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PREFACE

This problem was first considered in April, 1950, and experimental
work was performed in August and September 1950, employing the laboratory
facilities of the Oak Ridge School of Reactor Technology at Oak Ridge
National Laboratory, Oak Ridge, Tennessee. At first it was desired simply
to demonstrate that the theory of neutron transport yields adequate pre-
dictions for the neutron flux in normal water near boundaries. It soon
became clear that appropriate average values of the neutron cross sections
for normal water (required to solve the transport problem) are not
accurately known. It was then proposed to determine those "appropriate
average values" which best fit the transport solutions to experiment.
These numbers are, of course, useful in the design of water-moderated
reactors and in other applications of neutron physics.

Grateful acknowledgment is due Dr. E. C. Campbell of Oak Ridge

National Laboratory who was a constant source of invaluable advice.

(i1)
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CHAPTER 1

INTRODUCTION AND SUMMARY

1. Introduction

The steady state spatial distribution of neutron fluxes in matter is a
problem of prime importance to the designer of chain reacting piles, and
has been the subject of wery much theoretical and experimental work. The
case in which the neutron energy is large compared to that of the nuclei
constituting the medium (the "slowing down" case) is of first importance
and is rather extensively investigasted. The alternate case in which the
neutrons are in energy equilibrium with the medium is of lesser importance
and comparatively little experimental work has been done, although the
fundamental theory is well in hand. The cross-sections for neutron scat=-
tering and absorption appropriate to the first case are the "ordinary"
energy-dependent cross-sections (or simple functions of these) which have
been so extensively investigated by various neutron spectrometry groups.
The cross-sections appropriate to the second case are more vaguely defined.
Perhaps as adequate a definition of these parameters as any is the "ad hoc"
one - those numbers which, when inserted in the mathematical theory of
particle transport yield proper solutions for the neutron flux. It can
be demonstrated that these numbers are not in general the average values
of the energy dependent cross sections weighted by the appropriate energy
distribution function for the ambient temperature.

The "ad hoc" definition suggests a means of experimentally measuring
the numbers. One requires a medium = of simple geometry so that the trans-

port problem is soluble - in which a flux of thermal equilibrium neutrons



is maintained and in which the flux can be measured at various points with
neutron detectors. Since two parameters are to be determined, two independent
solutions for the flux must be available = but this is easily provided for

by considering (1) a region "remote™ from discontinuities in which the
solution is asymptotic and (2) a region adjacent to a discontinuity - say

a "black™ boundary. One measures the flux at a sufficient number of points

in each region to define the spatial functions. The transport problem is
solved many times for various values of the parameters, and if fortune is

good one pair of values will be found to yield solutions which fit the ex-
perimental functions in both regions.

To particularize = the chosen medium is normal water, the geometry
one=dimensional consisting of a tank many mean free paths in its dimensions,
traversed by a uniform thermal neutron current arriving at one face and
absorbed by a layer of cadmium at the opposite face. The neutron flux is
measured at points along a line normal to the cadmium facing and extending
from the facing well into region (1).

The one-dimensional transport problem is integrable in closed form for
region (1), This solution is matched to the experimental data, yielding a
characteristic equation in say the total cross-section and the scattering
crosg-section = thus the scattering section may be eliminated. The trans-
port problem is then integrated numerically in region (2) for various
values of total cross section and that value selected which yields best fit
with experimental data. Unfortunately, this straight-forward procedure
could not be carried out. It was found that numerical integration produced
a function which fit the experimental data astonishingly well, but that the

values of the parameter which yielded this good fit were variable with



respect to the integrating procedure. Further, it was found that each
improvement in the integrating plan led monotonously to a reduction in
the total cross section, indicating that the process of improving the
operation was not near convergence. The rapid increase in computing labor
made it necessary to abandon this process before a firm solution was ob-
tained.

The Wiener-Hopf method, treated by Frankel and Goldberg (3), offers
e general solution to the one-dimensional transport problem in a single
semi-infinite medium. However, it is available only as an exceedingly
difficult double numerical quadrature which could not be handled for lack
of computing facility. A solution is given for the flux at the black
boundary only, requiring only one numerical quadrature. By equating this
solution in terms of the parameters to the experimental value of the
"contact™ flux, unique values are obtained for the parameters. These
values extrapolate the trend of the numerical solutions, and are in that
sense to be regarded as supported by the numerical method.

The convergence on the Wiener-Hopf solution may be illustrated by

the successive values for the macroscopic "total" cross section. They

1 1

are: Numerical = 2,9 cm™ "3 2.5 cm'l and 2.3 cm'l; Wiener-Hopf - 2,10 cm™



2, Summary

Findings may be tabulated as follows:

Parameter - Water at 24° C, Values
Diffusion Length 2,67 % ,02 ecm.
Transport Mean Free Path 0.48 £+ ,01 cm.
Absorption Mean Path (Equivalent) 44,2 £ 1.3 cm.
Microscopic Transport Cross Section 62.4 = 1.5 barns/mol.
Hicroscopie Absorption Cross
Section (Equivalent) 0,68 = 0,0l barns/mol.
Ratio - Boundary Flux + Asymptotic
(Exponential) Flux 0.186
Ratio - Boundary Flux % Asymptotic
(Hyperbolic) Flux 0.87
Extrapolation Distance - X, 0.32 cm.

Ratio -~ Extrapolation Distance/Total
Mean Path 0.67

Comparison of the cross-section with the energy=-dependent values for
protons in water by Bacher(l) and Melkonian (7) indicate an "average™
neutron energy for transport of perhaps 0.05 electron volts in contrast
with the Maxwell-Boltzmann mode of 0.025 e.v., This is not surprising since
it is expected that transport is largely effected by the high energy neutrons
which have longer free paths. In addition it must be remembered that the
neutron flux is weighted by a velocity term so that the average flux corres-~
ponds to a higher energy than does the average neutron, and transport weights
the cross-section by the flux rather than by the neutron density. The l/v
absorption in hydrogen provides a preferential sink for low energy neutrons,
thus the thermal distribution is displaced from the Maxwell-Boltzmann toward

higher energy.



CHAPTER II

TRANSPORT THEORY AND METHODS OF ANALYSIS

To indicate the assumptions involved and to portray the physical model
which was analyzed, it may be well to review the fundamental theory of
neutron transport. It must be emphasized that the model of neutron trans-
port for neutrons in energy equilibrium with the medium, at energies well
below the atomic binding, differs radically from that for energetic neutrons
(En > 1 ev) in media at normal temperature.

In the latter case the energy transfer in neutron-nucleus interactions
is uniformly from neutron to nucleus, the nuclei interact as free particles,
and since the atomic vibrational energy is comparatively small, the nuclei
may be regarded as initially af rest., None of these statements hold for
the former case.

In the present problem, by definition, the net average energy transfer
between neutrons and medium is very small and due solely to the preferential
absorption of the slower neutrons. The protons are bound in the molecule
with energy larger than the neutron energy and the nuclei cannot interact
as free particles. The thermal motion of the atoms and of the systems in
which they are bound is not negligible, and so affects not only the mechanics
of the collisions but also the frequency of occurrence since the collision
probability is a function of the flux of nuclei as well as of neutrons.

Inelastic interaction of neutrons with rotational and vibrational
levels of the water molecule are probably present. The rotational levels
are quite numerous and begin at wave number 23.8 cm‘l, (about .003 electron
volts) according to Wu (9).

Quantitive discussion of the scattering mechanism in a system as






Laboratory system, we add (=V) vectorially to %“. The probability of

w is sinw , and is therefore symmetric, so on the average the contribu-

tion of ;ZQST— ¥ involves no preferred direction. However, the contribu-
tion of hAI | v, inserts the direction of the incoming neutron as a

+
component of w . Thus the scattered neutrons will emerge from collisions

preferentially in the direction of their pre-collision motion with a weight
increasing with neutron energy.

The preferentially forward scattering, as indicated, correlates rather
poorly the direction of each path with the preceding one, less well with
the next but one preceding, and after a large number of intervening scat-
terings the correlation vanishes. One may attempt to obtain the number of
neutrons passing through a small volume increment ( d’Y' ) by summing up those
neutrons scattered in all other volume increments (d‘?x) in the gpace which
reach the first increment in free flight. However, since the number of
scattered neutrons leaving d¥'in the direction of d Y depends on the aver-
age direction of the neutrons entering d*f', this average direction must be
found by another summing up of previously scattered neutrons and so on.

The mathematical analysis of such a situation yields infinite order multiple
integrals, so simplification is necessary. The difficulty does not occur if
the scattering is isotropic, so an obvious suggestion might be to approxi-
mate the system with a model in which the scattering is isotropic.

If one considers a neutron scattered isotropically at a point in a non-
absorbing medium and asks for the probability of finding it at any point in
the space after the lapse of a long time, it is clear that the resulting
probability field is symmetric about the initial point. Analogously, one
congiders a neutron with initial motion ¥, scattered at a point anisotrop-

ically in the lLab system but isotropically in C.M. system.



The probability of finding the once scattered neutron at position ¥

is then symmetric about the moving center of mass whose velocity is

]
M+|
neutron at ¥ is only azimuthally symmetric since each spherical shell of

"
' ¢

'l—/, . However, the probability of finding the second scattered

second scattered neutron probability is immediately again retarded by the
I
M+|

second scattering system. Thus the second scattered neutrons which have

factor s corresponding to the motion of the center of mass of the

made long flight after first scattering will be found on the average farther
along in the direction of 17, than those which make short flights. In
spite of the forbidding complexity of the picture some information can be
obtained about the probability distribution after a large number of collisions.
The path lengths 1 , the azimuthal scattering angles i , and the cosines |
of the polar scattering angles p » are every one statistically independent,
and may be averaged independently. The centroid of the distribution is
obviously found in the direction of ¥, and may be lgcated by first aireraging
over the azimuthal angles starting with the last flight. One obtains

n
(,(,/u' + Xzfleu., + ... In H,/‘n+"'> . Averaging over Xh and

,An one has

2 = / / PG, P@, du, i, + // / APy iaPi 4 Py At duy dby + . 4

The required first moment is then - = 2 -3 ="
q : ! )\s(/(.('f'/.k Ll R R v +)
which is the expansion of A,__& o One concludes then that the average

position, after very many scatterings, of a neutron projected from a point

in a medium is at a distance As(l + l-Mﬁ') or | As_ from the

initial point. This parameter is called the transport mean free path., The

higher moments of the probability function are not available in general,



F. Joliot (5) has computed the probability function itself for the nth
isotropic scattering in a quite complicated series of Hermite polynomials,
One may now reasonably postulate that the scattering mechanism in
an anistropically scattering medium may be rather well reproduced by an
isotropic model, provided that the scattering length be weighted by the
factor 1 « This ignores the defect that the higher moments are not

T - %
properly scaled.

It must be emphasized that capture has not been considered and that
the model is not correct for large capture. It then remains to be demon-
strated that the model is satisfactory if capture is small but not negligible.

The simplified transport model now may be more clearly defined. It
consists of a three dimensional array of fixed lattice points at which the
neutrons scatter isotroéically, or are absorbed,

The scattering length in the model is the transport free path in the
real medium and is in general not known. The absorption free path in the
model is not in general the same as the absorption length in the medium but
is probably nearly the same if absorption is small. A more useful pair
of parameters are the inverses of the free paths - the macroscopic oross
sections ~ defined as the probability per centimeter of path of the defined

event. To prove the relation:

I

I1Zd4 Where I is the beam intensity

I° 3-22

Let Io=1 , I=e‘z‘e

The mean value of 1 is: /;6-—22 d!
A=

A
[ooe—X-? dl pX



A macroscopic absorption cross-section is similarly defined.

The following notation is to be used:

n

Neutron density, om=%

- Neutron scalar flux density, called simply "flux," cm

Z:t - Wean macroscopic transport cross section, cm”™

¥ean total cross section, em=1

- Microscopic total cross section,

- Distance, cm.

MR 9 Z MM

- Distance in mean paths

Position vector

Rl
'

-~ Mean macroscopic absorption cross section cm™

-2 sec”™

1

1

- Lattice point density of the medium, cm=3

sz

One asks for the number of neutrons scattered in incremental volume

at position ¥ and crossing unit normal area at
scattered at ¥ is ‘O(F)thv - all cross
of F in the homogeneous medium - and of these
about solid angle w . Since the area subtended
(7' = F)®dw , o division by this factor is
beam in any dw is attenuated by absorption and

B 1 Lild P PN Lt o B

r/ per second, The total

sections being independent

—— dw leave F in dw

4 %

at r

s

by dw at r is
indicated, and since the

re-scattering as

multiplication by this last factor

is required. The required number is then OF It e -3 I F/— F' 4V

4n(F'-7)

The neutron flux at ¥’ is then obtained by summing up the neutrons

scattered at all ¥ and crossing unit area at F

’ ., Thus

dv

10



In the protlem at hand, the medium is considered to be a semi-infinite
slab - infinite in horizontal extent and downward, its upper face bounded
by a plane from which no neutrons return, and having a finite neutron current
passing upward through it., The coordinate % is measured from the "black"
plane and normal to it. In this>5ystem the flux is a function of % alone.
One requires the number of neutrons scattered in an incremental slab
dx at % and passing in free flight‘thrbugh unit area about a point at A

Referring to Fig. 2, this quantity called K(I’X'-'X-l)dx is found as follows:

o0
e_

z
Kdx = _‘Ez_t)_z_t_/ zP (Z‘nrdrdx)
x r=0 P

rt+ (x'-%)" = P’

rdr = pdp
-1
- Q%Z)z¢ ¢ P d
K 2 J o P P

X
|
F
™M
o+
©
M
Q
™
>

11



The integral is termed El(EJ%L-Zl) , the exponential integral,
and is identical with the function -EL(_x) as tabulated by Jahnke & Elmde
and others.

The flux at x' is obtained by summing the contributions of all increments

dx at x as follows:

Ve = %‘*— V) B (gpr—xpd=
Spoce

This linear integral equation is perhaps more conveniently handled in mean

free path dimensions as follows:

’ -— Z
Ve = Z—ZL/QD&) E'(li'-il) dz

For the configuration space described, the limits of integration are zero
and plus ‘infinity. However as -Z &= -~ 15 the contribution to the
integral between negative infinity and zero becomes negligibly small, and
the limits may be taken, with vanishing error, over all values of & .
In this asymptotic form the equation has a simple hyperbolic solution.

The usual method of treatment, to indicate the form of the asymptotic
solution (as in Frankel & Nelson (4)), involves transforming the origin to
write:

Yy = 2—2-'{‘ Pz Ermdz
-00

and expand ‘ in Taylor's series about Z2
(2'+2)

noo— PR = ’ 2
Yer = 55 E.uz.)[@(z')+2§0(z';+—2"—!€0(z')+"-]dz

o0
Now — m is the mth moment of the kernmel
~ oo

12



about its origin, and this vanishes by symmetry for m odd. One has then
= =t ™ "
0w = T Mo 0y + T @]

neglecting terms above the third order. Rearranging, one has the one-
dimensional differential equation of elementary diffusion theory - the

Helmholtz equation:

0"+ (50 - mzt)‘P °

for which the solutions are hyperbolic if mo < 2% s Circular if
2

Zt
m > _ZizT » and linear if mo = ZZt

/ E‘(m)dz =2 , and if absorption is present, then &> X4 ,

« Now

S0 2 < 22 . Thus we expect hyperbolic solutions, so a
2t

trial function (p(z) = e-Xz is substituted in the integral equation, and

4
the integration performed at the point 2 = O

- —J_ "R! E

I = 2T '(IE'-ZI) dz
="_t—zzz {/ -z El(;_l)di +/ - K2 E‘(E)di}
o0 oo
HA{ [ oo <[ e o)
2 [
=73 cosh (KZ) E,(z) dz which is integrated
Q

by parts after putting E, (Z‘) in integral form,

__.t_/cosh (Xz)di&/ 3-3 dy
z

13



= B [fsneEe |+ F e e

The first integral vanishes for R ) since at upper limit E,@) is of

sinh RZ
PR

E, (,E) is logarithmic. Writing the second integral in exponential form

= £ wc-z(l-ae)_e_z(lwc) dz
X J, F

and separating the range of integration into intervals:

/K +& o0 0
-JQ -Z(-# -
= By A / [
o . J

]
=3 TR

the third and fourth integrals are seen to be each Ej(1) and cancel, thus

~Z
order ¢ and at lower limi goes as # and the singularity of

|+ &
2xz 7RE ™ |-
or 2t = £
> '?Ln-:—i;% tanh™' &

expanding in power series

I

R
+ 5 ...+

ol
N

2
Inverting the series in K we obtain

a ¢ 2a.3
X2= 3—% — ‘g—'(%) '_l;BSI(-Z-Tt—)-I-o-.

Note that € z is an eigen function in mean free path measure and the

-kx
function in cm. measure is © where K= K z

14



Given an experimertal value of K (which is simply the logarithmic
slope of the flux distribution plotted aghinst X ) one may choose a value
3 2
of & s compute R by x=/z, and using the series in #K° (or any conveniently

obtained solution) compute Z.-":/z o Returning to the integral equation

_ = - ,
o) = 53 / P() E) (g o2

one may insert the computed value of z}é . It is now required to com=~
pute the eigenfunction (‘0@) corresponding to the selected value of X, .
A choice of method is available,

LeCaine (6) has treated the problem by a variational method, presenting
tabulated values for the flux normalized to unit flux at the black plane
for various values of Z}é . A rather rough solution for the parameters
is available by using thesetresults, and indicates that & 1lies between
2.0 em~! and 2.4 cm~l,

It was then decided to attempt solution by a direct numerical method,
which was carried out to completion, In theory the method goes as follows:

Given the integral equation as before

Yo = ‘ZZ—E’/ V&) E'(lz'-z-l)dzl

The integral is replaced by a Riemann sum equation

| S0(2‘1) = %A*Zn(p(*") 3 (1.~ 2))

which may be put in matrix notation

15



02

12

22 - - - -

. 2t Az i

where ELV) is the absolute value of the exponential integral of argument

(i—-n) A Z o At the argument i = n the exponential integral is singular,

so a mean value was computed for this range. One regquires:

ézz' 2 Az 0 _y2
2 -4 [ [ 7
E{/o Eigde = Az[d*[ g °

AzZ oo
- 3A2

dy [y, 2 (s -
EVA oz f \ ¥

)dv

(- ) ey

The integrating scheme is the equivalent of the trapezoidal rule but

employing the function of mean argument instead of the chordal mean as

the surmaticn elerment,

One proceeds by inserting a tabular trial function, performing the

matrix operation as indicated and emerging with a new and bettered function

which is iterated until the variation produced by iteration is insignificant,

16



In practice minor departures from the straight forward process were intro-
duced to reduce the labor. The principal one of these consisted in iterating
for only about 10 terms of the flux vector and writing the complete vector
by smoothing the first differences.

A variant of this scheme was considered, which involved writing the

equation in a perturbation form:

z (-
)~ 8@ = 33 [E'(lz’—;fl)_ E(Iz'-z:)][ Ca(z) — & (z)] dz

where QZL is the asymptotic solution, & is the boundary depression, and ¢
is the perturbation of the operator E. required to extend the integration

over all # .
o0

z
bz = 2{ [E'(lz’-zl) - E(IZ’-ZI)] §(z) 1€ (dz

or in Riemann sum form

=y -
SOT7T “Z;[E' €] -2, ™ * Elz-z) P

The equivalent matrices, all infinite order are:

| |
S
)
]
S8,
N
[]
-
0
3
m
»
mm
©
m ™
K
~
1

. - ] 8= ' E= - E-..l E_,_. E_“ -12 -
@zlo, 5, - E,E_0 0 O
wz 81 - E2-2 E'l—l O o) O
- - - - - 0 0 0

I

L
I
L
!
t

17



r -
000 00O 0O0OO0CO
0 0 0 00 0 OO
0 0 0O 0O 0 00O
0 0 0 0 OO0 0 0
E" E = 0 0 O Ell Elz E|_r, -
0 0 O E E,E - -
0 0 0 By Ejp By - -
000 - - - - -
00 0 - - - < -
. J

The first method has the disadvantage that the term products converge
rather slowly for increasing # so that each term of the iterated vector
represents very many term products and the computation is quite laborious.
The second method avoids this trouble since 8§ vanishes strongly with in-
creasing 2 , but § varies so rapidly near (g=0) that trapezoidal inte=-
gration is valid only for a very small interval A3 . On balance, method
one appeared most feasible and was chosen. A value of 2.9 cm-l was obtained
for & with a very fine fit of the solution to the experimental data.

To investigate the validity of the integration, the process was then
repeated with an improved kernel. In this case the matrix elements were
obtained by computing mean values for the exponential integral with a unit
weight function for each Azn. This process amounts to correcting for
variation of the kernel over the interval but ignoring the variation of the
function. A value of & = 2.5 em~l resulted.

A further improvement in the kernel was then tried. One assumes that

the function may be linearized with small error over the interval Ag .

18



The matrix equation is then written:

A2
_ L z An
‘P(;_-L) - z{ /[(O(E,,)"'K(%c] E'(lai—z,.H'l)dt
n-o

where Z, is the lower boundary of the nth interval, A2 is the width of

the interval, Ay is the difference [ —_ ] and
> BPn 2e v V) = Pnl
{‘ is the differernce [Z - Zn] . The equation may be separated into

two terms as follows:

5 AZ
Yeny ™ T;:_ Zh[(”(zn) / E, (12,-2a+¢1) df

AZ

Apn
T2z ) CBiz -2, ren) 9¢
The first integral (letting y = [Z{ —Z,+ €| = |K,+¢])

Kn+i |
I',h =[E. (‘j)dlj = b-Kh - e"KnH -KhE|(Kh) +Kn+'E'<Kn+|)

n

The second integral, dropping absolute values:

I| constitutes the terms of an operator which operates on the function (ﬂn

and I?_ an operator which operates on the relative increment of the function,

A
wn Az o
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The process yielded again an excellent fit to thedata but for a
value X = 2.3 em~l. Since the computing had become impractically tedious,
further work on this line was dropped.

Frankel and Goldberg (3)-1ist a solution for the boundary flux as

follows:
(ﬂ(o) = \/LZ (ﬁz}h B l)

where the asymptotic flux goes as the hyperbolic sine vanishing at an

"extrapolated™ boundary thus:

Wa(z) = sinh K(Z +%Z,)

The extrapolation distance is given by:

Z, = -—' /'ﬁ——l tah-i( l/ >d$
©™ 2 = -—
° A |-&’s tanh™'s %Xt

The characteristic equation of the system relates K to _EEL , 80 the

boundary flux may be expressed as a function of X alone:

2 _ 2+ _
2 (p(o) - Z(' _xz) '

2 (1-%)= —

Zq | +2(P(tl
2 X X4 |
- S+ = + ) =
2 8° 28 24 28" )
2
2 K A L - 3¥
R+ 5 t+ +"'2n+| —LT'+2%)



The procedure is as follows:

l.

3

The extrapolation distance is computed by Simpson's Rule for
a few values of £ in the neighborhood of 0.15 = 0.20 as in-
dicated by the numerical solution, and plotted against £,
Selecting a value of £ and the corresponding Z, , the
experimental boundary flux is normalized to go as

sinh X (Z + Z,) at large argument. This new normali=-
zation is obtained by halving that flux which was normalized
to go asymptotically as bxa and multiplying by bxa" .
The result is (ﬂ(o) .

Insert the (0(0) in the series equation and solve by trial
for X .

Using the computed values of K , return to stage (2) and

iterate the process. Convergence is rapid.

The described process yielded L =2.10 &= 0.05 em-1,
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CHAPTER III

EXPERIMENTAL PROCEDURE

The medium in which the experiment was conducted was the approxi-
mately 6' x 6' x 6' water tank which is mounted on the thermal column of
the Oak Ridge Graphite Reactor. A current of thermal neutrons passes
upward through the tank after filtering through the graphite column below.
The water content is ion-exchange demineralized, and its nuclear properties
are substantially those of distilled water.

A disk of aluminum, faced with .020 inch cadmium, and approximately
10" in diameter, carried on aluminum legs about 10" long, was lowered with
a rod to a reproducible central location on the tank bottom. A foil holder
of aluminum and lucite, fastened to the cadmium face was provided with
adjustable mountings for positioning foils along the central normal to the
plane. A foil was also cemented to the center of the cadmium plane for
each exposure. The foil mountings were of lucite of minimum section con=-
sistent with stiffness, and a film of paraffin was employed as an adhesive
to mount the foils, thus introducing no non-hydrogenous material in the
immediate vicinity of the foils. The equipment is shown as Fig. (3).

Indium foils were used, weighing 25 milli-grams nominal, cut from
50 mg/bmz stock. These were cleaned of the adhesive wax after each use,
weighed and allowed to decay for at least 48 hours before re-use.

Foil counting was done with an end mica-window Geiger-Mueller counter,
connected through a plate-loaded pre-amplifier stage (of gain v 12) to a
scale of 64. Counter and pre-amplifier were enclosed in a 2" lead shield,
which reduced background to a negligible fraction of the foil activity.

Sufficient counts were obtained in each counting run to reduce statistical
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fluctuation to a negligible level. A number of determinations of counter
resolving time were made by following the decay of 54 min indium 116 over
about 5 hours, An average value of 240 M seco was obtained by solving

the followings

Al — Az

I —qu- "Nzg’
where A - extrapolated activity
N = mean counting rate, sec™l
” resolving time, sec.

A correction factor 1/1-N?' was plotted against counting rate and
applied to all counting runs to correct for coincidence losses.

For exposure, the foil holders (after mounting the foils) were adjusted
approximately to position with respect to the cadmium plane using a common
scale, A vernier height gauge was then used to determine the exact foil
position (estimated probable error =% .05 mm.). The plane and foil holder
assembly was then lowered quickly to the tank bottom and exposed for times
ranging from 5 to 15 ﬁinutes depending on foil position to obtain reasonable
counting rates. No attempt was made to measure either exposure or foil
"cooling™ times accurately since one foil always and two foils usually were
exposed at fixed positions to monitor the activity of the wvariable foil.,

The positions at x = 0 and x = 5,18 cm. are the monitor positions and data
at these points represents an average of about 15 measurements, In addition
to the exposures made with axial foils, two exposures were made with foils
set in a plane parallel to the cadmium to demonstrate that the geometry was
actually one dimensional, A plot of the diametral variation of flux appears

as Fig. (6). The maximum deviation from the axiel flux amounts to about
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5% reduction at 8 cm, radius. This is considered satisfactory. To test
the flux for fast components, a cadmium difference on Indium was taken,
The ratio of activity in Cd. to activity in the "shadow" of the cadmium
envelope (a most conservative condition) exéeeded 5,000 - therefore foil
activation due to the 1.44 volt resonance may be safely neglected.

To analyze the data by the numerical method, it was first plotted
against the coordinate x in cms. on semi-log paper and the fair curve
drawn by eye. A clearly exponential branch was obtained beginning at

x v 4.8 cm, The decay constant k of the exponential was solved by

by Lo
k = 40

- a —b

and fixed at k = 0.375. The scale of the values of (F(x) was then adjusted

90'375", A trial value of & was then selected,

so that (0 (asymptotic) = ‘
and the data plotted, faired and tabulated as a function of 2 in mean path
me:axsure° The eigenvalue Z'—t- was computed, the E, tabulated
2 Ovnbﬁﬂ)

on a strip for Az = .2, and numerical iteration of the equation carried
out until it was obvious that the solution near the plane at # = 0 would
not fit the data. The trial was then terminated and another trial made for
a different value of & .

As the solutions were i‘mprovec} it became clear that a correction was
necessary for the remainder contributed by the terms beyond the last tabular
value of the E]. The correction was inserted by computing the remainder
with respect to a proper exponential function and divi',_ding by the value of
this function at the first untabulated term of the E;. This number is

then used to terminate the El tabulation. Since the last tabulated wvalue

of the By was for mAZ = 7.4 one obtains:
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00
.-7.6)(/ K2
e ¢ E dz
/s (@)

which may be integrated by writing the E; as an integral, then inverting
the order of integration to yield

- & | =75

TJ’(_ ¢ {‘E' (7z5) T R ¢ E'(7.s'—7.5&!)}
which must be computed individually for each value of .

Iteration was carried out by computing only every fifth term of the
trial function, then interpolating the new function by making the first
differences regular., The final integration was done in detail in the
region close to the black boundary.

Plots of the flux as a function of distance from the black boundary
appear as Fig. ‘4) and (5). The curves were obtained by using the Le Caine
results to interpolate the data near the boundary, and the numerically
iterated function in the region more than 0.5 cm. from the boundary. The
latter process is considered reasonable since the solutions in this region
were invariant to changes in the integrating scheme, they are constrained
by the approach to the asymptotic function, and they fit the data quite well.

Desirable extensions to the analysis might include:

(1) Computation of the Wiener-Hopf solution for perhaps 15 or
20 points to firm up confidence in the fit.

(2) Extensivé analysis of the numerical iteration method to estab-
lish the level of computing detnil necessary to yield accurate
solutions using the true values of the parameters.

Both propositions require computing machine service to reduce program time

to a practical value.
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APPENDIX I1I

The flux is tabulated as a function of Z= for two values of the
total cross section. These are solutions corresponding (for':E = 2.3)
to the most elaborate numerical treatment, and (for £ - 2.1) to the best
reconciliation of Wiener-Hopf, variational, and numerical and experi-
mental solutions.

Z  fg=21) f(Z=2.9) Z 5. 2.) P(Z- 2.3)

0 1.86 1.86 4.2 18.00 16.45
0.2 2071 2,70 4.4 18,90 17.20
0.4 344 3.45 4.6 19.80 18.00
2.6 4,15 4,14 4.8 20.75 18.80
0.8 4,84 4.80 5.0 21,75 19.70
1,0 5,52 5,44 5.2 22.75 20 .60
1.2 6020 6.07 5.4 23.80 21.50
l.4 6.88 6.69 5.8 24,90 22,40
1.6 7,57 7430 5.8 26.00 23425
1.8 8,29 793 6.0 27.10 24.20
2.0 9,04 8,59 Be2 28.20 25.20
2.2 9,84 9.25 6.4 29.50 264,20
2.4 10,64 9.93 6.6 30.70 27.25
2;6 11.49 10.60 6.8 32,00 28,30
2.8 12.30 11.30 7‘5 33.40 29,45
3.0 13,05 12,00 7.2 34,80 30455
3.2 13,85 12,75 7.4 36.10 31.75
34 14,65 13,50 7.6 37.60 33,00
3.6 15045 14.25 7.8 39.10 34,20
3.8 16,30 14,95 8.0 40.80 35.50

4.0 17,15 15,70
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