, (2h) ch =t %o
r
o

The parameter h may easily be eliminated from (26) to obtain an expression
for j+ inveolving ro, 2 )\ .

Since

2.4 b 1 16N 1.6) 1
sh th =

To o To - T.6)\\2
Vl (r,c )
1.6 >\
V 2 - (1.6\)2

1

one obtains

1.6 7\ n r

(27) Iy (05 2) = - | 2.5 z
(2407 3 (28) |77 - (1.6A)? ob (-2
1 o] ro
an expression for the exit current at the points r = 0, z = zy ( = Zo - h).

-10-



A designer of a duct is interested in knowing for any Z, whether
or not there is an optimum value for the radius, vy, say that makes j+ a
minimum, Intuitively it is kmown that such a value does not exist but (27)
appears to exhibit a Ve It is found however that this value exists for
imaginary Ty and the above analysis does not apply; there is no v, > 1,67\.

Before this theory may be applied to a calculation of an actual
pipe of radius Ty, Bay, it will be necessary to know Ty in terms of Ty This

may be found using & procedure similar to the one above. Write

(28) J_(ry5 2) = P (rys 2) + %— >\ @, (ry, 2) = @ (rys 2) =0

then
. ° 29""
3 (2-* 71y --';17\.2_le( 1y - oo
T, - ro T,
or
2.4 2.4
(29) 5 ( r.l) _ 1.6 A 7 ( rq
r r r
o o o

where rl is chosen less than Ty o

The solution for ry in (29) may be obtained from either the graphs
or the tables in Jahnke and Emde.

An idea of the sizes of the pipes that can be treated using the above
theory can be found. The minimum radius rp;, may be found by assuming r, = 1.6?%.

Then since
Jo (x) = Iy (x) wvhen x 72 1.43

-11-



it is clear that

T, - 1.,6>\
(30) rmin = =75 . 1.43 R 143 = >\_ R

If the radius of the pipe is of the order of a mean free path, then the flux

is given by the first collision density, i. e.,

(31) QD(rl, z) = qDo e 9%

where ¢ is the scattering cross section for the pure scattering medium. The
assumption in this formulation is that the radius is sufficiently small that
any collision will deflect a straight-through neutron into the wall, where it

is absorbed.

SAMPLE PROELEM

Let us find the neutron current out of the end of a neutron pipe

similar to one that might occur in an actual design. Assume the parameters

24 cm

H
il

240 cm &~ 5 ft.

S

4 cm

Part (a)

Find r_, the extrapolated radius. Using (29) the following relation

of

-12-



for r, is obtained

57.6 y _ 6.4 57.6
(32) I, ro)'"?ng(ro)‘
To simplify the solution for T write

20:6 - x

T

o

then (32) may be written as (33)
(33) g (x) = .11l x J (x) .

Now (33) must be solved for a value of x < 2.k. This value is found by

trial and error to be

x = 2.155
and
57.6  _
r, = 2155 26.73

The extrapolated radius is then 2.73 cm longer than the actual radius.
Part (b)

Find h, the z-extrapolation length; and z, the z-extrapolated
boundary.

From (23) one may write

r - -
o ot 16A 2675 1 6.

2.k To R 36,73

-13-



- 11.14 th T .2395 = 2.62 cm.
And

z, = %3 +h = 242.62 cm.
Part (c)

Find the exit current j+ on the axis, at the end of the pipe, i.e.,
find J, (0, zl).
Using (26) cne obtains

: 2.4(2.62

| J, (0, z,) ?6°Z§2 =h 20.75 )

Pt + W M) = (e, 2.4 (2h2.62
Jl (2.4) ch -—Jém_l

= 1l.b x 10'8

~1h-
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