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PREFACE

This problem was first considered in April, 1950, and experimental

work was performed in August and September 1950, employing the laboratory

facilities of the Oak Ridge School of Reactor Technology at Oak Ridge

National Laboratory, Oak Ridge, Tennessee. At first it was desired simply

to demonstrate that the theory of neutron transport yields adequate pre

dictions for the neutron flux in normal water near boundaries. It soon

became clear that appropriate average values of the neutron cross sections

for normal water (required to solve the transport problem) are not

accurately known. It was then proposed to determine those "appropriate

average values" which best fit the transport solutions to experiment.

These numbers are, of course, useful in the design of water-moderated

reactors and in other applications of neutron physics.

Grateful acknowledgment is due Dr. E. C. Campbell of Oak Ridge

National Laboratory who was a constant source of invaluable advice.
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CHAPTER I

INTRODUCTION AND SUMMARY

1. Introduction

The steady state spatial distribution of neutron fluxes in matter is a

problem of prime importance to the designer of chain reacting piles, and

has been the subject of very much theoretical and experimental work. The

case in which the neutron energy is large compared to that of the nuclei

constituting the medium (the "slowing down" case) is of first importance

and is rather extensively investigated. The alternate case in which the

neutrons are in energy equilibrium with the medium is of lesser importance

and comparatively little experimental work has been done, although the

fundamental theory is well in hand. The cross-sections for neutron scat

tering and absorption appropriate to the first case are the "ordinary"

energy-dependent cross-sections (or simple functions of these) which have

been so extensively investigated by various neutron spectrometry groups.

The cross-sections appropriate to the second case are more vaguely defined.

Perhaps as adequate a definition of these parameters as any is the "ad hoc"

one - those numbers which, when inserted in the mathematical theory of

particle transport yield proper solutions for the neutron flux. It can

be demonstrated that these numbers are not in general the average values

of the energy dependent cross sections weighted by the appropriate energy

distribution function for the ambient temperature.

The "ad hoclt definition suggests a means of experimentally measuring

the numbers. One requires a medium - of simple geometry so that the trans

port problem is soluble - in which a flux of thermal equilibrium neutrons



is maintained and in which the flux can be measured at various points with

neutron detectors. Since two parameters are to be determined, two independent

solutions for the flux must be available - but this is easily provided for

by considering (l) a region "remote" from discontinuities in which the

solution is asymptotic and (2) a region adjacent to a discontinuity - say

a "black" boundary. One measures the flux at a sufficient number of points

in each region to define the spatial functions. The transport problem is

solved many times for various values of the parameters, and if fortune is

good one pair of values will be found to yield solutions which fit the ex

perimental functions in both regions.

To particularize - the chosen medium is normal water, the geometry

one-dimensional consisting of a tank many mean free paths in its dimensions,

traversed by a uniform thermal neutron current arriving at one face and

absorbed by a layer of cadmium at the opposite face. The neutron flux is

measured at points along a line normal to the cadmium facing and extending

from the facing well into region (l).

The one-dimensional transport problem is integrable in closed form for

region (l). This solution is matched to the experimental data, yielding a

characteristic equation in say the total cross-section and the scattering

cross-section - thus the scattering section may be eliminated. The trans

port problem is then integrated numerically in region (2) for various

values of total cross section and that value selected which yields best fit

with experimental data. Unfortunately, this straight-forward procedure

could not be carried out. It was found that numerical integration produced

a function which fit the experimental data astonishingly well, but that the

values of the parameter which yielded this good fit were variable with



respect to the integrating procedure. Further, it was found that each

improvement in the integrating plan led monotonously to a reduction in

the total cross section, indicating that the process of improving the

operation was not near convergence. The rapid increase in computing labor

made it necessary to abandon this process before a firm solution was ob

tained.

The Wiener-Hopf method, treated by Frankel and Goldberg (3), offers

a general solution to the one-dimensional transport problem in a single

semi-infinite medium. However, it is available only as an exceedingly

difficult double numerical quadrature which could not be handled for lack

of computing facility. A solution is given for the flux at the black

boundary only, requiring only one numerical quadrature. By equating this

solution in terms of the parameters to the experimental value of the

"contact" flux, unique values are obtained for the parameters. These

values extrapolate the trend of the numerical solutions, and are in that

sense to be regarded as supported by the numerical method.

The convergence on the Wiener-Hopf solution may be illustrated by

the successive values for the macroscopic "total" cross section. They

are; Numerical - 2.9 cm j 2.5 cm" and 2.3 cm j Wiener-Hopf - 2.10 cm-1.



20 Summary

Findings may be tabulated as follows:

Parameter - Water at 24° C.

Diffusion Length

Transport Mean Free Path

Absorption Mean Path (Equivalent)

Microscopic Transport Cross Section
Microscopic Absorption Cross
Section (Equivalent)
Ratio - Boundary Flux •— Asymptotic
(Exponential) Flux
Ratio - Boundary Flux -J- Asymptotic
(Hyperbolic) Flux

Extrapolation Distance - X0
Ratio - Extrapolation Distance/Total
Mean Path

Values

2.67 ± .02 cm.

0.48 ± .01 cm.

44.2 * 1.3 cm.

62.4 =fc 1.5 barns/mol.

0.68 ± Q.Ol barns/mol,

0.186

0.87

0.32 cm.

0.67

Comparison of the cross-section with the energy-dependent values for

protons in water by Bacher(l) and Melkonian (7) indicate an "average"

neutron energy for transport of perhaps 0.05 electron volts in contrast

with the Maxwell-Boltzmann mode of 0.025 e.v. This is not surprising since

it is expected that transport is largely effected by the high energy neutrons

which have longer free paths. In addition it must be remembered that the

neutron flux is weighted by a velocity term so that the average flux corres

ponds to a higher energy than does the average neutron, and transport weights

the cross-section by the flux rather than by the neutron density. The l/v

absorption in hydrogen provides a preferential sink for low energy neutrons,

thus the thermal distribution is displaced from the Maxwell-Boltzmann toward

higher energy.

4



CHAPTER II

TRANSPORT THEORY AND METHODS OF ANALYSIS

To indicate the assumptions involved and to portray the physical model

which was analyzed, it may be well to review the fundamental theory of

neutron transport. It must be emphasized that the model of neutron trans

port for neutrons in energy equilibrium with the medium, at energies well

below the atomic binding, differs radically from that for energetic neutrons

(En > 1 ev) in media at normal temperature.

In the latter case the energy transfer in neutron-nucleus interactions

is uniformly from neutron to nucleus, the nuclei interact as free particles,

and since the atomic vibrational energy is comparatively small, the nuclei

may be regarded as initially at rest. None of these statements hold for

the former case.

In the present problem, by definition, the net average energy transfer

between neutrons and medium is very small and due solely to the preferential

absorption of the slower neutrons. The protons are bound in the molecule

with energy larger than the neutron energy and the nuclei cannot interact

as free particles. The thermal motion of the atoms and of the systems in

which they are bound is not negligible, and so affects not only the mechanics

of the collisions but also the frequency of occurrence since the collision

probability is a function of the flux of nuclei as well as of neutrons.

Inelastic interaction of neutrons with rotational and vibrational

levels of the water molecule are probably present. The rotational levels

are quite numerous and begin at wave number 23.8 cm"*, (about .003 electron

volts) according to Wu (9).

Quantitive discussion of the scattering mechanism in a system as



complex as this is not in the scope of this paper. However to avoid mis

interpretation of the results, it is necessary, to consider at least the

question of whether the scattering is symmetric, that is whether all values

of the angle of deflection of the neutron in the Laboratory System are

equally probable, when the neutrons are in energy equilibrium with the

medium.

Referring to Fig. (1), v0 and v are the velocities of neutron and

molecule respectively before collision, in the laboratory system, and a

the angle between them. To transfer to the center of mass system a vector

velocity V is added of such magnitude and direction as to reduce the total

momentum to zero. Using unity as neutron mass and M as molecule mass we

haves

v0 + Vx + M(v cos oj + V%) = 0

and Vy + M(v sin w + Vjj) =0

thus v/ M
V* - ~ MTT v cos w ~ jvVTT v°

and vy MVy - ~ ^jTj- v s.nu,

where y and V are the scalar components of y ,

The transformation vector is thus seen to resolve into two vectors, one of

magnitude v and opposite to v in direction, and one of mag-

nitude I v and opposite to i£ in direction. The vectors y/jf
M + l

and v' are che velocities before collision in C.tt. system and v0" and v"

aie the CM. velocities after collision. If the scattering Is spherically

symmetric in C* K« system, all values of cosy, the deflection angle, are

©qua] Li probable. To obtain the neutron velocity (J , after collision, in

6



Laboratory system, we add (—V) vectorially to %". The probability of

a is sin cj , and is therefore symmetric, so on the average the contribu

tion of v involves no preferred direction. However, the contribu-
M + l

tion of .—!— y inserts the direction of the incoming neutron as a
M + l °

component of u . Thus the scattered neutrons will emerge from collisions

preferentially In the direction of their pre-collision motion with a weight

increasing with neutron energy.

The preferentially forward scattering, as indicated, correlates rather

poorly the direction of each path with the preceding one, less well with

the next but one preceding, and after a large number of intervening scat

terings the correlation vanishes. One may attempt to obtain the number of

neutrons passing through a small volume increment (dY) by summing up those

neutrons scattered in all other volume increments (d Y ) in the space which

reach the first increment in free flight. However, since the number of

scattered neutrons leaving olY in the direction of d Y depends on the aver

age direction of the neutrons entering dV , this average direction must be

found by another summing up of previously scattered neutrons and so on.

The mathematical analysis of such a situation yields infinite order multiple

integrals, so simplification is necessary. The difficulty does not occur if

the scattering is isotropic, so an obvious suggestion might be to approxi

mate the system with a model in which the scattering is isotropic.

If one considers a neutron scattered isotropically at a point in a non-

absorbing medium and asks for the probability of finding it at any point in

the space after the lapse of a long time, it is clear that the resulting

probability field is symmetric about the initial point. Analogously, one

considers a neutron with initial motion % scattered at a point anisotrop-

ically in the Lab system but isotropically in CM. system.

7



The probability of finding the once scattered neutron at position r

is then symmetric about the moving center of mass whose velocity is —

.... V0 . However, the probability of finding the second scattered
M + l

neutron at r is only azimuthally symmetric since each spherical shell of

second scattered neutron probability is immediately again retarded by the

factor -—!___ , corresponding to the motion of the center of mass of the
M + l

second scattering system. Thus the second scattered neutrons which have

made long flight after first scattering will be found on the average farther

along in the direction of V0 than those which make short flights. In

spite of the forbidding complexity of the picture some information can be

obtained about the probability distribution after a large number of collisions,

The path lengths / , the azimuthal scattering angles -$. , and the cosines

of the polar scattering angles u , are every one statistically independent,

and may be averaged independently. The centroid of the distribution is

obviously found in the direction of V0 and may be located by first averaging

over the azimuthal angles starting with the last flight. One obtains
n

( // M| + A2 J^i/^i + • •• • a. r\ II /Ah"^,••) • Averaging over X^ and
uh one has

The required first moment is then \ (n+M2+u34-...>Uh + . )

which is the expansion of As/*- . One concludes then that the average
I-/X

position, after very many scatterings, of a neutron projected from a point

in a medium is at a distance As(l + > —) or §— from the
I-/* I-p.

initial point. This parameter is called the transport mean free path. The

higher moments of the probability function are not available in general.

8



F. Joliot (5) has computed the probability function itself for the n**1

isotropic scattering in a quite complicated series of Hermite polynomials.

One may now reasonably postulate that the scattering mechanism in

an anistropically scattering medium may be rather well reproduced by an

isotropic model, provided that the scattering length be weighted by the

factor 1 . This ignores the defect that the higher moments are not
1 -JL

properly scaled.

It must be emphasized that capture has not been considered and that

the model is not correct for large capture. It then remains to be demon

strated that the model is satisfactory if capture is small but not negligible.

The simplified transport model now may be more clearly defined. It

consists of a three dimensional array of fixed lattice points at which the

neutrons scatter isotropically, or are absorbed.

The scattering length in the model is the transport free path in the

real medium and is in general not known. The absorption free path in the

model is not in general the same as the absorption length in the medium but

is probably nearly the same if absorption is small. A more useful pair

of parameters are the inverses of the free paths - the macroscopic cross

sections - defined as the probability per centimeter of path of the defined

event. To prove the relations

"«! ° I £ d<f Where I is the beam intensity

i = i. »-«

i*t i, - i , I = t'z*
n -ZJ? ip

_ ^ I

/. *-« el* *



A macroscopic absorption cross-section is similarly defined.

The following notation is to be used:

n - Neutron density, cm~^

\0 - Neutron scalar flux density, called simply "flux," cm"2 sec""*

J^i - Mean macroscopic transport cross section, cm

V" - Mean macroscopic absorption cross section cm

V" - Mean total cross section, cm~*

N - Lattice point density of the medium, cm~^

<T - Microscopic total cross section, cm

% - Distance, cm.

2 - Distance in mean paths

? - Position vector

One asks for the number of neutrons scattered in incremental volume

at position r and crossing unit normal area at r' per second. The total

scattered at r is ^(r)Z+olY - all cross sections being independent

of F in the homogeneous medium - and of these — dco leave r in d to)

about solid angle CO . Since the area subtended at r' by du at r is

lr' —r) dco , a division by this factor is indicated, and since the

beam in any dco is attenuated by absorption and re-scattering as

fc"^tk _rl t— aIr "" r' , multiplication by this last factor

is required. The required number is then ir>,-\ y -Zlr' — r| J'y

The neutron flux at r' is then obtained by summing up the neutrons

scattered at all r and crossing unit area at r Thus

toi-o- -Li f w-r)<r£|f -F| dV

10



In the problem at hand, the medium is considered to be a semi-infinite

slab - infinite in horizontal extent and downward, its upper face bounded

by a plane from which no neutrons return, and having a finite neutron current

passing upward through it. The coordinate % is measured from the "black"

plane and normal to it. In this system the flux is a function of X alone.

One requires the number of neutrons scattered in an incremental slab

d% at X and passing in free flight through unit area about a point at X .

Referring to Fig. 2, this quantity called K/|x' —-xfld* is found as follows:

Kda= -&&*- / -S±P (2*rdrdx)

2 2

rdr = pdp

.oo

4=i*-

-Zp

K. Jkf±f° -^d(ZP)
Z|*'-*l

11



The integral is termed E( (£|-%'-x|) » the exponential integral,

and is identical with the function "Bt f-x) as tabulated by Jahnke & Ehmde

and others.

The flux at x' is obtained by summing the contributions of all increments

dx at x as follows:

Ptti =~^-J Pto£t(ip-xf)<t*
'space

This linear integral equation is perhaps more conveniently handled in mean

free path dimensions as follows:

%') -&/<fc)E,(,,V
For the configuration space described, the limits of integration are zero

and plus infinity. However as -2 5s «-** 15 the contribution to the

integral between negative infinity and zero becomes negligibly small, and

the limits may be taken, with vanishing error, over all values of 2 .

In this asymptotic form the equation has a simple hyperbolic solution.

The usual method of treatment, to indicate the form of the asymptotic

solution (as in Frankel & Nelson (4)), involves transforming the origin to

write:

E,/»\cle*to = 2Z-/V(i'+«Ei»
''-OO

and expand (^/g'+gj in Taylor's series about H !

wm = ft/ E.(iti)[^+z«h+ffpV)+•••]<*
•OO

OO

Now *yt\ _/ 3^C _i_ is the m**1 moment of the kernel

12



about its origin, and this vanishes by symmetry for m odd. One has then

neglecting tenris above the third order. Rearranging, one has the one-

dimensional differential equation of elementary diffusion theory - the

Helmholtz equations

rr\ s 2Zfor which the solutions are hyperbolic if 7TI 0 <. ——— , circular if

Iffl > 2^±— , and linear if V\0 = -£^=— . Now
° *t It

o

-co

= / E|/._vd2 —2 , and if absorption is present, then Z>Z-t ,
00 ITTHo • 2<-f^

-OO ^y
so *rf| = 9 < •- • Tnus we expect hyperbolic solutions, so a

— Hitrial function (/y_x = fc is substituted in the integral equation, and

the integration performed at the point 2 = O

•«- A00

21 / * E'(lz'-Z|) di!

-OO N ^o

.OO

-itift**^)** +l*-*lHl)**}
7 A

~ Z J cos^ (^^J^i(Z) ^z which is integrated
by parts after putting E(fe) in integral form.

13



The first integral vanishes for j£< | since at upper limit &|fe) is °f

order fc and at lower limit !] goes as * and the singularity of

C j(•%} is logarithmic. Writing the second integral in exponential form

2*Z / 2

and separating the range of integration into intervals:

TTJT

the third and fourth integrals are seen to be each E]_(l) and cancel, thus

*-° ° i-rt T+3T J

, B _^A i±*
y\

2tfl l-tf

or

expanding in power series

i +4! + 4l+...+ *2n
3 5 ' ••" ' 2n+l

Inverting the series in ^\ we obtain

9 (l*'-3t- -**) -l.85,(^-) +...
Note that fc is an eigen function in mean free path measure and the

function in cm. measure is fe where K - *> *-

14



Given an experimental value of K (which is simply the logarithmic

slope of the flux distribution plotted against X ) one may choose a value

of Z , compute K byJvss/^, and using the series in ^ (or any conveniently

obtained solution) compute ^^C- « Returning to the integral equation

-co

*to • fr/ <?V) V-iodt'
ione may insert the computed value of /\ • It is now required to com

pute the eigenfunction (Pfa\ corresponding to the selected value of £ •

A choice of method is available.

LeCaine (6) has treated the problem by a variational method, presenting

tabulated values for the flux normalized to unit flux at the black plane

for various values of Z.«/ . A rather rough solution for the parameters

is available by using these results, and indicates that Z lies between

2.0 cm"* and 2.4 cm .

It was then decided to attempt solution by a direct numerical method,

which was carried out to completion. In theory the method goes as follows:

Given the integral equation as before

The integral is replaced by a Riemann sum equation

%)-fA?)^)E1(|?r?
which may be put in matrix notation

,D

15



2o

It
11

A2

Hoo E0i Eoa - - - Eoh
E E F•—10 L-I| L 12

C2o C2| ^2

LO - - - E;tn

where b^ is the absolute value of the exponential integral of argument

(£—n) /^ 2 • At the argument i = n the exponential integral is singular,

so a mean value was computed for this range. One requires:

/
41
2

(*)
6i2

AZ

2

A2 /f-/ 4 dz_ ^

_ _2_
AS

OO.y*

•MA

A/(;f

=^('-"'O +^c*)

-uA*

> »

The integrating scheme is the equivalent of the trapezoidal rule but

employing the function of mean argument instead of the chordal mean as

the summation element.

One proceeds by inserting a tabular trial function, performing the

matrix operation as indicated and emerging with a new and bettered function

which Is iterated until the variation produced by iteration is insignificant.

16



In practice minor departures from the straight forward process were intro

duced to reduce the labor. The principal one of these consisted in iterating

for only about 10 terms of the flux vector and writing the complete vector

by smoothing the first differences.

A variant of this scheme was considered, which involved writing the

equation in a perturbation forms

Pa(2)~ 5(*) *1X7 RlZ'-Zl)~£(|Z'-Z|)1 Wt(Z) " SC*)J dZ
J-eo

where (p^ is the asymptotic solution, $ is the boundary depression, and Z

is the perturbation of the operator B| required to extend the integration

over all 2 .

H*) "21
or in Riemann sum form

i =TtAiljf-%^)«" +£BE(tti-W)<«
The equivalent matrices, all infinite order arei

'fe- Pi
8=

<£2

5,
8 =

- E E E E --2-2 ^-2-1 U-2I '—22

" t_|_2 t.,_, C.,, t.t2 -

- EMEW 0 0 0

" E2-2 E,., 0 0 0

- - 0 0 0
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E-€ =

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

E„

E,.
E»

H2 t|5 -

Efc ^25 ~
E52 E35 ~

-

0 0 0

The first method has the disadvantage that the term products converge

rather slowly for increasing 2 so that each term of the iterated vector

represents very many term products and the computation is quite laborious.

The second method avoids this trouble since 8 vanishes strongly with in

creasing 2 , but S varies so rapidly near (•£» 0) that trapezoidal inte

gration is valid only for a very small interval A* . On balance, method

one appeared most feasible and was chosen. A value of 2.9 cm" was obtained

for Z with a very fine fit of the solution to the experimental data.

To investigate the validity of the integration, the process was then

repeated with an improved kernel. In this case the matrix elements were

obtained by computing mean values for the exponential integral with a unit

weight function for each Asn. This process amounts to correcting for

variation of the kernel over the interval but ignoring the variation of the

function. A value of Z =2.5 cm"1 resulted.

A further improvement in the kernel was then tried. One assumes that

the function may be linearized with small error over the interval At

18



The matrix equation is then written:

-A2

where 2h is the lower boundary of the n*n interval, Az is the width of

the interval, A^r> is the difference ^Plj. \ — ^Pty. \ ' an(*

£ is the difference \i ~ 2^ . The equation may be separated into

two terms as follows:

%)= "21" / J^faW E,(lZl-?n +̂l)df

_fE,(„l^4.fl)df]

The first integral (letting y - [Zt-2n + f | = |Kh+ f|)

E,(y)dy =•-K"-*-|U,-KhE1(w+K.mEl(IWi)

The second integral, dropping absolute values:

/Kn+i
(y-Kh)E,Cy)dy

I, constitutes the terms of an operator which operates on the function iyin

and I9 an operator which operates on the relative increment of the function.

'A2 '
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The process yielded again an excellent fit to thedata but for a

value 2. = 2.3 cm"-'-. Since the computing had become impractically tedious,

further work on this line was dropped.

Frankel and Goldberg (3) list a solution for the boundary flux as

follows:

%> - V±(w*r -')
where the asymptotic flux goes as the hyperbolic sine vanishing at an

"extrapolated" boundary thus:

Wi(2) = s/nh *(2+*o)
The extrapolation distance is given by:

The characteristic equation of the system relates X. to t , so the

boundary flux may be expressed as a function of it alone:

2< = j

1(1 -*•')

X. •0-*1)-** K ' I +2<&

(,-X»Xl +^ +-? +-)- TT^
it , 7]£_ , _2i?i , 2X2w « , '
3 + 15 ^ 35 "i (2n+lX2n-0 ' 1+2^

* "•" 5 ~r 7 r**- 2n+l I + 2 ¥4
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The procedure is as follows:

1. The extrapolation distance is computed by Simpson's Rule for

a few values of )K in the neighborhood of 0.15 - 0.20 as in

dicated by the numerical solution, and plotted against X. .

2. Selecting a value of Jt and the corresponding Z0 , the

experimental boundary flux is normalized to go as

sinh tf. (2 + Z0) at large argument. This new normali

zation is obtained by halving that flux which was normalized

to go asymptotically as fc and multiplying by e ' ° .

The result is (fp) .

3. Insert the iP(p) in the series equation and solve by trial

for X .

4. Using the computed values of i? , return to stage (2) and

iterate the process. Convergence is rapid.

The described process yielded Z = 2.10 ±. 0.05 cm-1.
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CHAPTER III

EXPERIMENTAL PROCEDURE

The medium in which the experiment was conducted was the approxi

mately 6' x 6' x 6' water tank which is mounted on the thermal column of

the Oak Ridge Graphite Reactor. A current of thermal neutrons passes

upward through the tank after filtering through the graphite column below.

The water content is ion-exchange demineralized, and its nuclear properties

are substantially those of distilled water.

A disk of aluminum, faced with .020 inch cadmium, and approximately

10" in diameter, carried on aluminum legs about 10" long, was lowered with

a rod to a reproducible central location on the tank bottom. A foil holder

of aluminum and lucite, fastened to the cadmium face was provided with

adjustable mountings for positioning foils along the central normal to the

plane. A foil was also cemented to the center of the cadmium plane for

each exposure. The foil mountings were of lucite of minimum section con

sistent with stiffness, and a film of paraffin was employed as an adhesive

to mount the foils, thus introducing no non-hydrogenous material in the

immediate vicinity of the foils. The equipment is shown as Fig. (3).

Indium foils were used, weighing 25 milli-grams nominal, cut from

50 mg/cm stock. These were cleaned of the adhesive wax after each use,

weighed and allowed to decay for at least 48 hours before re-use.

Foil counting was done with an end mica-window Geiger-Mueller counter,

connected through a plate-loaded pre-amplifier stage (of gain >^» 12) to a

scale of 64. Counter and pre-amplifier were enclosed in a 2" lead shield,

which reduced background to a negligible fraction of the foil activity.

Sufficient counts were obtained in each counting run to reduce statistical
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fluctuation to a negligible level. A number of determinations of counter

resolving time were made by following the decay of 54 min indium 116 over

about 5 hours. An average value of 240 yusec. was obtained by solving

the following:

A| _ Aa

I-N,<T " I-No

where A = extrapolated activity

N - mean counting rate, sec"^-

Q- s resolving time, sec.

A correction factor l/l-NT- was plotted against counting rate and

applied to all counting runs to correct for coincidence losses.

For exposure, the foil holders (after mounting the foils) were adjusted

approximately to position with respect to the cadmium plane using a common

scale. A vernier height gauge was then used to determine the exact foil

position (estimated probable error at .05 mm.). The plane and foil holder

assembly was then lowered quickly to the tank bottom and exposed for times

ranging from 5 to 15 minutes depending on foil position to obtain reasonable

counting rates. No attempt was made to measure either exposure or foil

"cooling" times accurately since one foil always and two foils usually were

exposed at fixed positions to monitor the activity of the variable foil.

The positions at x - 0 and x = 5.18 cm. are the monitor positions and data

at these points represents an average of about 15 measurements. In addition

to the exposures made with axial foils, two exposures were made with foils

set in a plane parallel to the cadmium to demonstrate that the geometry was

actually one dimensional. A plot of the diametral variation of flux appears

as Fig. (6). The maximum deviation from the axial flux amounts to about
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5% reduction at 8 cm. radius. This is considered satisfactory. To test

the flux for fast components, a cadmium difference on Indium was taken.

The ratio of activity in Cd. to activity in the "shadow" of the cadmium

envelope (a most conservative condition) exceeded 5,000 - therefore foil

activation due to the 1.44 volt resonance may be safely neglected.

To analyze the data by the numerical method, it was first plotted

against the coordinate x in cms. on semi-log paper and the fair curve

drawn by eye. A clearly exponential branch was obtained beginning at

x>-"4.8 cm. The decay constant k of the exponential was solved by

a. — b

and fixed at k - 0.375. The scale of the values of ft(x) was then adjusted

so that (p (asymptotic) - fc * .A trial value of Z was then selected,

and the data plotted, faired and tabulated as a function of 2 in mean path

measure. The eigenvalue ^— was computed, the ^-tfi A-si) tabulated

on a strip for Al a .2, and numerical iteration of the equation carried

out until it was obvious that the solution near the plane at Z - 0 would

not fit the data. The trial was then terminated and another trial made for

a different value of I .

As the solutions were improved it became clear that a correction was

necessary for the remainder contributed by the terms beyond the last tabular

value of the E]_. The correction was inserted by computing the remainder

with respect to a proper exponential function and dividing by the value of

this function at the first untabulated term of the E]_ • This number is

then used to terminate the E^ tabulation. Since the last tabulated value

of the E]_ was for ttiAZ =7.4 one obtains:
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7.5 K '

which may be integrated by writing the E]_ as an integral, then inverting

the order of integration to yield

' J fc

which must be computed individually for each value of Z .

Iteration was carried out by computing only every fifth term of the

trial function, then interpolating the new function by making the first

differences regular. The final integration was done in detail in the

region close to the black boundary.

Plots of the flux as a function of distance from the black boundary

appear as Fig. '4) and (5). The curves were obtained by using the Le Caine

results to interpolate the data near the boundary, and the numerically

iterated function in the region more than 0.5 cm. from the boundary. The

latter process is considered reasonable since the solutions in this region

were invariant to changes in the integrating scheme, they are constrained

by the approach to the asymptotic function, and they fit the data quite well.

Desirable extensions to the analysis might include:

(1) Computation of the Wiener-Hopf solution for perhaps 15 or

20 points to firm up confidence in the fit.

(2) Extensive analysis of the numerical iteration method to estab

lish the level of computing deiail necessary to yield accurate

solutions using the true values of the parameters.

Both propositions require computing machine service to reduce program time

to a practical value.
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APPENDIX II

The flux is tabulated as a function of 2Z for two values of the

total cross section. These are solutions corresponding (for 2£ a 2.3)
to the most elaborate numerical treatment, and (for 21 r 2.1) to the best
reconciliation of Wiener-Hopf, variational, and numerical and experi
mental solutions.

2 <f)Ci- 2.1) ^(?= 2.3) z #2= 2.1) # £= 2.3)

0 1.86 1.86 4.2 18.00 16.45

0.2 2.71 2.70 4.4 18.90 17.20

0.4 3.44 3.45 4.6 19.80 18.00

0.6 4.15 4.14 4.8 20.75 18.80

0.8 4.84 4.80 5.0 21.75 19.70

1.0 5.52 5.44 5.2 22.75 20.60

1.2 6.20 6.07 5.4 23.80 21.50

1.4 6.88 6.69 5.6 24.90 22.40

1.6 7.57 7.30 5.8 26.00 23.25

1.8 8.29 7.93 6.0 27.10 24.20

2.0 9.04 8.59 6.2 28.20 25.20

2.2 9.84 9.25 6.4 29.50 26.20

2.4 10.64 9.93 6.6 30.70 27.25

2.6 11.49 10.60
6.8 32.00 28.30

2.8 12.30 11.30 7.0 33.40 29.45

3.0 13.05 12.00 7.2 34.80 30.55

3.2 13.85 12.75 7.4 36.10 31.75

3.4 14.65 13.50 7.6 37.60 33.00

3.6 15.45 14.25 7.8 39.10 34.20

3.8 16.30 14.95 8.0 40.80 35.50

4.0 17.15 15.70
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