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ABSTRACT

The penetration of neutrons through a thick shield is
analysed with the aid of the Boltzmann equation., If this is

written in the form for a plane source

(;x .692_ -e-o')F: z-%, + z% Z(2m4~1) Cyp Fn By (p)

corresponding to the expansion of the flux nv in Iegendre functions

1
F = ﬁ— Z (2n+l) Fn Pn (P)

the Boltzmann equation is equivalent to an infinite set of equations

in Fn. For the special case in which the coefficients Cn are independent
of the distance z, methods are developed for calculating F, numerically
in terms of the discrete and continuous spectrum of the homogensous
system. If the shield contains some heavy elements, an approximate cal-
culation for the high energy region can be made in which C, is determined
by the elastic scattering from these elements. The calculationé are

shortened by a systematic use of the recurrence relations,
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In the case of a shield material containing some heavy elements
whose nuclei scatter neutrons chiefly in a forward direction, a largse
number of spherical harmonics may be required to represent the neutron
flux at any point of the shield. The analysis of the problem with the
aid of determinants of large order may be less useful than a method of
calculation based dirsctly on the recurrence relations between the co-
efficients, and the purpose of this paper is the development of formu-
las convenient for the solution of a reduced form of the Boltzmann equa-
tion of the problem. Some extensions of formulas of Verde and Wické/
are derived, and a numerical calculation with the aid of the continuous

spectrum of the system of equations is outlirned.

Introduction
If the flux nv per unit solid angle and per unit log energy

interval is expanded in a Iegendrs series

1 a0
F= W%{)(@ﬂ) Fo Py ()

1/ Some stationary distributions of neutrons in an infinite medium,
P.R. 71, 852-864 (1947); cf. G. C, Wick, Space distribution of slow
neutrons, P.R. 75, 738=756 (1949); alsc R, E. Marshak, Reviews of
Modern Physics 19, 185-238 (1947).
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the Boltzmann equation for the problem with a plane source of neutrons

can be writteng/
a0
(1) (p - ) 1”, _°7_'rn_2 <2n+l) Cp Fn P (p)

Here F = nv, o is the total cross section of the material, z is
a distance from the plane source, u 1is the cosine of the angle between
the neutron velocity and the z;axis; and C, is a cosfficient which may
depend on energy, (and on distance in general) and is defined by the
various scattering functions of those nuclei which scatter elastically,
as well as on the energy distribution; hydrogen and possibly other
light elementslare sometimes assumed to function as absorbers for an
energy region where o° is considerably increased after the energy loss
associated with one average collision. Here C, is calculated from the
elastic scattering functions for the heavy elements only, and is essen-
tiglly independent of z in this approximate treatment.

Introducing a Fourier transformation with respect to z, which
replaces a/Bz by =-ko= p, and replacing Fy by its transform G,, one

obtains from (1)

(2) (1-kp)a= [Qfg-* 2-17—1.- S (204 1) Cp Oy Bn ()

2/ See RNL-424, equation (3)



If each side is multiplied by P, (n) and the result integrated
over the unit sphere, the result is

(3) (2041) Gn-k[nGnay +(nel) Gm] = &, Q/o+ (2041) Gy Gy

Iet b = 1= Cy,AS 1/k, Gy = 0, n40. Then

(4) (2n+1)2h, G, - Ex Gp.1 + (0 +1) Gm_]] =X\ 8,000 020, 1, 2 ...
Consider a set of homogeneous equations

(5) (2n+1)Ahy, Gy - [n Enml #(n+l) Em_]] 20, n=0, 1 ..,

Multiply (4) by Gy , (5) by G, and subtract the latter product; we

obtain

(6) (20 +1)(Ahp~ X hp )G, G -n (G, Gy = Gpq Gp)+ (0+1)(GpGp,1=Cn Gpoq)
=X\ Bno Oy Vo -

Adding the first N + 1 equations, one finds

N
(7) S (2041)Ahg=N by ), By + (81) (@ Gyg,1- Oy Oye1) = A Go Yo
0

The solution for a finite number N + 1 of eguations

It is assumed that N is arbitrarily large, and that GN41 =0,

For Q= 0, hy = by ;A ¥ A, from (7) two distinct solutions satisfy



the orthogonality relation

n%o (2n41) hy Gy Gp = O .

Hence roots A are real if hy is > 0., Also from (6), with A arbitrary,

but only the first m ¢+ 1 equations or the last N-m satisfied,

(9)
Z(Zn-bl) by Gn° - (msl) G (Gm*l)

n-

Z(zrwl)hna + (m+l1) G2 .ER(E,EE__):O .
m

nem+1

If hy = En and G, represents the solution for the non-homogeneous

equations, from (7)

(10) Z(2n+1) h, Gn Gy = —LT)\G)\ ?/O’

n=0
Iat Gn have a re;n-esentation in terms of the eigenvectors ((}z(lr) ),rel.. N +1
| (r)
Gy = 2 ar Gp
T

From the orthogonality of distinct eigenvectors, it results that

N a(r) /o
-)\r

S (2u8) by a(r)?

. - B - _1
e L AR

-7 -

)



The inverse Fourier transformation gives the result

(r)
(11) Fu(z) = Jepz Gn(p) dp= Za(r) o‘kr eP? Gg7’ Q/ddp

P-Pr) z (2m+1) B G(r)z'

Besides the value or values corresponding to the discrete spectrum
(A>1) the values on the continuous spectrum (A<1) may be important. The
constants Cn become negligibly small in practice for n>n,, and for h= 1,
the recurrence equations for A<1have solutions, P, (A), Gy (A), the

Iegendre functions of the first and second kind. For large n, _1./ A= cos8 ,

(12)

Pn(cose),;(n,sine [aen) |, [n*g-) enr/zJ

Fee)

- &
Qn(cose) =<2 :;ne) /—(n + ]3') cog |:(n + %) 94-7(/4]
[

l./ Hobson, Spherical and Elliptical Harmonies, p. 297.



Also,

/_'(IH'I) N(n#“‘-‘) .
/*(Mz)
If the values of G, (nsng 4 1) are determined for small 1 - X\ , (only

small values of 1 =)\ are required for large distances from the source,

and power series in terms of powers of 1 =A can be calculated without

difficulty), the solution for n > m, can be found from the conditions

(13) gy =a\E B (MeB|[S g (N
© 2 e} m o)

T 2
O o1 = A\/;Pmoﬂ(‘)‘) B v;r Y1 A
P (t)dt
3 f A

Pm()\)-é-lm(l 7\) Za (12 )

e

Qu(N)

L]

where the Cauchy principal value is chosen. Hence

-4 3
Gm()\)g [(m 4--5—) sin G:l <A2+B2>sin\ [D19¢ % + 5{# t,anml %]

and for N largs,



ZN 248° ‘
2~ A cos (NO+2a) sin (N+l);|
i (2n41) G, = Sino l}- sin 6 _J

= 0, -1B
(o 4 24-4-M:.a.nA

751129(A2+32) .

(The first equation (9) gives this also).
The density of the roots of Gy = 0 is found from the asymptotic expression;

we have approximately

sin(Ne 4 o) = sin (N7 + o) ,
N(8°-8)= U, Ae =TT /X
A= cos 8,
AA:= -sineds =-{1-N2ae

= -V -N) /N,

Then
1 N
P () ",Ax * Tsin o
and

N o
Z (2041) By 6,2 2 T[p (A) (4% B)

- 10 =



Hence

Ar (I') (r) -kr oz
AN p (AT) Gy Gy 'ky @ ke
Fn(Z) - Qz 7TP()\1-) (A2'+Bz') bAp = - _?rz-
™ =kdz () (x) -k. Oz
~ Qf Gy k)G, k) o dk+Q 0 G5T OT e,
Th () k % < (2m41)hy 6{F )2
m

The second integral represents the contribution of the discontinuous

spectrum.

For the calculation of the functions Qn one has the relations

n-1

L+

- =1 = 1 In ——

A= Q W=7 - A
nQ .- (20+1)2Q, + (n4l) Q1 = O. n=1l, 2 3, oo

Calculation of Cp .

If the elastic scattering as function of the angle for a given
seattering nuclsus is of the form

og £ (p)dn, p=cos 6, evidently

27 J:llf(p) du= 1

For scattering which is highly concentrated in the forward direction,

approximately
- 11 =



- (1-p)

o X
. £(p) = 37 ©
. The constants °x(1M) are defined by (c. £. RNI-424)

o) 2T(flf (p) By () an

Now if the total cross section, the reaction cross section and the

transport cross section are known, we have

(18) %r o 1
= r =

1 20 -4a -bo
s-o-.(--z e + 6 + 6 +

Hence o( can be determined from these cross sections, which will be
taken from the curves of Feshbach and Weisskopf, (Physical Review, 76,
p. 1551, (1949)).

We have
=

(19) £(p)= o(zen_ 20( Z (2m+l)I _%_(OC)P (p)o

(M) - M
Cp = 20, ® £a (aty), fple)= V-?—;: Ined (o)

A useful recursion formula is



2
I,y (2) - L;1(z) = -7;i Iy (z), v=n+%

For several scatterers,

ey

@) x> = o
M

If a single heavy element is present the coefficients c:': may be

computed from the recursion formula for I, () and the relations

(1) I_% (z) =Vr%2?_ cosh z, I_%_ (z) = \‘7—':2—2' sinh z
-
= 2B e L,y @
Crel = Cpe1 ™ -%-n—;—]-'cn n = 1,2, 3.,..: ..

- 1
c. = 2% sinh «, c1=Ze°‘ Eoshoc— j;sinhogl

Discussion

The calculation of the discrete spectrum is carried through by
satting up equations (5) with 60 = 1; trial values of A are used
until a value is found such that G, becomes a positive function of
nupton=N, (N~ 12 in one application). When the trial value is
too small, En becomes negative; if too large, after an initial de-
crease En starts increasing, contrary to the requirement that

Gn—*o,n»mn
-B=



When a continuous source distribution is present, the cal-
culation is required for several values of the energy, after which the

functions Fp(z) given in equation (11) are to be summed or integrated

over the energy distribution.

FHM:1g
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