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ON THE THEORY OF INNER BREMSSTRAHLUNG IN{S -PROCESSES

Je« M, Jauch

I. INTRODUCTION

The low energy continuous J” -radiation accompanying various types
of F: -processes have been studied theoretically by a number of workers.
Knipp and Uhlenbeckl and Bloc:h2 developed the theory for the ordinary
(3 -processes, Morrison and Sch:'l.ff3 applied the theory to the case of K-
capture and Chang and Falkoffh reviewed the earlier work and extended it
to the case of other coupling types and forbidden /3 =transitions,

The fundamental physical process involved is the following: 1In
the case of /$ =transitions an electronic charge is suddenly released from
the nucleus and transferred to the outgoing electron. At the same time
a magnetic moment of the order of a Bohr magneton is created, This sudden
change of the state of motion of the charges causes a rearrangement of the
electromagnetic field oscillators which results in an emission of radiation.
It is clear that this 4 -emission is a general feature of all types of
charge transfer processes and could be observed under many different
experimental conditions, Thus for instance it was pointed out by Hayakawa
and '1’o‘monagaS that such radiation should occur in the high energy nuclear
collisions which result in meson production. This effect was studied by
L. I. Schifféo A good example is also furnished by the/o -meson decay.

This case has not yet been studied,
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The soft r -radiation has been observed by various experimental
workers, Stahel and Guillissen’ have compared the total radiation emitted
by RaE with the theay and Wu8 has done the same for P32, Both found
excellent agreement with the theory of Knipp and Uhlenbeck. 1In the case
of K-capture the radiation was observed for the first time by H. Bradt
and coworkers9 with Fes 5 o For K-capture processes the total number of photons
emitted per capture pmrocess depends on the total energy difference for the
nuclear transition, Bradt and coworkers made a rough estimate for this
energy in F‘e55 and found a valuwe Wy = 0s15 MeV. A more sensitive method
would be the measurement of the energy spectrum and determination of the
‘ endpoint with the method of a Kurie plot,

The sensitive solid 4*“-ray counters now available make possible for
the first time a detailed study of this rad:‘uationlo‘a The quantities which
can bé measured are the energy spectrum and the total number of photons per
nuclear process, From this can be obtained the maximum energy of the nuclear
transition., This is of special interest in the case of K-capture where
this process seems the only possiblility of measuring this quantity.directly. One
can also measure the argular correlation of the J“-rays with the electrons,
Theory predicts a strong angular correlation with 4 -rays coming out
preferentially in the direction of the electrons,

For allowed transitions this correlation turns out to be independent

of the interaction type so that in these cases no information can be gained
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regarding these interactions, 1In the case of the /~ -meson decay a small
dependence on the interaction type remains which results from the restriction
imposed on the four ocutcoming particles by conservation of energy and
momentum, The effect would be very difficult to observe experimentally,

In this report we shall discuss the theory of this radiation for
the cases of /3 =decay and K-capture. For the case of ordinary /3) ~decay
this is partly a repetition of previous wark, the case of K-captwre is a
slight improvement of older work,

Preliminary measurements on the continuous J< -radiation in the
K-capture of Fe®> are analyzed and the feasibility of the method is

demonstrated,

II. INNER BREMSSTRAHLUNG FOR ALLOWED  -DECAY

The inner Bremsstrahlung results from the transitions produced by
two parts of the Hamiltonian in a second order process, The part H/&

may be written

l-{(e> = @(E/"'“’@)(S"_JQ ?) (2.1)

Here the quantities ‘_‘[— s é' s V- s ‘f are the spinor field operators

referring to the proton, neutron, electron and neutrino respectively.
o
r\

for nucleous and d;u. for leptons which represent the five coupling types

Y, represent any one of the five combinations of the Dirac '4/
) %o

in /5 -theory. The Dirac ¢, are chosen so as to satisfy

/l-



b

{¢‘ J"} - 2;/” (2.2)

The spinors ¥ and 1}7 are the conjugate spinors defined in the following

ways
Let J/'_: be the Hermitian conjugate of ‘fa s then we define a
matrix 7 up to an arbitrary real factor by the conditions

-1
R R 2 (2.3)

+
7 = 7 , (2.4)

Then we define

) = ¥
F = ¢ '7 (2.5)
* ‘s ) .
where ’}" is the Hermitian conjugate of %’ o If is considered a column
spinor then V* and VJ- is a row spinor. This definition does not make use
of any special representation of the 4% . For free fields (no extermal
fields present) the ’)‘ can be decomposed in plane waves, We shall write

<L 5 Lpx * -upx
Yix) = VI %(QP ue + br v e ) (2.6)

where () is the fundamental volume, p is the four vector of energy and
momentum, ap is the operator which annihilates an electron in state p,
bp* creates a positron in state p. The c~number spinors u, v satisfy the

equations

(2.7)
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where H, (P)= ¢ rf‘ tm + Since pr+mt =0 these

operators are of rank two and allow two linearly independent solutions

w,. (r), Vs (P) ; Q",S =12) each, They are normalized according to
W m
( ’kr us ) = —E 3(":
(2.8)
o~ m
k"l)",. Vs ) = - - Jrs
where E =p°,
From (2,8) follow the important relations
|
N T
(2.9)

which we shall use often in the following calculations,
The second Hamiltonian is that describing the interaction with the

electromagnetic radiation and is given by

. /l -
H¢ = te AT W F, 4 (2.10)
Here A o is the operator for the transverse electromagnetic field which

we shall write in Fourier decomposition
A 51 iy ke sx ) - lkx
'4/‘((X)=mr2'k‘/{*’(qu%“’&‘ + Ay e_/u e ) (2.11)

The operator a, annihilates a photon with momentum and energy k (k°= &)

and polarization vector e/“L o« For reasons of formal symmetry we treat e/_,_
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as a four vector with the special condition e,= 0. We also have

)
@_.U-k ) - o Q‘:l,l) (2012)

The constant e in (2,10) is the dimensionless interaction constant and related
| | S
to the fine structure constant &= 37 bty €= Vers  , The

2 and of order 10"’32 cmzo

interaction constant G in (2.1) is of dimension cm
The expressions (2.1) and (2,10) are the Hamiltonian densities. The total
Hamiltonians are obtained by integrating over the three dimensional volume
2.

The process we wish to calculate is obtained by a second order
perturbation calculation according to the standard formula for the transition
probability per unit time dP for the emission of an electron with momentum
p within dp and solid angle doy; a photon of momentum k within dk and solid

angle d (3 and a neutrino within the solid angle 4%,

AP = avZ|H]? df‘

(2,13)
The summation sign indicates the summation over all the final spin

states and the polarization and will later also be interpreted to include

integration over all the directions of the neutrino., H stands for the second

order matrix element

H H,
_ $n nv
Ho= Z = (2.14)

and d f denotes the density per unit energy of the final states
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L . x
1= @y P s Kt "‘ﬁ s VA (2.15)
The initial (i), final (f) and intermediate states (n) are characterized

as follows

Initial state

Nucleus in state given by a nuclear wave function V

_Interme diate states

a) Nucleus U
Electron P', E!
Neutrino V €

b) Nucleus V
Positron _Q s F
Electron p, E
Photon -l_x_, w

Final state
Electron p, E
Photon k, W
Neutrino V, £
Nucleus U

There are thus just two intermediate states possible in this case and H

becomes
Hpa Hao o Hyy Wy, (2.15
EL - E'—a Eif - Eb



For the energies we have

E.= A = maximm energy available for the /3 ~transition
E,= R~ €
(2,16)
Eb = A -+ E + F + )
Energy conservation requires
A=FE+r grw (2,17)
and we obtain
EL ‘Eq’ = W"F
B -By = - -F (2.18)
with W=F+ e
The matrix elements involved in this transition are®
Ha = S R(p) M ¢, v (v
a vy < )
e R(pyte)w(p
Ve
Le (2.19)

Hog = == W(E)lEe) v(q)

I ﬁ
Y
g

Hpy = £ ryhir e

*The difference in sign between the H,y and Hgp arises from the different order
in which the emission and absorption processes occur in the two intermediate
states a and b, Indeed the relevant operators which multigly *’ohese matrix
elements are for the two cases a;' a1 a;, for (a) and t_a’ bt far (b). We see
that the emission and absorption operators are in a difterent order, By bringing
them in the same order we see that the relative sign of the two terms is opposite
since the operators anticommute. The absolute sign is arbitrary and irrelevant.
We have chosen +1 for case (a) and - 1 for case (b), One sees then immediately
from expression (2.21) that this charge conjugate treatment adopted here is
equivalent with the "naive® negative energy picture where virtual electrons are
emitted into negative energy states and no account is taken of the exclusion

(continue on next page)
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with MY Q/r"‘u) (2.20)
Substituting these expressions in H (2,15) we obtain
(e G L. Sv }
H= -— — 4+ —_—
Ve W-E W+E (2,21)
with
So= 2 MY u(p) (re)W(p) W (p) & v(v)
-y - — (2.22)
Sﬁzm w(p) e ) (1) ¥ (9) ¥y VIV

and the summation is extended over the spin states of the electron (p') and

positron (q). With the help of the relations (2,9) we find for these sums

S, = - le M w(p) ek (p) Yu v (V)

(2,23)
(W
S == gp MR (p)(re) K, () & VV)

Here use was made of the momentum conservation in the intermediate states
P' = r -+ }3
- (2.2L)
9 = -p-k

from which follows E'=F (2.25)

* (continued)

principle for the supposedly filled negative energy states, This situation is
familiar from the theory of the Compton effect. As a curious fact we mention

here that the final result for dP comes out the same whether the sign in (2.19)
for Hp, is correct or not, -



which was used in (2.23),

We can now substitute (2.23) into the curly bracket in (2,21) and

obtain
&k‘ Sav- _ | )
w-F Y War T \;i—\:z<w(g“+s°)"'p(‘?u‘ So )

- — W (p) (de) K_ (§) MY, V()

W-F*
(2.26)
where g has the four components
g = P' = "\-t-k.
éo - W = E+w (2.27)
We now find from (2.21) and (2.26) for K™
- 2 e |
ZIWe o) X (2.28)
where
— ~— o z :
Y = 2 |%(p) (re)K_(5) e, v(») (2.29)

A closer examination of this expression shows that as long as we consider
only the unrelativistic approximation to the nuclear wave function (this
means we disregard the small components in the nuclear matrix elements).

We can factor out the nuclear matrix element for all five covariants and obtain



L )
X - 8& g (2030)
fg = L4 (re) (t'ra-m) (c'h/)(l‘g -m) (Fe ) ('tp-m)
“ (2.31)
where we have made use again of (2.9).
The expression for Y can be evaluated with standard methods of
trace calculations and gives
= e*(v m*)- 2e* (v 2z
Y p)(37m™) (v§) (3p+m?) (2.32
- 2 (pe) (ve) (;z+mz)_, 4 (Pe)(§2)(vy)
We now carry out the summation over the photon polarization which gives
et= 2 (e)lfey = P - (pr)(3x)
e ok
and the integration over all directions of the neutrino
Y = 47 (9/ o, 0,0) (2.33)
The third term in (2.32) is then zero since e° = O and for the others we
obtain
2Y = 47€ {-QE (g‘+m")+ 4 W C?)”*m")
(2.34)

—¢W (P3-prgn)]
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We finally express the result in terms of the variables E, au; W=E+W ;
6~ E-p cos .
The following formulae are useful in this calculation
gﬁm";—, - 2w @O
Jr + M= —~w O

(2.35)
CP-¢BG%) = - 0% 20 —me
W-r"= 206
This gives
ZY - e € { -
(2.36)
and
— z ly E%w? 2 }
= I{n < S - - 2
X= wFinl"g ) — 0-6%m (2.37)
~ e? 2,
2 Iul*= 2.~(2 a4 [Ew 5 - 51 - lJ (2.38)

For the final expression we may then write

AP = P, F(7)dp otk de (2.39)
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where

k= @ )‘

is the probability for emission of an electron with energy |/ = E+w

lnl Wlwimd”® (4-w)*ae (2.10)

within dE per unit time and

F(9)dpdo = 4"‘.‘—5— {Eﬂ/"_‘_ mz~|}

M WimA L TW 8T B (2.11)
is the probability that such an electron is accompanied by a photon at angle
1?' within solid angle d/b and erergy (Y within d¢y . This is the result
obtained by Knipp and Uhlenbeck for the Fermi type interaction (Vector).
For the total probability of emitting a photon with energy w ,

within dW in any direction together with an electron of energy E within dE,.

We obtain by integrating (2.h1) over the solid angle

Fdw= [F () ap ole,

e
Fdw = %X _P {E“‘/,ghhup Aw |
m a,,,l_mz)/q.. Pw o (2.42)
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The total number of photons per unit time of energy ¢, within d (v

emitted regardless of the electron energy is given by

& (w) e = focw x (2.13)

m+w
From this we can obtain the behaviour of the photon spectrum near the

maximm energy in the form

~ £ 434
g?(w)dcu > 3 17 w (2.Lik)
'7 = Wy-ty W, = 8-m

C ~ ﬁz/fﬂ" mest , 4
m

At
a (2.L45)
The following two limiting forms of formula (2.42) are also useful,
For E om W arbitrary)we obtain
Vi

o @muro)n(mrw )
( Y=volicity in units c = ..’2)

For E arbitrary G <¢ m

%é{(%%%ﬁ_z)“‘w(f“ _7'-%5: 2 (2.17)

“rep )
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&s an illustration and a check we shall give a derivation of the result (2.39)
with the Feynman~Dyson graph methOdll. A slight generalization is needed
which is easily obtained with Dyson's reduction of the multiple integral

over P-brackets,

We calculate directly the S-matrix in the form

S‘ So"’ S\,'l' S’L—" 4e (2.18)

R I (unit matrix)

We are only interested in the terms in S, which give rise to the transition

in question, These terms are contained in

[} . »
=)
5, = — ﬂdx; dx, B (H/&(n) H, (1) + Holx) Halx) ) (2.49)
Here P is the time-ordering operator defined by Dysonll. A closer examination
reveals that the two integrals are the same and thus just cancel the factor

2 in front, Thus we also have

S,z_ = — ffo{x,,' dxlf (H/} (x2) He (X..!) (2.50)

When we select out ef this double integral one matrix element corresponding

to a given transition, it appears in the form

/ ,
S'= R (er)? X(Po-fj (2.51)
where R is the matrix element depending on the initial and final momenta of

all the particles involved and P,, P are the initial and final momentum
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four vectors. 1In our problem we have an initial nucleus of momentum K,
and internal state function Uy. The final state is characterized by a
nuclear momentum K, wave function U, electron p, photon k, neutrino v,

Thus
K=(K,p kv IRIK,) (2.52)
Po = Ko
P - K-l—t)# k.+ VY (2.53)

The transition probability per unit time is then obtained according to the

formula

Q= JIR\" (aw)* S(P*-P) (m)—_%ndgk dp o3k div @

where n is the number of outgoing particles, in this case n=z kL, and the

integration is extended over the respective volume elements characterizing

the final state, It may also include the surmation over spins and polarization.
The problem is thus reduced to calculate R, This can be done by

drawing the graph corresponding to the process in question énd then obtaining

the corresponding analytical expression by a generalization of the rules

derived in Dyson12.

The graph in question containsfour types of lines and two vertices,

The types of lines are
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2) Light directed for the electron

1) Heavy directed for the nucleus —-y——
Ny
7

W

3) Wavy directed for the neutrino

-— o o —

L) Dotted undirected for the photon -———=

The graph which represents the inner Bremsstrahlung in (!- =decay is given by

N (2.55)

. O
The incoming ard outgoing nucleus is represented byGHd = GQ{’ r 1(,,)
the nuclear matrix element. The outgoing neutrino by v (v) the vertex 1

by y‘x the link 1-> 2 by the propagation function E(p+k) - M
(p+hk)>+ M 2
the outgoing electron by u(p) and the outgoing photon by F" er and
2

finally the vertex 2 by J), . Thus the analytical form of (2.55) is

W .
-leG % (& Lpvk)—m
X - =" (%CP)Cw)(tm)%mz 5 v ) (2.55)"

In order to see that this reduces to the same result (2.39) we need only
to remark that according to (2.27)

(H»h = 3 (h-rh)% mts P2 w?
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so that
t(P+k) & —m
(p+r)>+ m?*

K_(3)

Fz_w’l (2.56)

in the previous notation., Comparison of (2.55), (2.56) with (2,21) and
(2.26) shows that the agreement is complete. (The fundamental volume

1 = 1 in this calculation.)

III. INNER BREMSSTRAHLUNG IN K-CAPTURE

In the K-capture process we have also a sudden change of motion of
a charge and the process should be accompanied by an inner Bremsstrahlung.
Since in this case charge is only transferred from the distribution in the
K-shell to the nucleus it is expected to be a less intense radiation than
for J" ~emission, This is borne out by the calculation,

Besides this difference in energy release the process differs from
the radiation in J~-emission also qualitatively, First the succession of
intermediate states is a different one since we start out with one exterml
electron ard end with one photon and one neutrino, The nucleus can first
emit a virtual positron and a real neutrino, The positron is then subsequently
annihilated by the electron in the K-shell, Alternatively, the K-electron

can first get scattered into a different state under emission of a photon
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and is subsequently absorbed by the nucleus under emission of the neutrino,
A second difference arises from the fact that the electron in the bound
state has a finite extension in )l -space, This allows transitions to
intermediate states with a continuum range of the momentum. Thus we have
not just a summation over the spin states but also an integration over
various momentum values in the intermediate states,

For the Hamiltbnian which is responsible for the transitions, we

can again take

H= H,a“' He (3.1)
Ha = @(EF'“SP)(‘F& ¥) (3.2)

He = 1e AY (¢ & #) (3.3)

with the same notation as in Section IT.
We use Equ. (2.13), (2.14) of the previous section. For the density

of final states we have instead of (2,15)
£ z 2 2
d - —— ——
_f - e.".)3 h’ M dﬁ GWJJ V Ad‘ (3.4)
since there are only two outgoing particles,

We characterize the initial and final nuclear wave function by V

and U respectively and denote the nuclear matrix elements with
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« 1y N Y
M= (WPV) (5.9

For the initial electronic wave function we write uk(f) and for its Fourier

transform

S
The uk(z) and uk(g) are spinor functions representing the state vector of

the electron in the K-shell, For the actual application the small components
can be neglected, The initial, final and intermediate states are then
characterized as follows:

Initial state:

Nucleus V
Electron LR

Intermediate states:

a) Electron v
Positron q, F
Nucleus U
Neutrino v, €

b) Electron p, E
Nucleus V

Photon k,
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Final state:

Nucleus U

Neutrino _)f s &

Photon k,
For the energies in these states we have
Eb = A * (3.7)
Here A represents the energy of the initial nucleus (ﬁot the atom) and K
the]energy of the K-electron including its rest energy. We take again the

zero point for the nuclear energy, the energy of the final nucleus,

Eza,:: KeF+ £

(3.8)
Energy conservation gives
A+K = 2+ (3.9)
and for the energy denominators we obtain
L, - = -W-F ‘
i " Fa (3.10)

E£~ EB= W"E.

W= K-w (3.11)
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For the matrix elements of these processes we obtain

£ Amr)ve)
:

Hew = L& L 5
fa 7=, mvm)@r) U [—44L)
le -
Hy, = \/-—n'..—_:_u \;‘_i WP (&) Wy, Cp+h)

Hyy = = £ T le) n(p)
This gives for 2

W T Dl

(3.12)

. Z Heo Hy,
& B -E. Y Ei-gy
' @ - k_( (3.13)
H‘; te %(y M - J’)
§, 2N ED e
where
Rl
9"~ W
Introducing the notation U (x) = Cu (¢ //v
1 pe
Si= @y Jurg

Tiga SUheR) 4%

fo - @rﬁf Y

G k) o7
wi-g™ (e=k) A%

(3.14)

/‘/‘= ésrﬁfﬁ%s" “iprky ey,
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We obtain finally for the probability of the emission of a photon of energy
¢y within deJ

AP = "11.;‘,_ G*|M|* [fﬁ(g"-/.t)l_]w(wo—mj"otw (3.15)

where |y, = A+ K is the maximum energy for the photons.
The relative probability per emission process is obtained by dividing the

expression for dP with P, the K-capture probability per unit time

P, = -%_ G*IM|* lwiy|™ W, (3.16)
This gives
o P 20 % (r-u)t o\ 2
. T = 22 e Cl- - ) . (3.17)
P ™ 'w(ojlz- Wo

If the photon energy is large compared to the binding energy of the K-electron
WD Kem we may approximately evaluate the integrils in (3.14)
by putting the K-state wave function = const. = 1.

From (3.6) we get

W, (1) = (my)d d¢1) (3.18)
Thus k
Pi ¥ 2w
-K
- S w (3.19)
M

S ~ 2mu

and

‘PQ"' (Po'/‘)‘z s 7(-:‘41_
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Thus

AP & «du C Y =

po TL'  m* W@ (3.20)
approximation valid for (J > IK-m thus especially at the

upper end of spectrum. The total number of photons emitted per K-capture

process is very nearly given by
Y W, \2
P X m (3.21)

Thus, far instance, for Fe>> b o2 0,210 Mev

Ma 3.2x10=% (3.22)

From formula (3.20) one deduces that the photon spectrum is expected to

have its maximm at

. L
C‘)_»M = 5 W, (3.23)

In order to test the feasibility of the method here proposed for
measuring the energy release in K-capture processes, P. R. Bell and J. Cassidy
have made a test run on li‘eSS which goes by pure K-capture to Hnss. This
was the same substance used by Bradt9 and coworkers who made a crude de-

termination of this energy. They give a value of 150 keV,
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The graph shows a plot of %)/‘;here n(@ )d¢) is the number
of photons of energy (y within dWw . The plot according to (3.20) is
supposed to be a straight line, The intersection with the abscissa gives
the maximum energy and turns out to be h/o = 206 keV.

This compares well with the independent determination of this energy
by the measurement of the Q value in the reaction MnSS(P,N)FbSS. This was
done by Stelson and Prestonl> who find Q = 1.006 # 0,010, This gives

W = 219 keV & 10 kev,
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