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SOME THEORETICAL PROBLEMS CONCERNING PARAMAGNETIC SUBSTANCES AT LOW TEMPERATURE

J. Mo Jauch

The content of this report is rather incomplete. No attempt is made to

discuss the problems systematically. Instead various aspects are taken up and it

is attempted to discuss them in such a form that the general principles involved

are brought to lighto These general principles are then easily applied to related

problems and thus furnish the basis for the understanding of many low temperature

phenomena in the paramagnetic salts. The problems selected are problems which

arose out of discussions with the low temperature research group, in particular,

with Dr. Louis Roberts*

1) The Kramers degeneracy

In 1930 Kramers proved a general theorem which is of great importance

in the discussions of magnetic properties of paramagnets at low temperature.

2
Wigner has brought Kramers' theorem on a more general basis and has shown in

particular that Kramers' transformation of spin conjugation is nothing else than

the transformation associated with time inversion. Since both these papers are

not easily accessible we shall give a simple derivation of Kramers' result.

Kramers' theorem states that if a system of electrons is brought into

an arbitrary electric field then there remains always a two fold degeneracy if

the number of electrons is odd.

We oonsider a system of n electrons. The stationary states ^ and

their eigenvalues E are obtained from the Schrodinger equation

XfsE]C (1.1)



The Hamiltonian operator %t may depend on the spin and orbital angular

momentum of the individual eleotrons in addition to the usual dependence on the

momenta. It also may oontain an arbitrary potential energy. One easily verifies

that in the non-relativistie theory the operator H contains the spin operators
(r) ^

2» for -fee r— electron either in an even power multiplied with an even power

of the momenta P<8' of the aQ. electron or it contains them both in an odd power.
Remembering that P in the Sehrodinger representation is purely imaginary,we find

with the standard representation of the spin matrices

ot =(• ») „.. /• A n __ a •
U 0/ 2 [± 0/ 3 ^0-1

for ifce oomplex oonjugate »C 0f the Hamiltonian (not Hermitian conjugate J)

* **1 °\ ^3 )"^(-^[ ,<rz ,-o-% ) (1#2)

irC can be restored to its original form if we can find an operator T which anti-

oommutes with cr &* y^j. commutes with a~«
13 2

(r) (»)
^i 2 --J^i

°~z 2. s Z °~~z [ for a11 rs lj» •••• n C1*3)

This operator is uniquely determined by

•^r ^ (r>
2 - £ *"« <*•*>



It has the further properties

2

1 =1 (1.5)

2 8 y (Hermitian conjugate) (1.6)
*

£ S(~l)n \ (complex conjugate) (1.7)

From (l05) and (l„6) it follows that £ is also unitary. It follows from (1.2)

and (1.3) that if ^ is asolution of (l.l) with eigenvalue E, then $= 5" f*
is also a solution with the same eigenvalue. For taking the complex conjugate of

(1.1) gives

and since JT X JT a >£

<* ^ aE^ q.e.do

We show next that the state *y5 is orthogonal to f if n is odd. This is then

equivalent to Kramers0 theorem. Now

<y.Y) -(I f, y,) s(y*,^) =(jV.y) =(-i)n <y, y/)
thus for n odd

(V^f)5© q.e.d.
As a generalization we finds The degree of degeneracy is always even if the number of

electrons is odd. The converse is not true.
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2) The quenching of orbital motion

In paramagnetic salts one observes quite frequently that the magnetic

moment which enters into the formula for the susceptibility is much better

represented by the value obtained from the spin only of the ion. ^he mechanism

is known as quenchingo However, in most cases the g-factor obtained from the

experiments differs appreciably from the value 2 of an ordinary spin. Moreover

the salts may be magnetically anisotropic,that is,g may be a symmetric tensor.

The mechanism of quenching has often been discussed in the literature, but discussion

were either restricted to specific examples or are of such general qualitative

nature that no detailed quantitative use can be made of it. Recently Pryce has

given a formula which allows one to calculate the effect of quenohing in a

convenient way. We shall derive Pryce!s formula in a different way.

The Hamitonian of an ion in a crystal and in an external magnetic field

may be written as

^=V»/(?(L+2S) •H-f-^L.S (2.1)

The first term is the potential of the crystalline electric field, the second the

energy due to the magnetic field and the last is the spin orbit interaction.

Exchange and magnetic dipole interaction as well as nuclear interactions are dis

regarded. They are of no importance for this problem. /3 is the Bohr magneton.

The term in V alone will remove partly the 2L +- 1 fold orbital degeneracy and

introduce a splitting which is in general large compared to any of the other terms.

We thus treat the Hamiltonian

tf "/# (£-f-2S) »H+>Los (2.2)
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as a small perturbation compared to V.

Denote with n the quantum number for the orbital states in the potential

V and Eq their energy. In case the ground state is degenerate, we denote their

quantum numbers with n0, thus E^ * 0. The spin states which under the action of

V alone are still degenerate, we denote with s. The operator >f' is then a matrix

with respect to these quantum numbers which we denote with (n s/^'/ n' s')» In

general it will contain off-diagonal elements in n which we can remove in first

order in ft and A by a canonical transformation

X SS"^ S (2.3)
il

Define a Hermitian operator ^ by e a S, then (2.3) becomes

H *K+i[k.^ £[(*.£).j]*.... (2.4)
We shall now choose J[ in such away, that the first order matrix elements of <K '

in A OT/tf which connect different levels Eq cancel. This leads to

(. (n s \K%\ n' s')
(-./j/»...). r *-^ f°r^*v t (2.6)

[ 0 otherwise

Inserting this in the third term in (2.4) we obtain

(nn aJH InX a*) = (n„ s/<#°/ n' s')f T K s /#'/ mt)(m t /<K'/n<S a')
mat ^ - Ea



for the transformed Hamiltonian0 This operator contains now only matrix elements

which refer to states of the same unperturbed energy En a E*, a o.
O 0'

With the special Hamiltonian (2.2) we obtain by defining the quantities

,. , V (no/Li/ m)(m/L.j/n0,)
^o/^ijUo') «2 , - (2*7)

m "nQ " na

(»o •/^/»i-,)«-^(»Jl1|^)H1 4,.,1-MnjLln,,) .(s/s|s»)

-»/H(./B|..)cT^l +(%//ly|^0(B|^«1-/fH1)(ABJ.^HJ)/..) (2.8)

This formula simplifies considerably for the case that the lowest level is single

in the orbital quantum number nQ. In this case (see below)

(»o'LiK)=0 (2.9)
and we may write for «K in operator forms

*="*fi 5•S. +>Z% *± si+/S zA±i^r z/SA I A±i Vj (2.io)
The first and last term together may be written

-/* Sik E± Bfc with glk «20^ A /l±j) (2al)
and describes the anisotropic magnetic g-factor. The second term is a "pseudo

quadrupole" term and gives rise to asecond order Stark splitting of the spin

levels. The third term is quadratic in the magnetic field and gives atemperature
independent term for the susceptibility. Since A±. is anegative definite
symmetric tensor it may always be diagonalized in asuitable coordinate system
and takes then the form
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A s A tf with /V < 0 . (2.12)
ij i ij ±

The /l^ are of the order of magnitude ---where E is the separation of the nearest

level. The equation (2.10) for %L establishes a connection between the Stark

splitting of the spin levels, the temperature independent part of the susceptibility

and the anisotropy and magnitude of the g-factor0 It is also seen that g £ 2

for A £ 0 which corresponds to normal or inverted multiplets for the free ions.

There remains to prove (2<>9) for a single orbital levelo This is so because

*L. s - L.« ^he solution of the Sehrodinger equation may be assumed real since

the Hamiltonian for the unperturbed problem contains only the first term in (2ol)

in addition to the kinetic energy and is, therefore, real. Thus if ^ is a

solution Ijj is one too and if the level is single they differ only by a factor

of magnitude 1. Thus we may normalize )fJ so that ^ * s W. Then we have with

K,KI *0> "W> \T> "<V» hV )* • - Cy" . \f*) •- 0». \f ) -o

qoOodo

3) Curie constants of Cu S04 e 5 H«0

The free Cu++ -ion is a2D5/2 with aspin orbit constant A«-852 cm-1,
corresponding to an inverted doublet of separation 2330 cm"1* In the Cu S04 «5H?0

crystal the ion is surrounded by four water molecules in a plane and two oxygen ions

on the axis perpendicular to this plane. The symmetry of the electric field due to



=10=

0 Cu

0 H20

€> 0

the electric dipoles of the water and oxygen is thus tetragonal and we shall hence

forth refer to the axis through the oxygen as the tetragonal axis. The crystal

structure is triclinic with the following lattice constants and angles6.'

o

a s 6.12 A d a 82° 16°

b • 10.7 A /? a 107O 26' (3.1)

os 5.97 I ^ a 102° 40"

There are two Cu-ions in each unit all at the sites (0, 0, 0) and (f, J, 0).

They are iuequivalent, their tetragonal axes making an angle 9 * 82° 14* with each
o

other. Their separation is 5.542 A and they are nearest neighbors.

The splitting of the orbital levels due to the electric field of tetragonal

symmetry was calculated by Polder7. The zeroth order wave functions are determined

from group theory entirely.



.11"

1

r4

-n

k- e?2 + ?.,)
fz

fl' ?o

r4> ±irt-r+)

degenerate

They split into five levels

with their wave functions

given bys

(3.2)

J

We denote the energy differences to the ground state with A, B, C. They are of

order 10 «"* . The tensor A^ is diagonal in acoordinate system which coincides
with the octahedron and has then "the values

A
Uc B

0

.A.
B

(3.3)
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An experimental determination of the susceptibility cannot be directly compared with

the values derived from one typo of ion. Instead the effect of both types of ions

must be considered simultaneously. It is then more advantageous to introduce a

coordinate system which is symmetrical with respect to idle directions of the two

ions. Let T-., "E2 stand for the unit vectors in the directions of the tetragonal

axes. The unit vector in the basic coordinate system are denoted with^-j, /$2*

/i„ and are given by

/<?.
2 cos 6/2

d$ " 2sine/2 V-L2 " JLi

-? sin 9/2 —X —2

<12 + Ij)

C*a " ^i>

In the coordinate system of one of the ions the g-tensor has the form

0 P
Sik " Si " jjc

g2 ag3 «2(1 --§-)

(3.4)

(3.5)
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by (2.11) and (3.3). In the basic coordinate system it is transformed according

to the laws of tensor transformation into a non-diagonal tensor given by

Sll sSi cos2 e/2 + §2 sin2 e/2

g22 sgl sin2 0/2 + gg cos2 6/2
(3.6)

g12 Sg21 * ~ ^62 " Sl^ 00S 6//2 Sin 9/2

S33 * S2

all others zero. The two signs in g,2 correspond to the two types of ions. A

similar expression results for A ...

The relevant terms in the Hamiltonian (2.10) may now be written

r r

The second term in (2.10) is simply an additive constant for a spin S * i and

may,, therefore, be omitted. The second term in (3.7) gives rise to the temperature

independent term in the susceptibility which was calculated by Polder. Since

it commutes with the first term its effect may be calculated separately and need

not be given here.

The magnetic property of the material can be calculated from the standard

expressions

2

2... « 11m kT 2 j^n 2 (3.8)
* H+0 2*1 2Hk

Z* tr,"^ (3.9)
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Por weak fields (/?H« kT) one may evaluate (3.9) for the partition function Z

by developing the exponential

l2

Wl-£-+ih f-4-)+- •••
Since tr«^sQ

tr HZ a (28 +if 4- 8(8 +l)/f 2^ gW g(r) ^ He
r,i

/nZB oonstf •
2J(2S + 1)H

Furthermore

I
r,i

sik sie

tr

kT

^k^ke

Y\ *E1 cos 9/2 +g sin2 e/2 A

2 2 2 2 2y- 2 • gx sin 6/2 + g cos 0/2

y 2 . 2
» 3 " S3

f

J

Inserting (3.14), (3.13), (3.12), (3.11) in (3.8) one obtains finally

' i kT 3 i T

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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The Curie constants Ci for single crystals were measured by Krishnaa and Mookberji

and were found to be

C-, — C, s .48 degree/mol

Cg s „40 degree/mol

The best agreement with experiment is obtained for A a 15214 cm~l B = 25818 cm""*

(3.17)

y- a 2.29 C = .493 degree/mol
° 1 1

^2 s 2.24 C2 s .471 degree/mol (3.18)

y3 s 2.07 C3 « .401 degree/mol

A slight discrepancy seems real, since the experimental values of the

Curie constants show no variation in the 1-2 plane of the basic coordinate

system© A further corroboration of this is found in the magnetic resonance

absorption measurements to be discussed later, ^he explanation of this must be

sought in the fact that we assumed without justification that the tetragonal

axes of the electric field are identical with the axes of the octahedron of water

and oxygen. This is true, if only nearest neighbors are considered. However

already the inclusion of the next nearest neighbors with electric dipoles shows

that the effect of these is not entirely negligible and is indeed of the right

order of magnitude and the right sign. That is they are so located as to produce

a tendency for increasing the angle 0.

4) Super exchange in Cu SO4 • 5 HgO

Already Polder has found the theory not adequate for describing i2ie

fact that the powder susceptibility follows a Weiss law
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with aWeiss constant 0 « 0.7° K9. Krishnan and Mookberji8 also found aWeiss law

at higher temperatures (T > 90°) with Weiss constants which depend on the

orientation of the single crystals and even change signs. Unfortunately, errors

are not given by these last mentioned authors. A rough estimate of the errors

on the basis of the scattering of the values reveals, however, that no conclusion

can be drawn as to the value of 0. The above mentioned value obtained for powder

at much lower temperature appears to be certain.

It is clear that the simple electronic levels can never give such a

law for the susceptibility since the doubly degenerate level of the ground state

can never split by any electric field whatever (Kramers' theorem). The explanation

of this effect must be found in an interaction of the magnetic ions. Among the

various interactions which are known to be operative,the following ones are possible.

a) Ordinary exchange interaction% This effect is almost certainly too
o

small, ^he next nearest neighbors are 5.542 A away and a rough estimate with

hydrogen-like wave functions shows the exchange integral to be too small by a

factor 100. In addition the ions are completely surrounded by water and oxygen

and it is very difficult to conceive of any direct exchange under these circumstances.

b) The magnetic dipole interactions The expression for this interaction

10 ..
is very well known. Following the method of Van Vleck one can calculate its

contribution to the susceptibility with the result

i*J

(4.1)
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where )\ ±s the 3— component of the radius vector between -Bie ions r, r* and

S is the distance of these ionso There are two points in which this case is

different from Idle previously discussed ones. In the first place we have a

triclinic latticeo For such a lattice it is no longer true that the contribution

of the ions within a sphere to the expression (4.1) vanish as it is known to be

the case for cubic lattices. As a consequence the magnetic dipole interaction for

a spherically molded specimen which is just zero for cubic lattices does no longer

vanish. The second difference from previous treatments is due to the fact that

there are two different kinds of ionso Although these effects are not expected

to be large, a numerical evaluation of (4.1) was carried out with sufficient

number of nearest neighbors (about 30) to see the convergence of this expression.

The correction to the susceptibility at 1° K is only a few percent and is, there

fore, negligible.

c) Nuclear interactions 8 Nuclear interactions certainly play a role

in the magnetic properties of ions, ^he recent discovery of the hyperfine

11—15
structure in magnetic resonance absorption is a convincing proof of this •

However, nuclear interactions cannot be considered as the cause for the departure

from the Curie law for two compelling reasons s They are much too small and the

correction to the isotropic susceptibility (powder value) is rigorously zero.

d) The effect of superexohange8 There are many substances known where

the exchange interaction is very large although the magnetic ions are separated

by non-magnetic ions. There are notably the antiferromagnetic ox,ides, sulfides,

selenides and tellurides of iiie transition metals, ^he result of neutron

diffraction on such crystals also show a marked correlation of the spins at
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adjacent sites for the ions16.

On the theoretical side it was pointed out by Kramers17 that magnetic

ions could interact via the excited states of intermediate non-magnetic ions.

This superexchange is expected to be of an order of magnitude which seems to fit

very well the experimental data on the above mentioned crystals . Since all the

other possibilities are eliminated it must be concluded that superexchange is

also operative in the Cu S04 -5HgO crystals. A similar conclusion was reached
19by Opechowski for the case of the Tutton salt KgCu(S04)2 •6H20 where asome

what smaller Weiss constant of 0a0.052° Kwas observed by DeKlerk20. Unfortunately,

the actual exchange interaction is very difficult to evaluate. The superexchange

will in general lead to an interaction which may be of the form

*N N>.rr' o(r) (r»)Z (T^ Si Sk and ^^ introduces a large number of

parameters. So long as only orders of magnitude are discussed we may assume it

to be of the form

and we shall later assume further that only nearest neighbors interact, ^he

assumption of an isotropic exchange (4.2) is not a serious restriction for the

calculation of the Weiss constant. However, the assumption of isotropy will

affect any statement which will depend on the fact that the total spin S »V S^
r

commutes with (4.2) while it does not for an anistoropic exchange. This has a

decided effect on the theory of exchange-aarrowing of magnetic resonance lines

to be discussed below.
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Further experimental evidence for the existence of the superexchange

are the specific heat measurements. J. Ashmead21 found that the specific heat

of Cu S04 •5 H20 has a maximum at about 1° K, and Duychaerts22 finds that the

tail at high temperature follows the law C =A/T2 with A S 1„5 degree cal/mol.

Finally the magnetic resonance measurements23"25 on Cu S0A •5H«0 show

a line width which is much smaller than the width expected on the basis of magnetic

dipole interaction. The explanation of this phenomenon has been given by Van

Vleck and Gorter26 as due to an exchange interaction. Also the Bagguley and

Griffith observed a very interesting phenomenon. If the constant field was along

T^ the resonance should occur at two points corresponding to the two g-factor

in a direction parallel and perpendicular to the tetragonal axis. However, only

at /• 0.85 cm are the two lines separated. At A •3.04 they are merged into

one single line half-way between the two expected positions. This is just what,

would be expected if -ttie two types of ions have an appreciable exchange27. A very

rough estimate was made by Bagguley and Griffith on the assumption that the lines

begin to separate if the processional frequency is equal to the exchange frequency

which occurs at 1.73 cm. They find thus a value of 0.15 cm"1 for the exchange

interaction constant.

The effect of an exchange term of the form (4.2) can be calculated by

extending the series development (3.10) one more term. We find then for the

partition function (omitting irrelevant terms)

£n 2 s.
(2S
-L-AtrM-JLtr M3+UN [Zl [kTj ** (^.j (4.3)
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The value of the first term is given in (3.11), (3.13). The exchange term (4.2)

contributes the second term in (4o3) the amount

tr *' -Z*f tr J_ «M SW ^^, g) s(-> ,CrO ,(,•) ^
ikhje

2-5^2 (2s +i'H [4- *<s *»T I /„. 4) si:0 %h„ (4.«
r-r'

If we assume that the exchange is effective only between ions of different kind

then the summation over r and r' can be carried out. Negleoting surface effects,

we may write

^ *rr« eiJc Sie =-§-^Z (Sik Sie* Sii «&)
1

(4.5)

Here the ± signs refer to the two tensors coming from the two different ions

(see equ. (3.6)) and

a m £_ Y" (independent of r i)

With the values (3.6) for g^ we find for the sum in (4.5)

2- (siv e±m + g4T- z^ m'22 - *«ik Sie + Sik s£) sh£ ^ke (4.6)
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(4.7)

Writing for the principle susceptibility Xt+X± where 7?± is calculated in
(3.16) we have for ?t .

^..[+.(. +«|'.a^.^
This defines the Weiss constant

0

or

Q± m- t
X,

or with S a A

8(8 * 1) „ ^
§ * —

^"t^

The powder value of 0 is found to be

k 6 a k

cl + c2 * c3
(°1 el + C2 92 + C3 e3)

k 0 s ^*/2
hf +h2 +h2

/•v

2

(4.8)

(4.9)

(4.10)

(4.11)
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The following values for Y. and h were found previously

Ti z 5.26 h2 =5.16

2 ?
Y z ~ 5o01 h2 s 4.93 (4.12)

Yt s4.29 h2 s4.29
This gives for Y

^»2k0«2x 0.7 x .695 cm"1

<** =0.98 cm"1 (4.13)

and for ©£

0 s .69°

e2 ='67° (4.14)
03 s „71°

Thus a very slight asymmetry should be present even for an isotropic exchange.

For anisotropic exchange the asymmetry would be correspondingly larger. An

accurate determination of 0i at low temperature has not been published. It

would furnish an excellent way of finding out the type of interaction for the

superexchange in this particular case.

5) The specific heat of Cu S04 • 5 H20

The specific heat was found to have a maximum at 1° K. It increases

again sharply at about 0.1° K2l. This last increase is due to the magnetic
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C 4

0.1 1° K

Specific heat of Cu SO4 • 5 H20

dipole interaction and confirms the estimate of the effect of this interaction.

The maximum at 1° K must be due to the same cause which gives rise to the Weiss

constant at the same time confirming that this effect is not due to the magnetic

interaction. The contribution of the exchange interaction to the specific heat

is in principle calculated from the formulae

"lY 8^ ' s^'^ At
Z » tr e rr1

and

(5.1)

(5.2)

Z

E s kT2 -2L Jn Z
3T c9T

I rr' (kp)2 ~ - j

«N(2S -hl)fl-hZ l l"s(S-H)l2 3 1
<• Z I 3 J 2

/n Z « consto -f Yg— N_

(kT)2 I
2

rr"
r^t

<-t Y- , + * * *
rr* rrf

(5.3)
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This gives for ^-<< kT

-JL- with A « . _
fZ 8 k ^-, rr'

r*

With the assumption that only one nearest neighbor is interacting (thereby under

estimating A) we find with Y ~ 1 cm"1

A « 0,78 x E ^ 1,5 oal degree/mol (5.6)

This value agrees excellently with Duychaert^s value A • 1.5 cal

degree/mol. Thus confirming one conjecture that the specific heat anomaly and

the Weiss constant are due to one and the same interaction. We also find that

the interaction is probably appreciable for only two nearest neighbors sinoe the

inclusion of more terms in (5.4) would increase A beyond its experimental value.

6) Nuclear interactions of paramagnetic ions
in paramagnets

The main reason why nuclear physicists are interesteaVis because the

paramagnetic ions interact with the nuclei and through this interaction give

rise to a number of interesting effects. There are two main lines of research

which are made possible through the nuclear interactions.

The first is the possibility of nuclear alignment through their interaction

with the magnetic ions, which was pointed out by M. E. Rose35 and Gorter34. The

effective magnetic field of the ions at the position of the nuclei is of the order

10 - 10 gauss. A direct alignment would require very strong fields and temperatures
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of the order 10" K. Due to these strong internal magnetic fields it is sufficient

to saturate the ions themselves, their coupling with the nuclei producing almost

complete alignment of the latter. The saturation of the ions can be achieved at

convenient field strengths of the order ^ 104 gauss while the temperature need

only be about as low as 1° K. The theory of this effect has been worked out by

Rose for the case of almost complete saturation of the ions. A more rigorous

theory which would be desirable gives rise to great mathematical difficulties.

So far it was not possible to improve this theory by a more rigorous treatment.

The second type of research is to measure the magnetic and electric

quadrupole moment of nuclei through their interaction with the paramagnetic ions.

The most useful tool for this purpose is the magnetic resonance absorption. For

the observation of nuclear interaction it is necessary to use diluted substances so

as to minimize title magnetic interaction. The hyperfine structure of magnetic

resonance absorption was discovered by Penrose28 and was further investigated by

Bleaney and Ingram29"30 and Ingram31.

There are two types of nuclear interaction which come into play in

these experiments.

a) The magnetic dipole interaction which is described by a Hamiltonian

tf^ »a(J -I) (6.1)

The interaction constant a is of order

i_\ 1 /©£\ m /l \ -3-1 ,
rs/ ~ he (ane^

/av
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b) The quadrupole interaction. There are two effects due to the electric

quadrupole of the nucleus. One is due to the interaction of the quadrupole with

the crystalline electric field. This term has in a tetragonal field the form

\ * ^f^-f"3I'-I(I^)} (6-3)
where Q is the nuclear quadrupole moment and is of order 10~24 cm2 and

/ . (Z is the tetragonal axis.) The q-values are of the
9Z2

order

-SSL- ~j 1019 cm"3
he

and this effect is then of order 10"*3 - 10"4 cm"1 for Q<v 10"24 cm2.

The second effect is due to the interaction of the quadrupole moment with

the electric field produced by the electrons of the magnetic ions. This effect is

described by a term of ilie form

.2

q 2S(2S -1) 1(21 - 1) ' 4

where q« » S 3 cos2 0-1

r /av
2

and represents apart from a factor e the average value of r- at the position

°~ lL3 _ J_3_ri . S)l(l. S)+lJ -I(Ifl)8(S +l)f (6.4)

29Z

of the nucleus. It is interesting to note that the nuclear quadrupole moment gives

rise to these two different interactions. This furnishes us in principle with
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enough information which enables us to calculate the nuclear quadrupole moment

from the observed hyperfine spectrum. The usual difficulty of calculating q'

can be avoided by obtaining Q directly from the term (6.3). The q-value which

enters in (6.3) is known from the observed splitting due to the electric field

and can be determined by a measurement of the g-factors.

At the present time, however, the theory of the hyperfine structure is

not sufficiently certain as to allow such conclusions . More theoretical work

is necessary before the method outlined here may be used to determine quadrupole

moments directly.
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APPENDUC

ON THE HYPERFINE STRUCTURE IN THE SOLID STATE

The hyperfine struoture in the magnetic resonance absorption was

observed for the first time by R. P. Penrose2® in a copper tutton salt with

of oopper replaced by magnesium. Four lines corresponding to the nuclear spin

3/2 of the copper were observed with an maximum overall separation of 93 gauss

at a wave length of 3.2 cm. The maximum was in the direction of the K^ axis,

that is the axis of maximum g-value. The mimimum was along the Kg axis where g

is mimimum also. According to Bleaney the ratio of the splitting is of order

six.

The effect was also observed in the cobalt salts by Bleaney and

30Ingram where it was found to be very large.

In another copper salt, the copper fluosilicate (Cu Si F- • 6 H20)

a very small hyperfine structure was observed.

Finally, Bleaney stated on several occasions that Mn"**"*"-ions also

produce a hyperfine splitting corresponding to a nuclear spin 5/2. A detailed

paper on this is not available yet.

The theory of these effects has not been very successful up to this

time. The two most conspieious failures occur in the copper tutton salts and

the case of the maganeseo

In the first case Pryce and Abragam33 obtained the result that the

hyperfine splitting for the parallel and perpendicular case are proportional

to
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*E„ "--!-*-«„ -2 (1)

thus giving a ratio with g ^ 2o40 g. ^-» 2o09
/I "i»

4 Ej_

0.17
^j __ (2)

This is a variation in the opposite sense from the experimental results.

Even more difficult to understand is the hyperfine structure in the

Mn ion. The electronic configuration of this ion is d° S and theoretically

no hyperfine splitting can result from such a state whether it arises from

magnetic dipole or electric quadrupole interaction.

In a recent letter to the editor Abragam proposed a solution which

seems to us to be highly improbable to be the correct answer to this problem.

According to Abragam the whole hyperfine structure in Mn++ and a strong correction

to that in Cu"'' should arise from the excitation of an electron into a* 4s state.

Since it is known that the S-functions have a very large hyperfine structure

there results an appreciable perturbation in second order to the first order

calculation. It is difficult to say whether this effect is large enough. An

admixture of 4^ of the excited state would require an overall separation of

•u» 2.5 cm x for this state to give the right order of magnitude in

Mn^r-
a

We shall show that at least the difficulty with the copper disappears

if the interaction with the magnetic dipole moment is correctly taken into account.
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Care must be taken to oalculate correctly the contribution to this interaction

arising from the electronic configuration d9. This configuration is not

equivalent to a single d-electron in this case since for the spin-part of the

interaction the d configuration acts as for a one electron problem with positive

charge (positive hole). This effect is very similar to the well-known inversion

of the multiplets when going from the first half of tiae d-shell to the second half.

In order to discuss this effect more in detail we start out with the

complete Hamiltonian of the Cu+ ion and the nucleus in the crystal and in an

external magnetic field H.

H S¥eryst„ V**! *I"2/*(§. •B)+ A(L •S)

"/Sn-g-d-H) f (3)

+a(L •I) +aJ P<j) S± ^
rsl J

Here the first term represents the crystalline electric field of tetragonal

symmetry arising from the electric dipoles surrounding the ion. The second and

third terms are the magnetic energy of the orbital and spin magnetic moments of the

ion. The fourth term is the spin-orbit coupling term. The fifth is the magnetic

energy of the nuclear dipole. The last two terms which concern us here mostly

are the magnetic interaction of the ion with the nucleus. The interaction constant

is

as2^\~ (^r)~l0'z^1 <4>



-33-

where /J s —^ and e is the nuclear g-factoro The summation over r is over all
2 mc "

the nine electrons in the d-shell and

Piks ~frXi/k- ^ik (s)

where ^. are the coordinates of one of the electrons. Since it is the last two

terms which cause a hyperfine splitting in the magnetic resonance absorption

we shall give a derivation of these terms starting from first principles.

We may consider the nucleus as the source of an internal magnetic

field Hs deriving from a vector potential As

I" s V x A (6)

with

The contribution of this internal field to the Hamiltonian is obtained in the

usual way by replacing P in the Sehrodinger equation by P+ .JL A. The -j- sign
o

eomes here because we choose e > 0 and the electronic charge is - e. The additional

terms in the Hamiltonian arise from two sources. One from the kinetic energy

I (P("V 4-AW)2~I E^f + _!_ J iW. PW+.. (8)
n J *~ n 2m ' mc tr ~~ ~" 'n 2m mc n

Since ^J" A s 0, except at the origin where the wave functions vanish, we have

written

A • P-f-P • A s 2 A • P (9)
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(This is not allowed for s-functions and gives rise to the well known hyperfine

splitting for s-states discussed by Fermi.)

The second term is due to the interaction of H« with the magnetic

moment of the spin and is given by

n

-Z/3 k SM •Vn x(JL ^x *<»>) aaf p(n)
2=1 r3/^ ~ ^'ik

n

The second term in (8) may be evaluated further to give

-2- y A(n) .?W o • 4 1 .yW (n)x
n

- a L

(10) and (11) constitute the last two terms of (3). We have replaced *>" JL

by

1

(11)

n*l r3
n

\ 3/ whlch already introduces the integration over the radial parts of
r/avav

1

the wave functions and we have written ^ L(n) =Lfor the total orbital
n=l

angular momentum. The actual value of a is not of importance here, the relative

sign of the two last terms is crucial, however, and we shall pay special attention

to this sign in the evaluation of the sum over n in (10). Before doing this we

shall rewrite the Hamiltonian after carrying out the Van Vleck transformation

discussed in the first section of this report to eliminate the off-diagonal terms

in the Hamiltonian connecting different energy levels of the V operator.

If we dispose of the unimportant terms in the Hamiltonian which we need not discuss

here since they do not affect the hyperfine splitting (there are four such terms,
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one quadratic in the magnetic field, one quadratic in the operators S, one

quadratic in the operators I and the magnetic interaction of the nuclear moment)

we arrive at the following Hamiltonian

X =-/SZ Si Si E± +• 2aAJ A± S± I±

(12)

A •,<n)
n*

T K/PiS In0) St Ik
n»l

Here the gj are the diagonal elements of the anisotropic g-tensor (the coordinate

system is already adapted to the tetragonal symmetry of the problem) given in

Eq. (3.5) of the text and A±are the quantities (3.3). The (n0 /P^|n0) is

the diagonal matrix element of the tensor P^ for the ground state. It can be

evaluated with the following group theoretical reasoning

Since Pik rpki ^a £ PijL s0 the tensor P^ transforms under
rotations according to the irreducible representation Dg. Its matrix elements

in the IM representation will thus involve transitions AM * t 2, 4M • i 1

and AM*0. The parts of P^ which involve these elements can be obtained by

constructing those linear combinations which under rotations transform like the

spherical harmonics Yg ,Yg and Yg respectively. Since the ground state is

f¥~ ^Z~*~ ^-2^ only tho last t<sm is Solved and for this one finds

("o IPilc I*o) Si Ik •_j- (n0 |Pn +P22 "2P3S/n0)(B1I1 1" S2I2 -2S3I3)

=--i- (n0 /P33 /n0)(S1 Ii V- S2 I2 -2S3 I3) (13)
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We now reintroduce the summation over all the electrons which was omitted in (13)

for simplicity. Here we make use of the fact that the operators gW considered

in the space of the resultant spin S=£Sl ' are all proportional to the
nsl

resultant spin operator S. In our case where the resultant spin is actually

also l/2 the proportionality factor is 1. Thus the Hamiltonian for the spin

interaction reduces finally to

£ (n0IPif In0)(Sl IX +S2 I2 -2S3 I3) (*)
n

In order to evaluate £ (no|P33 |no) we need the ^^^ elemcnt (M]P33IM')
n

for anyone of the nine electrons in the ion. According to a well known group

theoretical theorem the M-dependence of this operator is exactly the same as

2
that of the operator Lg and we find thus

]T (mIp^ |m«) «c(m|l||mO
n

with the proportionality constant

Csl J /3 cos2^(n) -1> (16)
L2 n \ /M = L

We find therefore

c»0|*»k>--rcH,*l1>+<-1lI»1-«>
MC (17)

2 ~n
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Thus the problem reduces itself to calculating C.

Up to this point our work is presumably identical with that of Pryoe

and Abragam. Indeed one obtains their result by calculating (16) under the

assumption of one electron in a 3d state. For then we have by simple integration

C•JL A cos2 i/ _\ -._L_ 2L a._L_ (18)
L2 \ /M b L L2 2L + 3* 7

Introducing this in (17) and (12) we find the result (l) which disagrees with

experiment, ^he correct evaluation of (16) leads to a C with opposite sign.

Using Slater wave functions (antisymmetrized products) one finds instead for C

C= JT /scos^-l) •- X »»2-*(*+l) -JLl
m»~(£ -1) m as-(>e -1) (2>£-l)^ 2^3

ay. 2*• which for £* LB2(d-eleotrons J) gives
2>£* 3

This gives instead of (l) the result

and

^E/,~ ^-T"+g/' "2

A E *~j
- -f--^

^E//
•a

0.97

^B^ 0.19

(20)

~ 5 (21)
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This value is in satisfactory agreement with experiment. Accuraoy

can not be expected to be better than about 10$ in C since Slater wave functions

are only approximations. There is no doubt, however, that the theory is

essentially correct.

As to the Mn"'" case the present theory is obviously not capable of

explaining the existence of a hyperfine structure at all since

(3 cos22P -l\ so for the 3d5 6S state of the electrons in the ion. In
\ /L,M*L

this case the existence of the hyperfine structure, if real, can indeed only

be explained by a mechanism of the sort suggested by Abragam in his recent

letter.

Since we have shown that good agreement with theory exists in the

case of the Cu*''' ion it may at first glance seem surprising that the mechanism,

if applicable to the case of Mn, should not also be operative inthe case of Cu.

The answer is that it probably does but there exist in the oase of Cu two excited

states which contribute with opposite sign to the correction of hyperfine structure

as was noted correctly by Abragam. These two states are characterized by their

electronic configurations* 3d8 4S D and 3S 3d9 4S ^ of which the first is

energetically lower.

The lower energy of the first state is partly counteracted by the

higher principal quantums number (4) which is responsible for the hyperfine

structure in this case. In the case of Cu the contribution from these two states

nearly cancels then and this is the reason why this mechanism does not contribute

any appreciable amount in the case of Cu while it may very well do so in the oase

of Mn.
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