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SOME THEORETICAL PROBLEMS CONCERNING PARAMAGNETIC SUBSTANCES AT LOW TEMPERATURE

Jo Mo Jamuch

The content of this report is rather incompletes No attempt is made to
discuss the problems systematicallye. Instead various aspects ére taken up end it
is attempted to discuss them in such a form that the general principles involved
are brought to lighte These general principles are then easily applied to related
problems and thus furnish the basis for the understanding of many low temperature
phenomena in the paramagnetic saltse The problems selected are problems which
arose out of discussions with the low temperature research group, in particular,
with Dr. Louis Roberts,

1) The Kramers degeneracy

In 1930 Kramersl proved a general theorem which is of great importance
in the discussions of magnetic properties of paramagnets at low temperatures

2 has brought Eramers' theorem on a more general basis and has shown in

Wigner
particular that Kramers' transformation of spin conjugation is nothing else than
the transformation associated with time inversion. Since both these papers are
not easily accessible we shall give a simple derivation of Kramers' result.

Kramers' theorem states that if a system of electrons is brought into
an arbitrary electric field then there remains always a two fold degeneracy if
the number of electrons is odde

We consider a system of n electronse. The stationary states v/ and

their eigenvalues E are obtained from the Schrodinger equation



e o

The Hamiltonian operator 2¢ may depend on the spin and orbital angular
momentum of the individual eleoctrons in addition to the usual dependence on the
momentae It also may contain an arbitrary potential energy. One easily verifies

that in the non«relativistic theory the operator Jf contains the spin operators

(r | |
T for the r™® electron elther in an even power multiplied with an even power
of the momenta P() of the a™ electron or it contains them both in an odd power.
Remembering that P in the Schrodinger representation is purely imaginary,we find
with the standard representation of the spin matrices
Ui = a‘é = Tx =
1 o i o0 0 <1

»
for the complex conjugate ¥ of the Hamiltonian (not Hermitian conjugate I)

* _(r) ) )
X (c-lr a-ér) a—ér)) 8 o0 ( -O{r , a-gr . -a-—;r)) (1e2)

- ,
¢ ocan be restored to its original form if we can find an operator Z which anti-

commtes with 7. 1 O'% but commutes with U-éo

(r) (r)
a2 =- 2 1
(r) (r) ‘
a, Z = Z o, for all r 2 1, eceo n (1.3)
(r) . (r)
o, Z =~ Z T
This operator is uniquely determined by

/ n (r)
z = ;’;’; 0-2 (1.4)
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It has the further properties

2

2 =1 (1.5)
+

Z = Z (Hermitian conjugate) (1.6)
E ]

Z s (ml)n§ (complex conjugate) (1e7)

From (1.5) and (1.6) it follows that Z is also unitary. It follows from (l.2)
= »

and (1.3) that if Y is a solution of (1.1) with eigenvalue E, then ‘1/ = 2 4

is also a solution with the same eigenvalueo For taking the complex conjugate of

(1e1) gives

s w*sgw*g}(*zzﬂ =g S W
and sinceza‘f*f s ¥

X zp 2 E 7;; ge®edo

We show next that the state ? is orthogonal to ¥ if n is odde This is then

equivalent to Kramers! theoremo Now

P =SSP =S =S vy = @ (. )
thus for n odd
(Y, ¥)=o qoeode

As a generalization we finds The degree of degeneracy is always even if the number of

electrons is odd. The converse is not truee
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2) The quenching of orbital motion

In pagamagnetic salts one observes quite frequently that the magnetic
moment which enters into the formula for the susceptibility is much better
represented by the value obtained from the spin only of the ion. The mechanism
is known as quenching., However, in most cases the g~factor obtained from the
experiments differs appreciably from the value 2 of an ordinary spine Moreover
the salts may be magnetically anisotropic,that is,g may be a symmetric tensore
The mechanism of quenching has often been discussed in the literature, but discussion

5 or are of such general qualitative

were either restricted to specific examples
nature® that no detailed quantitative use can be made of it. Recently Pryce has
given a formula which allows one to calculate the effect of quenching in a
convenient ways We shall derive Pryce's formula in a different way.

The Hamitonian of an ion in a crystal and in an external magnetic field

may be written as
02V -~ g(L+28) e H+ AL+ S (201)

The first term is the potential of the crystalline electric field, the second the
energy due to the magnetic field and the last is the spin orbit interaction.
Exchange and magnetic dipole interaction as well as nuclear interactions are dis-
regarded. They are of no importance for this problem. /5 is the Bohr magneton.
The term in V alone will remove partly the 2L + 1 fold orbital degeneracy and
introduce a splitting which is in general large compared to any of the other terms.

We thus treat the Hamiltonian

o mf(L+28) *E+ALeS (22)



as & small perturbation compared to V.

Denote with n the quantum number for the orbital states in the potential
V and E, their energy. In case the ground state is degenerate, we denote their
quantum numbers with n,, thus En, ® 0o The spin states which under the action of
V alone are still degenerate, we denote with s. The operator }f' is them a matrix
with respect to these quantum numbers which we denote with (n s /X'/ n' s')e In
general it will contain off-diagonal elements in n which we can remove in first

order in /@ and A by a canonical transformation

o =gty s (2.3)
i :
Define a Hermitian operator > by e £ §, then (2.3) becomes

v :){+i[é‘f,z]+ ;_i[(x,z),g:l-/-.... (2.4)

We shall now choose 2 in such a way, that the first order matrix elements of 4¢*
in A or ﬂ which connect different levels E, cancel. This leads to

. (ns/a('_’_n“s”) or
(ns/ZImg-;vz)s By = Eps for By # En» (2.5)

0 otherwise

Inserting this in the third term in (2.4) we obtain

(no S/?‘—C/nov st) = (no s/a{"/ no' s%)+ Z (no s Ia{'l mt)(mt/a-("/né s')

(2.6)
m, % En, = En
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for the transformed Hamiltonian, This operator contains now only matrix elements

Which refer to states of the same unperturbed energy Eno & Eno' 8 0,

With the special Hamiltonian (2.2) we obtain by defining the quantities

(no/Lil m)(mILj’nog)
(o | A 1s] mor) = 2 , (247)
o ijl Bo E‘no"'Em

m

(no s’é?lng s') = w/é (nolLi,ng)Hi Jssuf-)(nol_l_a_/nov) ° (sl_&_‘»_fs’)

-28H(s|s lsﬂ)J’non t+ (nO}/\ij{ non)(s[()\ 8 m/in)()\Sj -,633)/ s')  (2.8)
[¢]

This formula simplifies considerably for the case that the lowest level is single

in the orbital quantum number nje In this case (ses below)

(ol Ls1n)) =0 (2.9)

and we may write for ;E in operator forms

= 2
=-28E 8+ XA 8 8+4 /\;i . j“"z/MZ/\l;.ij (2010)
The first and last term together mey be written

“A B H 8 with gy = o(d  + A Asg) (211)

and describes the anisotropic magnetic g -factor. IThe second term is a "pseudo
quadrupole™ term and gives rise to a second order Stark splitting of the spin
levels. The third term is quadratic in the magnetic field and gives a temperature
independent term for the susceptibility, Since Aij is a negative definite
symmetric tensor it may always be diagonalized in a suitable coordinate system

end takes then the form
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A =/ d with/]i<o. (2.12)
i £ 43

The /]i are of the order of magnitude —é— where E is the separation of the nearest
level, The equation (2.10) for -&—é establishes a connection between the Stark
splitting of the spin levels, the temperature independent part of the susceptibility
and the anisotropy and magnitude of the g-factor. It is also seen that g <2

for ) 2 0 which corresponds to normal or inverted multiplets for the free ionse.
There remains to prove (2.9) for a single orbital level, This is so because

*
L, ® - L;o JThe solution of the Schrodinger equation may be assumed real since

i i
the Hamiltonian for the unperturbed problem contains only the first term in (2.1)
in addition to the kinetic energy and is, therefore, real. Thus if 1/-‘ is a

. *
solution 2/) is one too and if the level is single they differ only by a factor

of magnitude 1o Thus we may normalize }U so that Y * . 7 Then we have with

V=¥,
(, [ Ly) m) = (Vo Ly P o (Yo L W) = p* , L, P == (¥, L ¥ ) =0

QOeodo

3) Curie constants of Cu 80, ° 5 Hy0

The free Cu' ' —ion is a 2D5/2 with a 8pin orbit constant ;{ @ - 852 am~1,

corresponding to an inverted doublet of separation 2330 cm‘“l,, In the Cu 804 e 5 Ezo

crystal the ion is surrounded by four water molecules in a plane and two oxygen ions

on the axis perpendicular to this plane. The symetry of the electric field due to



e Cu

o Hy0

the electric dipoles of the water and oxygen is thus tetragonal and we shall hence-~
forth refer to the axis through the oxygen as the tetragonal axise The crystal

structure is triclinic with the following lattice constants and anglesss

(o]

&2 6,12 4 of = 820 16°

(o]
b= 10,7 A /3 = 1070 26° (301)
¢ ® 5,97 % Y~ = 1020 40°

There are two Cu-ions in each unit all at the sites (0, 0, 0) and (3, %, 0).
They are inequivalent, their tetragonal axes making an angle & = 82° 14' with each
other. Their separation is 50,542 X and they are nearest neighbors. A

The splitting of the orbital levels due to the electric field of tetragonal
symmetry was calculated by Polder7. The zeroth order wave functions are determined

from group theory entirely.
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s

They split into five levels
r with their wave functions
4

given by:

1
r33 Y—é-(cfz""?az)

ri s 42

(342)
My o y—_:-(s*’z - ¥ .3)
. 1
F5 3 degenerate
71

We denote the energy differences to the ground state with 4, B, Co They are of

order 104 cmmla The tensor A ik is diagonal in a coordinate system which coincides

with the octahedron and has then the values

4
T ¢ ©
/\ikg- o_%_o (303)
1
°© 0 5



An experimentel determination of the susceptibility cannot be directly compared with
the values derived from one type of ion. Instead the effect of both types of ions
must be considered simultaneously. It is then more advantageous to introduce a
coordinate system which is symmetrical with respect to the directions of the two
ions. Let ’EJ_, 32 stand for the unit vectors in the directions of the tetragonal
axes, The unit vector in the basie coordinate system are denoted with __/_J-’ /2,

L 3 and are given by

<a— —r T, + T
1 2 cos 6/2 ("‘2 —J')

1
ﬁz ¥ 2 sine/2 (?_2 - 11) (3.4)
- sin /2 — —2

1
T2 73_
2 ¢
/

/

In the coordinate system of one of the ions the g~tensor has the form

o - 4A
Bix = 81 1] g1 = 2(1 - —A
(3.5)

32353“2(1‘%—)



by (2011) and (3.3). In the basic coordinate system it is transformed according
to the laws of tensor transformation into a non=-diagonal tensor given by

211 ® 81 cos? 0/2 + g2 sin® 6/2

. 2 2
gyp = 8 8in 8/2 + g, cos e/2

(346)
B1p %8y ® by (g2 - gl) cos €/2 sin 0/2

=
€33 = &2
all others zero. The two sipgns in 815 correspond to the two types of ions. A

similar expression results for A, .

The relevant terms in the Hamiltonian (210) may now be written

et 5 03 ) o) s S A 5 e
r r

The second term in (2.10) is simply an additive constant for a spin S = % and

may, therefore, be omitteds The second term in (3.7) gives rise to the i:emperature
independent term in the susceptibility which was calculated by Polder7. Since

it commutes with the first term its effect may be calculated separately and need
not be given herees

The magnetic property of the material can be calculated from the standard

expressions
2
Zik z lin ¥k & #n 2 (348)
H-0 FH; @H,

22 tr e'aﬁ/kT (349)



For weak fields (4 H << kT) one may evaluate (309) for the partition funection 2

by developing the oxponential

z-tr[-%_+—éi(%)z+- c o o } (3.10)

Since tr of = 0

tr 7%= (2s+ 1) -s(s+1)8° z g:,(‘;) gg) B H_ (3e11)
r,i
1 2 \?
fn 2= const tr —— AR (3.12)
2428 + 1) kT
Furthermore
DI R PN (5415)
r,i
2
ri1 = gf cos” 8/2 + gZ sin” 6/2 A
fz = g: sinz 8/2 + g: cosz e/2 | } (3.14)
2 _ 2
’z Ze J

Inserting (3.14), (3413), (3¢12), (3411) in (348) one obtains finally

Y =7(1Jik (3.15)

2 2 c
X, = El.f_’m._ ._;_. S5+ 1)) = ¥£ (3.16)
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The Curie constants Ci for single crystals were measured by Krishnan and Mookber;ji8

and were found to be

Cp = C, = 48 degree/mol
(3e17)
Cz & 040 degree/mol

The best agreement with experiment is obtained for A = 15214 =l B = 25818 cm~l

aﬁi g 2629 c1 = 493 degree/mol
3*2 = 2.24 Cy 5 471 degree/mol (3418)
75 B 2607 C5 = 0401 degree/mol

A slight discrepancy seems real, since the experimental values of the
Curie constants show no variation in the 1 = 2 plane of the basic coordinate
systemoe A further corroboration of this is found in the magnetic resonance
absorption measurements to be discussed laters The explanation of this must be
sought in the fact that we assumed without Jjustification that the tetragonal
axes of the electric field are identical with the axes of the octahedron of water
and oxygen. This is true, if only nearest neighbors are considereds However
already the inclusion of the next nearest neighbors with electric dipoles shows
that the effect of these is not entirely negligible and is indeed of the right
order of magnitude and the right signe That is they are so located as to produce
a tendency for increasing the angle 6,

4) Super exchange in Cu 804 * 5 H30

Already Polder7 has found the theory not adequate for deseribing the

fact that the powder susceptibility follows a Weiss law



with a Weiss constant 6 = 0,7° K% EKrishnan and Miook‘berji8 also foundva'Weiss law
at higher temperatures (T > 90°) with Weiss constants which depend on the
orientation of the single crystals and even change signs. Unfortunately, errors
are not given by these last mentioned authorse A rough estimate of the errors
on the basis of the scattering of the values reveals, however, that no conclusion
can be drawn as to the value of 8. The above mentioned value obtained for powder
at much lower temperature appears to be certaine

It is clear that the simple electronic levels can never give such a
law for the susceptibility since the doubly degenerate level of the ground state
can never split by any electric field whatever (Kramers* theorem)o The explanation
of this effect must be found in an interaction of the magnetic ionse Among the
various interactions which are known to be operative,the following ones are possible.

&) Ordinary exchange interaction: This effect is almost certainly too

smalle The next nearest neighbors are 5.542 3 away and a rough estimate with
hydrogen;like wave functions shows the exchange integral to be tooc small by a

factor 100, In addition the ions are completely surrounded by water and oxygen

and it is very difficult to conceive of any direct exchange under these circumstancess

b) The magnetic dipole interaction: The expression for this interaction

is very well knowne Following the method of Van Vlecklo one can calculate its

contribution to the sﬁsceptibility with the result

4/8 4 [—%— s(s+ 12]2 2 (r) (r") 1 3
Fre =~ K3 72 o Bk B i%"‘fik";gxi Xj}
1,5
(441)
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where ><i is the 1¥ component of the radius vector between the ions r, r' and

R is the distance of these ions. There are two points in which this case is
different from the previously discussed onese In the first place we have a
triclinic latticeo For such a lattice it is no longer true that the contribution
of the ions within a sphere to the expression (4,1) vanish as it is known to be
the case for cubic lattices. As a consequence the magnetic dipole interaction for
a spherically molded specimen which is just zero for cubic lattices does no longer
vanishe The second difference from previous treatments is due to the fact that
there are two different kinds of ions. Although these effects are not expected
to be large, a numerical evaluation of (4.l) was carried out with sufficient
number of nearest neighbors (about 30) to sée the convergence of this expression.
The correction to the susceptibility at 1° K is only a few percent and is, there-
fore, negligibles

¢) Nuclear interactions: Nuclear interactions certainly play a role

in the magnetic properties of ions. <The recent discovery of the hyperfine
structure in magnetic resonance absorption is a convincing proof of thisll"ls.
However, nuclear interactions cannot be considered as the cause for the departure
from the Curie law for two compelling reasons: They are much too small and the

correction to the isotropic susceptibility (powder value) is rigorously zeroe

d) The effect of superexchange: There are many substances known where

the exchange interaction is very large although the magnetic ions are separated
by non-magnetic ions. There are notably the antiferromegnetic oxides, sulfides,
selenides and tellurides of the transition metalse The result of neutron

diffraction on such crystals also show a marked correlation of the spins at
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adjacent sites for the :i.onslso
On the theoretical side it was pointed out by Kramersl? that magnetic
ions could interact via the excited states of intermediate non-magnetic ionse
This superexchange is expected tobe of an order of magnitude which seems to fit
very well the experimental data on the above mentioned crystalsls. Since all the
other possibilities are eliminated it must be concluded that superexchange is
also operative in the Cu 80y - 5 H,0 crystalse A similar conclusion was reached
by Opechowski'® for the case of the Tutton salt E,Cu(80,), ° 6 H,0 where a some-
what smaller Weiss constant of © = 0,052° X was observed by DeKlerkzoo Unfortunately,

the actual exchange interaction is very difficult to evaluateo The superexchange

will in general lead to an interaction which may be of the form

E J" S(r) S(r ) and thus introduces a large number of

parameterse So long as only orders of magnitude are discussed we may assume it
to be of the form

Lz Z rr’r' _s_(r) . §(r") (402)
and we shall later assume further that only nearest neighbors interacte The
assumption of an isotropic exchange (4.2) is not a serious restriction f‘or ‘the
calculation of the Weiss constant. ﬁcweﬁ'er, the assumption of isotropy will

affect any statement which will depend on the fact that the total spin 8 ﬂz S(r)
r

commutes with (4.2) while it does not for an anistoropic exchange. This has s
decided effect on the theory of exchange-narrowing of magnetic resonance lines

to be discussed belowe
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Further experimental evidence for the existence of the superexchange
ere the specific heat measurements. J. Ashmead?t found that the specific heat
of Cu 804 5 H20 has a maximm at about 10 K, and Duycha.erts22 finds that the
tail &t high temperature follows the law C = A/I'z with A = 1.5 degree cal/mol.

Finally the magnetic resonance measurements®3=2% o, Cu 80, * 5 Hy0 show
& line width which is much smaller than the width expected on the basis of magnetic
dipole interaction. The explanation of this phenomenon has been given by Ven
Vleck and Gorter2® as due to an exchange interactione Also the Bagguley and
Griffith observed a very interesting phenomenon. If the constant field was along
Tl the resonance should occur at two points corresponding to the two g=-factor
in a direction parallel and perpendicular to the tetragonal axise However, only
at /\. 0e85 cm are the two lines separatede At )\ © 3604 they are merged into
one single line half-way between the two expected positionse This is just what |
would be expected if the two types of ions have an appreciable exchang027. A very
rough estimate was made by Bagguley and Griffith om the assumption that the lines
begin to separate if the precessional frequency is equal to the exchange frequency
which occurs at 1¢73 cme They find thus a value of 0el5 cm™~t for the exchange
interaction constante

The effect of an exchange term of the form (402) can be calculated by
extending the series development (3.10) one more termo We find then for the

partition function (omitting irrelevant terms)

fnz-(zs-f-l)N{ - (i gk (éﬁ% (-]




The value of the first term is given in (3,11), (3.13). The exchange term (4.2)

contributes the second term in (4.3) the amount

tr 2% = 236% Zr' g% s{™) B ¥ pps S}(f) s{r") g‘(j:') sgr') H

ikhje
® 2,3 2% (28 + 1) [— s(s + 1)] Z e 8,(;) g: ) B E, (444)
S e |
i

If we assume that the exchange is effective only between ions of different kind
then the summation over r and r' can be carried oute Neglecting surface effects,
we may write

( (r?)
gr' S ere gﬂz) Bio = —Z’-B*g (efx &io+ &5% &%) (445)

Hore the X signs refer to the two tensors coming from the two different ions

(see equeo (306)) and
= Z bl (independent of r i)
rt rr' :

) .
With the values (3.6) for g} We find for the sum in (4.5)

+ -
- 21 ngk Bie * &4} g{:? = hﬁ Jke (4-6?



2 2 2
h)®g, -¢
2 2 2
hy, ® 855 = 81, (407)
2 2
h; = g,

1
Writing for the principle susceptibility Zi +Xi where 71 is calculated in

)
(3.16) we have for Xi

2 2
):'z., 1 s(s-+1)] 2 ¥B & hf (4.8)
1 3 (ir)2
This defines the Weiss constant
Bi ¢
= Xi® Ay
or ' 2
o mor 2L o 88+ , /M
1% 5 2 X
or with 8§ = % 2
- 1 hj
kei=—2-)"(l (449)
ry
The powder value of 8 is found to be
ko= k (Cy 8 +Cp 6, + Cg 85) (4.10)
2.,.2 .2
hy + h; +h
X8z y/ ; : : ~ L (4.11)
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The following values for 2”& and h, were found previously

2 - 2 -

7'y = 5.26 hy = 5.16
2 2

Y, =5.01 h, = 4.93 (4012)
2 o 2 o

Yz =429 hz = 4429

This gives for J*

Y'm 2k 08 2x 0,7 x 0695 cm™

Y = 0,98 em™l (4.13)
and for Gi
8, = o69°
8, = o67° (4.14)
= o]
05 = 071

Thus a very slight asymmetry should be present even for an isotropic exchangeo.
For anisotropic exchange the asymmetry would be correspondingly larger. An
accurate determination of 8; at low temperature has not been published. It
would furnish an excellent way of finding out the type of interaction for the
superexchange in this particular casee.

5) The specific heat of Cu 80, * 5 Hy0

The specific heat was found to have a maximum at 1° Ke It increases

K 21

again sharply at about 0,1° o This last increase is due to the magnetic
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061° 1°K
Specific heat of Cu S04 ¢ 5 Hp0

dipole interaction and confirms the estimate of the effect of this interaction.
The maximum at 1° K must be due to the same cause which gives rise to the Weiss
constant at the same time confirming that this effect is not due to the magnetic
interaction. The contribution of the exchange interaction to the specific heat

is in principle calculated from the formulae

- (r) , o(r")
Z=trezy;r'-s- E A‘T
(561)

end

E = kT2 .5‘%_1112 c=3? (542)

2=l L Z, ﬁi(‘..'k;%_'.{ (57 -_s_(r'))(_s_(rf? «_s_(r)) oo }

2
eN(28+1){1+2 1 [s(ﬁ.:"l)] 531 2 .o
2 S (H)Z ;t rrr' +

On 2 & conste + 3 .l 2 5e3
SRR CRY: Zr,xrr' | (62
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This gives for Y << kT

A 3 N 2 2
ce. —. withas_ . 5.4
P2 k - 8 k T frr' (5.4)

With the assumption that only one nearest neighbor is interacting (thereby under

estimating A) we find with J“ ~ 1 em~l

3 1 ¥
A = ( b"‘éZ) R (5.5)
A = 0,78 x R ~ 1,5 cal degree/mol _ (5.8)
22

This value agrees excellently with Duychaert!s““ value A ® 1,5 cal
degree/mol. Thus confirming one conjecture that the specific heat anomaly and
the Weiss constant are due to one and the same interaction. We also find that
the interaction is probably appreciable for only two nearest neighbors since the

inclusion of more terms in (5.4) would increase A beyond its experimental value.

8) Nuclear interactions of paramagnetic ions

in paramagnets
The main reason why nuclear physicists are intereste%«is because the

paramagnetic ions interact with the nuclei and through this interaction give
rise to a number of interesting effects. There are two main lines of research
which are made possible through the nuclear interactions.

The first is the possibility of nuclear alignment through their interaction
with the magnetic ions, which was pointed out by Ms E. Rose3® ang Gorter34. The
effective magnetic field of the ions at the position of the nuclei is of the order

10% . 108 gausse A direct alignment would require very strong fields and temperatures



of the order 10=3 %Ko Due to these strong internal magnetic fields it is sufficient
to saturate the ions themselves, their coupling with the nuclei producing almost
complete alignment of the latter. The saturation of the ions can be achieved at
convenient field strengths of the order -~ 104 gauss while the temperature need
only be about as low as 1° K. The theory of this effect has been worked out by
Rose for the case of almost complete saturation of the ions. A more rigorous
theory which would be desirable gives rise to great mathematical difficultiese
So far it was not possible tc improve this theory by a more rigorous treatmente

The second type of research is to measure the magnetic and electric
quadrupcle moment of nuclei through their interaction with the paramagnetic ionse
The most useful tool for this purpose is the magnetic resonance absorption. For
the observation of nuclear interaction it is necessary to use diluted substances so
a3 to minimize the magnetic interaction. The hyperfine structure of magnetic
resonanse absorption was discovered by Penrose?d and was further investigated by
Bleaney and Ingrang"so and Iagramglo

There are two types of nuclear interaction which come into play in
these experiments.

s) The mapnetiz dipole interaction which is described by a Hamiltonian

T EICRES (601)

The interaction constant a is of order

®
e
Q
[
e
2
RN
]
~
=l

~ 107 em” (642)

®
P

av
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b) The guadrupole interaction. There are two effects dues to the electric

quadrupole of the nucleuse One is due to the interaction of the quadrupole with

the crystalline electric field. This term has in a tetragonal field the form

¥ " —u—g—-[szg-l(1+1)} (643)

q I(2I -~ 1)

where Q is the nuclear quadrupole moment and is of order 10724 2 ang

1 /%

qs-= o (Z is the tetragonal axise.) The g=values are of the
4 5 22
o

order

24~ 10%9 o3
41
and this effect is then of order 1070 = 10~ ™! for Q ~ 10724 em?.

The second effect is due to the interaction of the quadrupole moment with

the electric field produced by the electrons of the magnetic ions. This effect is

described by a term of the form.z’2

K; o2 g1 Q (Z(I,s)[(x.s)+1]-I(I+1)S(S+l) (604)
28(28 « 1) I(2I - 1)

where q' = <::% cos® @ = j::>
3
¥ av

and represents apart from a factor e the average value of

2

5 at the position
g2

of the nucleuse It is interesting to note that the nuclear quadrupole moment gives

rise to these two different interactions. This furnishes us in principle with
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enough information which enables us to calculate the nuclear quadrupole moment
from the observed hyperfine spectrume The usual difficulty of calculating q!
can be avoided by obtaining Q directly from the term (6e3)s The g-value which
enters in (6.3) is known from the observed splitting due to the electric field
and can be determined by a measuremsnt of the g-factorse

At the present time, however, the theory of the hyperfine structure is
not sufficiently certain as to allow such oonclusions®®, More theoretical work

is necessary before the method outlined here may be used to determine quadrupole

moments directlye
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APPENDIX
ON THE HYPERFINE STRUCTURE IN THE SOLID STATE

The hyperfine structure in the magnetic resonance absorption was
observed for the first time by R. P. Penrose?8 in a copper tutton salt with 95%
of copper replaced by magnesiume. Fouf lines corresponding to the nuclear spin
3/2 of the copper were observed with an maximum overall separation of 93 gauss
at a wave length of 3.2 cme The maximum was in the direction of the Ky axis,
that is the axis of maximm g=value, The mimimum was along the K, axis where g
is mimimum alsoe According to Bleaney the ratio of the splitting is of order
8ixe

The effect was also observed in the cobalt salts by Bleaney and
Ingram®® where it was found to be very large.

In another copper salt, the copper fluosilicate (Cu 8i F6 ° 6 Hzo)
a very small hyperfine structure was observede

Finally, Bleaney stated on several occasions that Mn+’f-ions also
produce a hyperfine splitting corresponding to a nuclear spin 5/§o A detailed
paper on this is not available yet.

The theory of these effects has not been very successful up to this
times The two most conspicious failures occur in the copper tutton salts and
the case of the maganese.

In the first case Pryce and Abragam""’3 obtained the result that the

hyperfine splitting for the parallel and perpendicular case are proportional

to



~31=

4
AE) ~ ~—-tg, -2

(1)
AE, ~ 24+ g =2
4 7 d
thus giving a ratio with g, "~ 2040 g ~~ 20,09
A4E, 0017
~ (2)
4 E.L 0.39

This is a variation in the opposite sense from the experimental resultse

Even more difficult to understand is the hyperfine structure in the
Mn* *ione The electronic configuration of this ion is a® 85 ang theoretically
no hyperfine splitting can result from such a state whether it arises from
magnetic dipole or electric quadrupole interactione

In a recent letter to the editor5® Abragam proposed a solution which
seems to us to be highly improbable to be the correct answer to this probleme
According to Abragam the whole hyperfine structure in Matt and a strong correction
to that in Cu®? should arise from the excitation of an electron into & 48 statee
Since it is known that the S=functions have a very large hyperfine structure
there results an appreciable perturbation in second order to the first order
calculation, It is difficult to say whether this effect is large enough. An
admixture of 4% of the excited state would require an overall separation of
As 25 ™l for this state to give the right order of magnitude in
W tt

We shall show that at least the difficulty with the copper disappears

if the interaction with the magnetic dipole moment is 'correctly taken into accounte
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Care must be taken to calculate correctly the contribution to this vinteraotion
arising from the electronic configuration d°, This configuration is not
equivalent to a single d-elestron in this case since for the spin-part of the
interaction the d° configuration acts as for a one electron problem with positive
charge (positive hole). This effect is very similar to the well=known inversion
of the multiplets when going from the first ‘half of the d=shell to the second half,

In order to discuss this effect more in detail we start out with the

+

complete Hamiltonian of the Cu * ion and the nucleus in the corystal and in an

external magnetic field He

H = Vorysto ~fL°HE-24(S°E)+ A(L-S)
Ao (10D ()

+a(_L_°_;)+a23' 15&)311k
rsl
Here the first term represents the crystalline electric field of tetragonal
symmetry arising from the electric dipoles surrounding the ione The second and
third terms are the magnetic energy of the orbital and spin magnetic moments of the
ione The fourth term is the spin-orbit coupling term. The fifth is the magnetio'

energy of the nuclear dipolee The last two terms which concern us here mostly

are the magnetic interaction of the ion with the nucleus. The interastion constant

2 -
a =248 gn-%-» < 2.;>~10‘3@ml (4)
r
av

is
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where /A = ;ﬁ’ - and g, is the nuclear g-factor. The summation over r is over all
m

the nine electrons in the d=shell and

Pikg‘g"“Zi}k"Jik (5)
r

where Xi are the coordinates of one of the electrons. Since it is the last two
terms which cause a hyperfine splitting in the magnetic resonance absorption
we shall give a derivation of these terms starting from first principlese

We may consider the nucleus as the source of an internal magnetic

field H'! deriving from a vector potential As

Brey=aA (6)

with

=] 1 ) m
AR X g Nl Iy (7)

The contribution of this internal field to the Hamiltonian is obtained in the
usual way by replacing P in the Schrodinger equation by P 4 -2 A, The -+ sign
a— — c L
comes here because we choose e > 0 and the electronic charge is ~ eo The additional

terms in the Hamiltonian arise from two sources. One from the kinetic energy

2 2
21m Zn (B(n)+ "%‘”é_(n)) ,\_,Zn P;:x) P Z ﬁ-.(n)" E(n)-f-" (8)

me g
Since {7 ° A 8 0, except at the origin where the wave functions vanish, we have
written

A*P+P-A = 24°P (9)



(This is not allowed for g-functions and gives rise to the well known hyperfine
splitting for s-states discussed by Fermi,)
The second term is due to the interaction of H' with the magnetic
moment of the spin and is given by
q (n) q
n 1 (n) (n)

-2 S e T 2 A7) mg P/ s 10

P2 ThTG pn > s, (10)
n

The second term in (8) may be evaluated further to give

q ,
e (@) , ,(n) _ d (n) (n)
w gt TR TR S 5 ar e
n
(11)
Sal-°1I

q
(10) and (11) constitute the last two terms of (3)e We have replaced 2 ...;...._
nsl

1
by < --3:> which already introduces the integration over the radial parts of
r

av

the wave functions and we have written % L(n) =L for the total orbital

angular momentume The actual value of an;;- not of importance here, the relative
sign of the two last terms is crucial, however, and we shall pay special attention
to this sign in the evaluation of the sum over n in (10)e Before doing this we
shall rewrite the Hamiltonian after carrying out the Van Vleck transformation
discussed in the first section of this report to eliminate the off-diagonal terms

in the Hamiltonian comnecting different energy levels of the V operatore

cryst
If we dispose of the unimportent terms in the Hamiltonian which we need not discuss

here since they do not affect the hyperfine splitting (there are four such terms,



one quadratic in the magnetic field, one quadratic in the operators S, one
quadratic in the operators ;[_ and the magnetic interaction of the nuclear moment)

we arrive at the following Hamiltonian

> =",<?Z gi S; Hy + 29')\2/\1 83 I3
i
(12)

q
+ a 1% (nolPJg;)I n,) 8; I

Here the g3 are the diagonal elements of the anisotropic g-tensor (the coordinate
system is already adapted to the tetragonal symmetry of the problem) given in
Eqo (305) of the text and Ai are the quantities (3e3)e The (no’Pik ’ n,) is
the diagonal matrix element of the tensor Pik for the ground states It can be
evaluated with the following group theoretical reasoning

Since Pjx = Pp4 and z Py =0 the tensor P;, transforms under
rotations according to the irreduiible representation Dz. Its matrix elements
in the LM representation will thus involve transitions A M = 2, duw ]
and 4M = 0o The parts of Pj) which involve these elements cen be obtained by
constructing those linear combinations which under rotations transform like the

. R 2 Jrl
spherical harmonics Yg » ¥, and Yg respectively. Since the grownd state is

1
E (¢, + {’_2) only the last term is involved and for this one finds

(2o | Py | mo) By T ® = (mo | By +Ppp = 2 Pyg | my)(81T + 85I, = 2 S4T5)

S - —%— (nol P33 I no)(Sl I+ 8, Ip - 2 83 13) (13)
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We now reintroduce the summation over all the electrons which was omitted in (13)
for simplicity. Here we make use of the fact that the operators §ﬁn) considered

q
in the space of the resultant spin S = ;E: §Sn) are all proportional to the
n=l
resultent spin operator S. In our case where the resultant spin is actually

also 1/2 the proportionality factor is le Thus the Hamiltonian for the spin

interaction reduces finally to
(n)
8
-5 S (mo| P3z’ | mo)(S1 I + Sz T - 2 85 Ig) (14)
n

n
In order to evaluate :E (nol Pgs), n,) we need the matrix element (M ]P33| M!)
n

for anyone of the nine electrons in the ion. According to a well known group
theoretical theorem the M=dependence of this operator is exactly the same as

2
that of the operator L; and we find thus
n 2
> |P§,5) |1r) = o | 15| ur)
n
2
zc 0 (15)
with the proportionality constant
' n
c=1 :E <<B coszl!( ) - %>> (16)
| M=L
We find therefore

(no|P35|n°) E—%—-C((zng]Z)-f- ("2|L§ - 2)

=40 (17)
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Thus the problem reduces itself to calculating Ce
Up to this point our work is presumably identical with that of Pryce
and Abragam. Indeed one obtains their result by calculating (16) under the

assumption of one electron in a 3d state. For then we have by simple integration

¢ m— Scoszw-> z.--1 _2L =1 (18)
1.2 M=L 12 2L+ 3° 7

Introducing this in (17) and (12) we find the result (1) which disagrees with
experiment. The correct evaluation of (16) leads to a C with opposite sign.

Using Slater wave functions (antisymmetrized products) one finds instead for C

+4 +4
> ?
c = z <50033)/-1 = . 3m - A(L+1) 2 £
n=-(2 -1) m  me=(£-l) (24 -1)£ 24+ 3
oy 24 which for £w L w 2 (d-slectrons i) gives
2L+ 3
S
C =+ -3 (19)
This gives instead of (1) the result
4
(20)
o2 -
pa\ E| ~ =—18, 2
and
E
AL, - 0097 (21)
pa) E.L 0019
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This value is in satisfactory agreement with experiment. Accuracy
can not be expected to be better than about 10% in C since Slater wave functions
are only approximations. There is no doubt, however, that the theory is
essentially correct.

As to the MnT Tcase the present theory is obviously not capable of
explaining the existence of a hyperfine structure at all since

<:3 003229 - £> 8 0 for the 5d5 68 state of the electrons in the ione In
L, M=1,

this case the existence of the hyperfine structure, if real, can indeed only
be explained by a mechanism of the scort suggested by Abragam in his recent
letter.

Since we have shown that good agreement with theory exists in the
sase of the Cu’?t ion it may at first glance seem surprising that the mechanism,
if applicable to the case of Mn, should not alsc be operative in the case of Cue
The answer is that it probably does but there exist in the case of Cu two excited
states which contribute with opposite sign to the correction of hyperfine structure
as was noted correctly by Abragame These two states are characterized by their

2D and 38 33° 48 2D of which the first is

electronic configurationss 348 4s
energetically lowers,

The lower energy of the first state is partly counteracted by tﬁe
higher principal quantums number (4) which is responsible for the hyperfine
structure in this case. In the case of Cu the contribution from these two states
nearly cancels then and this is the reason why this mechanism does not contribute

any appreciable amount in the case of Cu while it may very well do so in the case

of Mn,



	image0001
	image0002

