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GENERAL INTRODUCTION

In designing heat exchange equipment it is sometimes necessary to have infor

mation about forced convection heat transfer in the thermal entrance region of the

heat exchanger duct system. A thermal entrance region results when a thermally

established fluid flowing in a duct system suddenly flows over surfaces which

possess some new temperature distribution. This new temperature distribution

may be a uniform one, or may result from a uniform wall heat flux distribution,

or may be characterized by some intermediate condition. The thermal entrance

length can be defined as that distance from the entrance where the convective

conductance* or thermal boundary layer thickness has attained a value which is

one percent of the fully established value. Fundamental information about thermal

entrance regions would make it possible 1) to establish the temperature distri

bution or heat flux in that portion of a duct where local high temperature areas

(hot spots) exist, 2) to explore the thermal performance of short heat ex

changers, and 3) to facilitate the design of research heat exchangers which are

to be used to measure established heat transfer conductances far downstream.

Some of the pertinent theoretical entrance investigations that are found

in the literature are briefly listed here. Classical conduction solutions equi

valent to slug flow between parallel plates with uniform wall temperature and

uniform wall heat flux entrance regions are given in references 1 and 2,

respectively. Graetz derived a conduction solution for parabolic fluid flow

in a pipe with a uniform wall temperature entrance region (reference 3)•

*Also called heat transfer coefficient

UNCLASSIFIED
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Martinelli and Boelter have presented an analytical study of superposed free and

forced laminar convection in a vertical pipe with a uniform wall temperature

(reference k). Latzko has developed turbulent forced convection solutions with

both hydrodynamic and thermal entrance regions (with uniform wall temperature

conditions)! his solutions are valid for Prandtls' modulus equal to unity and

for systems where heat is only transferred by eddy convection (reference 5)°

Sanders has obtained a turbulent flow convection solution for the uniform wall

temperature entrance system by transforming the turbulent core to a laminar core

of equivalent thermal resistance^ this transformation is predicated on several

postulates (reference 6). Seban and Shimazaki have obtained some numerical

solutions for the entrance region by means of the finite difference method

(reference 7)=

Few experimental entrance investigations have been reported in the

literature! some of those found are briefly noted here.

Boelter, Young, and Iversen have presented experimental local heat transfer

data for air flow through a pipe with a uniform wall temperature entrance region

and for a series of hydrodynamic entrance conditions (reference 8). The steam

condensation method was used. The local conductance distributions of some of

the different hydrodynamic entrance conditions studied are given in Figures 1

and 2. These data indicate that except for distribution (a), the entrance

lengths for the specific conditions given are about 1 = 1? or greater. Although

the Reynolds modulus range covered was only from 17,000 to 56,000, it appeared

that the entrance length increased as Reynolds modulus increased.

UNCLASSIFIED
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Humble, Lowdermilk, and Grele (reference 9) have measured average heat

transfer coefficients for the case of air flow through an electrically heated

inconel tube with a bellmouth entrance. Because local outside tube wall temper

atures were given in reference 9, it was possible for the writer of the present

report to calculate local conductances for the inconel tube in the following

manner. The tube was divided into twenty four small longitudinal sections.

The heat generation and longitudinal heat conduction (to the bus bars) were

determined for each section and the inside wall temperatures and convective

heat fluxes calculated. The local mixed mean fluid temperatures were determined.

The local heat transfer conductances which were then calculated are presented

in Figure 3. Heat conduction to the bus bars was only significant near the ends

of the tubej the conductances were not plotted in these regions. The uniform

heat flux conductance data in Figure 3 indicates that for the specific con

ditions given the entrance length is about |=50 and perhaps greater.
English and Barrett (reference 10) have measured local conductances for

the case of mercury flow through electrically-heated nickel tubes. These tubes

contained copper plated outer sheaths within which practically all of the total

heat was generated. Figure k shows the local conductance distribution for

mercury under approximately uniform heat flux conditions. The entrance length

for the specific conditions given is about £ = 30 or greater.

An attempt will be made to present a series of new forced convection heat

transfer analyses for thermal entrance regions some of which are primarily

applicable to liquid metal systems. These analyses are to be presented in

several parts; the following report represents the first of these parts. The

report numbers of the subsequent parts are to be consecutive.
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FORCED CONVECTION HEAT TRANSFER
IN THERMAL ENTRANCE REGIONS

PART I

Heat Transfer In the Thermal Entrance Region of Parallel Plate and

Pipe Duct Systems, with Uniform Wall Temperatures, Containing Liquid

Metals which Have Turbulent Velocity Profiles and Low Prandtl's

Moduli.
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SUMMARY

Part I concerns itself with an analytical study of forced convection heat

transfer in the thermal entrance region of parallel plate and pipe duct systems,

with uniform wall temperatures, containing liquid metals that are characterized

by low Prandtl's moduli and turbulent velocity profiles. Local heat transfer

and convective conductance expressions in terms of Reynolds' and Prandtl's moduli

are developed.
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NOMENCLATURE

English Letters

a, thermal molecular diffusivity of the fluid, ft2/hr
p

A . fluid flow cross sectional area, ft
c*

b, one half the distance between the parallel plates, ft

B, parameter in the turbulent velocity expression, ft/hr

bn, Fourier-Bessel series coefficients, °F

ct cl> c2' c3> constants in equations 13, 14, and 16

cn, series coefficients in equation 19, °F

c_, heat capacity of the fluid, Btu/lb °F

hcX, local unit thermal convective conductance, Btu/hr ft F

yj Bessel function of the first kind

k, thermal conductivity of the fluid, Btu/hr ft2 (°F/ft)

m, exponent in the turbulent velocity expression

(-) > local convective heat flow, Btu/hr ft

t, fluid temperature, F

o

tjgx, local mixed mean fluid temperature, F

t0, initial fluid and wall temperature, F

ty, duct wall temperature, °F

U, mean fluid velocity, ft/hr

u, fluid velocity at distance, y, from the duct wall, ft/hr

x, y, Cartesian coordinates in Figure 1, ft
r

1 Bessel function of the second kind
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*.(X),

P>

A£ >
Ax

Terms

T =t-tw

To - V*V

a =
k

tfc

Z (m +2)

13 -

eigenvalues of equation 18

fluid density, lbs/ft3

a function of X only

a function of Y only

thermal eddy diffusivity, ff-

fluid kinematic viscosity, ft2/hr

fluid mass density, lbs hr2/ft

friction factor defined in equation 27

axial pressure drop, lbs/ft-*

III
F

m + 2

2

ft

Z1 =M—} ix \m + 2 / F

F -

bB
1

m + 2

f(Z) =I0/ (ff^) a)
Dimensionless Moduli

X = Pr «
rcpi

* - f Re -
2bU

ORNL-913
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INTRODUCTION

A pertinent thermal entrance system encountered when dealing with liquid

metals is one in which 1) the thermal eddy diffusivity is small compared to the

thermal molecular diffusivity (that is, when the reciprocal of Prandtl's modulus

is large compared to the eddy diffusivity - kinematic viscosity ratio) and

2) the established velocity profile is a turbulent one.

The first condition arises when considering fluids that have high thermal

conductivities, low heat capacities, and low densities; a large fraction of the

liquid metals fall into this category. Table I reveals a comparison of Pr~ and

the ratio 9H for a series of Prandtl's and Reynolds' moduli for a pipe

system. The term ^H iS an arithmetic mean value for a fluid annulus, half

the radius in thickness, and contiguous to the pipe wall; this is the important

layer as far as heat transfer is concerned.

TABLE I

c

Comparison of Pr-1 and SH for Various Re and Pr Moduli

Pr

Re - 5,000 Re = 10,000 Re = 50,000

Pr-1 (S^Wa*1 Pr"1 ^jmean Pr"1 fy))mean

.01 100 7 100 13

.005 200 7 200 13. 200 56

.001 1000 7 1000 13 1000 56

Table I illustrates generally the region in which the thermal eddy diffusivity

is small compared to the thermal molecular diffusivity.
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Turbulent velocity profiles for parallel plate and pipe duct systems can

be satisfactorily represented by power expressions (references 11 and 12). For

example, Donch expresses his experimental parallel plate velocity data by an

eighth power law (Figure 5). Pipe velocity data are usually represented by a

seventh power law.

The following ideal system was postulated to approximate the forced con

vection heat transfer system under consideration (see Figure 6) and was utilized

in the analytical study?

1. The established turbulent velocity profile is represented by

the power law, u=B/^j .

2. The initial fluid and wall temperatures are t0.

3. The uniform wall temperature for x>0 is ty.

4. The thermal eddy diffusivity is small compared to the thermal

molecular diffusivity and is neglected.

5. Longitudinal heat conduction is small compared to transverse

heat conduction and is neglected; this postulate, which is

frequently made, has been verified experimentally.

6. Fluid properties are invariant with temperature.

UNCLASSIFIED
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ANALYTICAL STUDY

A. Derivation of the Temperature Solution

\

///// y / / )^ X \ \ ^ ^ i> ^ \ \

u(y)»$(£)

//// V / / / .0 \ \ \ \ v \ \ \ V

Figure 6. Parallel plate heat transfer - fluid flow system

The heat transfer differential and boundary equations for the system under

consideration are

where

B

m

i)
h = a

t(X,0) = ty

4^(x,b) -o
d y

t(o,y) = tQ

\2
0 t

>m

u(y) =b(^) ,turbulent velocity profile

x,y, cartesian coordinates in Figure 1

t, fluid temperature
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a, thermal diffusivity of the fluid

b, one half the distance between the
parallel plates

B, parameter in the turbulent velocity
expression (a function of Reynolds*
modulus)

m, exponent in the velocity expression

Equations 1 to 4 can be expressed in the following more general forms

where,

j_T =F2
dX vm e) Yy

T(X,0) - 0

>,!> -' 0

T(0,Y) - I i

o

T - t-tw

To • *<>"*»

F2 - a
bB

X = -* b

Y =1
b

UNCLASSIFIED
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This boundary value problem can be solved by the separation of variables technique,

Let T - *x(X).f2(Y) (9)

where <& (X)-and *2(T) are functions of X and Y, respectively.

Upon the substitution of these functions into the differential equation there

results,

i d*i(*> . Fl_ dVY> m.a2 (io)
$ (X) dX " Y^ft) dY*

2
where /3 is a constant.

Thus d* (X) _
—1 + /T* (X) = 0 (11)
dX 1

,2,
and d"$2(Y) (f m .. n

n + '—• Y MY) - 0
1?^ ^ 2

The solutions of equations (11) and (12) are

(12)

$X(X) =Ce"'3 X (13)

2 T r ^ m + 2., 1,, m + 2

m + ^

TJ and 1

respectively, and where C,, Cp, and C-> are constants.

where tj and 1 are 1 order Bessel functions of the first and second kind,
m+2

UNCLASSIFIED
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Thus the general solution is

A 1

- 20 ORNL-913

T «a C

iTTV m+ 2 V F '

lim Y 1 , is finite and not equal to zero, but T(X,0) = 0; thus Co

* m + 2

must be equal to zero.

Thus T • Ce
fa h

J X (W

where C is a constant.

Also 0 T

m+2
F

m+2

Y 2

Ce
rx

m+2

1 T (UUAy^
—J"
2Y

where

m + 2

+ /s
F

m + 1
~2— J'_i_((^)

m+2

- m+2

F

-\

-J 1 (Irnl T
m _i_ O \m + 2

m + 2 Ĵ-l ((m +2)
m + 2"

^ SL+i.
.CLy 2
F

__2
,a + 2

A Si-2.
Z8 y 2

(16)

(17)

The constant A can be evaluated from the boundary condition given by

equation (7),

» T (X.l)
7T *''

- 0 = Ce

2

-/ax

^)4)
L m + 2 v

+ £ T
F "^ 1

2 \/9
Im + 2) y

m + 2

UNCLASSIFIED
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Thus the bracketed term (the eigenfunction) is equal to zero.

F

2
m+2 ' m+2

J ! <*L&> +/3n J 1 <Zi/4) -0

where, /Q , are the eigenvalues (n » 1,2,...)

Im + 2 J F
Zi = . .

\m + 2 I

m + 2

(sr+-2) F

Thus T = Y

m+2

(18)

where c are constants to be evaluated from the last boundary condition given by

equation (8):

(20)T(0,Y) -T -Y* 2_ cn J (( 2 \^2 T
n=l 1 VU + 2 I F

m + 2

or m£» , -/ cn J_i <AZ) =f(z) <21)
\__i__ Z m + 2

f
o

expand f(Z) in a Dini series (reference 13).

Z, 1
Because ( -1 z2 f(Z)dZ exists and is uniformly convergent, it is possible to

f(Z) -Z_ bn J 1 (Az) <22)
n»l m + 2

UNCLASSIFIED
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where

Zl -r-
[ f(Z)ZJ 1 (/?nZ)dZ

J m + 2
b_ • c = £

n n

22

J,f (z)z -J 1 (/?nz) dZ
m + 2

ORNL-913

(23)
zl

0 "m + 2

[Jj^J/W "dZ

m + 2

and /? a16 ^h® roots of

IJ ± <h/V +AJ x (\
m + 2

Thus the temperature solution is

y-n

m + 2

&> -

m + 2

T - Y c e
n

/$S

^ 1 (m-+4->
/5n Y 2

n=l
m + 2

Where /^ are the roots of

/

Jl (ZlAL) +Aj1 (Zi/4)-0

c_ »

F

2

m+2

f(Z)Z J 1 (/^Z) dZ
mTTS

m + 2

2 /22. '^r^l^Tji (^V
^ m + 2

UNCLASSIFIED
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m + 2

Z o I 2\m + A F

2

F2- a

bB

a = k

re

23 -

T - t-t.

T = t-t
o o w

X =5
b

Y -Z
b

ORNL-913

(24)

(Con't.)

y

B. Determination of the Hydrodynamic Parameter, 'B*

The parameter 'B1 can be determined in terms of the mean velocity.

r b

where,

Thus

U -

u dA

(°J Bymdy
m + 1

B

Tm~+ 1)

i/ u(y)2

= b

2bl

1 dy

_J _ / 1 \
m + 1 \m + 1/

U, mean fluid velocity

A , fluid flow cross sectional area
c'

B « (m + 1)U

m + 1

(25)

(26)

Note that the mean fluid velocity in the parallel plate system is related to the

pressure drop and the friction factor as in the case of flow in apipe (reference 9)
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&x ° 2lT^ 2"

5 - »(Be)

where, hy , axial fluid pressure drop

5 , friction factor

p , fluid mass density

Re » 2bU f Reynolds' modulus
t)

t) , kinematic fluid viscosity

C. Heat Flow Solution

The local convective heat flow expression is

<*ir&L"«(-!
r

-k

b

m + 2

m. _/

m+2

+i*2_ •*• n ^y2 ji (tf^i** 2;

Where,

lim

Y-*-0

lim

Y-*0

m + 1 ^-/
o

m + 2

m + 2

I \m +2 )

UNCLASSIFIED
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Thus

lI'x

1_
2 r52- 2 .

m + 2(a\ --g ikiiLii]__ 2_ cne- ^x A
VAj- * Pf__l__ +l\ 1^1

1 \m + 2 /

D. Convective Conductance Solutj

The local unit thermal convective conductance is defined as

(J)
^cX - . L. (3D

t, -t
w ax

where, t , duct wall temperature

t_y, the local mixed mean fluid temperature

The local mixed mean fluid temperature is defined as

b

2\ ut ldy

t - _?.
mX

2U J ldy

(30)

* i A 2
t + _£ "
w Ub

_. i_ a, x t i» m+2

Z i + 2 \
n=l
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The substitution of equations 30 and 32 into equation 31 yields

cX

1 00
2f(^l1" +2 "> .X I

B

Uk

n / i + i\
h , = I \u + 2 /

c e
n

n=l

b 1 ~°
m I

(?) ©
n=l

cne

1

Am + 2

m+2

^V, (<^#0 a) *
m + 2

(33)

!. Generalization

The solutions which have been derived may be expressed in more general forms

involving Reynolds' and Prandtl's moduli. For example, it can be shown that

m) "F* (T)fin
m+2

F2=(_JL_Y_i_\
Vm + 1 IV Re Pr)

m + 2

/2{m +l).
l(m + 2?

1
\2

V
Re Pr

m + r Re Pr Y
m + 2 •A

(34)

(35)

(36)

and cn and Aa are functions of Re, Pr, and m. Re and Pr are Reynolds'

and Prandtl's moduli, respectively.
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DISCUSSION

Martinelli and Boelter (reference 4) have shown that heat transfer in a

pipe system can be satisfactorily approximated by heat transfer in a parallel

plate system with the pipe velocity profile. This approximation is valid

because the flow annuli in the vicinity of the pipe wall (rather than the flow

annuli near the pipe center) are the important heat transfer layers, and they

may be treated as flow layers in a parallel plate system. Thus, heat flows and

convective conductances may be estimated for the pipe system by utilizing the

parallel plate solutions containing new hydrodynamic parameters 'B' and 'm8.

The determination of the eigenvalues, ^ ,and the series coefficients,

c , from equations 18 and 23, respectively, must be accomplished before the heat

transfer solutions given by equation 24, 30 and 33 can be evaluated. Although

this typical kind of operation is tedious, it only involves the plotting of

known functions and the performing of simple graphical integrations. It is

planned to undertake this task in the future.

"~H. fJ Joppendiek
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