
;1

- i

i !

i

a; ;

%

UNCLASSIFIED ORNL 849

<Pa

ON ELECTRIC FOCUSSING IN THE

FIXED FREQUENCY CYCLOTRON

OAK RIDGE NATIONAL LABORATORY

CENTRAL RESEARCH LIBRARY
CIRCULATION SECTION

4500N ROOM 175

LIBRARY LOAN COPY
DO NOT TRANSFER TO ANOTHER PERSON

If you wish someone else to see this
report, send in name with report and

the library will arrange a loan.
UCN-7969 (3 9-77)

OAK RIDGE NATIONAL LABORATORY
OPERATED BY

CARBIDE AND CARBON CHEMICALS DIVISION
UNION CARBIDE AND CARBON CORPORATION

inwi

pd«t orricc box p

OAK RID3E, TENNESSEE

UNCLASSIFIED



UNCLASSIFIED

ORNL 849

This document consists of 11 pages.
Copy _2_ of 133 » Series A.

Contract No. W-7405, eng, 26

PHYSICS DIVISION

01 ELECTRIC FOCUSING IN THE FIXED FREQUENCY CYCLOTRON

M* E. Rose

Date Issued

OAK RIDGE NATIONAL LABORATORY
operated by

CARBIDE AND CARBON CHEMICALS DIVISION
Union Carbide and Carbon Corporation

Post Office Box P

Oak Ridge, Tennessee

UNCLASSIFIED

lMlirillllllillIiiniiE!flv,i.s,YST™SLIB'''>»iEs

3 445b 03b0a31 7



UNCLASSIFIED ORNL 8^9

Internal Distribution:

1

2-3
k

5
6

7
8-9
10-13
Ik

15
16

17
18

19
20

21

22

23
2k

25

G. T. Felbeek (C&CCD)
706-A Library
706-B Library
Biology Library
Health Physics Library
Metallurgy Library
Training School Library
Central, Files

C. E. Center

E. Larson

B. Humes

D, Lavers

M. Weinberg
Murphy
VonderLage

Imlet

Snell

Swartout

A. Hollaender

F. L. Steahly

C.

W.

w.

A.

E.

F.

L.

A.

J.

26 K. Z. Morgan
27 D. W. Cardwell

28 Mo T. Kelley
29 J. I. Gillette
30 E. 0. Wollan
31 L. D. Eoberte
32 A. S. Householder
33 J. A. Lane
3I1. So K. Lyon
35 M. M. Mann
36 ¥. C. Koehler
37 W, K. Ergen
38 E. P. Blizard
39 M. E. Eose

S. Livingston

Cohen

J.

C.

Bo

E.

A.

i+0 E,

kl E.
4r JS,

U3 F.

A, Charpie
G. Prohasaaer

kk M. J. Skinner
1+5 Central Files (O.P.)

External Distribution;

if-6-53
5^
55-56
57
58
59-66
67
68-71
72-75
76
77
78-80
81

82-83
8I4--87
88-90
91
92-9^
95-96
97-98
99-103
1<A
105
106
107
108-122

123-12^
125-129

130-133

Argonne National Laboratory
Armed Forces Special Weapons Project
Atomic Energy Commission, Washington
Battelle Memorial Institute
Brush Beryllium Company
Brookhaven National Laboratory
Bureau of Ships
Carbide & Carbon Chemicals Division (K-25)
Carbide & Carbon Chemicals Division (Y-12)
Chicago Operations Office
Columbia University (J. E. Dunning)
General Electric, Eichland
Idaho Operations Office
Iowa State College
Knolls Atomic Power Laboratory
Los Alamos Scientific Laboratory
Massachusetts Institute of Technology (A. Kaufmann)
Mound Laboratory
National Advisory Committee for Aeronautics
National Bureau of Standards
New York Operations Office
North American Aviation, Inc.
Patent Branch (Washington)
Sandia Laboratory
Santa Fe Operations Office
Technical Information Division, Oak Eidge
USAF, NEPA
University of California Eadiation Laboratory
Westinghouse Electric Company

UNCLASSIFIED



ON ELECTRIC FOCUSING IN THE FIXED FREQUENCY CYCLOTRON

Mo Eo Rose

The theory of ©lectri© focusing in the fixed frequency cyclotron

has been discussed quite completely in a paper by the author published some

years ago*1 Howevers in view of recent interest in this problem it seems

worth while to present the following alternative method in which the nature

of the approximations involved will be brought out even more clearly.

We use the same notation as in reference 1. Also the same basic

assumptions will be made at the starts

The oscillator wave length is large compared to the dee gap.

This assumption, which is very well fulfilled in practice,

means that we can use quasi-stationary fields rather than the

rigorous retarded solutions of Maxwell's equations.

The geometry of the dees is idealized in the sense that edge

effeets due to the finite radius of the dees are not considered.

This assumptions which is very well justified in the region where

electric focusing is operative (not too large radii of curvature

of the ion orbits), means that the space part of the fields are

solutions of the two-dimensional static form of Maxwell's

equations.

With these two assumptions we obtain an otherwise rigorous result

for the orbit equation, see Eq. (17) below. In order to obtain the ion deflection

in passing through a single acceleration region (lens) the further approximations

1. M. E. Rose, Phys. Rev. 55, 392 (1938).



that the relative energy and phase changes are small are then introduced.

For convenience we rewrite the equations describing the field and

its symmetry properties. The potential at apoint x, z and a time t is

Vt(x,z,t) «V(x,z) cos (« t-h 0) (1)

where t • 0 is the instant at which the ion passes the plane x « 0. Since,

according to assumption (A) the space part fulfills

cA t *\ .0
gxz a z2

we can introduce the "stream line function" U conjugate to V and between U and

V the Causby-Riemann relations exist.

3U 3V 9 U 9 V
£x " <? z d z " " gx (2)

The same relations apply to U^ and V^. with

Ut • U cos (cot+ &)

The symmetry properties and boundary conditions are

V(x, - z) » V(x, z)

V(ioo , z) -if. v0

U(x, - *) = - U(x, z)

U(±<*> , z) = 0 (3)

From (2) and (3) we can also conclude that

U( x, 0) » 0

V(-x,z) = - Y(x, z)

U(- x, z) »U(x, z) (3*)
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The path of any ion with given initial conditions (at x = - <*>,

practically) can be expressed in parametric form

x = x(s)

z = z(s) (4)

where s is the distance measured along the orbit and, for definiteness, the

origin of s may be taken at the point where the orbit crosses x - 0, Alternatively

one may use the time t in the parametric form of the orbit so that x and z are

certain functions of t.

What is required now is the transformation of the equation of vertical

motion

d2z _e_ _±Jt
dt2 M 9 z

into a kinematic form whereby z is expressed in terms of x. For this purpose

we first transform the acceleration as followss

d2z / d \2 - 2 d2z , „ dv dz /ft\s (v •) z » v4 —-—- + v —-— —-— (.6J
dt2 ds ds2 ds

Now

*Hdz/dx- %fe
and

ds2 I ds dx/ Ids 7 dx2 ds2

using d/dx « (ds/dx)d/ds. Since

(ds)2 = (dx)2+ (dz)2
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we have

dx

ds

1

= (1 + or) j
dz

ds

i

= oC(l+ o£2)

and

(8)

dx d2* + *£ £l _o (9)
ds ds2 ds ds2

Consequently,

dh 1 dot
c(

(dz/ds)(d2z/ds2)

ds2 1 + cCZ dx dx/ds

from which we obtain

d2z 1 dot

ds2 (1+ oC2)2 dx

Then for the vertical acceleration we obtain from (6)

d2z v2 d^ dv &
+ v

2 (1+ cC2)2 dx ds /l +oCzdt

ds" v dt ~ t [ at 3i dt az dt

1/iz.^jEZ ^L+T1Z *£
- v|9t ^ 3 x ds a z ds

i. !z *^_/kz *< 2z ] (12)
at /if oi4 \3x c? zv

(10)

(11)

Defining E as the total energy at x = 0 we have

-iS2- = B-eV(x, z) cos (<ot V- 6) (13)
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and

Ur £Z =. cuz Y sin <f>

mpL = - eil cos fax ax ' (14)

av aY ^
m Jl = " e aT cos ^

where ef a to t+• 0 •

We also transform the right hand side of (5) as follows!

o> Y _£U __ _dU _ 9JJ _dz
^ z ~ ax ~ dx az dx

3V __dV £j[ _dz
£ x dx a z dx

So

an dU.dVdz au/ dxA
e^x dx dxdx 9x \ dx/

or

£1 = i /jEL+ *-£.) (is)
ax l-f d. [ dx dx /

Then with the use of (11), (12), (14) and (15) we obtain from (5)

Mr2 d* + oi t/eYsJnV _ cL e cos^/4l f *ilj
(Ifot2)2 dx /l-r cC2 • 1+0C2 (d>x <9z/

s - «oos^ /*L + ot j£ ^ (is)
if- <*2 dx
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Using the above for the connection between derivatives following the path and

derivatives along x, we see that the last two terms on the left side of (16)

cancel with the last term on the right side and for the final orbit equation

we obtain the results

3/2
dcC 0L(l +oLZ) ^eYsin^ .e_cog_g_ (1 x ^ 2) _dU_ (17)

~dx~ S " « 9 v dx
yfr* Mv6

It will be noted that no approximations of the kindxOl<< 1 have been

made. If this approximation is made we obtain

doC e cos <f dU (18)

** S" Mv2 *

which is equivalent to the form in which the equation of motion was used in

reference 1. If we expand cos f and Mv2 ^ terms of the phase change and relative

energy change we get

cos <f • cos {B-h u> t) = cos 0- <^t sin 6

and

l^^E-eV cos fT1 ^ -jk (1+ 6Y°S y )

= "2"K e '

so that from (18)

1* S --2- -£-f<toB &- *t sin* + 5J. cos2 * / (19)dx ZB dx [^ ^E J

The total deflection is
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LM- f Mdxs--2- (cos0 -*£* sind> + £-Icos2<9)dx (20)
oc* dx 2E J • E

The first term vanishes as explained in reference 1. The second term gives the

deflection due to field variation, the third gives the deflection due to energy

changeo

There are higher terms which we have neglected? First, there are

cross terms which come from simultaneous consideration of energy change and

field variation, (for example, -4L2u sin 6 ..2JL cos & which vanishes because
v 2E2

x and Y are odd and dU/dx is an essentially odd function2). Another cross term

neglected arises from a more exact treatment of cos (f in the expansion of

lAfv2. This gives - (l/2E2) eY ££E, sin 6 which is also odd when multiplied by
' v

dU/dx. To. fact, because the expansion parameters eY/E and aJx/r are odd in x

we see that the first terms neglected always have opposite "parity" to the terms

retained so that the first correction terms which give a non-vanishing result

are of second order in the parameters of smallness as compared to the terms

retained. To introduce these higher order terms in the expansions made would

be inconsistent (in view of assumption A) and would be unimportant in view of

their small effect. Thus, the field variation and energy-change contributions

to A. C?C are additive to a high order of approximation.

We may now return to the fundamental Eq. (17) and examine the additional

term which, to first order, is

2. Actually 9 v/d x is odd but dU/dx differs from it by a term of order oC and
it is not consistent to consider this difference in the present approximation.
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- oCiU b V sin ^/kv3

First, the physical interpretation of this term is very simple. It will be

observed that it is not, strictly speaking, a focusing effect in that it doesn't

reverse sign with s but rather with d> . Moreover, it exists even in a uniform

field along x0 In fact this term is simply the deflection gradient along x which

arises from acceleration along x. Suppose there were no forces in the z direction

but that the ion accelerates (or decelerates) along x. Then there would be a

deflection gradient

dx "" dx

Z

vx

V

"x

dv
X

dx

oC

V
X

dv
3E

dx

^j _ cL dv dt ~* _ -°L dv -^ __ oC fiJe V sin ^

V dt dx V2 dt Mv3

from (14). Thus, this extra term in the deflection gradient do6/dx tends to

collimate the orbits parallel to x in an accelerating field (and parallel to z

in a decelerating field). In fact, it is this simple effect which makes the

approximation oL<< 1 a very good oneo Howevers this eoilimation term, as we

may call it, is a small correction on the deflection gradient. Its ratio to

the focusing term may be simply estimated. To do this we note that in obtaining

A oL we need to expand the eoilimation term as well as the focusing term.

When this is done the main contribution from the eoilimation term is

—— e Y cos & (20a)
Mv4

arising from time variation of the phase <f •



We compare this with the smaller of the two principal contributions to the

focusing, the energy-change focusing, which contributes

©2 ®os *. V_S_ (20b)
2 E2

to the deflection gradient. The ratio of (20a) to (20b) is

^ aiU ^z k^

dU/efae ©Y(
o

where k is the dee gap. Since E ^ M ** rA where r is the radius of curvature

of the orbits we have

But E& const, r2, and when r~-k, E~-e YqB Therefore, E/eYo^r2/k2e Thus

R *~ o£ << le It follows then that the eoilimation effect makes a contribution

to the deflection which is small compared to the contribution of the energy

changeo
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