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ON ELECTRIC FOCUSING IN THE FIXED FREQUENCY CYCLOTRON

Mo E. Rose

The theory of electriec focusing in the fixed frequency cyclotron
has been discussed quite ccmpletely in a paper by the author published some
years agoal However, in view cf recent interest in this problem it seems
worth while to present the fcllowing alternative method in which the nature
of the approximations involved will be brought cut even more clearly.
We use the same notation as in reference lo Also the same basic
assumptions will be made at the starts
(A) The oscillator wave length is large compared 1o the dee gape.
This assumption, which is very well fulfilled in practice,
means that we can use guasi-stationary fields rather than the
rigorous retarded solutions of Maxwell's equationse
(B) The gecmetry of the dees is idealized in the sense that edge
effects dus to the finite radius of the dees are not considered.
This assumption, which is very well justified in the region where
elegtric focusing is cperative (not too large radii of curvature
of the ion orbits), means that the space part of the fields are
solutions of the two-dimensional static form of Maxwell's
equationse
With these two assumptions we obtain an otherwise rigorous result
for the orbit equation, see Eqo (17) belows. In order to cbiain the ion deflection

in passing through a single acceleration region {lens) the further approximations

1. M. E. Rose, Physe. Reve 53, 392 (1938).
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that the relative energy and phase changes are small are then introduced.
For convenience we rewrite the equations describing the field and
its symmetry propertiese The potential at a point x, z and a time t is

Vt(x,z,t) z V(x,2) cos (Wt + &) (1)

where £ ® O is the instant at which the ion passes the plane x = O, Since,

sccording to assumption (A) the space part fulfills

a?‘v + azv -
9x? 5 22

0

we can introduce the "stream line function" U conjugate to V and between U and

V the Causby-Riemann relations exist.

a
Q
<:

oU _ 9V 93U _
ox 9z 3z-" “ox (2)

The same relations apply to Ui and Vg with

U, =T cos (wt+ 8)
The symmetry properties and boundary conditions are

V(x, - z) = V(x, 2)

V(to , 2) 23 Vo

U(x, = z) = = U(x, z)

Utew , 2) =0 | (3)
From (2) and (3) we can also conclude that

U(x,0)=0

V(wx,z) = = V(x, 2z)

U(- x, z) = U(x, z) (3a)
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The path of any ion with given initial conditions (st x = - @,
practically) can be expressed in parametric form
x(s)
z(s) (4)

where s is the distance measured along the orbit and, for definiteness, the

X

2

origin of s may be taken at the point where the orbit crosses x = 0, Alternatively
one may use the time t in the parametric form of the orbit so that x and z are
certain functions of te

What is required now is the transformation of the equation of vertical

motion

alz e o Vi

at? M 2z

into & kinematic form whereby z is expressed in terms of x. For this purpose

we first transform the acceleration as follows:

2
d®z d 2 2
= (v—0—) z = v d; b v & (6)
dtz ds ds ds ds
Now
o« = dz/dx = %ﬁé%%
and
a%z &« a4V’ ax\? %z ax
= ([ ) &= - -—E~+-a:-—— (7)
ds ds & ds ax ds?

using d/dx = (ds/dx)d/ds. Since

(ds)2 = (ax)2 + (dz)?



_6-

we have
_%_ 1
x . dz "z
= = (1+ o?) s o ° oA (L+ o?) (8)
and
d%x dz d°
Z 2=+ 222 20 ()
ds ds? ds ds?
Consequently,
a?s _ _1 da _ (dz/ds)(d%z/ds2)
as? 1+ a? & dx/ds
from which we obtain
d?z _ 1 do (10)
as?  (1+ a?)? &
Then for the vertical acceleration we obtain from (8)
2 2
a o
d’z _ v - d +v§1 (11)
a2 1+ A% & as V1 +a?
av _ 1o _ 1 /5y v &  3v &
ds - v dt T v (ot ox dt o3 dt
1l /ov v dx ov dz
= “;@t G- a.r>
l ov 1 SV av
v ot 71+d2(8n az> (12)
Defining B as the total energy at x = O we have
Wl
2 = E - eV(x, 2) cos (wt + O) (13)

2
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and

v _ .
MVTE _cueVsmf
dv _ oV
Mva—i-- 99—;0085‘7
(14)
Mvé% = —e——cosf
where 7=wt+9.
We also transform the right hand side of (5) as follows:
9V _ QU _ 4 _ 9U  da
Dz ox  a& dz dax
JV A&V oV dz
o x dx oz dx
So
9U=dU+dde_aU(dx2
dx dx dax dax Ix dx
or
29U _ 12 dU+_d_£V_> (15)
ax 1+ ol dx dx
Then with the use of (11), (12), (14) end (15) we obtain from (5)
2 .
Mv dd+ ol tdeVsmlf_ d e cos F—Y""dﬂ)
(1+a?? a Vit o2 14+ o2 dx 9z

9——°—°—‘5—2—(-—+o¢—-> (16)
1+d
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Using the above for the connection between derivatives following the path and
derivatives along X, we see that the last two terms on the left side of (16)
cancel with the last term on the right side and for the final orbit equation

we obtain the result:

X ” 3/zw .
(L+al”) e Vsin & __ecosé”(l*_d_g) gg (17)
Mvd Uv2

i _
& -

It will be noted that no approximations of the kind\gx_ << 1 have been
madee If this approximation is made we obtain

dol -8 cos ¥ du (18)

& . ax

which is equivalent to the form in which the equation of motion was used in

reference lo If we expend cos # and Mv2 in terms of the phase change end relative

energy change we get

cos § B cos (B+ &« t)= cos & - @t sin &

and

l/Mvz :—;—-(E-ev cos?’)-lz —}2-E_(1+evgcosz )

n

1 e V. cos &
- A5 )

so that from (18)

e

do du .
= --2-;— -d-i-(cose-wtsmﬁ-p-ffzcoszé} (19)

The total deflection is
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o ©
Ad:j%@=-%§(cos9-%{sm6+ .e_fY.coszé)dx (20)
—® e

The first term vanishes as explained in reference le The second term gives the
deflection due to field variation, the third gives the deflection due to energy
change.

There are higher terms which we have neglected: First, there are

cross terms which come from simultaneous consideration of energy change and

field variation, (for example, - %’5 sin & . i.% cos & which vanishes because
- :

x and V are odd and dU/dx is an essentially odd function2)s Another cross term
neglected arises from a more exact treatment of cos lf in the expansion of
1/Mv%. This gives - (1/2E%) e ¥V %E sin & which is also odd when multiplied by
dU/dx. In fact, because the expansion parameters eV/E and a/x/v are odd in x
we see that the first terms neglected always have opposite "parity" to the terms
retained so that the first correction terms which give a non-vanishing result
are of second order in the parameters of smallness as compared to the terms
retaineds To introduce these higher order terms in the expansions made would
be inconsistent (in view of assumption A) and would be unimportant in view of
their small effecte Thus, the field variation and energy-change contributions
to A K are additive to a high order of approximatione

We mey now return to the fundamental Eqe (17) and examine the additional

term which, to first order, is

2. Actually 9 U/5x is odd but dU/dx differs from it by a term of order & and
it is not consistent to consider this difference in the present approximatione
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- weV sin ¢ S
First, the physical interpretation of this term is very simple. It will be
observed that it is not, strictly speaking, a focusing‘effect in that it doesn'tt
reverse sign with 3 but rather with o« Moreover, it exists even in a uniform
field along xo In fact this term is simply the deflection gradient along x which
arises from acceleration along x. Suppose there were no forces in the z direction
but that the iom accelerates {or deselerates) along xe Then there would be a

deflection gradient

P R T T T
& T & vy 2 T e ax
X Ty dx Ty ax
~ dv ab ~ oL dv ~  haleVsin¥
7 dt dx ve at Mv3

from (14)s Thus, this extra term in the deflection gradient dcl/dx tends to
collimate the orbits parallel to x in an accelerating field (and parallel to z
in a decelerating field)e In fact, it is this simple effect which makes the
approximation d << 1 a very good onso. However, thig collimation term, as we
may call it, is a small correction on the deflection gradiente Its ratio to

the focusing term may be simply estimated. To do this we note that in obtaining
A ol we need to expand the ccllimation term as well as the focusing terme.

When this is done the main contribution from the collimation term is

M

arising from time variation of the phase f °
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We compare this with the smaller of the two principal contributions to the
focusing, the energy=-change focusing, which contributes

2
_ 8° cos é - du (20b)

2 EC ax

to the deflection gradienmt. The ratio of (20a) to (20b) is

Awbx M , AU K
~/
o dU/dx sV,

R ~

where k is the dee gap. Since E~ M w r% where r is the radius of curvaturs

of the orbit, we havs

R o —EK_

eV, re
But E 27 conste r® and when r~ky, E ~eg v@a Therefore, E/%Voaarz/kze Thus
R~ << 1le It follows then that the collimation effect makes a contribution
to the deflection which is small compared to the contribution of the energy

changeo
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