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I, Gepersl Discussion

Our problem is concerned with engineering in its application.to‘the Ji
. design and usé-of reactors. in order to limit the scope of the problemrté
~ material which can be covered.fairly adequately in the time aveilable, I
~wish té consider reactors only in one §ontext, as part ofva very_simple

four component system, which we can visualize schematically iikg'ﬁhis3_
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(1) Here we have a reactor operating at some limiting temperature
: Ty, teking in a quantity W per unit time of some cooling fluid
N at a temperature Ty and discharging it at temperature Tzo

(2) A pump or compressor providing & pressure rise Z\p sufficisnt
o to overcome the pressure losses in all other componentsn

{(3) A turbine for developing external power amd for running the
pump may or may rnot be provided, depending on the purpose of
the system. 1 .

(4)' And firally a hest exchanger which reduses the tempemstuie to a
: velue appropriate to the requirements of the system pump..



It should be pointed out that many aspects of reacﬁof enginéering are
completely neglected in this simple system and will bg'prettyimuch com~
pletely ignored in this series of lectures. ;Fdr-ipétqéce,'our system
includes no chemical processing equipmenﬁ.fdr‘fissionable_méterialslor '
fission products. ' |

In this coﬁtext,.as part of a system, we'afe;going.té'discuss reactors
from<£wo aspects: (1) How do fhe qperatihg chara¢teristics of the feaétof,
or at least some of them, depend on the inpernal design of the reactor and
(2) what do the design specifications for the system demand for operating
 characteristics qf the reactor. So far as internal design of the.reactor
is con&erned, we Will need to know first about the distribution of neutrons
and the réquirementa for criticality, and here we will Borrow from the reactor
. theory éourse enough information to enable us to determine the distribution
of power in the reactor as ajfunction of space and time; In diécussing'the
thermal output of the reactor we will combine enough heat transfer, fluid
flow, the:modynamibs, and theory of elasticity to establish the dependénce
of power output on'temperatures, pressures, velocities and material charac-
teristics inithe reactor. We wiil try to establish limitations on power
out§u£ due to (1) top temperatures allowed by materials, (2) temperature
difference allowed by thermal stress; and (3)3pressure drop allowed by power
consumption. | |

The handling of thermal energy without nemtron considerations is a fairl&
cbmmonplacé engineering problem, and & considerable amount of engineering 
development has been expended in determining its application to engineering
problems; The handling of neutrons, however, is not yet a comﬁonplace engi-

neering problem, and the distribution of thermal energy in a reactor cannot
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be considered as a problem completely independent from neutron consideratiors.
The distribution of thermal energy, or even its existence, in the reactor
is entirely dependent on neutron distribution. Materials requirements for
neutron purposes seem to be set in antithesis to requirements for the
utilization of thermal energy.

The first large reactors which were built, for instance Hanford, had
as their only purpose the utilization of neutrons for the production of
plutonium from uranium fissions. The economy of neutrons determined largely
the reactor configuration, while the problem in handling thermal energy was
to minimize its nuisance value., A considerable plant, as well as a large
amount of Grand Coulee electrical power, are needed to dissipate the energy
of fission into Columbia River water. In moblile power plants using nuclear
energy, like the naval and aircraft applications, the conversion of thermal
energy to mechgnical energy is the central proﬁlem. The neutron problem,
due to the use of enriched fissionable material, is important only in its
bearing on achieving criticality with a reasonable amount of fissionable
material and a reasonable size of reactor. Reactors in the future may have
to combine the emphéses of these two types. If nuclear energy is to compete
economically as an extension of world sources of power, it will probably be
necessary to use fissionable materials economically including both con-
siderations of power plant efficiency in the usual sense and including the
maximum use of neutrons in making new fissionable material. It will be our
job here to try to understand the interrelationships between nuclear con-
siderations and the more usual engineering problems of power plant design.
In this connection, I plan to discuss in a very few lectures the overall per-
formance of power plants as it depends on reactor characteristics. This
will involve mostly an analysis of a sample power cycle from the point of view

of efficiency and power output.
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I would like to give a few general reference for those ‘who Hiah to

pursue these topics further.

II.

1. Heat Transmission, W. H. McAdams, McGraw Hill Book Co., Inc,,
New York, 1942. -

2. Theory of Elasticity - S. Timoshenko, McGraw-Hill Book'co;, Inc.,

New York,. o , _
3. Thermodynamics - J. H. Keenan, John Wiley & Sons, Inc., New York',“1941°

' 4. Handbook of Engineering Fundamentals - Eshbach - John Wiley & Sons,

New York.

5. Ihe Science and Engineering of Nuclear Power - C. Goodman - Addieon-
Wesley Press, Cambridge, Mass., 1947. '

goggrrGggerapign in Reactors

1, Heat Distribution

Ina given position in a reactor the total heat generated is pro-

‘portional to both the neutron flux and to the coneentration of fissionable

material. The ehergy released per fission is about 200 Mev. Since 1 ev =

1.6 x 1019 Joules or watt sec then to obtain 1 watt of power it requires

1 x 100

200 x 1.6 x 10~19

= 3.1 xllolo fissions per sec.® The number of fissions

per second taking place.in & volume element dV of a reactor is given by

(for a thermal reactor)

. Np OF (nv)y, &V

where N. is the number of fissionable atoms per unit volume of the material,

O ¢ 1s the microscopic cross section for fission for these atoms, (nv)th

is the flux of thermal neutrons, dV is the element of volume being considered,

The number of fisslonable atoms per unit volume can be expressed

Nf - adﬁ
A

¥The Science and Engineering of Nuclear Power, C, Goodman, Addison-
Wesley Press, Cambridge, Mass., 1947, p. 196,
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vhere de is the density of fissionable material in space. If the mass Mg
of uranium is uniformly distributad, mn afvolume VR then
Ne= a Mf
AV
Here a is Avagadro s number (0.6 02 x 102") and A is the mess pumber of

fissionable uranium.. The power available _from 't.he increment of volume av,
using uranium 235, is
602 x 10°% -2 (ag ¢th av
0
235 x 3.1 x 10%
where ¢ = nir, and the cross section for fission for U235 is about 545

. barns. The power from volume dV is

045 x 10710 4y Gy v watts,

'Let us take for example & reactor in which there are 100 Kg of U235
-Jhnor less uniformly distributed and an average thermal flux of about
. O:I'3 neutrons per sq cm per sec. For this reactor then we would expect

 the total power output to be
: ' =10 5 13

Q.../'i.x_J.Q__x_la.Q_x_m_l_lQ_ = 45 megawatts

, . 10
Let us see how this energy is apt to be distributed in space and time, It

has been estimated that the energy of f;,'ssion is dissipated about as follows,*

S MEV

KE of fission fregments 165+ 15

(3 rays 7

KE of neutrons 5

¥ rays 11

Energy from noﬁtron capture -2
200 % 15

Neutrinos 10

*The Elements of Nuclear Reactor Theory, Part I, Glasstone and Edlund, 1951, p.
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~ The fission fragments are large particles and do. not travel far. Théir
- energy 1is absorbed very close to the point of flssion, as is that of (3 rayso
Neutrons have a much larger range and conceivably large numbers could escape '
| from the reactor. However, for most reactors neutron economy will dictate
that most of them will stay in ‘the’ reactor° .U/rays hav1ng very high ranges
can be abeorbed only by 1arge masses of material Most of these will escape
the reactor, but for health roosons must be caught-in_shiolding.-‘Neutrinoaﬁ
have such long fanges thet, éo far as we are concefned,.they never enter

the picture at all. Of the 200 Mev per fission to be accounted for we

might assume, depending on the configuration, that 5 to 10 percent will be

absorbod in the shielding outside the reactor. For specific cases a

'leing ‘must be. made.

imméﬂilteinuttar g ahutdnun-fh&iow&ng a.long period of: operatiOn, the
-f :reactor is operating at 6 percent of its total power, this powar ‘then de- |
~caying, according to the formula
P - 0.065 Pot'l/ 5 l1- _t_ Rk
tity
where { = time in seconds after shutdown.
t)= time of pile operation at P, in seconds
for periods from 10 sec <t < 100 days. This must be taken into account
in the design of the heat oransfer system, so that sufficient heat transfer
is available after shutdown to prevent demage to the reactor.

In summary we might say that 200 Mev of energy are formed per fission.

Of this, 86 percent is absorbed at the point of fission, 14 percent somewhere



witnin the resctor, its reflectcr and its shield Some 94 percenti for .
engineering purposes, is created immediately at the thne of fission, vhile
6 percent is delayed, and greduelly decays after shutdown, the delayed |
_ power decreasing by abﬁactorfoﬁttwooforweaéhzfactbriof sznmnctimesz,c ldomm,

2. n reis o Ree_ | -

We have seen how the generation of power 1ocelly in & resctor

depends on the local densities of ‘neutron flux ‘and fissionable material.
It would seem appropriate now to investigate relationehips which determine '
- the neutron flux distribution and density of fissionable material. This
requires a consideration of criticality. conditions. Fbr this purpose ‘we
‘will write down three equstions, which are taken from the resctor theory text,

-ihese ‘are ‘ .
| 29223 . (1)
veesd
g N Vznv— Z,n.v\‘.pqth:b . (2)
321;. : R
qu*r'?é Eanv | | (3)

These equstions, subject.to appropriate boundary conditions; represent eriti-
.cality requirements for a nuclear reactor. The first of these equations
, represents the slowing down of nentrons from the fission to the thermal
‘energy limitas. Tne eecond‘shows the_diffusion and loss by capture of thermal
neutrons and the third snows the formation of new fissionxneutrons_from the
esptnre of thermal neutrons in fissionable neterial° Equations (2) and (3)
_provide boundar& conditions for the slowing down range. Same explanation
d‘of'terms is probably in order,‘although an attempt has been made to nse terms

'from the Edlund notes.®

* The Elements of Nuelear Reactor Theory, Part III, Glasstone and
Edlund, CF-51-9-127,
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q = nv 5 2 S/p slowing down dens:.ty, neuts/cmB-sec passing
o energy E S

n = density of neutrons

= velocity of neutrons

average logarithmic energy loss per collision

Ao <

u .
C= exp ((} 1 .. du = é.ge of neutrons in
| 3 Zt(5 i: 4 ¥ Ea) SR slowing down
4 .
" | . )
p = exp( - | 'ig __du = resonance éscape probability

5 2 t¥2,
Et = macroscopic transpprt cross section

g = macroscopic scattering cross section

macroscopi'c‘ abs'orption ‘cross section

= lethargy = log EO/E

M M

h X W B P

neutron energy .
= (See Reactor Theory text, equation (6.110.2)
= 5& = thermal utilization

>

: 7{ s-; = neutrons per capture in fissionable material

€ = fast effect, fissions from fast neutrons
Y = neutrons per fission.

The limitations on the use of these equationc do not particularly con=-
vcern us here. What ve want to do with them is to demonstrate a general method
of handling such equations, agd to find what we can from them about the
chargcteristics of reactors. However, some limitations on the equations

should probably be mentioned., Diffusion apprbximations to the Boltzmann -
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equation ére in general not good where anything very rapid is bhappening to

‘neutron flux (Marshak Ellis)@* Extrapolation length depends'on transport

mean free path and if this is a function of lethargy this amounts to saying
that the effective size of the reactor is a function of energy. If trans-
port cross section is a function of space va:iables we must'writeiiz

AY; (_1 Vov) instead of _1. ¢  nov
B =

If the reactor is not thermal, E must be defined in terms of an ihiegral,'

over the slowingldovn range; of fast fissions. All of.these effecﬁs are

given serious,considefation1in cdnnection'with the ANP reactor, and same of

- them are of sighifiéance.- We are going to ignore all of this with the claim

(not yet entirely established) that the necessary changes can finally be

taken care of by methods similar to those we are now using,

 Dimensiona) Anslypio**
| Physical quantities are assoclated both with & number and &

dimension. Dimensional analysis tries to study separately the dimensions,

, leaving the numbensfor experiment oy calculation. There are three different

outlpoks ‘on dimensional analysia, depending on the kind of information

‘aveilables (1) hunch or experiment; (2) differential equation; (3) elgebraic

' equation. (1) Here we have cduse(to thihk a certain physical quantity of

interest depends on certain other physical quantitiep, What are the poSsible'
combinations? We can never get a number to go with the dimensions. (2) Here

a differentisl equation gives a relationship between physical quantities, but

* The.Principal of Reactor Criticality, C. B. Ellis, ANP-69, Mafoh 2y 1949,

Theory of the Slowing Down of Beutrons to Elastic Collisions with Atcmic
Nuclei, by Robert E, Marshak, Rev. Mod, Fays., V19, No. 3, July, 1947.

*# Handbook of Engineering Fundamentals, 0, Eshbach, John Wiley and Sona,
New York,
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- numbers can be found onlj‘by integrating the‘equatioeoit(B); A physical
equation gives both physicai relationships.betweeﬁ dimensions,agndinnmbeie;-
o Not alliequetions the unitary hemogeneity.“Engineers'ere‘netofious )
for equations which do not, one well known example being the equation for j.5
the velocity of afflux from a nozzle ' |

| v = 223,7 - hz
where ‘

Vs velocity in feet per eecond

h = cnthalpy in Btu per lb

. This equation hna been dcrived froy

v(ft/,see). 5\/23(111-;12). V2 x 32.2 (£t/sec?) (b -ha)ft

" In this both sides of the equafion~have units of ft/sec. If we are to
express (hj-hp) in the units of Btu per 1b then we have 1 Btu z 778 £t lbs
or 1 Btu/1b = 778 ft, Thus (hl-ha)Btu/lb & 778 (hy-bo)ft and the above

equation becomes

v =\/2 x 32.2 x 778 (by-h,) = 223.7V by-hy

,‘ vhere v iesih ft/eec and,(hlhhz) is'mcasured not in.feet but in the units
| of enthalpy or Btu per lb,'.This is not a depreciastion of the non-dimecaional
_forﬁnlc since in engineering routine it is very handy, but a warning of ceutfon
in.its use. In the particﬁlar case mentioned here, elaborate charts are in
existence from which hy-hy can be read directly in Btu/lb, while velocity
is desired for engineering reasons in feet per second.: ‘

Let's see what we can find out about these equations from dimensional
aoalyeie, which is just the statement that phyeical laws must be given in

equations all of whose terms have the same dimensions or units - the rule of
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o ‘unitary' homogeneity. - 4 check which you can easily do will show that our
equations are in ;c.his form, the terms in equation (1), for inst.anee, hairihg' .
the dimensions of e 'T"l.v Notice -the-dimexisiens. of Y 2(d‘?/dx‘?) 'ar'e'L".z,

of gare L'BT"l, of T are 'Lz, where ‘L represents the dimension-of ienéth .
and T of time, If we mudtiply through equation v(l’) by sny quantity having ,
the dimensions L°T e will find that the equation has been separated into
dimensionless parameters. Some of these peremeters will be usei‘ul Such

a quantity, as for example, q/'&“th has the dimansions of L2 T'l vhere T th
vis the thermal age. Since Vq /q has the dimensions l/L2 is can be -

written

o q - RR, |
where R is a critical length dimension of the reactor and ol is a parameter |
. for a particular reactor. Multiplying both sides of equation (1) bty ¥ th/q
we have 'tth' _V_zg, - ﬂ 2q. whieh is 'a‘dimensionless equation.

q
this may be rearranged to give

_'B'

This can be integrated with reepect to enorgy fr‘on fission energ' to thermal

to give 1 | Ath |
- Tz ol.? d(T/Tth) = 5 d(logq) = log'(qth/qf) (4)
B2 9 | %

or q,/qth exp (Tth S oL 2 d(Z’/Z‘ )

Likeuise equations (2) and (3) can be made dimensionless by dividing by
(2 ,mw), giving
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¥V v -14 2% oo
s
and |
'PQr Gt =
dth 2, nv |
;-Elimiﬁating P Q¢ between the two equations".
' :E.a nv | '

-y | : |
T Nomy . -1+ Pf’]éi 2 =0
32, 2,5 - %

Again, as in equation (1) (Vznv/nv) has the dimensions of l/I.2 50 let

- )
__nIVZ =- (3_
v

where F is s consta.nt for a particular system, and R is some critical length.
By substitution e have '

N XA | ' ' -
O iimesa o L
3 E{Eanzf “ @ |

Eliminating qth/qf between two equations (4) and .(5-) gives an expression for
the criticality of the reactor. '

2 : 2

( 6 $1) oxp 3323 ol d(T/Tth) = Pf"?e (6)
33, Z,# B o L

It should be noticed that the form of this equation is essentially that of

- the Fermi age equation in which _
| | B2 = B1?

'3,§;t :E;R2
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| _%2 = o 2 d(T/Tm') = BzZ’th _
0 . :

- and.. .
" ;ﬁ76=k

We can use equation (6) to find out scmething about the mass.of_fiésionable
material in the reacﬁoégwhich is peeaed for'cfiticality.'lfor this pﬁrpose
letvus say that the cross section for sbsorption is canposéd 6f-tub_§grts;
one Eu' in uranium or other fissionable mterialg the other 2 e in all

other ‘materiais. Then . _
5.3 3
and from our definition of £

£ = Ev. ,

u

c

The macroscopic cross section for urenium ig

‘E :J‘Nu=-o‘§1ﬁa__a_"

b

vhere o the microscopic cross section f or absorption in
U  figsionable material

&

a

the critical mass

Avogadro's number

Vp = voluno' of the reactor
' A, = mass mumber of fissionable material
If we let VR - X RB, t'hen'l, . ] |
2o Tata
g



For convenience let

Tth j okz d(’Z’/Z’tD

Then dividing and substituting for f and substituting for ia in equation (6)

gives ' _ - o :
| — (;2 : .+1 | f_nJ_J.Z | = .ypge T |
(3 Zyz42z e /o Zu o .’776
82 5
5 S, 2(:32, 4 .__JJ._L. Sc , p‘? eéa

(s—f%—z e 3 (meta)

or we obtain a dimensionle_ss equation inirolving the critical mass

TiooMe . g Eg o — tt @
Ze 2T e |- T f A2 aT/ Ty |

0

Ve can seperate this equation into class peremeters of two kinds; ‘gecametrical

and physical: .

'A | geometricals <X , ﬁ Y

pbysicals g ‘ 1&; Z 2- 32 s Py 72 s &
c ‘

Certain genersl statements ca.h be made about the geonetridal factbrs; for

instance, for all &re reactors of practical interest, 0( ’ /5 and X have

magnitudes close to 7 . Their accurate values can be found only from an
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integration, generally numerical, of the differentisl equations, but for

clagses of reactors for which'dimensionle.ss parametors are the same, ohs
: calculation does for the whole class. ZIquation (7) can be. put into a nore
general form by referring ths dimensionless ra.tios to a definite value of
‘the critical dimension, R. Since we are now going to demonstrate that a
- minimuom value 'of the mass exists,f.o: one value o_f R, let us express- t._he
ratios in terms of this minimum, Then , - |
/<=_Mu o fe m

aa AYZ Ry Cepy€
oy oMy )
LN LI F (R4

30— a M'min it | P‘minz' 0

Then equation (;7) become_a L _ ,
/4 - A)Da 1 g.f - o (8)
Ce'D./P2 -1 '

A minimum occurs when

g =

and at this point j‘ and / 4re both l. The rinimm then occurs when
0=3A4% g_'- ;gcg'D
A} B Ce..D -1

or when

| $1 - | :
-}%- . = 2K _ " - (9)



-16- -

From equation (8), for the minimum point

1448 Qo0

Ce",D"-' l} . o o

Equation (9) can be solved by hmnerical approximafiori for the ratio of
A/B and hence for the critical ra.dius.' Then equation (10) can be solved
for the crit,lcal mess. It is obvious t.hat the critical mass approaches
infinity for two velues of f , one when. f > o0, for which equation. (8) |

becomes appropriately

/“‘ = i (for large./o)

| 0 =1
- if Sc 1s relatively large, and
,.f‘z Bf | (for 1argof)
- - =1
if E is relatively small The second infinity occurs when

Ce-n/'/ ? =1
- or whén . : .
. f 2 i D
_ = _log ¢
. ‘ _

If there is no absorption of neutrons outside the uranium, then

2@ = A = 0. Then Eq, (8) becomes

S Pt
Ce;D/ f’z -

Equation (9) and (10) are

200 =1

C ~-¢.
Iand ' :
J———-—— =l
-Ce'D -1
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Let .ﬁs try this for a mixture of BeO and_Uzss, fdr‘which

2— =0 .~ (for purpose of 11lustration o_h.ly)
| 1 _ -

Az0

235 x 4/3 T Myap =125 Ry

3 X645 x 602x 0,67 M,

(]
"

2.15 ’. -‘ o
" Ryy Ratn

Substituting the above valus of €

.9
"

or

D=b-eo
4e3

By trial

Let D=z 0,3 then . 3¢ $-.34=186. ...

'; D .= 0.2 n . 02 # 05 - 0284 = .216
"D - 0022 » 022 # 05 - 029 = .21
" D = 00211 -" | C o‘m # 05 - 028730213

0.212 " '= 5 = 288 = 212

or C D= .212

"D

is a solution of the above QQuatibn.



-18-

_ % ,
= {1080\ = 71.2 cm,
“nin (.212 o

Mpin = lga%_x_ZI;Z’
B = 2.15x .81 - 1 = 0.74

| ng,,in;;g.s_dz?n.gﬂ.z kg

7
8o - ' S s e
- LS £ N _ (ot s
\/‘-—Q‘ﬂ‘:‘%—;ﬁl /:°'(1_o§%€1_5> -}(1277) = 527
2,15 e .- o ‘

1 ‘ , 1 A
2 148106 ld
6

4h3/4.193 | 2.3

A rough plot of thi’s result is shown in Figure 1. |

As a problem I would_ suggest that you find aéprox:lmate curves‘ for _/(and
values for Rmin and Mﬁﬁ using enriched urenium in three moderators - heavy
‘water, beryllium oxide and graphite. For contrast you might try this slso for
nétural ﬁtter in 'w‘hic;h._absorption in.' the moderator is relatively large. You
will need the folloﬁ_ipg_ values, |
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~ DIMENSIONLESS CRITICAL MASS CURVE

/l': dimensionless critical mass

= dimensionless criticsl
radius |
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Lecture Notes - Engipeering &4
B By S. Thompsen |

3. Breeding Pogsibilities

| A subject of'mugh interest in the field of nuclear energy
now is the possibiiity of using nuclear energy &s @& means of extending
our natural reéources for the prdduction of power, 1In thip:conndctien it
is nédessary to know how much fissiénable material is economicﬁllY'aiailnblo.
One determining factor here involves the question.whether'oniy métérialg
- which are fissionable in their natural state, like Upss, arefivlilab;p;
or vhether it is feasible to convart'other materials, like U238Iwﬁich &re
not fissionable in the natural state, to fissionable materials in"éigmi-""
ficant quantities, The importance of this question arises from ?h; fagt
the Uz3g is 140 times as plentiful as Up3s, and that iarge'quaﬁtities°§f
non-fissionable Thp3p are avallable. It.is comnon knowledge that.fhe
Hanford reactors and others do nakequ239 from Us3g at the expense of
using up Up3s, and that Thyso can be cénverted to fissionable_23533‘by ,
neutron bombardment., The question is wheﬁher, in using wp the reléfivaly:
small quantity of Up3s we can make available a significent part of thesé
other materials, ''The least we would haﬁé to ask of a system for this pur-
pose would be that for each atom of 0235 used up, 1ncluding.chemical,pro-
cessing losées,'etc,, one new atom of fissionable material would be produced.
Then supposedly this new material produced could be placed in anoth;r
reactor #nd the process continued until ail éhe ﬁon—fissionable material
could be made fissionaﬁle and burned up. If we wish to add to the cur~

rently available stockpile of fissionable material it is necessary to



produce more than one new atom for each one used up, Let us see what the
limiting possibilities are.
The ratio of atOms:broduéed'tovthose used up can be expressed as

=P - - (1)
!

~ where 2 prthe cross section of the._..vproducti;on' material (for ‘instance
Us3g) and >, 1s the absorption cross section of the fissionable material

(for iﬁstance ﬁ235), The;lfractional increase of fiséiona;ble maférial
availablé is then '-. _ o _ | :
r.Zp -1-U S )

Su

where _@ represents the fractionsl loss in chemical processing, leskage,

etec. For example, if ‘110 atoms of plutonium are produced when 106 atoms

of fissionable uranium are destroyed, and if one percent of the cufrent supply
is lost in chemicai processing, etéo, then the gain in the system would be

r=210-100-1 =0.09
100 _

We wish to know now an upper 1imit on the ratio ZP/ Zu This limit is
- set by requirements of criticality for ’t_he reactor, and is stated for an

infinite reactor (since we are taking care of leakage in the factdr,e)

k = 1 ’ (3)
where k can be represented by
k=pfnéE (4)

If we idealize the system by the assumption that all absorptions occur.:
in the thermal range (for & real reactor a detailed accounting is nécessary) s

then P = € = 1 and Equation (3) becomes

f‘q.= 1 (4)

=22



where \’] is the number of neutrons available per absorption in fissionable
inaterial, and where f,. the.thermal utilization, is by definition
fz Zu P | ~ (5)
ji-o A .
Here” 2 is the total cross section for a'osorption in all materials of
which the reactor is composed. Let us assume that Z is composed of
three parts, absorptions in fissioneble meterial Z o’ absorptions involved
in production material Zp" and non useful absorptj.ons c (stmcture',
moderator, polsons, etc.). Then the thermal utilization cen be written . |
f = Su S (6)
=, +Z + >, - S

Since from Equation (4) f = 1/»1 , we can write

yIZ'}Z‘}Z A | (7)
> . ) |

or

= -1-Z¢ (8)
I |

M
b2

Substituting Equation (8) into (2)

r=V-2- Z¢ - - 9)
2y
Let us assume we have somehow acquired a perfect reactor, in the sense
that there are no losses in fon useful capture, leakage, or chemical pro-

cessing. Then the upper limit on the breeding gain is glven by
r=N -2 (10)

For a system using U235 we know that the number of neutrons per fission

is given by P = 2.5



At thermal energy we know also that not all of the neutrons absorbed in

Ua35 cause fissions, giving a value of'Tz less than r, or

N T2 xge = 2,1 |
If it were possiblé to eliminate all the radiative captures in Ué35 by
some means, then we might achieve
V\ s Y = 2.5
The mgximum possible‘gain'in the system then is bounded
0,11 £ r < 0.5

Actﬁally, 6f course, we cannot obt;in this upper 1imit, due to the
va:ious iosses in our system. |

| It might be thoughf that it is not necessary to achieve a positive
value for the breeding gain. For considering this possibility lef us
imagine thét all the natural uranium available in the world has been
sepérated into two neat p;ieq, one of 0235 and the other of Uéjs and that
these are at our disposal, Let us\say that our problem is to figure out
the minimum breeding gain which wiii\enable us to use up all the Uzag at
exactly the time when we run out of U235 JIf we consider that this is
to be done by a series of processes, each having a gain, r, then the re-

quirement is that

. : _ a
14 Q4r) + @ 4r)2 === (14r)+ === ==140
Since there are 140 times as much Upsg as Ué35; If the series in iﬁfinite.

then it can be written

1 = 10
l1-(1+4r)

or, solving for r

r= = 140

-2/
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Thls is a small number, and would be even smaller if we had been trying
to ‘use up all the thorium also. Slnce r is negatlve, this 1mplies a

g nuclear economy, in which the number of operable reactors at the

| start, determined by our supply of Up3ss steadily decreases until finally
the last lonely reactor grows cold Just as all the fissionable material

is used up. Since even then r is so close to zero, it would seem that
ﬁe get;very 1ittle relief from our technical breeding problem in_the dvind-
1iug‘ecenomy,:and we may as well face tﬁe necessity to make r positive.

It is generally assumed that our nuclear eeenomy sheuld be an ex~

pending one in whiéh we use our Upss to make as much fissionable material
availeble as possible end as soon &s poseible, With a positive.gain, r,
a usefﬁl eencebt is,fhe requirement for doubling our supply of fissionable.
" material, Considering again a series of repetitive processes; each'with
.a~g§1nrr..The ngp Process is_assuﬁed to be operating with twice ﬁhe origi;

nal amount of fissionable material, : Then

(1+r)" =
r ns= l‘ggr 2
log (l+r) :

F§r'examp1e, if r = 0,01, the number of processes required for doubling

the supply of fissionable material is

= 0,693 - 69
0,01

It is apparent from the above considerations that for the "succéss of
an expanding economy we want r as large as possible, and we cefﬁainly want -
1t positive.

How much fissionable material is used up in breeding? It takes



3.1 x 10lo fissions per second to make one watt of power. To make one

megawatt dey of energy hence reguires

. fissions
010 6 021 - ‘
3,1 x1 ‘x 3.6 x 103 x 24.x 10 = 2068 x1 g anwatt 7

| The mass of U235 llsea. up,idfi¥)ce ¥, is hence

2,68 x 1021 x 235 o3 40 g 124 s
2602 x 10%4 smegawatt day oy

In the'pfocesé.plutonium is produced at the rate

.04 ( 14r ) —E—————
megawatt day -

The gain in,fissionable material is

L 1 P. : ﬂ .
nogawnﬂt day

It we have availablé‘allimited supply of'fissibnable.ﬁaferiﬁl.aéd;
:wish to make és much neﬁ material as quiékly as possible, 1t is 6b§ioﬁé7
that we must burn our available material at the highest rate’ pougible,'
assuming tha breeding gaia is poaitive, and incidentally asauming that
we have Bome competitive usé for the therkal energy:created. |

Calculating r for any»specific reactor requires a detailed accounting
for all neutroné and for all fissionable atoms. Until breeding has béen7
demonstratéd'experimentally its possibility iS'a matter for conjecture,.
| and the ultimate usefulness of atomic energy for more than military pur=

poses probably hangs in the balance.

: geferences ‘ ¢
1, Physics and Atomic Energy, Ho Brooks, ORNL Co F. 50—3~180 1950

2. Sourcebook on Atomic Energy, Glasstone; D, Vnn Nostrand Cos, Ince
1950 (seo index) ,
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Z; Numerical Methods for. Reactors |
o Tt has been shown by a dlmensional analysis of the differential
equations for thermal reactors that the criticality conditlons can be )
; expressed in terms of dimens1onless ratios of the physical quantities
ﬂ?:Whlch describe the reactor ‘and numbers which describe the geometrical
| ”'configuration of the reactoré For one special case,lnamely bare.reactors’l

_the values of the geometrical numbers o aod\(% , @8 giveh by definition

e . a R?
and I | ' 2
: Vzlnv‘ = - é

v . a?.

'fyafe'egual and oonstant° For this.case'it‘is‘easy to find analytical

'solﬁtionsa For iﬁstance 1t can be ve'z;ified by substitution that a sphere
vields = L E | |
R A= L=

—

q/A = | wv/m = sin TT (z/R)

| RN ¢, VR
- More o0mplicated oases generally are handled more easily by numerical
| methodsol The following discussion is intended to give some familiarlty
with numerical methods for this purpose9 since these enter in large v
measure in reactor engineering calculationse

Many types of numerical methods are available for the solution of

differential equationss These can -be roughly separated into two classes:
(1) Those which use approkimate differentiations; and (2) those which '
- use approximate integration85 It is proposed here to demonstrate the

application of both»types to the differential equations for the crltlcal

27
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reacﬁor. This example will »s_ho'w_ the s'ort of approach which can be
made to a reactor problem hof readily susceptible to analytical methods,.

The equations for the reactor are written as they were before:

2
Ve = 24 ‘
DT - @
2 .
2V (w)y - S, () + Pagp =0 (2)
3 2,
qf = £ N€ (av)gn = & B (3)

To make 'the' problem definite let us consider a sphere, In spherical

coordinates, Bquations (1) to (3) become

d 2 (rq) = o (ra) . (4)
0 ‘r2 : 2 T -
L oyt - g (mv)y + pray, =0 (5)
3 Z t '
rg;= £ € (mv)y, T (6)

If we let (rnv).!3h = R A ? end vq = A §, where ;0 and ' are
made dimensionless by the factor A of arbitrary numerical magnitude,

then if r = g Rand T = 6 Tyys Equations (4) to _(6) become

2 .
_)_LL': R 2 Y (7)
€2 T o0 |
1 M - ZaR + p =0 (8)
__32’_,03 ¢1§2 o 30 L")‘bh
| Y= fné€ Z,pp o)

Slowing Down Equation

Let us now apply the finite difference procedure to Equation

(7)s This procedure begins with the definition of a derivative. We write

=28



.B‘HW : -_- y (g +4A §,8 —¢¥(s.8) (10)
- -;j. ! A 5

| | Agio |

Likewise the second derivative is defined

)_sg VLOL ‘P(5+_A5,9) v(5.0) »L‘Wg‘@)'f?’.df’e)

) f' =Y : AE=0
o ya g_==0 S , 4 g
o _If we agree to consider only small intervals,lﬂ‘g', we can write approxi-

mately (This can be verified by an expansion of 9/ (5 +Aj 8) in a

Taylor series).

Qs
<
" o

5U(€+A€ 1 8) - P (5.8) C(12)
| 25 - As
. a
. 5‘2#2 = ‘}’(éwﬁJe -2 ‘#ﬁ 8) + ‘//(Z-Af,e)
' V2 R
>5 (a5 (13)
likewise | S . .
2y . y(a 0r D gy (§.0) (W
> B - A e

Substituting (13) and (14) into Equation (7)

PlErag o)+ LV(E Aa o) -R WE p+46) , 29(5.0) B O Y(E6)
(Ag) A & ( (Ag) Ttn Ao )

If we agree to use the relationship
= _R2 1 ' (16)

2
2 Y

Equation (15) becomes

p (GrD5, 0+ P (5-Ag.0) = y(E, 0188 an
2 |
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Let us,ffy;to}iﬁterpreﬁ Equation (17) It states that the value of the
funcfiii;n Y at a point ? and the age @ + A 0 s ¢ given by the
avera.géi 6_f its values at 5 +A § and & - A§ at the. previous age 8,
_where‘the'intervals A .9 aﬁd ZSIS are related by Ehuation (16)

This can be shown schematically as’ follow§ Q
' &Y’ D
¢ N

T
IAE;).;_"@_‘A.G
2 ‘

. Qb\
> v
\(}'( 8+40)

9-“5 ——>(—A€

£ <—A§———>
| +A5 — ~
Using such a graphical methgd'of averaging is dug to E. Schmidt snd is

called a "Schmidt plot"* It has been used princiﬁally in the solution
of transient temperature distributions in solids, With it,'witﬁ any
given initial condition we can find any later condition by purely grap-
hi§a1 means. The method will do more than we are asking it to do here.
For inétance,_variable coefficients mean only vaiiable intervals on the
plot. Twc and even three dimensional problems have beeﬁ éolved by a
numeriéal variation on thé_schemeo
For an example, let us assume a spherical reactor composed of a -

centfal core of radius § = a, with a constant density of fissionable
matérial, #nd a surrounding reflector of radius, % = b, composed of

material with the same moderating properties as the core.

#Heat Transfer Notes, Boelter, Cherry, Johnson and Martinelli;
University of California Press, Berkeley, California; 1948, p V=36

Introduction to the Transfer of Heat and Mass, E. R. G. Eckert,
McGraw-Hill Book Co., Inc., New York, 1950 -
- Thermodynamics, E. Schmidt, Oxford Press 1949; p. 428
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Let
40

>
o™
Bl

0.1

| : a = 0.6, 'b= 1.0
Then AB = ('02,1)2 x40 =0.2
‘This means that there are 1/ A& = 5 intervals in the slowing down range.
Phe slowing down densities as found from a Schmidt plot are shown in
the aéconpanyingbf_'igu_r‘e s for an arbiﬁra.ry assumption of the slowing down
density at the fiséiqz; limit,. ‘ In.c.identally, since the slowing down den-
sity at the fis}s‘vion'limit. is 'propox.-tional to powér density, the straight
liné assumptioﬁ fof the s‘pherical .core,amount_s to an assumption of con=
stant power density in thé- céreo - It should be ‘feniemb_ered here that one
of the limitations on 'diffusién theory makes an equation incorrect in
the vicinity of tﬁe discontinuity, |

Thermal @uatj.ons' _

| To complete fhe problem we.need to look again at the thermal
equations (Equations (8) and (9)). To do_inonsti"ate the second type of
numerical solution, let us use an approximate integration to £ind the
~ thermel flux and to get a ch_edk on the trial values of slowing down |

~ densities found from the Schmidt plote

Problems Find difference form for

agi “"BQQ-E Bg-s sz-_- A‘y:‘
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Let us rearrange Equation (8) for numerical integration

djgzz 3 = R P -3 rp ¥ =0 (8

integrating once § :
-dg:.A'+£,[3Ztianzfﬂ-3itap Yol @5(19)
a$ |

Integratlng again

P=4 £+ B+/d§ /{szt MR PD T RF"f}th} ag,
Since the flux at § =‘ O must be finite

B= ¥)o =0

Since the flux is zero at _?' =1

A= -f d ¢ . 35, S P-35RPY,)d¢
0 ‘51 f { ,t'A ’ th} :

o (21)

(20)

Incidentally if we were to integrate Equations (19) and (20) acroés a

boundary where there was a discontinuity in let we would have to accomo-

date a discontinuity ind ¢/ d & to keep current densities of neirtrons

the same on both sides of the boundary., This current is given by |
v

dn
dr .
A 3 'i:t

Equation (20) is an integral equation.* It is our problem to solve
it numerically. A common method for this is the method of iterations,
or successive substitutions or approximations. It is to be noted that the
function 97 appears on the right side of the equation under an integral

and on the left of the equation. The method of iterations involves a trial
% Linear Integral Equations, W. V. Lovitt, McGraw-Hill (1924)
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value function f.orr 50 which is substituted into the right side of the
equation, the mapipulations of integration are ,pgrfor'n:ied, boundary condi-
tions are s#tiafied_, and a new value of ¢ i_s'attained'lat the left of the
Qqultiono This ié éubsti’tﬁted again 'ih.toi the right side of the equation
and the proceéé':ré_peated. _If the process 'cénvérges_ , 8s it does for éert&in
classes of prdbléhs- under certein conditions‘, a stage will be reached‘
" where the shapeof .the cuﬁre for /(ﬂ on the left will be as éloao as do~
sired to that on the righto This then will be th@ golution to the prohlem,
The integrations i‘or one trial are shown in the a.ccompmying table.
For this table values of ‘-V th Were read from the Schmidt plote. Integratioms
were dox;e by the u-apezaidtl rule. A trial value for SO having the shape
of & sin curve and an undetemine'd nulti-plief C for adjusting its ampiitude
was used. A brief description of the problem followse

‘Let us write e .

where Su is the c'ross:,-':‘séction for capture in uranium and 2, is the
cross section for capture outside uraﬁium. For the example let Zc =0,
Then in the core =, = 2, and in the reflecter 2, = 0. Besides
these conditions let us force the solutio'rf to a steady state by making
Y ¢ obtained from Equation (9) coincide with that of Y, from the
‘Schmidt plot at some '%'e:ference pbiﬁt, sayv % = 0.6. Then this requires

from Equation (9)

;oe c

Let us also force the convergence by making use of the undetermined multi-

VA o ,___ICVZ > 4R ﬁ)g_oé = 0.6 (22)

plier C to make the trial and calculated values of jo)g = 0.6 4&ree. Then

=3/



- from Equation (20) | | -
oo floeshac s, o

The following values 'pertain to a Be O moderated reactor

R =240 x 110 = 4400 em?
Z g T 067 en™t

R - (MOO).% = 6693 Cﬁe

From Equation (22) o
211 = R C (.95 =0.6

- or

0.6 = 0,00, 2
cs, = — = 45

2,11 x 66,3 x .95 :
Some constents needed are

3%, 2, CR*= 3x06’7x000452x4400 = 40,0

3 zt RP - 3 X 0067 x',66°3 = 133

From Equation (21) and the tables ( @ and @ )

A== 40,0 (.2612) + 133 (.0878)
- 10.40 + 11,68

- 1.28

From Equation (23) and the tables ( (), @_, and @ )
p - 3087, + 3080 + Oo77
0.6
0.70

C- - 0070 = 0974

' 0.95 a
0,00452 = 0,006  cm
0,74

M
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We can calculate criticel mass from the dgfinition of jE a

Ve

| - 3x 645 x .602 x 103

- 1.,<3Kg
From equstiom (9) '
| - YuRP .,
2 11 x.0061 = 66.3 ¢9
=50, 87 90

 1/_
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It can be éeen that, by coincidence, the calcﬁléted'value of ¥ 1s
‘quite close to‘the cufve-assumod'in the Schmidt ploté‘vThé;calculaﬁed 47
is shown for comparison on the plot. The vagaries iﬁ fhélcﬁrve fEr ¢’are
probably an accumulation of numericél errors in the integration and dif-
ferentations, and if so, would be reduced by a closgrlinterval,lﬁ g

Such factors as changing material properties, variable extrapolation
lengths as a function of energy, etc., are handled nicely by a Schmidt |
plot by changes of SpacingAg s a8 described quite fully in the "Heat
Transfer Notes" referred to previously. |

In part IT-2 of these lectures, on the "Iﬁmensioﬁal Anaiysis of
Reactors", an equation was given for the criticel mass of a reactor (Equa-
tion (7) ), in terms of dimensionless parameters. This equation is written

here

-37=
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Let us look at this equntion for our present numerical examzple° In it ve -
now know all quantities (froxn our. numerical solution) except 0( and Iz
‘ If we knew these we conld do an analyais of this from which we would know
the mass curve.' In other words s from our: one calculated point, we could
dothrnine the oharactéristics of . the fam:lly of "similar" ‘reactors. For a.' |
rough eva.luation let us take - ' -
_ 2
)5 /1 Q’ d ( Tth) | =
From oxr m:no::ical e:;ample we lcnow the following valuest
“ RE 663 om .
' Zt - 0.6’7 ‘cml““;i
=, = >__u = 0.0061 et
' '/r‘th = 110 cm®
P =€ =1
£ =1
Nz 2,11
oy = 645 x 107 o

1,0 x 103 gn

0,602 x 10% .
235 '
0

4 T (0‘,6)3

NTORT]

0,906

"W

ME e &

Because, in an ‘éjcample, we .assumed :; 0, Equation (7) becomes

1= dz XRAu
o 3oy ¥, 8

- k2
o

=38=




Substituting values

¥RA 0,906 x 6603 x 235 = 0,018
35 G—ua 3x067x645xo.602x10x103
R 4450 40
Then
1 - -_o0,018 A%
- (R
Rl - T e
Approximately |
2 2
- %— - - Sl
Rt
i 1l =211 ¢t = ) '
ot? ( ;018 +.053) =11
2 _ 101 - 156
* om
Q .
a(_: 3.95 .

This value of o is tov be comm red with that of T for the case of the -
bare reactor, Using this value (3.95) for ‘botho( and Jwould give an

approximate mass curve for our reflected system.



References for Numerical Methods

Relaxation Methods in Engineering Science, R. W. Southwell; Oxford
University Press, 1940,

Numerical Mathematical Analysis, J. B. Scarborough; The John Hopkins Press,
Baltimore, 1930.

Numerical Methods of Analysis in Engineering, L. E. Grinter; The Macmillan
~ Company, New York, 1949.
A Study of the Numerical Solution of Partial Differential Equations,
O'Brien, Hyman, Kaplanj Journal of Mathematics and Physics, V. XXIX,
No. 4, January 1951, M.I.T.

Numerical Computation of Neutron Distribution and Critical Size,
A, S. Thompson; Journal of Applied Physics, V. 22, No, 10, Oct. 1951,

Problem: brating String of U t
2 = 2w24“y’
EAL = ¥/¥nax
= x/4

Or integrating
ey B A EAT

Iterate this equation twice, starting with the curve shown above; solving

for frequency each time. Check with analytical value.

N
: . : , .‘KM) |

__'x,‘éﬁ“.

2 i 2
- ® From 2> y= //% O Y , by assumption of separability of functiomns,
2x? T dt2
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OAK RIDGE SCHOOL OF REACTOR TECHNOLOGY
ENGINEERING A LECTURE NOTES — A, S, THOMPSON

III. Power Removal fram Reactors

Uhtil the present time we have been talking about the ‘problem that is

specifically new . with nnclear reactorﬂ,namely the generation of power from‘

the fission processs We might 1ist the ‘1tems we discussed:

.._,\:(1)

(2)
(3)

(4)

- (5)

(6)

Pover density is proportional tos (&) neutron flux, and (b) den-
sity of fissionable materials :

Some power is produced locally (at the point of fission), some
5 to 10 percent is absorbed in reflector, shielding, control rods,
etces : .

Most of the power is produced at the time of fission, but about
6 percent is delayed; and decays exponentially after shutdown of
the nuclear reaction;

The critical mass of fissionable material is a function of the
critical radius of the reactor, For one critical radius the
critical mass is leas than feor either larger or smaller critical
radii., The critical mass and critical radius can be expressed
in terms of dimensionaless physical and geometrical parameters;

The neutron flux distribution is a function of reactor geometry.
For certain special cases it can be found analytically, but
must in general be found nnmerically,

Excess neutrons over those required for criticality, can be used
for converting certain non-fissionable materials into fissionable
materials. It is probably on the possibility of large scale con-
version of these materials that the future of atomic energy for

peacetime purposes hangs.

The next task is to remove the poﬁer generated by the fission ppoeess

in the reactor, If we know the distribution of this power throughout the

reactor it is now our problem to remove it consistent with certain limita-

tions,

“iﬂlﬁ of which are nuclear (mostly we cannot use heavy neutron ab-

sorbers for heat removal), and some of which are purely mechanical., The

mechanical problems are connected primarily with heat transfer. (1) If

" we are dealing with large power densities them there will generally be
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large temperature gradients and attendant ]_.ai'g'e thermal stressess ‘We

will try to find out to what extent we can mitigrate the thermal stress

préblem and to what extent we must live within its confines. (2) If ve

are designing a thermal power plant, its thermal efficiency will depend .

o . largely on the top temperature available at the exit from the reactora

Hence we will want to know ‘how much we have to gain from mm the creep

resistance of high temperature materials to their limits. (3) The removal J

of thermal energy will generally involve the circulation of & cooling
fluid, The more power we remove frcm the reactor, _the mors. 'bower ve
must use in punping the fluide We will wish to determine limitations on

power removal due to pumping power requirements. For this purpose it

will be necessary to diecuee some aepe'cts of fluld flow and thermodynamice.ev |

Heat transfer is conventionally studied in three categoriees ()
iadiaticn; (2) convection; and (3) conduction, Here radiation will be
ignored on the aesunption that engineering applications of the lmmediate
future wiiilbe limited by materials considerations to tempefeturee at
which radiation effecta cen he coneidered as ccrnectione*, of small mag-
nitude; to the convection heat trandfer. Heat transfer by convection .
will be studied to determine the limitations on power demsity due to the
preesnre losses which accompany 1t, H'eaf transfer by conduction will be
studied primarily in its relaticnship to the thermal stress problemo

1, Order of ﬂtnde of Thermal Strese

Most materials, when their temperature is raised, experience an ex-
pansion of their dimensions, unless thay ai-e in some mannerb constrained,
This is expressed by an equation |

€zoAT R ¢ §

‘Wwhere € is the strain in the material and o is the coefficient of linear

Ael_zzanaiong AT being the change.in temperature ab'ove some reference

* The Science and Engineering of Nuclear Power, Clarke Goodman; Addison-
Wesley Press, Cambridge, Mass. (1947) p. 326 _
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temperature. ' The strain, € , is defined in terms of a deformation, u,
Let us fepréseﬁt.an'increﬁenf ofAdigtance,‘dx,,at'a point at diétance, x;
ffam some reference poihta ﬁet.us saj that ihé point_i, oanefofﬁéfion;
‘n‘xovo!sj a distance, u, from its origixia.l posifiqn. It is now a distance,
:ﬁ +u, fran §n: reféronée po’int; At .the'aan_le- .time, thé pvéint,' x. + dx,
'has moved to a new position,.x-F u+ dx + g% dx. ‘Thé change of 1ength'
of the increment dx is hence

M Gx-dx = Qﬁ dx
dx‘-+ . X = . =

The étrain € , being the ratio of this change in iength to the. oﬁginal
length is | . L

: da
- - dx du
(= x= Q; _ - =

‘I'his,“isv shown below .

‘x+u+dx+g:‘x-5 dx

X+ dx+g%dx
— ——{u ax e B

_ Likewise we can define

. . . . .

Where v and w are deformaticns in the jar& y directions. Likewise if a
streSsv(force per unit cross section of the material) is applied to the
material; deform tions will again occur-ahd we can define a strgip;lwhich _
for_an elastic ﬁaterial is proportional to thé stress

€= S
E (2)

the proportionality constant E being called the "modulus of elasticity" or
"Young's modulus"”. Equation (2) is Hooke's law relating elastic stresses

and straiﬁs,' Also, it has been found experimentally that when stresses
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are applied a change in dimeneion normal to the applied stress occurs;
This change is opposite in direction to that in the direction of the
-streee, end related to 1t by e factor,//?, called "Poisson's ratio"

Therefore,.we must write, due to strese Sy CSjy, and S ,o

m
1]

x = ""{CV =M (0‘ +T)§
B 2 {G_ A% {
z = _{crz "/"(U—X'Pc_y)g

m
1]

 Equations (3) are called the generalized Hooke's law for elastic etrainSo.
The facton/u has values for different materials between zero and one-half.
For most engineering materials it is about 0.3, For rubber it is close
to’ one-half, the limiting value for an incompressible materia1° It both»
temperature differences and'stresses exist we mnst add Equation (4) to
each of Fouations (3) to find the strains, |

‘é-'x E {O‘ -/1(0‘ +T)}+om'
e+ foy-Hrrlr W

2* F e Aoy

m
i

Let us use Equations (Z) to find out how thermal stresses arise and to
establish an order of magnitude:of thermal stress, The simplest case is
that of a uniform straight rod constrained between two fixes walls, so
that as it is heated its length canmot change. Then the strain

du A | |
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 There are no lateral constraints on the bar so STy =C, =20

Hence from the first of Equation (4)

Ty = -EoUr - O

From the last 'two"of; Eriuations (4)" | .
E, = €, = = L Sy 4 QT (6)

Combining these two expressions we find

€, =€, = (1+4) AT

For the next case, let € y and Ey =0and <, = 0. Then for this

two dimensional stress case, from the first of Equation (4)

= ATy ==E KT

Oy = MGy =-E AT,

Or 4f Ty = Oy, then |
=Ty == EoT - - (7)

‘From the third of Equations (4) . |

e, = = )AE (cx +o3 ) + T

€ o 1+ 4 (AT (8)
z 1-4 -

For the three dimensional stress case, let € _ = éy = € ; =0 and

oy 50y =00 Saes from Bqwatiem (4)
oy SO 805, 8 -  Edr (4)
| | 1-2M

For an incempressible nedim ( /‘( = 0,5), Bquation (9) would give an in-
finite atroa‘a; '
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3tpgrp.will,egisp_in a heated material some maximum stress

= n BT
' 1-ak

where n has a value depending on the amount of constraint

0 <n <1

and a depends:on whether the constraints exist in one, two, 6r three co-

ordinate directions

2 | 1
3 2

The order of magnitide of thermal stress is given by
E AT
1l-8aM

Where T is considered as the maximumn tempefature diffgrence'exieting bet-"

K

ween any two points'in the material., In general, if K is snnli coﬁpared
with the aliawabae stress for the mterial, the thermal stress problem can
beiignoredo If this ié_not the case a detailed calculation iS-neéessary
to determine the value of n, which depends on geometrical considerations,
The detéfminatiqn of the temperature distribution will involfu-a itﬁﬁy

of the conduction of heat throﬁghAthé mterial, For the detailed case it
is necessary to consider further the stress analysis of a specific con-
rigufafiono |
| The section which.follows wlll consider the conduction of heat, and
Will determine the temparature distribution which results,

2, . Conduction of Heal

The study of the problem bf conduction of heat led Fourier to the

equation of heat conductiom which bears his name and to the fomrtimr series
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~method.of its solution. The fourier equnfion for'héaﬁ conduction is
written T |

a = k A AT

s 45::

.wheré q is the heat energy t:ansferred';c:OSS a slab of'mgtefial'hdving
a éfoSs SGctioq normal to the'directioﬁ of flow of héa@,ﬂ, and ‘a tembf
'-erdture_di?fereﬁbéJAS Q,between'two'faces‘separate& by a small disfanéeu
4., The coefficient k is the thermal conductivity of the matefial' o

of which the élab is composéd,'and, for dimensional'consistency} luét

have the dimension

(énergy)
(time)(Temperature)(length)

It AX 1is allowed to approach the limit zero, the remaining expression

gives the heat transferred per unit time across a surface of area,d.

2T
o x (2)

" The negafive gign indiéates‘thit heat flows from higher to lower tempera-

q = =kA

tures. If the temperature gradient, dT/dx, and conductivity, k, are.
considered as functions of distance, x, a pictoriel representation of the
situation is

Thermally insulated

3 (heat source)
Heat q S Q4 29 dx
Temp, T ' . o T }’i‘, dx
Temp 4T - b4
dx .
 Gradientdx
x + dx

where S represents an internal emergy source distributed throughout the
material, and has the dimensions |
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A (ehery)_
(time) (length)’

For an energy,baiance ,-it is required that the heat which crdsse; the

boundary at x; plus .the heat created by the dource, eqﬁ’al the heat flow-

ing aéx;oss the boundary at x +dx; 'plus the heat stored in the element,

dx, This is expressed ’ - o - .
a+5 A & = g %% dx‘+vC/'A %%@(3)

where Cp is the specific heat of the material through which heat is

vflowing and Pis its density

Cp. ~ ‘(ener‘gy) o
(mass) (t'empez_'atu're')“ '
/0 ~ (‘mAss)‘
| | " (length)?
Equation (3) becomes , .
. 249 . T (4)
s = >x + qup % |

Substituting the value of @ from Equation (2)

i k 2T)4S= C P DT . (5)
o X : >t

By symmetry if we have hent flowing also in the y and 2z directions

52’;? (k-§%>+%(k_ _%>+§%(k _;_) s = ¢, P.Q.,(é)

or in customry notation .
Vv m+ s: cp P ._ga_z ) (7)
Equation (7) is the equation for the temperature distribution in:a solid
body with a distributed heat source. If ‘the conductivity is constant,
Equation (7) becomes
~48=.



V2T+_S_‘= C QT . ' (8)
o ““Eﬁ ST |

It might be noted that Equation (8), without thé source term, is of the
same form as the slowing down equation for neutrons. The dimensional

coefficient

k. _(Length)® i

Cp f) ~ (time)
is called the thermal diffusivityo Being a function only of the physical
propertles of the heat transfer material, it can . be- found tabulated for
many engineering naterialao |
For definitonoss let us fix now a heat transfer model which we will

use for all our disqnssions° This model is shown below .

: Non-fuel bearing'sectian '
‘ ; r-——-Fuel bearing section ,. .
NN NNY ]

// 272 —
SRS R

AN NN
45//7//////// P!
CANNANANANMNN

A cooling fluid flows through a tube in whose walls heat is boing gene-

rated. The heat which is gonorited within the walls must be carried to
the innee surface.by cbnducfion, and carried away from the surface by
convection. All variables afg considered to he uniform in the tang:ntial
and axial directioms, varying only with radiuse | |

Many other models copld be taken., For instance, the heaf céuld be
generated within the fluid, the tube in this céso-boing merely a container

or poseibly also a mederator. This case causes some special prcblem of
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its own which'ﬁe w111 diécﬁ$§ iatero Our purpose at the moment is to
demonstrate the origin and ﬁagnitude»of thermallstres§ , and the causes

of high temperature in solid materials, Later this sme- model will _be' o
used to discuss convective heat tranéfer and'its accpmpényingipressure
losses. For these purposes the tubular modei, havihg heat'geggrafion
vithin its valls, is sufficiente |

For the tubular model Equation (8) becomes e
L 2 p )48 = nf 2O
T > >r /) ¢ k. - 3t L

since in this case

vz,l‘,_: % % <r SLH  (10)'

Steady state*conditionS'are assumed, giving

‘1 4 [ )y _s =0 ()
r dr oo k.

Equation (11) is the imtegrated subject to two boundary cbnditibnsg The

| first statea’thnt:thoro is no heat flow across the outer boundary, or

d4r | oz 0 - (12)
dr rz b
The second.cohdition states thaﬁ the temperature at scme point in the mate-
rial will be fixed by the cap@city'of the convective heat transfer system.
This can be stafed _ | |

T .= T - (13)

r dr
) . a
From equation (12)
6 = - &k ¢ Srpdr (15)



Snbatituting this value for C1 |

| £ 4-.%.. f sa-las-1 *0 - - ae

'Integmting Equatim (16) | O o | |
_1?_ .ocf ‘_Ar": L sfzdrzfcz.;,o,’§17) |

From Equation (13) T L .

ot f ey J:li e ¥ o 20 OGS

Substracting Equation (18) from (17)

' : r ri _ -
TeT + _é_ | f % j - . Srpar, =0 (19)
. | - b b } |

The ' ma xiarum: tenpera"tuz;e difference existing in the tube wall is

To = Ty +___%_ f ;ar;ll J:l Sr,dr, =0 (20)."

The l.vora.ge powor donuty for thc space occupied by the tube is

. 2 T f Srldrl b
5 = = 2 J s, (2)
'D‘ 2 -8 o '
» I-ot us define two dinensionlesa variables
5.
=
Y= S/se

where 8o is the power demsity at some reference pointa Then Bquation (19)

5 %
'T"Tb+'lﬁk2 Iﬂ_gh_ J}Szd?z:"(”‘)
o K 1 1 0 .

becomes

Equatien (20) is - o/b | e L
T, =T + h2§g | /’ d?f]’ (ﬂ,gzd $,=0 (23)
. 1 1 o :
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: and llmtion (21‘) is a/b
o § = =28 /1) 2/.zél'dvél (24)

. Eliminating S, between Equations (23) and. (24) N o
| 2 -' ifa 3?24 52 (25) »‘

T ~-T ® b°§
& b T a,7b

/1 . b’Eld 51_

The donblo 1ntegral can be intog.ratod by parts to give a/b

- -Ja; /b’ 92,_.1 52 = \ELog? f?jld ?1] /h (logjl)kjld 31 ‘

1 .
‘ /o I
= l?g 'e./‘b | J’ g ?1 ‘9 1 - f (1og _51)3.'51d 71 (26)
_ L 1 i _ .

Substituting into Equation \25) o
2 = B
o b= 1 - f (1og 51)3’ a4, .
T " s [og s a/b 2 91 |

1
For our cgsé b"_has the form of a step bﬁ;pctioh
|
X
o e/ o dp .
" For this case R 3—_>
a/b | ‘e/b
/ >5d 4, j'@l“ffl" (dz":z]
1 Cap 2V



and

a/b | ' c/b | .
J s rsuga- [ a5y 3,

1 “am

Intégré;ting by Pérts , | o ' /b | |
: : ’ _ ¢/b . e/b .
LI * 2 | |
‘ (. - - % dz
S easozen = [y E oot

‘%(— | 1°g(‘5) (&) 1“’?(-3,—)‘* E‘z—u%z

‘Hence Fquation (27) becomes

Ty, - Ty .B | % - log (a/b)-r% log (d/b) - ‘6;2-02 --l.og'(c./‘b)} (28)
sil_nplifying.

T, = Ty = B2S_ [-} +log (c/a.)-}-l%g f é c) (d(c) J

[(d/c)2 2 = 1l+log (c/a) :] (29)
(cl/c:j2 - '

o

1

&*U’

¥

.Si.nm--- it was found in the lﬁst ‘sec_vtion that the thermal streés ‘d,e—
pended for its order of magnitude on A T, which here is (Ty - Tp), .we
would 1like to find from Equation (29) th; conditions u.nder which for a
given average power density, S, we will have the minimu!n tmperature |
differenceev We can see first that we wish to have a large thermal conduc-
tivity, k, and a small tube diameter, bg Lojok:lng at the quantity inside
the brackets, we see that it becomes zero for (c/a) = (d/e) =1. Henoo
we want the thinnest layer of fuel bearing mteris.l from which we can '
ahetract the requircd a.momt of heat, and the thinnest. eladding layer ve
can stand bet\ngn the fuel and the coolipg fluid, The limiting thickness

for the fuel'lp;jer. is of_‘ course set By the 'amotint of fuel roQuiréde_



The highest temperature difference wouldvexist.when the fuel was
spread throughout the tube material. Then" - |
M -T,= B8 '[bazl (b/a)® -»1} (20)
- For this case 1t is desirable to have (b/h) as close to one as possible."

For this case approximately

- T, ~bt8S . o (3)
2k | :

where t is the thickness of the tube wall,
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3. The;ggl'SLregg in Power ?rodggggg Elgmentg
In section (1) it was shown that the order of magnitude of thermal
stress is given by
‘ (EiAT)-
._a/(

‘vhere a depended on the number of constraints imposed on the heated naterial
and n is a factor depending on the detailed goonet:yvof the‘problen, but
generally |
0<n< 1

In section (2) ah expression was develOped for the temperature difference
AT for a hollow tube, in whose walls heat wasvgenerated,'and in which a
cooling fluidvﬁas circulated. It was shown that to some extent the.tempé
erature difference is under the control of the designer. In these two
laoctiena the purposo was loatly to find under what conditions the order of _'
- magnitude of thermal stress would be low enough to justify ignoring it, It
is the purpose of the present section to denonstrate the application of the
.theofy of elasticity to_the detailed investigation of the distribution ef
thermal stress. | |

The distribution_df stresses in any elastic body* must satisfy three
" conditions: (1) equilibiium; (2) compatibility; and (3) Hooke's law., Con-
dition (1) states thet the summation of forces on any.iSOIated element of
the body must be equal to zero. Condition (2) states thet;the strains in

the body wust edd up over the whole body to fit the deformations imposed

. Th.ory of Elasticity, S. Timoshenko, McGraw—Hlll Book Co., Inc, New York
(1934) (Introduction and‘Chapters VI and VII)

Strength of Materials, Part I, S, Timoshenko, D, VanNostrand Co., .Inc,
- New York (1941) (Chapters I and 11)
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on the body. Condition (3) requires the stresses and strains in the body

~ to be: linearly interdepondont In general thuo three conditions will

result in a linear system of equationa whioh lnst ho ‘s0lved silnltunoonaly,

: Fbr certain classes of prohlell, like the bonding of beams, assumptions
'can be made which enable one to satisfy each of these conditions scparately
 and.a great simplification results. In many of these problems one merely

‘solves an equation for equilibriun for a étatically determinate system, and

is h&rdly aware even of the cxistonce of other conditions.

For demonstration purposes we will write down the three conditions on

elastic stresses for the heated tube which we discussed in Section (2)
ugnd-Villluse thase conditions to find the distribution of thermal stgcal.

A11 vafiables are considered as uniform axilliyland'tangentially, the only

"itriaticn_being with radius, It will be noted-that a simplification re-

sults which makes the problei soluble, The directions of the principal
stresses (stresseé in the radial, axial and tangential directions are

designated O, S 3, and Ty respectively) coincide with the directions

of the'principal coordinate axes r, z, and t. This means that we do not

have to.calculate any shear stresses, only compressions and tensions,

.The theory of elasticity shows that any combination of stresses at a point

can be expressed in terms of three principal stresses, with no shears, but

-it is not always easy to pick a coordinate system, which we can handle,

which does this everywhere. Our assumption of uniformity means that we
have what is celled "plane strain", in which cross sections of the tube re-
main plane during defofmation (axial strain is independent of radius).

The equations we write will fit these ideslizations.

- Equilibrium

Let us isolate from the tube_a section of solid material and find

-what is necesséry to satisfy the equilibrium of forces on it.
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- 'We adopt here the conventions that a positive sign with a stress desig-

nates a tension, a negative sign designates éompressioh° 9 ise tangential'
stress, and 0, is axial stress. From the diagram

(c—p + __;dgrr‘ dr)( r+ dr) § -0 T -20, drsin ©/2=0
| | (1)
Since we are dealing with differential increments

2s8in 6/2 = 6

Simplifying Equation (1) and neglecting second order terms

Oz dr + dSr rdr - Sydr =0 - (2)
or -
d (r;:‘i) - o =0 : : (3)
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Compatibility ‘
» Equation (3) is. the etjuilibriuiﬁ condition on the"stro:as.es in the
tube. In Section (1) we said that the streins were related to the defor- -

mations by gd:preé_sions like

: o “9dx
o 'é"“i:j"_%%‘ i - | (4)
= €t « v (5)
. ro o

| Gz.:.ﬂ.,.%_l; e
Sm. a1} quantities are ﬁn:l.forn_ in the z directions, €, is s constant.

- Since tanﬂent:i’al ’jtuniforn:l.ty’ hu bnh ulﬁud ve know that the .tjunqontial
ntmj.a ‘et ho e fnnction only of r:d:lul. Hanee av/a O must be a function
only of radius. Thia qan be dcnonstrated pictoria11y

The originel dimension in the tanjentisl direction is (r &), The final

dimension after defomation is { (r+u) 9} . The strain is hence

é‘t=-‘(r‘+g)'9-r9 = _u_ : (7)
Equations (4) and (7) can be combined by differentiating Equation (6) to
eliminate u. Then |

4 (r €,) = €y 3 | - (8)
Equation (8) is called the "compa’tibility condition" for the strains,
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. Hooh's I.azw — . ,
_It l.nd !qmt:lon (3) are two of the eqnntions necessary to express the

atﬂ\o of ltrcu and atra:ln 1in the dofomed tube. Sinco Equation (3)
. gives a rehtionship for strésses while Eqnation (8) 1s for straina, another
lrolationahip 18 needed to relate _et;'e,sn‘eqv and :pt»j.!"gins.v This relationship
1al provided by Hodké's’ law which we héi; idi,aéuaa:éii'%.béforeo .In 'tems of

the prineipa' atréasee for the tube we _m.yritg_i‘q@--:'adial,st;ain

£y @ _110_ {ﬂ,-/‘(o-g{;q) + E o (T -'Tb)} 9

whoro, as in the last section, Tb 18 tenperature at the outer surface of

‘the ‘tube.. The tanential strain 1e |
€, = L [og - (o—+<r)+ Eat (-1, (10)
ét, E t /‘{ b

Axial strain, which 1sconstgn_t,~ is : .
éa :..l.. {%. ../44 (‘o—f+o’t)+. 30[ (T -,-»I'Tb)% =C (11)

Solving Equation (11) for (T gives - .
| = A (O"r-l-c-t)-EC{ (r-r)+€E - Qqa)

Substituting Equation (12) 1nto (9) and (10) o
RS [ (1.-_-/42> o, _/, u+/u Jomy* @ M) B (2 .r,,)] £, M
| o : | (13)

and

€, = _%_ [(1 - A 2)'0';9 =/Q(l*741)o-r:* (1+MEA (TeTb)] - €M
I o (W) |
-Substituting Equations (13) and (14) into (8) gives the cmnpatibllity con-

dition in tema of strasses inetead of strains

J.. g [(1 =-/(2)c5‘ - M (i) o=y + (+H) B o §T -Tb)]{
[(1 P o AU ) oy + (H4) B (r-1)]

From Equations (3) and (15) we have two equatlons in two vanables,c—t ando— °
Elim.nating t betueen these giVes ( E assumed constant and factor (1+4)

removed) ,



’

_gr_{ ?[(1 _/(‘). _g; (r"Gfr) | /(o--\-nq (T-Tb)B

: a- /()crr'/’-d- (rO’)+EO( (T—T) _‘(16)

‘The second terla on ‘both sides cancel, leaving \ :

_sL { [(1 -/() _g,_ (ro—)+Ec[ (T - 'rb)]} - -/’)O‘r*_?q(ff - Tp)
3 - (17)

. Differentiating the product (r T ) _ :
_g._ (1 -/t)O‘ tQ -/1) r dr“r Ed(r -T )]%:‘(1 A+ B (1-Tp)
dr |
- : (18)
| Differentiating tho product in the first brackets, cancelling like terms,

and factoring (1 -4) v
EZLr 4 (T-T)

2 42 _ .

do— 3r dT% . . =0 (19)
——ZI ¥

The”first'tvp terms can be combined, giving - ,

4 (r doy)pExr® 4 (T-T,) S0 ()
dr T ar 14 dr , . |
We substitute.fhe value of dT_ from equation (16) of the last section
which is _

r , o
@ --1 [ snan C(@)
dr kr b - . ‘

- (1_' dSxr ) = E_ r(/; Sr.dr (23)

Equation (23) is to be integrated twice subject to appropriate boundary

conditions, Let these'conditidns be
_d£§:k;{] -0 - o (24)
r

' and " ' ' '
Gt - Z0 ' (25)
r:O '> .



Then integrating once, subJect to Equation (24)
r. r »
ior - B 1 ldrl_ (/’ Sryar,  (26)
- dr ¢ k(l-/(() 1‘3 b b 3 . .

 Integrating again subject to Equation (25)

_ S Z1 T2 L
Oy = B X (}o ary rodr, °/° Srydry (27)
S k (1 "'/,") a ;{3 Sl T o

From equation (3) the'tinjenﬂialvstress is

-‘Substituting Equationa (26) and (27) into (28)

'qy'Aé E X 1 . rldr 0/¥13r2dr *0;7 r dm'ufgSr dr
t-@)”i_z 1 2.1,13 22 T3

From‘géuation (12) if the tube is constrained against axial motion,.
‘E.«z'c = 0, and . R
-/qb}%r)qu W-T). B - (30)

| Substituting Equations (27)1and (29)

o ) T T . by | r | Ty
<, = E 2 S P I rodr) (7 Srpdry+ 2 (Tar) Ty Srydry
0 k(-4 | R _ _ 3, A

S b /g 17 Vp

b
A -Eq (T-7T) (1)
‘The value of T - Tb from Equation (20)'6f'Section (2) is
T - Tb z -_;_ / Srzdrz o (32)
rl T

Hence the axial stress is

= . _r ’ - T T :
s Ok (1 /q {4‘/‘. ! _. - Srgdrz* M ,93-‘&3 /;Z'drg [2 Srydrgt
o b S a T17 Yp
T I‘l
| (1’/{);[ dry J’ Srydry,  (33)
. ' r1 b
-6l-



- Equations(2'7) and (33) can be put into dinensionless form by the ‘substi-

tution L
Sf_.'-: S0 0
and | ' 5
o ‘ \
| 2 AT
9

iov_ squation (27) is

1

7 7 gl , ' ~'_§2 o
T ol P

5198 efb T b

: xqmﬁ on (29) is .

_ fslag 513’52d52+ ﬁdJ '15
| "51"’51 l1 | L

Eqution (33) 18 | -
‘-’}? ﬁ;‘éﬁb [51_[‘; Sﬁrgocgnl/f /?Lg fgocgﬁ»(l/f)ﬁigf%
f ¥ag7 %

Troa lquatian (3), “the ma.xinum value ofc:,— occurs whenC}_ r =g or from
equations (34) and (35) ’ when :

& (/gldgl fz 32d5 220 o)

jThis happens when’S =1, (r =b). Fron equation (36), at £ =1, it is
evidex;t thatA”
o oz o O_ - Tt

%=1 o1 51

From equation (34), then the max:Lmum stress. at 5 =1is
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| L 1 = (l-j.( 7?5'1&51% /;zdfz f 7 33d93 } (38)
- - | 1 |

' When 5 = a/b, it can be seen thatc—_ = 0 At this point

. O.- Eds 5 a/b d;/ 3 ds o .
t--Zk h—/ti?" [ 31 7552 |
o 6’51d51 | / )
dsi o

£/p 0
. BB { g%d?g "CLLD)
2k (1- ) 72"
5151 + '/*) S i_f_, ( F 0( 71
| I
Uéuaﬂ.‘ly the largest stress at 5 = a/b is the tangentlal stress O .. £ These

equations can be simplified by partial integratlons First

/?1‘351 53 €, =% 3/51‘331 (/;;1‘1?1 (42)

Next

51
f.._l Sdé 3’5 “5 -z[f_ﬁlfaﬁd;z f )‘%agfng

'_: ;2,1053 X5a3 -lﬁ?@ﬂqf# E_s__z f gsdg -; ledél
- 1
S | o (42)

From Equation (2._1)

a/b 9 | a/b | aL/b3 |
jé 31/’;32“52 =32- (&) [Vﬁldél-gfﬁldg‘ (43)

 a/b | a/b :
From Equation (1..2) | 5
e - / °% %za%ﬂ“’“ “°“”’3f*5 N 2/85%*5-*
a/b e ‘ a/b 3
s e e ' : 2 '
- Sra e e



Substituting Equation (43) :I.nto (39) the ma.ximmn stress at ‘} =a/b is"

.. | | - D’5 o
. MJ == (1 2 : (45)
s - a/b ‘ .
R | ,/ gldgl
V_Substuuuu Bquation (44) 1nto (38), the maximm stress at 5 1 is

N C s %
- (<) | 2 o
=] TR /efsldsl @

v _'&Q llximl stress in tho tub. is hence given by Equation (45) Let us
ovalutto thil for tho case of tho stop distribution of power ‘

_'T_l.g’_: |

0 a/o c/B a4/ T.0
v —
For this case’ , N
v C/b 2 ‘2 :
= -dc-¢
Lo T 2
and ) ) . c/b l‘
N dz. = _gt-
Zgl d?l / 5 ‘?l 40-
a/b ' 47
. From equation (45)- the maximm stress is henc_e N
Omax| __.pd83% | 1-1° dr-o* 212
o 4k (1- ) a2 L @®- ¢
- d -a/b -
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TEwm 7 TR

B 'I‘he positive sign designates a tensile straas. Ve cen write

d2+°2 -Zi;-. .(Q_J).(QLL). + (c-ra)(c-a)'
. 2 :

Lottlﬂd-cbethethicknusofthefnelbearinglayer, andtz-c-a "

(]
2

the center of the fuel bearing layer and e, : é :E~ a_ be the redius to

‘be the thickness of the cladding. Let cl be the radius to
the center of the cladding layer. Also 1et f g.z_ be the ratio of free

_ : b
flow area for coolant to tube cross septj.o_n‘. “Then the maximum stress is

Shax - fﬁko(i;) = (tpo) 2%50)
The ratio B C( dep;nds only on the .' physiéai' properties of the tﬁbe naté- .
rial, the gct;{(s is a measure of the power output of the reactor, while
the other terms are geometrical factors.,
. For a low stress with a given power density it is important to have
l. Low ‘moduius of _elastici-ty, E |
B 2. Low coefficient of thermal ‘expension, A
3. Thin tube (b) ,(a), ()
4o Thin fuel layer and claddlng (t gnd t, )
-5, High themal conductivity,v

6. Low value of Poisson's ratio, A

It is evident that the required strengtﬂ ) of f.he material is somehow de=-
pendent on <>_ max® For a really brit‘bie' material Tmax could not be al."l.qwed
to exceed the tensile strength of the material without rupture. for a very
duq/tgile matérial, and only a few cycles of heating and cooling, plastic

flow of the material will prevent :rmax from exceeding the failure stress,
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."_evon for very large oalculatod values of elnetic strass. :Thia ie ezpiiilnd
ng;fby saying that ther:al stresses aro "displacement utroasos", and eny plastic.
.1ff10v uhich uccurs will 'relievo“ tho stresl°' For largo numbers of ropoated
e cyc.les am- t,\m 7101& ltrou, t.ho altormting direction of the plestic flow
‘-;uill eventually resnlt 1n a “fatiguo" failure, vory much like the fhilure of
o];_turhino.hlade due to mechanical vibrotiona. The criterion here must be
th:t bthb' '-oif"erﬁa‘ting heating and cooling will not rosuit in .c.yclic. plastic
: flov. A good rule which can be ahown to hold for this case linita tho o
calculated ollstio stress for cyclic oporation to leas: that the lum of tho
o oytold atrongths in tonsion and compressionoi For ductilo mntoriala, whoro

o7the tonsilo und conproaaivo ltrongth are about equal, this means that the
 ca1cn1Atod olnotic stress -n;t not exceod twice the yield strongth.

| Hb hnvo 'oon here that cortain factors uhich dotornino thorlal stross

are to somo exxent undor the control of the des;gnor, ‘both properties of
nntorials and. dosign dimensions. Another foathre of impoftonce in 1imiting -
thernal stroas in cortain cases is under “the control of the designer. It
can be shoun (from considering Hooke's law cambined with the compatibility
condition) that the criterion for ail’therﬁol stresses to‘be ZeTo 1i that
tho distribution of temperature in a rectangnlar coordinata oyaten ahauld

be a 1inoar~£unotion of the coordinatos. Consider the following two nsthods

of mounting o’opid'boaring'in a hot shell:

F lat plate
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In nsthod (1) thsrmal stressos vill be determlnsd entirely by the difference .
anre bstvsen 1nside end outside of ‘the ﬁat plate. “In method (2) |
it 1s possible to- deaign the cone so ‘that the axial distribution of temp-
eraturos 1- linsar, 80 that there are no thermal. stresses. _
Sams msntion of stress concontrstions should be made,: It is obvious
that iz L3 bar uith a notch is placsd betusen two fixed walls, and heated,
the msximun str.ss will be much

U
N

NNNNN

| grsater tban that anticipated for a unxform bsr. In general, for designs
inVDIV1ng tha flav of 1args quantities of heat it does not do to have large
changos of cross. sqptions or thickness, Two parts of radically differsnt

»thicknsss are not gonerally suited to be welded together for this reasone
Sam. oo-pnrttiva numborl for properties of materials are given below, It

. should be remembered that these numbers vary considerably even for matefials

supposed to e similar, and the ones used here are only indicative.

memmmm_s

| Btu/he O F £t ped 1°F

Steel TR 30 x 10° 7 x 107
Alumimm 125 20 x 106  15x107°
Grsphite 100 1x10°  1xw0%
Alunins 2 50 x 106 5 x 1076

Polsson's ratio is taken as 0,3 for all materials. The ratio of E oC

k(1 - _H)

is given below for these values of physical properties.
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Representative
L k (l Tensile Strengths

psi
Steel 330 x 7 ~

4L x15x .7 5. 30,000

Aluminum 10 x 15 ~ 0.4 10,000
4 x 125 x 7

Graphite lx1 ~ 0,004 3,000
4 x 100 x .7

Alumina 5x 50 _ ~_ 45 10,000
L X 2% .7

From the values given above it can be seen that the choice of material

has a very important bearing on thermel stress.

P;rob;ﬂy Sgi;g,ess Steel Sandwich

F=20,5 Moderator
8 = 1 kw/ee - Fuel

_ Cladding—
C = Ch = 0.51 °
172 2 in Coolant

ty = ty = 0,010 in,

Find maximum stress; Is this allowable if yield point of materials.

is 50,000 psi? - T"
| ' i CJ%Z
Problems N T
= 21,, — T -
—— ~
tl = 003 ’ / -~
Alyminum k /g >!
v2 = 0.2 Steel

Both aluminum and steel members are heated uniformly to 100° F above initial
temperature at which members fit with no stresses. Whatl are the stresses

and strains in the aluminum and the steel at Section "AV,
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b Convective Heat Transfer

In discussing convective heat transfer we will be interested primarily
in two quantities, heat transfer efficiency and power demsity, and in their "_;“
dependence on the geometry of apparatus and physical properties of cooling h
fluids. Ehuations will be developed for heat transfer into visgous fluids
and for the pressure losses which necessarily accompany the heat transfer.
The relationship between heat transfer and . pressure losses determines to some
extent a limitation on the power density available in a reactor, and the
' efficiency of operation of the system of which the reactor is a part. It will
be found that, to some extent, this limitatlon on power den51ty, like the one
due to thermal stress is under the_control of the dssigner,

The problem of heat transfer to visccus flulds will be divided into two
main parts, the first involving the pressure losses in the,fluid,.the second

involving the transfer'of heat to the flowing fluid,

gses in Viscous. Flow.:

_Newfon is reported to have proposed thelfirst law for resistance to flow
of a fluid pest a body, based on monentum considerations, The resistance to
motion was supposed to depend on the number of particles coming into contact
with the body ( / A w) and the change in velocity imparted to the particles
(w'). The change in velocity (w') was assumed to depend linearly on the origi~
. nal velocity (w), or w' = f w, giving for the resistance to flow

| £ P aw
It has been found since that the resistance to flow depends'on the whole
_shape of the body, not just on the frontal erea.' Nevertheless the form of
Newton'!s expression is preserved, at the expense of some complication in
defining the foctore of which it is composedc
| 69~



We are interested in the flow of wiscous: fluids through tubes (with
some modification through other configurations) and will write the expreséicn

for the pressure loss per unit length of tube

4P = 4fy B ()
dx . b Zg

where 3 ' p = pressure loss in distance, dx"

D

‘diameter of tubg

w = average velocity of flow in tube

g = accelearation of gravity
f
s

We will be primarily concerned with establishing values for the factor, f,

friction factor

weight density of fluid

which are‘adequate'for‘engineering purposes.
For non-circular tubes, D becomes the;hydraulic diameter and is defined
as four times the ratio of the cross sectidn,4ﬁ; of the fluid flow = ssage

to the wetted perimeter , S, or

D= LA = Am. : ._(2)
S

where m is the hydraulic fadius° -It is to be noted that the hydréulic radius,
m, for a circular tube is one-half the actual radius. Authors define f some-
times baéed’on diameter, sometimes on radiué, and sometimes on hydraulic radius.
Definitions of f by different authors hence differ by factors of two or four,
and the reader must often be exceedingly wary to infer froﬁ the context which
definition is being uéedo

The pressure loss dgn>be alternafively written in terms of the shearing

stress, T as 8t the wall

dP = 58T = 41 o (3)
d x - A D

Eliminating dp/dx between Equations (1) and (3)
a . ) 2 g
3 =70



To find the appropriate values for f, it is necessary to find the shear
stress, Ty, which exiSﬁ at the walls of the heat transfer paésage. It will be
found that the shear stress depends on the type of flowalaminar or turbulant.
In. lnminar flow tho fluid can be considered as moving in layers with relatively
little mixing of adjacent layersg‘ Turbulent flow is accompanied by an agitation
of the fluid by eddies wﬁich thoroughly mix the fluid, For the laﬁinérlcésé an
an@lytical solution forTa can be found, while the turbulent case mst be
handled experlmentally, with some help from dimensional analysis,

Laminar Elcw of a Viscous Fluid:

When a viscous fluid flows past a solid surface, shearing stresses are
set up in the fluid between moving layers of fluid and the statlonary wall°

This situntion ia shown schematlcally below

w4
- T
¢ /@

-

The viscosity of the fluid is defined by the expression

T=p Ju | | - (5)
oY

where ") = shearing stress in the fluid
u = velocity of the fluid

y = distance from wall
p = viscosity
For diﬁeﬁsional cpnsistency p must have the dimensionms
p Sforcelgtlmoz
length
Let us isolnte, in a fluid in ltninnr flow through a tube, a tubular segment
of the fluid. The flow is assumed to be incompressible (no inertia forces in

the straight tube).,



The force on the s'egment"due to the difference in pressure across it is
(pressure assumed iﬁdepepdent of 1)

| An."r-’?'_ EU.’ dx . SRR (6)
dx v ,

The'frictio.nal force on the segment is _ .
| 2mrax ¥ R )
since these forces must be equal '
| n‘rzg_g'_.dx.=:,21;rdx’r : (8)
X o _

ap = T | o
= g_xg_ L o (9)

From equation (5)
T= 20 . | (10)

‘Substituting in Equation (5) o
| L'{QLW‘E‘% ()
2 dx

Equation (ll') is to be integrated subject to the condition that the velocity

at the wall is Zero, or

u |
J r=a | o
Performing this integfe}tioh |

we_1  _dp (-1 (13)

~72-



Equation (1_3) states that the velocity profile across a laminar stream in

a tube 1s a parabola,

T

—U
The maximum '\Ireloci'by in the stream is _
sl gR (W)

Ty d x

The average velocity in the strean is
: . \ i

w=2né urdr= 1 dp a2 ' : (15)
: ; dx :

nald 8 p

' From equation (9) the éhear strecs. at the wall is

T, =& 4P | | .
2 'dx o : o (16)

Substituting this expréséion into (15) to eliminate dp .
_ _ , o
Ta =4 M , (1)
a
Equation (17) gives the shear stress at a tube wall due to the flow of a
viscous fluid through the tube with an average velocity, w. From equation

'(4) then the friction factor for a laminar flow is

£f =4 a/ - . . .
-‘ “/x("z) e

|
Let a = D/2, and /0= 7/g, Then equation (18) becomes
£ =16 o
' £ - (19)
wDf _

In equation (19») the dimensionless ratio

W f ‘= (Re) : | (20)

_ B
is called the Reynolds number., This number is found to be an important criterion
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for the characteristics of the flow of wiscous fluids:. It will appear many
times in our subsequent studies, With this definition Equation (14) becomes

£=_16 | | |
(Re) - (22)

The Reynolds number arises as & criterion in connection with the flow of
fluids where the viscous forces become of significahce'compared“tq thé_'
inertia forces in the fluid, For many cases of fluid flow, the ratio of
“inertia forces to Viscous forces in the fluid provides a criterion_fqr the
behavior of the fluid, Let us consider again an isolated segment of the fluid.
, l?*' _ ’7‘4—_10(,3,
1T |
. U
. e

———

™
kdx —d
The inertia force in the fluid is given by the mass of the fluid times its

‘acceleration as it traverses the element ds.

Ptdxdy u ;L‘;- - (22)

where f’is.the mass demsity of the fluid, The friction ( viscous) force on
the element is given by the difference between the shear forces on the upper

and lower surfaces of the element, or

F,=tdxdy QT (23)
, ST
From Eyuation (5) we get for Bquation (23) /
Petaxayp 2%w ()

27?
The ratio of the inertia to the frictiom force is hence
2u
Fira Pu 3

F 221_1_
By

Define dimensionless quantities

(25)




‘u_,= V 6 |
¥ =L"

where V is a characteristic vel.oci.ty and L a cha.racte'fistic linea;'_dimens'ion'

of the flow passage. Then Byuation (25) can be_'y!ritten

F, =.am = a (Re) - ’ ('27)
F, L
where . e B | |
on g SE . -
2°9
2N 2

In Equati_onﬁ(Z?), aside‘ from the dimensionless Reynolds number, there is only
the dimensionless geometry factor, a. It is necessary to exerci_ée a consider-
“able degree of cafition in the choicé of | units tq make Reynholds number dimen-
sionless, using data from experimental compilations, In Byuation (5), to fit

the definition of viscosity, B was aésigned the units.

(force)(time)

~ (length)?
The most commomly quoted unit for viscosity is the poise, which has the di-

gm = (Mass '
cm sec %time;hength)

or the centipoise which is one-one hundredth of a poise. This would require

" mension

using the weight density, & instead of the mass density, /0 . It should be

‘remembered that the "kinematic viscosity“", p/ /2 must have the dimensions of

. ! ,
1) (length ;

The dimensions used should be consisted with this requirement,

diffusivity or
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Ttlrbulqut Flow of a Viscqus Fluid

It was found experimentally by Hagen that, if the -vélbcity of a fluid
stream is increased indefinitely a point is reached above whiéh"the flow is_, 
b‘ho longer laminar, but breaks up into #ortices’which:cahse violent agitation
of the stream.: A criteridn fbr'the onset of this turbﬁlent motion was found

by Reynolds to be the value of the parameter which has since been named for

(ne) % ¥D f

B

him

When the Reynolds'number is greater than some limiting value about lOOO,vturj
bulent flow may exist depending on iniiial distu:bances in the stream, Under
most epgineering conditions turbulent floq will exist if |
|  (Re) > 2000 -
In the tu:bnlenﬁ region the pressure drop due to friétiqn”is éxpfessed
by the same equ;tidn (Equation (21))'as for the laminar case.
af = 4ty R
d x : 2 g

D

, - (29)
Now however, it is fbund that f is inversely proportional no longer to the

first power of the Reynolds number, but to the one-fifth power approximately

£ = 0,0
E (Re}éez (5000 < Re <’ 200,000) (30)

Roughness of surfaces acts to increase the value of f» The curve for f (from

McAdams) is shown below as a fungtion of Reynolds number,

# Blasivs formula is |

£ % 0.067
(R.) 0025
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Friction Factor vs ‘

\g\\‘”’z ' ' _Reynolds Number
1074 v 1 _ }

1074

10-3 _ | .
102 . 103 104 105 10% 107

Re

The Navier-Stokes equations express the velocity and presm.e relationship
in a ‘viscous fluid, They will not be used hei-_e however since no solution
for them has been found for the case of turbulent flow, By experimental
methods it has been found that the tufbulent flow of a fluid can be approxi-
mé.fed by considering it to bé composed of a boundary layer in which viscious
‘and inertia effects are important and a central portion in which the inertia
._ef.fe'cts predominate, By a dimensional analysis bf the Navier-Stokes equations
for two dimensional flow Prandtl has shown that the boundary iayer must have
a thickness of the order of | |

| (Re) 1/2 _ .
When it is remembered that for turbulent flow the Reynolds number is g’e’ﬁerally

greater than 2000 it can be seen that th'e boundary layer is generally small
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compared to the characteristic dimension, L. -

The boundary layer ié treated as consisting of two parts,'amlam;nar B
_éub-layer and a buffer layer, It_has been found thatithe velogity:p:ofile,
though 1t cannot be found analyticaily;,can:bélécééeiated éxperimentally for
turbulent flow by plotting dlmensionless fluid velocity against dimen31onless
distance from the wall, The- dlmen31onless velocity is defined 'i
where u is the lpcal fluid velocity, 7"a is the shear stress at the wall, and
fois the mass density of the fluid, The'diménsionless distance from the wall
is ' P &/q:f——ﬂ ’

| A |
where y is the distance from the wall and p is the fluid viscosity. From

Equation (4) it is seen that A
\/.76//0 = w ) /2

vhere w is the average stream veldcity énd f is the friction factor. Such a

plot, (here taken from McAdams), is shown below.

30

/ /’/,(/////»
20 / | —
us // ,,//;

10 T /123/7

7 AFT
o &:E}gﬁr;LPu er e turbulent
1 10 10 103 ~ 104
y+

Using the Blasius relationship

f = _0,067
(Re )0.25
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Prandtl has shown that the experimental dlstributlon of veloclty in the tur-

bulent core 1is nearly satisfied by the relationship

' .u'eum;ax (1 - g_\l/.?

a
where umax is the velocity at the center of ‘the tube, & is theradius of the
tube and r is the distance from the: center of the tube for Reynolds numbers

from 5,000 to 50,000, For higher Reynolds numbers the 1/7 power must be chang=
| ed, for imstance at (Re) = 200,000 to a'1/8 power,

From Equation (1) the losses due to friction can be expressed :
dp = A_fb' W2
adx - ~ D 2g

where we have found that f is one function of Reynolds number for 1aﬁinar

flow, another function of Reynelds number for turbulent flow, Tﬁere is anotherv
source of pressure loss besides ﬂriction,vwhich is due to entrance anq exit
losses from tubes, or to sudden contractions or expansions in the heat transfer

passage. These losses also are expressed in terms of the velocity head

A =a (w2/2g>

where a depends on the area ratio of the expansion or contraction, A1l pres-—
sure losses due to these sources are additive to the frictional lesses due to

viscosi%yo
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Momentum Equation for Viscous Fluids;‘ |
_The ,equa;tion for the conservation of mqnientum requires that the
.summation of forces vo_ver a fluid element br zero. These forces are due
to (1) ﬁccelerat,ion of the element, (2) pressure differences acress the

element, and (3) viscous friction forces along the wall of the element,

. The fluid element is shewn below

" Heat, qu/

=" area, A | ,
: // pressure, P -

Density, 7
temperature, T

‘\.‘ﬂge vl / |

Velocity, JRTEIEN

okt ———

R

The momentum equation for the tubular element is

Adx oy dau_+ (P+ Dp dx) A-pA+ JF dx =0 (31).

. g dt ox x '
.where dF is the force due to friction on the walls. If the fluid is accele-
rating then |

dw_ = v+ Sw _d_x__ :
a6 -3t 3x at _ (32)




Or if coordinate distances are exp:éSséd in terms of diétance'along the

stream tube, dx =w, and .
dt

dw = DW  + W Bw: QW >+g- } .‘(wz) (33)
dat | ot | ‘a.x‘i B 'a t : ;)_:x 2g

Substituting in Equation (31)

1 Sw +_D 2‘+l'%2 1 DF =0 ()
T 5= o (zg> r 5 AY ax

For steady flow, st: =0, and
d W\ +1 dp _+ 1 4F =0 (35)
dax | 2¢g) s dx -~ A¥ dx ,

Equation (35) is the e xpression for the consgrvation of momentum, Using
the expression for preésure loss due to friction frem Buation (1), Equatien
(35) becomes

. d W ,4:1 dp + 4 F w2>=,0 - (36)
ax | 2g) ¥ & "D (2g/

This is the momentum equation in the form in which we will find it useful.

Equatibn (36) is essentially Bernonilli equation., The factor, f has been

discussed previously.

Conservation of Mass

The equation of_contihuity of mass,5£a£és ﬁhat fluid{is neither created
nor destroyed insidéche confines of thefelement; The fiow per unit time
through the tube is i ' |

TWA
Its conservation requifes that

2 (wwh) ar- A 2¥ & (37)

2X St
Or for steady'state conditions

C ¥ w A = constant ' (38)]:
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For a constant tube area o _

, ¥ v =.constapt = G,é,f?aJVXf' - 7 | (39)
Equation (39) states that, for a éonstaﬁfféréa tube;wthg mass flow per.
unit cross section of tube per uﬁiﬁ,time;_G;:i;>c§nstant. Rewritingl
Equé.tion (38) '

ap + rw dw:+'_2__f.wax]=-o'° | ©(40)
g | D A S
From equaticn (39) | _
dp + G [d-w +28 ud'x}=o _ R (41)
D S

Integrating Equation (41) to a point, - x, of the heat transfer passage

P, -P =G [(w—m) + fx _2; wd:’:] (42).
| / -

.. where theisubscript (l)Adesignates the beginning of the tube., If the sub-
-  sQript (2) designates the end of the ﬁube‘ and,f the length of the tube,

'P'_PZ',éG [(wz-w,)+ fzian wdx].
o .o

Since1bbth f and w are functions of the temperature along the heat transfer
-passage, which we have not.yet‘brought into our equatiens, this equation

for pressﬁre-loss will be left at this pdint for now,

Heat Transfer to Flowing Fluids

- The quantity of heat transferred per unit time acrosé an interface
between a solia and a flowing fluid is expfessed by Newton's law of cooliﬁg.
This.équation is written ~

Q= nh A"(m'.n) _‘ o (3)
Where Q = heat flowing pef unit time - |

A'= heat transfer area ’ (

Tw = tempepature of wall at interface
Tt = average total temperature of fluid
h = heat transfer coefficient

@8]l=



This equation looks like the Fourier conduction equation, exqut that

due to lack of detailed information concerning gradients in the fluid
bbundary, the coefficient, h, has‘replacgd k/’A} x:énd (Tw - TP),h?S_re-
placed A T, The linear form of the eqﬁaiioﬁ‘his-bgen saved at the expense.
- of inventing h,iwhich in genefal is far from constant. |

For dimensional consistency, h must have the dimension

hn~ energy) _
ilength%z (time) (temperature)

| Newton,apparéntly anticipated that the heat transfer coefficient would'

vdepend‘only on physical propertiés of the cooling fluid, Actuglly h has
been found to havé a very complicated dependénce on a combination of‘geomet;
rical and physical parameters.

The quantity, T, Was defined as the total temperature of the fluid;
: This is a ficfitious temperature which would exist in a fluid if the kinetic
energy were‘éhanged adiabatically to internal energy (if the fluld were com-
_ pietely stopped,adiabafically). Andlyfiéally this is expressed |

Ty =T + _%;:_ (:igé}-) | D (44) -

where T is the tempe:atﬁre‘in the moving stream which would be sensed by a
thermometer moving with the stream, Cp is the wpecific heat at constant
pressurey W is the velocity of the stream, énd g is the acceleration of
gravity. For large velocities in the fluid (close to the velocity of sound),
the second term in Ehuation'(Z) becomes of importance, Ty and T cen be |
used interchangeablj except for high velocity gas streams,

A considerable discussion* can be found in heat transfer publications
concerning what.temperatureishould‘be ﬁaken as representative of the heat
tranfer fluid. It is found that, due-to’conductivity of thé fluid, the

temperaiure which actually'exists in a gas stream which has been stopped
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adiabatically at a wall is not_Tt, that it rises generally only some 85
percent of the_anticipated amouﬁto Considering the_state of knowledge of
heat transfer, this difference is, for most purposes, insig_nificant°

Many empirical and semi-empirical formulae can be found for the heat
transfer apparatus,‘the physical characteristics of the fluid, and the
velocity of flow, For h as for f it is neéessary first to preseribe whether
the fluid flow is léminar or tdrbulent, The criterion for laminar or tur-

bulent flow is the Reynold's:number
| Re‘=Z(w D 3‘:>
B

No attempt will be>made here to provide an exhaustive list of heat
transfer coefficients pertinent to specific heat transfer and coolants, A
designer must use cbnsiderable caution to meke surevthat the experimenial
data which he uses is pertinent to his peeds. However certain fairly gen-
efal statements can be made about heat transfer coefficients. fhe most
general of these statements is that the heat transfer is very sénsitive to

the Preandtl number

(Pr)-= cpp'g
k
where Cp = specific heat at constant pressure of coolant

p = viscosity of coolant ‘ T

k = conductivity of coolant
The Prandtl number is a measure of the ratio of the eddy diffusivity u//a
to the thermal diffusivity k/Cp;g o« It is a measure of the ratio of the
heat carried across the boundary layer by eddy convectioﬁ to that carried™
by thermal conductipnq_ For liquid metals, then, which have a very high

thermal conductivity, Prandtl number is low, (&gq:;f*
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which“hgxé»an@awwxhggﬁalgcgndu&tivity,,Prangtl,number-islﬁ§ghe The Préndtl
number for gases ié about”unity,:whilevwatér is somewhat abové this,
depending oh'thé #empefature. For oils_the Praﬁdtl nﬁmber is of the order
| of 100, For materials having a Pradntl number corresponding to gases or
‘higher the Colburn equatioﬁ ﬁas been found.experimentally\to“give a good

fit for turbulent flow. This ié.expresséd dimensionlessly by

o | | o.
(M) = BD =0,02 (Re) 08 (p )74 (45)

where the Nﬁsselt number is
(%) = B.D ‘. | (48)

It is often advantageous to divide both sides of this equation by the

‘Peclet number

(P) = (R)) (B) (47)
giving
(St) = _h = 0,023 | ' (48).
PW p (Re)o,z (Pr)Oné
where the Stanton number is
(st) = h = __h (49)
T P w Cpg G Cpg

The reaséns for using Equation (48) instead of (46) for some cases are:

(1) Since the Reynolds number occufs only to tﬂe one-fifth power, thé:results
in this form are relafivelyvindependent of the Reynolds number; (2) For a
straight tube G is a constant (mass flow per unit area) andaig\easy to
meaéure; and (3)_thevéonductivity which is hard to measure for many ﬁaterials,
or unknowng-éppears only in the Prandtl number for which fairly good values

are known for many»materiélse
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For liquid metals, Lyon gives the express1on for tubes
(N,) =7 + 0,025 (Rg)0-8 (P)08 | |

=7 40,025 (B0 (50)

The constant‘factor, 7 _accounts for effect of the high conductiv1ty on

the heat transfer coeff1c1ent at low Reynolds numbers, and Prandtl numbers.

For laminar flow in tubeg Mcﬁdams recommends the equation

) =16 (r 2 ) (51)
L b8

where. = D = tube diameter
L = tube length,(heatedgportion).
W = viscosity of fluid in beweilint, wcuq.

p8,=,viscosity of fluld at surface'of tube

The viscosity correction is due to the warpege of the profile from para—

bolic due to the variable viscosity with temperature

: scosity‘low at wall
constant viscosity

with gases viscosity rises with increa51ng'témmeraturdh:Lfféﬁﬂiﬂh?ligﬁidBLit=
decreases with rising temperature.

Correlations have been established between heat transfer and friction
coefficients by means of "heat—transfer analogies", MAs a demonstration of
this for one case, let us look at Byuation ( 30 ) and (48). Taking the
ratio of these two equations gives

sl =
2

ZPrSUoé o . (52)
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For cases to which these equations are appropriate, Equation (52) estab-
 1ishes a very convenient analogy between h and f, which is independent of
the Reynolds number, For gases and low-conductivity liquids Equation (52)

represents experimental data quite well, For a Prandtl number close to

(styg =1 K o - (53)

This is the Reynolds analogy which‘is good for gases. The worst departures

unity

from.EQuation (52) occur for heat transfer té liquid metals at low Reynolds
numbers, and for heat transfer in laminar flow (see Equation (50) and (51)}
Séveral investigators have carried the heat tfansfér analogy further
baséd on the appfoximate differential equations for the‘conservatibn of heat
"gndwmoﬁentum for a two-dimehsiénal fluid stream*, It is found that the
differential equations for velocity and temperature distfibuxion aéfoss the
fluid stream can be solved to give a relationship for the Nusselt or Stanton
_numbers in terms of the Prandtl and_Reynoidé numbers., Martinelli has given
| one such relationship. In the accompanyihg figure, from Martinelli, is
:shown a plot of the ratio of Stantoh nu@ber to one half théifription factor
for a Reynolds number of S0,000”according to Martinelli's formula, and
for comparison a plot of Equation (52). (Note that Maffineili uses /8
instead of our f/2 because his definition of f differs from ours by a ‘
factor of féur)..vIt is seen that the two curves coincide for Prandtl num-
ber of unity.- Aléo for comparison two points.are shown for other Reynolds

numbers and a Prandtl number of 0.01.. Martlnelli's equation is

\t ( tw_ = te
(St)‘ = . tw - tm .
Re). .

, _SV[G (P)+ln(1+5a(P ))*'051'111((60

¥ Heat Transfer to Molten Metalé, bijrAC;-Martinelli, Transactions of
the American Sociéty of Mechanical Engineers, November 1947,
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ratio of eddy diffusivities for heat and momentum

.where Qa ‘
(taken equal to unity in his plot)

ty, = ‘temperature of tube wall |
teo = temperature of fluid at center of tube
t_ = mixed mean temperature of fluid

F ‘=‘ mumerical parameter defined by Martinelli ( 0L F < 1)
1000 - :

100

10 ¥

£/2

, 00)

ool ’

0.01

0.001
0,001

It can be seen that for liquid metals the ratio of (St) to f/2 is quite
dependent on (Re) as well as (P’r)° Equation (52) is pertinent primarily

to gases and to water. For a more general representation we must write

o (Stl/é = n (55)
- 2 o

where A ié a function of Reynolds number and Prandtl nﬁmber, to be déter-
| mined experimentally, BEquation (55) will be used later in our calculﬁtions..
of convective heat transfer efficiency. |

Equation (43) gave an expression for the heat transferred pér unit time

across an area A', This area is given by the product of the wetted peri=-
metef of the heat transfer_passége, S,-énd the length of element, gx, Since

we have previously defined a hydraulic diameter, D, as four times the ratio
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~of the cross section, A, of the fluid flow passage to the wetted perimeter,

Equation (43) can be written

Q= 4ha (nem)e o (s6)

The heat absorbed per unit weight of cooling fluid is

dg=_9Q Zh ('rw - Tt):dx i (57)
YwA ‘} Yw D '

.Equation (57) expresses the amount of heat flowing per unit weight of. cooling

fluid if the wallxtemperature is Tw and the fluid temperature is T¢.

Congervation of Energy ip Heated Fluid
The thermofynamic equation for the conservation of energy for the moving

fluid to which external heat is added and from which external work is ex-
tracted is given by
dg - dw = dh + dk + de ' -~ (58)

" where © dg-

external heat added per unit weight of fluid

1]

external work done by fluid

change in enthalpy per unit weight of fluid

g B 2

= change in kinetic energy

de

[}

change in potential enefgy'

If for our tubular system no external work 1s done by the fluid, and changes
in potential energy are negligible, then Equation (58) becomes
| dg = dh + dk . (59)
Enthalpy is, bj definition

 h=usph | (60)

where u ihternal energy per unit‘weight'of fluid
- p = pressure in fluid
Y = weight density of fluid.
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The kinetic energy is

k=g | | (61)
~ where w = velocity of fluid
g = acceleration of gravity

Equation (59) is hence
~ dg=du+d(p/y)+d (w2/2g) - (62)
~ The term d (p/ x’) is often called by engineers "flow work", ’

Note: It is intéresting to note in passing that combining Equation
(36) and 62) to eliminate d(w?/2g) gives the expression

dg =du+pd(1/y) ~4z (v3/2¢) ax (63)
which is the usual statement of the first law of thermodynamlcs
except for the last term, This last term is made necessary by the
irreversibility involved in the viscous frictions Since entropy is

defined y ' |
Tds =du+pd (1/ ¥ ) - (64)

Bquation (63) can be written _ |

' Tds =dq + 4 £ (w2/2g) dx - (65)
where again the last term acggunts for irreversibilities, The usual
statement of fhe first law applies only to revefsible'processes and
hence is not applicable to a great many problems in engineering such
as this one. For our problem Equation (65) replaces the usual state-

. ment

N

Tds

dq ' (66)

For perfect gases the enthalpy is a function oﬁly of temperature, being
independent of pressure. For ideal incompressible liquids, also, since
pressure.obviously can have no effect, enthalpy is also a function only of
temperature. HActually many engineering fluids can be treated approximately

on the basis that enthalpy is a function only of temperature, (within certain
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pressure ranges), This can be _expréssed_ o

dh= dh aT + ahdp SRR
B > Fr

>P)r
dh = CaT S IR (67)
where CpA=' Sh
| 917
P

The §Bvious engineéring case which cgnnot easily be handled by Equation (67)
is that of evaporation in which, although the temperatpre remains constant
therev is a large change in the enthalpy (called "latent heat"), Here the
specific.heat in Equation (67) would be required to t;e inﬁnito to give a
finite change in enthalpy, since dT is zero. The boilin_g phenamenon involves
a change of state and fequires a special tr?eatment; Let us c'bnsidar here

only cases for which Equation (67) is applicable, Then equation (62-) be-

' comes

dg = €p dT + d (w2/2g) - . (68)
From the definition of total témperature in Equation' (44) we see that
Equation (68) is just o | '

dq = Cpdly | o (69)
 Equation (69) is a much simplified form of the exm'easic;n for the conser-
vation of remergy.., applicable only to fluids for which _fhe ehthalpy is
essentially independent of pressure (not necessai'ily to constant pressure
processes - like boiling). | | | |

We now have two equations for dq: Equations (57 ) and (69), Eliminating

_dq between them gives
| 4 - 4w ax ()

™ - T.t 7w Cp '



From Equation (70) we have an expression for the temperatufe distribution
in a heated passage, It can be rearranged by use of Equation ( S9) for the

‘ratio of (ST)/f/2 =\, giving

dT =2nf g (71)
| Tw - Ty ' D - ,

Since A and f can bé_assigned values for given éonditions, Equation (71)

can be iﬁtegrated to give the temperature distribution in the fluid, assuming

the wall temperature is givén.(or the heat added as a function of length

aiqng thé tube). Several casos'bf temperature distfibution have been con-

sidered in connection with reactor wofk, among thém (1) cons£ant power out-.

‘put per unit length of passage, (2) constant wall temperature, and (3) a

sine distribution of‘power along the heat transfer péssage. The fipst of

these, constant péwer distfibution, requires (assuming h constant in Bquation

[CO . |

Ty~ Tt = DT = constant | (72)

This represents a desirable situatibﬁ from the point of view of heat transfer
and 1s approximately achieved in certain reflected reactors where the fuel
density and thermal flux are néarly constant over the core, For this case

Equation (71) can be integrated to give (assuming A and f constant) .

Tt =T = 22f x (73)
T, - Ty D A
where X = distance along heated passage
Tio = total temperature at inlet to passage
For the toﬁal‘length of pgssago
T-Tto mo2ar _£ | (74)
w1 - Tg : D ' .
where Tyl = total tempsrature at outlet from passage

Ty1 = wall temperature at outlet



- Equation (74) can be rearranged to give

Toa1 -1= (TWl S ) axt p (75)-

Tto - Tto 1+2\f !/_n

A

The second condition, constant wall'temperature, requires that Ty = Tul =
constant.‘ ‘This represents a oondition which would be advantageous, if
attainable, in that every part of the reactor would be operating at the

: maximnm temperature.set by materials considerations. It is unattainable
in practice and is of interest only in representing a limiting situation.

For this case Equation (71) integrates to

log ,E!l_:_fi = 2\Nf x _ (76)

Or, with some rearranging, for the uhole~1ength of passage

- ..& |
T o1 Twl ) /1-e 2_" f v ()
Tto Tt° : .

The third, or sine distribution, condition requires
T, - T, = A sin ax/¢ | R ' - (78)

vhere A is a constant depending on the maximum power density in the reaotora
Tnis does not represent a favorable situation from the point of view of

heat transfer or nuclear considerations since the ends of the reactor passage
do not contribute any power, However this situation does erist in bare

~ reactors if nothing is done to alleviate it. For this case Equation (71)

becomes _ , _
| Ty-Tpo= 2228 L (1-coslf (719)
n D : ‘ : ‘

The temperature difference over the tube is

Eﬁ;_ -1= 4Mfp ¢ ' - (80)
Tto n Tto D :

=92



Substituting Equation (79) into (78)

Tw_Tto=A [Sinj?x"'z:; /Dé (1_003%)](81).

The maximum wall temperature occurs when dTw = O, or when

cos mx +2AF _ sinax=0 ' (82)
o D Wi ' '
simplifying ,
- cot mx =-27f y - (83)
pa D =

o ) .‘ . - ﬂ ‘ .
Apparently the highest wall temperature occurs not at the ‘end of the
passage length, but- eomewhere in the last 1/2 of passage length From

-Equatlon (81) - (2, e - T ) X | (84)

Where k is to be:détermined from Equation (83). Substituting this into

Equation (80)

%flé(ff’&ﬂ OLE L e
| Tto ‘
Equations (75), (77), and (85) give the relationship among react'pr inlet
temperature, Ty,, outlet temperature, Ty;, and maximum reactor wall temp_eraé
. ture, T oF Ty maxs in terms of A\, f, and —é/D for the three cases of
tempergtﬁre distribution considered here. Cases where A and f could

., not be considered eéhstant would .réciﬁire» a more detailed treatment. Lét

us generalize these equations and write |

o -1e2 (vmx 2 gxr (86)
Tto N\ Teo S -

where a is a parameter depending on the details of temperature distributiom,



OAK RIDGE SGHOOL OF REACTOR TECINOLOGI
ENGIMING i LEGTURE HUL'ES = A, S., THMSON

Po nsit;.: 'vRo' bors N | |
The average power density (power per unit volume) generated 1n 8 reactor

can be written L o o

S=F Ggithg 5 _q - | (87)

where F is the free fl'ow ratio (ratio of flow area for ooqlanf through reac- A

“tor to éi‘bss section of reactor 'normal to di;-_octior_z of flow).., Substituting

the value for the parenthesis from Equation (86)

 S-2PogCToarft /Temx -1) . (s8)
| > T | - -

.Equation (88) gives the avorage power donaity nttuinablo in a roactor 4in
terms of the maximum wall temperaturo allowable and varioua other parameterso g |
In tho section which followa some of these other pa.rameters will be inter-
‘preted in terms of prouuro losses (heat tranrc off:lcioncy) using Equation
(42), It can be soen ft“l llutian (88) tlut 1ar¢o powor donoity roqniru
larn m flav, G, (uomtﬂblc \d.th Mgk affic:l.uoy, or low pm-nuuro 1ou) R
lu-p -ncifio heat, o,, larco uluo of » (or -All Preadtl sumber, as with
_liqu:ld -t‘lu), and large tuporatm dirforonco, (T‘, ux - rto), and oull
hydraulic diameter. _ o S ‘

The powor und in miu eoollnt throu;h a ructor can ‘be fouud frop
Dhuation (41)., v This pover is used pu'tly :I.n over coming viscous friction
a qlou mugo \nlla (the ucond torn on tho right) and portly in ond 1ouoa
‘ whioh cm bo omonod 1n tom of nlooity hn.do The first tgru op the |

o 4%



 right of &uﬁn (41) represents a change in kinetic energy and is not 4
,A,chanpsbh te poaging power. Lot us vrite fc thc pu't of unation (l.l)
,.which il charmblp to pumping powr. | IR ._~‘ . - _ '
 dpe-ep ) L owds S CON
-where the factor 8 represonts ‘the mcrease in 1osses due to end effects, |

and where % = x/ /e « The .pumping power rgquired per unit ‘volumve of reactor

18 S , ‘
R vhere r is agun the freo flow ratio._ Gmnbining (89) emd (90) N
dy].+2(1+|3)r‘%g"_w d§ " (o)
" E.{vIntegrating Equation (91), again luuning 4 conatan‘b o |
2(1 )FfG ' _
*\ fﬁ rLe f w2 d 5 T - (92)
R : o O :. . A '

' ‘Tho efficieucy of pmping can be dof:lned | o
. €=1-=*J/5 - - - (93)
Subatituunc mﬁu (88) and (92) |

631== (1+p) Jﬂlwzdg
8_°p Teo & M <£‘;3!- «sl)

(94)

“For.a high hbajf'tf:mfer efficioncy, tlu usi term en the right of equation
(94)' should be as small as possible, This means that ths_"n'ean square!
velocity should be ‘a8 small as possible '(tl;is is inewpatible with obtaining

- maximum power dénsity) the specific heat should be as large as 'poa!siblo,' ,

the dirreronco (‘l’v m - Tf.o) shauld be as large as possible, and A should
| ba as 1arge aa msib],e, Since \ is an ;mae Mum of the Prandtl -
_ber, the Prandﬂ» Wr should be as. amlae poheibleo This means that
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}liquid metals are better heat tra.nsfer media ﬂ:nmter, and water is better
than oils, |
| Far gases the velocity of sorundis given by
2=gkRT B

where k = the ratio of specific ‘heats Cp/ﬂv

. R = gas constant s
and the Mach number is defined as

-

If we assume that the Mach number a.t inlet is low enough that Tto = Ty, then.

. Equation (94) becomes for gases 1

€=1- a+p J %jv'ag_ k- .1)'1402"

=
' , Tto '

For gases then high efficiency means low Mach m:unbero

(95)

The actual solution for the average velocity for Equation (42) (or -
average equare velocity for Equetion (94) for gasee :lnvolvee the use of the B
'equation of state for gases

P/y =RT | S (96)
and an approximate or iterative eolutien to the eqmtion, !kamples oan be
found in the published heat transfer literature, and sinoe the reeulta are
not needed here this work will not be duplicatedo? For a liquid, since ‘the

velocity in a cylindrical passage is constant,, Equation (94) becomes

€= 1-(1+8) W . S
-Fquation (42) becomes for liquids | | o ,
P,-P,=2f£Gw 4D S  (98)

* Flow of Heated Gases, Ao Se Thompaon, Joumal of Applied Meche.nics, March

1950, pp 91-98 -

The Machanics and ‘L'hermodynamice of steadv e Dimensionel gas flow,
Shapiro and Hawthorne, Journal of Applied Mechanics, Des. 1947, pp 4~317, A-351

Cempregsibility Effects on Heat Transfer and Fressurse Drop in Smooth Cylindrical
Nbﬁﬂ, Jo No Ni’laeng NACA-ARR No. még Oct, 19“ '

On the One~Dimenaional Theory of- Steady Compressible Fluid Fltm in Ducts with
Friction and Heet Addition, Hicks Montgomery and Wasserman, Oct.. 1947 p 891
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Example : Find the heat ﬁrans'fer efficiepcf, ‘and ‘the=p.ower' density, 4 ,
for the follewing cases: ( pon 0;"5) - o |
1, Liquid sodixlnn»_ caoled reactor for which '
F=0.2 |
. v = 30 fps
) Ty max - Tto . 100° F
D =0.2 1n.,,€-3o in,
2, Water cooled reactor for which
F = 0.8
v = 30 £ps
Ty pax ~ T ¥ 100° F
D = 0.2 in,, = 30 1n.
3., Air cooled reac.tor for which §

= 0,5
l

e
" mx = T‘bo = 700° F
Ty wS00°F
Delin, ¢=30in. |
do Find heat ‘tran'sf;er coefficient ferv above cases. ) Whé.t 1;3 outlet
v temperature of fluid frcm reactoro
B 50 Plot temperature di&tribution of wall and fluid along heat transfer
passage for (1) constant power density,(2) constant wall temperature, and

(3) aimsddql diatribution of  pover, for the last examples,



Thermal Pro perties for use in g

_1_13_0_ o Na(700° o _ )
¢, 1 .02 -.»24‘. : cal/gu° C
B 000 oo 00018 - ‘gm/cx.n'sec
k 001 a5 .000056 . cal/ sec em® C
/0 o 1.0 | 0,78 ' - .00129 .- gzn/cm3

' Summary of Convective Heat kmefew

The aection on convoct.ivo heat transfer has been conoernod with pressure
losses and heat tranafer uhea cooling fluids flow over heated surfaces, An

equation for pressure 1ossea vas given

2

dp = 4fx W (1) -

dx D  2¢g ' _
Forniuiae were given for the friction factor, f, for "la.minar' flow ((Re)< 2000)

£f=_16_ - | (19)
and for turbulent flow (5,000 { (Re) < 206,000) B

f = !'042.' 0‘2 B . (30)

(RO) ] . _ .

An equation was given for the heat transferred to a flowing fluid

da = 4b_ (T,-T) (57)
dax rub -'

'Equation (55) was given to relate the f?iction: i:actor, f, and the héat
transfer coefficient, h. | |
(St)/é/a - N - (55)

Heat transfer analogies for the determination of Xwgre. discus,sed,v It was
found that N is an inverse function of the Prandtl nﬁber, being large when
_ Prandtl number is small, and vioe—vers_ao_ | » |

| The heat transfer analogy; in combination with conservation laws for the .
coolihé flu,id, was used to give é. reiatiénship between fluid and passage wall

temparatures,



Tto Tto . .
Also using the heat transfecr analogy expressions were derived for the power

density in a reactor

1)) IR ‘TtO‘ ' ' .

The heat transfer efficiency was defined as one minus the ratio of pumping

power to heat removed, or for a gas

€= 1-(1+a)( (k'l)-'u?‘

(95).

For a liquid _ ‘
é l1-(1+8) W . ‘ : | (97)
8 Cpan (Ty pay = Tog)

It was found that for large power density and high efficiency it was neces-

sary to heve high specific heat, Cp,

temperature difference ('1‘;, max — Tto)o For large power density the hydraulic

high A (or low Prandtl number), large

diameter should be as small as possible (large ratio of surface to volume), |
and the density of flnid as large as possible, However, one contradictory
requirement was found that high veloeity give high power density, but low
~efficiency. There are other limitations on high velocity, such as erosion
and corrosion problems, which are often more important than the limitation
due to efficiency, The resolut:.on of these contradictory requirements can be

achieved only as a result of engineering experienceo

4 topic in convective heat t.ra.nsfer .which requires gomewhat special
treatment is that of heat trensfer to boiling liquids, As was indicated ear-
lier, no usefj’ul information is added by the statement, for a boiling process,
of Equation (69)

. -99“



- dq = Gp d Ty ‘
For the boiling liquid, sinco the heat added causes negligibly small ohanges
.in temperotnre for enginooring proceasos, tha speeifio heat wtould be requirod
to bo in!‘inito, and the hoat oarried away by tho flnid ia fram this point of
vhw indeterminate. o
| &porimontal doterminations have been made of" heat transfer coefficients '
whioh are appropriate to va.rioue situations in boiling heat transfer. A
‘typical plot* of the results of experiments is shmm belov for water boiling
at ono atnosphero and at 100 psi gage under natural convection circulation

pa_pt_ a__ submerged chromol wire, Here h ie dofined by the equation

q=hi/J T _
whoro q =- hoat trqnofo:red per- unit time
o h = heat transfer coefficient
A heated surface area

A T = difference between temperature of wall and boiling tempera-
' ture of liquid

: Por appraisal of the potentialities of boiling heat transfer," part of
- the ocurve for b Tis aketched in, in dashed lines

| ﬁoat rranafer to 'Hator Boiling Under Pressure, Farber and Scorah, Trans.

'.-1004-.
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.Ohe counterpart, in common'expgrience, of the boiling phenomenon reﬁre-
sented by tﬁe plot is the bubble on the top of a hot stove, If the tempera-
turé of the stove sufface 1s near the boiling point of the ﬁater; the water
drep will flatten out on the stove and evaporate quietly, If the temperature
of tho surface is conaiderably over the boiling temperature a film of .vapor
is farmed between the bubble and the surface. Heat transfer intq the bubble
in the later case occurs onlj through this film and the bﬁbble may evaﬁbrate '
moré'élowly than on the cooler suffaceo |

.As the temperature of a surface, submerged in a liquid, is increased
above the'boiling point, the heat transfer coefficient increases considerably
aa shown in the plot. In this regioﬁ.hcgt transfer oécurs by a yrocess
called nuoleate boiling, in which small bubblqs are foruod immadiatoly at
the surface, diffusing from there into the surrounding fluid where they are
rpcondngode The shape of bubble formed and the rate;of formation (hence the
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‘heat transfer ooeffioient).are dependent onvthe nroperties of the fluid and_
the condition of the surface-particularly as these affect surface tension
and surface}wetting, An- oil on the surface will considerably retard the
 heat transfer." . ‘ |

As‘the temperature of the surfaee is raised a limit is reached where
the heat'paSSing through the‘surface can no lonéer'be sccomodated by tne
‘nucleate boiling-processo Here the liquid breaks’sway from the surface,
forming a £ilm of vapor between liquid and surface° Since the amount of heat
passing througn the surface requires a larger temperature difference between
. liquid and surface after the-hreak away, the surface temperature for equili-
brium suddenly rises to a new value as indicated by the harisantal dashed
line in the plot. This new temperature is in general 8o high as to rooult in
' failure of the heat transfer apparatus by melting. Since rosctors are to -
some extent constant heat output dev;oesg this_msy.be{a problem for boiling
reactors, _rA | o | |

Eefore this phenomenon had been recognized exnerimsntaily.there'hsd been
some toiler failures, duo‘mostly to local hot spots in boiler tubes where
film boiling oecurreda One of the deterrents to pushing boiling heat t rans-
to its 1limit is fear of this unstability, particularly uith hot spots° Also
'there is always fear that one tubo, wvhich for some reason gots more hoat,
| will generate more steam than its nejghbary thus its flow will be impeded, -
it will become hotter still, and eventually will pass over into film boiling
and hence failure, Added to these difficulties, so far as reactors are con-
cerned is the possibility of nuclear fnstabilities to change in density of
moderators or absorbers. _

The interest in nucleato boiiing is sufficiently groat, dus.to high poten=.
tial heat transfer coofficisnts, to cause considerable intorost, particularly
under conditions of forced circulation. It has been found.oxperinsntally that
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‘the heat ‘transfer coefficients can be greatly inéragséd by pressurizing the

-boiling system.
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OAK RIDGE SCHOOL OF REACTOR TECHNOLOGY

ENGINEERING A LECTURE NOTES — A, S, Thompsen

50 The;gg; Power gxg;ea
There ie mach discussion, in conneetion with proposed applications of:

nuclear energy, of the effect of temperature on the performance of nuclear
pover plants, and of the desirability, or otherwise, of attaining high
temperature, It is known that the electrical power industry has pushed
continnelly for higher temperaturee, because higher temperatures have meant:
higher efficiency and higher output frem a given size of blent, and hepee
lover cost of delivered electricity. The bullders of mobile power plants
-also‘have been iﬁtereeted in higher'temperature, primarily for hiéhersdut-
put from a given size of plant (particularly fqr performance of militery
epplicatione) and for a saving in the fuel load which must be oarriedo In
the case of nuclear energy the fuel load provided for burnup of fieeionable'
material is negligible, and the cost of fuel burned up may be small (or
subsidized by military programs). The qrgumente for high effieiency for
miclear applications may well degenerate to the following, where tﬁese ere-
pertinent: | |

(1) More power from a given size and weight of plant;

(2) Conservation of muclear fuel; and

(3) More time before_repreeessing; and hence less processing cost,
For many applications (stetionary power plants and some others) size and
weight are a disadvantage only in so far as they are reflected in cost, and
it is often cheaper to use increased weight and size to reduce the neceesity
for engineering development, Gonservatien af fuel ie generally nei a prime
consideration in military epplicetione, and processing cost may well be
secondary, The tiﬁe before reproceeeing pay determine the usefulness of
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oerta.in mobile applications of nuclea.r energy which require re.nge° For some

e.pplioe,tions space and weight ere important considera‘t.iona - pa.rtioulerly |

aircre.fto - _ | . | _ )
In most cages- t.here will be ‘some desire for high efficiency whioh will be

‘ _in eonfliot with other requirements, the conflict to be decided for the

: cloeoet appro:d.mation to the objectives of some overall designo ‘I‘ho pm'eeent
seotion will ‘be devoted to the development of thermodynamic expressions for
powor ple.nt porformnce, pe.rticularly as it depende on the perfmnoe ef & |
-reaotor in the systemo The criteria of. importa.nce will be coneiderod ho:po
.to bo cycle efficionoy and power output. These criteria will be’ relatod to
temperature distributioas and frictional preesure losees in the eyotom. -
- Four_ e",t' _
“ For simplicity the cycle considered will be limited to four commnen,taz
(1) a oompressor in which tho pressure level of the working fluid ie reieed
abovo ambientg (2) a. hoator (tho ructor) in which the fluid ie heatod to some
_top temperature 3( 3) a turbino by which shaft work is done; and (4) a heat
exohe.nger which cools the fluid again to’ ambient temperature for entrance
‘to the compressor° ‘This system is considered because (1) it- is the _simpleat,
| themodyns.mic eystem capable of ‘producing an appieciable exceae of exte:rn'al
work, and is ftmdamental to more complicated systems, (2) some general con- ‘
- clusions can be drawn conoerning the dependence of various quantities of in-
terest in prelimimry a.nalysisg and (3) sane actual power syeteme in comnon
~ use oorrespond quite cloeely to this eyetemo _ ‘ ‘
It is aasumed that the physical states of the working fluid are complotoly |
detormined by the assignment of values to two variables, here teupqratu,re and
entropyo A plot of a typicql oyclo ie thon as ahown below, where T y t.upraw

ture e.nd S is cptropyo '
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This is the samblsimpleefuum—ccmponentusystam €£°:which.the'réactor.waa
related in the first lecture. f |
If the cyéle is to operate contingously, the plot of S = 8 (T), as
shown above mﬁst be‘a_closed figure. This can be expressed analytically hy
| stating'thaf the requirémentS'for the existence of a thermodynamic cycle are
ffd T=0 ¥ _ (1)

and

§48{ 410 | (2)
To use Equations (1) and (2) it is necessary to establish the relation-
ship 8 = S (T)o It will be found that this invblveSAfriction lossés in com-
‘ponents which will be used to define a component efficiency. The cycle
efficiency and power output will then be expressed in terms of component

efficiency and temperature ratios across the components.

Component Performance
For any thermodynamics process we can write an incremental expression
for thebccnservation of energy

dq-dw=dh+dks+de .(3)

. where
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dq

heat added to unit weight of fluid

d w = external work done by fluid

d h = change in enthalpy of fluid
d k = change ih kinetic energy of 'fluid
d e = change in potential’ energy
The conservation of momentum requires _
'-éw=dk+-de+lT dp + df , - (4)
where o = weight density of fluid |
~ p = pressure in fluid

df = frictional energy dissipated per unit weight of fluid

Since enthalpy is by definition
1 . /2
dh=du+? dp-d-pd(?) ' (5) .
where du = change in internal energy of the fluid, Fquation (3) can be

written ‘
| dq = dw = du + pd(§> + % dp + dk + de ' (6)
Subtracting Equation (4) from Equation (6)

dq+af=au+pd(%;> , | (7)
By definition the change in entropy, ds, is given as . '

ds = du + Tpd (%) . ' ' (8)

Combining Equations (7) and (8)
ds = dq + df (9)

T pr————

T
In Equation (9) it is ziecessary to express the frictional loss df in terms
of the known. energy' changes iﬁ the cycle and then to express these known
energy changes in terms of temperatures in the cycle.
The mechanical efficiency of a procesga 18 defined as the ratib of the

en:ergy output from the process, E 0? to the energy input to the process E;
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p==E o | (10)

| En |
For instance, in é Qompreésbr, shaft work is the input and an enthalpy change
in the gas is the output. In a turbine the'convefée is true, the énthalpy
change in the gas going through the tufbine is the input and.shaft work is
the outputo' For é given process - adding or subtracting heat, or doing work=
the values of energy input and energy output must differ by the. frictional
losses, Epy SO that '

Eo + Esp+ Ep =0 | ' (1)
Equations (10) and (11) can be c¢ombined to eliminate_either Eypor E, in
solving for Ef. For the process Qherevthe input is from an external source
(compressor or reactor),'eliminating E,

Bp==- (1) By | " (12)
FSr the process where the output is external (turbine or heat exchanger),

eliminating Eyy

-1 |
Bp=-(1-4)E | (13)
Noﬁ df can be defined for a process involving work (Compressors or turbine)
: o+ 1 o
df]_:“‘(l“'l*l ) dw . _ (14-)

where the positive sign indicates compression; the negative expansion., For
& process involving heat (reactor or heat exchanger)

,df2=(1-p.:l)dq (15)
where the positive sign indicates heat added fo the'cycle (reactor) the nega-
tive sign heat taken from the cycle. The efficiency ps used in Equation (14)
correxponds to what is sometimes called by gas turbine designers "small stage
efficiency”, It is the limit of the efficienqy for a stage as the number of

stages to perform a given compression or expansion goes to infinity,
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For a process involving both heat and work siniultaneously we can write*

X1 1 : :
af =~ (1 -4 )dw+(l-u2 ) dg (16)
Substituting Equation (18) into (9)
1 . 21 o
dar-.-(l-pl)dw-o-'(z-uz)dq (17)

S

According to our original assumption concerning powe::" ﬁedi; - that S =. 8(T) -

the changes, dw and dgq, must be expressible as functions of temperatu're_v
g=-Y, (ma - (18)

and | |

dq = Y 2 _(T.) ar o -  (19)

If the processes are considered to extend only over small enough intervalé
that LPl and LP o are essentially constant |

. aw=-c 4T |  (20)
and

dg= ¢ AT (21)

Substituting Bquations (22) and (23) into (19)

ds=K 5 (22)
where ‘ A +1 |
K= JQ-w DG +(2-p ), (23)
For any one process, Equation (22) can be integrated to give
()
Sy = Spq =loe \ T, | (24)
~where T . Ty
m
o T

and T = the temperature at the end of the myy process,

For the case considered here, where there are four discratc processes,

% For a more general treatment see ™ Power Flant Analysis", by A. S, Thompson
NAA-SR-19, October 26, 1948
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‘ Equation (1) can be expressed

ZA (Tp - Tp1) =0 . (25)
m=1 _ ‘ '
This can be rewritten ,
n v
=, :Eg "o | - (26)
ms= . m ’ .

.Cancelling identical terms

Ty =1 | (27)
Tb

Since

R
L =T T,
T -m=l
o
Equation (27) becomes
4 - | o )
T Tp=1 o (28)
m=l _
Equation (28) takes the place of Equation (1) for the four process cycle,
For the discrete procésses Equation (2) becomes
4 PO . | ‘ :
= (Sp - Spy) =0 | (29)
m= 1 :

Substituting Equation (24) into (29)

i K
S g () =0 (30
n=1 : ' '

From the summation property of logarithium
L

log § 1T (Tml{) =0 | | (31)
or .
4 ¥ ‘ ' ;
Tr (Ty ) =1 | (32)
m=1 ’

Equations (28) and (32) are the conditions for the existence of a power

cycle in terms of temperature ratios, and process efficiencies which determine
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" the factor, K (Equation (23)). For evaporation processes, involving a change
of phase where the temperature remains constant during a process, a diffe-
reht approach is more tractable.* Equations (28)_and (32) apply particularly
to gaseous media. They will now bg considered for a simple gas turbiné
Eycleo With Equations (29)‘and (21) a complete thermodynamic description
of the cycle will be obtained. |

| It is necessary to evalﬁate the constants C1 apd Cé for each of_the
four processes. .Thié will be done using Ehuafibn»‘ﬁj; 'F§f~a compreésidn
or expansion in which no heat is added andbchanges in kinetic and potential

energy are negligible Equation (3) becomes

dw = - dh : (33)
Since for avperfect gas v |

dh = CpdT . NN
Then -

@ == Cj, dT | | (35)
Comparing Equations (35) and (20)

G =Cp : (36)
Likewise for the case of heating or cooling with no exterhal work -

dq = dh = Cp dT ' (37)
Hénce in Equation (21) |

- Cp=Cp (‘38)‘

Now these values of Cl and 02 from Equations-(36) and - (38) can be used to

evaluate k in equation (23) and the work done, A W, and the heat added,

A q. This will be carried out for:s (1) an adiabatic ¢compressory (2) a
reactor; (3) an adiabatic turbine; and (4) a heat exchanger. The particular
combination of processes is thét of the simple gas turﬁine, and is used here
for demonstration purposes, The conditions for the existence of a éycle

will be applied to the processes and expressions for efficiency and power
* Liduid—Vapor Power System, By A. S, Thompson, NAA-SR-26, Feb, 3, 1949
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i output will be developed.

Compressor
Equation (23) for_k,hence becomes;for a compression
= (1 - pg) Cp - (39)

The work done in driving the compressor is.
ch:-c ('rl-'r)

== cpTo_(‘r'c- 1) | (40)
. Reactor
From Eduation (23) |
KR=(2-|LR)C (41)

The heat added by the reactor is.

Bag = Cp (T, - 1)

| =€y To fré (‘T“R - 1) (425.
Turbine
From Fquation (23)
, , 1 ‘
1;(1,=(1-F)cp o (43)

The work done by the turbine is

Aw ==~ Cp (TB-T)

Heat Exgggggef} d | S
From Bquation (23) L
| Kg=(2- Tug DG, (45)

~ The heat dunped to the heat exchanger is
Qq =0y (T, - Ty) | -
o Cp T, q'e. ’T’R T (TH- 1) (46)
Let us define a temperature ratio, 1", equivalent to the ratio of the top

Then

temperature at entrance to the turbine to ambient temperature, Tye
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T =7, Tp )

Then the heat added to the cycle, with which it is to Be charged is )from
Equation (42) o '

Q=8 qp=0,T, (T-T) (48)
The net work done by the cycle is the sum of the turbine work and compressor

work, or

We-Cp Ty {Tc-1+"r' (T‘F';)}-- (49)

‘The efficiency is
‘ |
"E= Q. aTc-l*.\r(Ar"t"l)

(50)
T-Y,
These are ‘sub;]ect to conditions fgm Equations (.28)' and (32), or
B S o | (s1)
(R i P T

| Combining Equations (51) and (52) to eliminate T q
Kp~™ K K~Xr KXy ' '
Tr Y. o T =0 (53)
Or solving for I |

PO "L . WO, . SO
’T’T "?& Kp - Ky * Kp - K

‘Substituting Equation (54) into (49)

L K Ky Ky - Kg | (55)
W= T -]l = AN =
-Cp 0{7'0 TIJVKT -'KH % KT-KH
The work done by the cycle will be maximum when
=0 (56)

d W
ch

or when
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KT - Kg K, - Ky + Kp—Kg

N - (57)
K, - K ,..’__ Kt - KH KT -KH =1
"R T
KT - Ky ¢
Solving Equation (57) for 7’0
K, - K o L - -
c K, =. + - K. - + - .
Tc=<m> R i *~ R fr = Xy
Let a = K- Ky . | O (59)
"KR""KT""KH- o o
b = ":"-KT-KH‘ » (60)

K, - kg * K7 - Ky
Then Byuation (58) becgmes |
. , .
= 1-Db\ (61)
T (—b- T ,

l1=-b ‘
( > T ( > (62)
'Substituting Equation (61) 1nto (62)
: (a -1)

T <l-b\>- - o (63)

Substituting Equations (61), (59), and (60) into (55)
, b a - (1-b) a=—1 e0)
- b -1 4 - b , -
W=-CpT°§(b 'T T [(~b> T J ’

Equation (64) can be simplified by adding and subtracting the quantity

_ Equation (54) becomes

(2 ’T‘ ) to complete a square

/2 ,2 1 A a_ 1/2
W= Gy {ET -1 | - [ RN e T -2 7 (65)

From Equation (50) then the efficiency of the cycle is

| p
Y ]2 1 % -2t ] (66)
= r" - 1 - '
: (_ ibb (1-v) )

( 1-b a
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The values of a and b ﬁre given by Equation (59) and (60)., For the case

. whe’rg the ‘efficiencies 'oi.‘ all components are the same énd't'he ‘sp,ecific
heat is constant throughoutsthe cycle, some simplifications result,
Constant smcific heat, Cp, and component ef'ficiencx' the same for all
cogponents | | o . “

- For this case Equation (60) gives :

b=12 (67)
 Using this value for b, Equa.tion (61), the condition for -maximum power out-

" put from the cycle givea for the‘bemperatura"ratio -across the compressor
‘.

Tc=-'r- | - (68)

The temperature ratio across the 1(:urb:;.ne is
a=-1

Te T R ()

The work output from the cycle is

WetyTy .[,rl/? _ 1] 2 |- __r_l/z (70)
The cycle efficlency is . , | B
E = ['?}/2;1 ]2-2. [ - 71/2] (1)
To ¥ ‘
Also for this case, from Equation (59)
a= 1+ -l:.l: T (72)
5 ,
Or solving Equation (72) for the efficiency ,
=12 (1-2a+ \5-4da+4e? ) (73)
Or approximately, for p not too much less than unity
| pAY 15 —a - (74)

Equation (74) gives a physical interpretation to a. It is approximately
1.5 l_ess the" ’"average" cdmpc;nentl efficiency, for component efﬁciencies not
too far from .u_nityo This »hypoth‘etical case of equal foiciencies for all
| components is found to be a good in_diéator of cycle performance, The value
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g, to be used is actually very close to the numerical average of the actual
component efficienéies for thg cycle?l The results using b ='1/2 are quite
close even for cases where b is quite different from 1/2. For specific cases
actual values should be taken, but for ourvpurposes‘the results will be good
enough, o | | _

In the accompanying fiéure is shown a plot Qf:the dimepsionless.péﬁer
dutputlfrdm.tﬁg simple gas cycle, W/b§T°=le;.an& the cycle efficiency, E,
for the case where b = 1/2, For'comparisqﬁ the Carnot efficiency is also

shown, The Cgrnot efficiency is Just

"-1
E= r‘r

For our gas cycle, from Rjuation (71), for.a = 1/2, the efficiency with

component efficiencies of 100 percent would be
- ' 1/2

E = I~ -1 -
7.1 2
By adding various complicating features such as "intercooling" and"reheating®’
 the efficiency of the gas cycle can be made to abproach more c¢losely that of
‘the Carnot cycle, if one works only on paper. However, in actual experience
it is generally found difficult to make these complications pay their way,
There is always a tendency for.miscellaneﬁuawpreésure:losses to dissipate
the possible advantage of sﬁch a scheme, |
The plot shows that efficiency reaches a region of vanishing return
as temperature is increased indefinitely. . The‘power output, within the |
limits of our assumptions, does noﬁ seen to. H&wever it should be remembered
that it may not be possible to increase temberature along a liﬁe of_constant
component efficiency, but that the éamponent efficiency will fall off as-
temperature is increased, This is a specific design problém involving the
design of compressors; turbines, and heat exchangers, and their matching,
| Inépection of the p;ot‘of cycle performance will show the justification
for certain approximations, such as that Qf.EhuAtion (74). It can be seen
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that if the parameter, a, is as low as .75, the temperature ratio required .
for the system to have greater than zero output is sbout 11.5. If the am-
bient temperature were 500° R (Rﬁnkine - absolute temperature on engineering
scaie - L60° R = 0° F), thenvthe‘top temperature of the cycle would be 500 # :
11.5 = 5750° R. This would seem 1ike-an unwarranted struggle to achieve
marginal performsnce. Hence component efficiencies to be of any engineering
interest must héve an average at least greater tban'75 percent. Since pre-
Seﬁt gas turbine practige ﬁseé temperature'ratioé around 3 or 4, as limited
by present materials, the lowest average component efficiency must he some-
vhere around 85 pergent° Representative values 1n current jet~engine

practice .are probably about

Bo = <80

b = .95 (Combustion Chamber)v

bp = 085 |

pg = 1.00 » : (discharge to aﬁmosphere— no heat exchanger)

fverage p = ,90
From the plot, p = .90 corresponds to a minimum temperature ratio of opera-
tion of about 2.4. With an ambient temperature of 530° R (70° F), this cor=
responds to a top temperature at the inlet to the turbine of 1270° R (810° F)
4n additional problem should be mentioned here, Power systems are designed.
for "design point" 6pez;a.ti_on° For a systéﬁ with a top temperature at the
- design point of 1200° F, the compohenﬁ efficienciéé will generqlly be arrang-
ed to have maximum values as near aé poésible_to this design point, At éll
other conditions the componenta efficiencies will be less than‘the maximm
value, Hence the system having an average conpoﬁent of .90 at the design
‘point of 1200° F would probably not operate at all at 810° F as shown above
because of deterioratién of component efficiencieso In airplanes "off=-

design®™ operation is required by changes in speed, altitude, ambient
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temperature, cargo load, etc.

It should be noted in the plot that a marginal deéign is subject to
-two very serious limitations. Thé first is that, if the design point is
missed because a component is not as g@od as had been supposed, the marginal
design will not operate at all.. The second‘is that the marginal désigh will
hAve poor off designlpermormgnce,lwhich, in the case of a gés turﬁine,'ﬁeans
that it will be hard to:start. It should be noted also that a small change
in component efficieﬁcy or temperature ratlo results in»a iarge cﬁange of
cycle'efficiencf ( and poﬁgr dutput) in the region of prééent operation of
gas turbines, | | “‘ |

It is not planned here to discuss in detéil'liquid-vapof power systems:¥*
In general it can be remarked that iiéuid-vapor systeﬁs'( for instance steam
power plants) tend to #pproéch much closer than gas turbine cycles to the
Carnot efficiency and hence are not subject to many of.thg limitations of
the gas turbine system. - For.example'the overall peffofmﬁﬁce is not so
sensitive to changes in component efficiency or to chaﬁgeg in'temperature as
the gas turbine éycle - primarily because the efficiency‘is already fairly
high, Pumping power in the iiquid vapor system is low ana therefore the
sterting problem is almost insignificant,

The Rankine'cycle is a good Approkimaticn fdr‘a.liquid—vapor gyaten,

Tts temperature-entropy diagram is schematically as shown below.
' ,/' \\\(3) '

T (1) Liquid Heating

(2) Vaporization

(3) Superheating

(4) Expension in turbine

(5) Heat rejection

sy 2Pt i

¥ Tiquid Vapor Pover Systems, A, S. Thompson, NAM-SR-26, Feb. 3, 1949
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It can be seen that the cycle is a closer approach to a Carnot cycle than
the gas turbine. Changes in temperature and entropy due to pumping (bet-
ween (1) and (5)) are so small as to be negligible and do not show upon

the diagram,

N

Carnot s Gas-Turbine S Liquid-Vapor i

The cycie discuséed here for thé gas turbine was designed for maximum
work, It could have been designed (and for some cases would have béen) for
maximum efficiency or for maximum output per unit weight or size of piant,

and the general approach would have been the same.

Examples

1, Consider a gas turbine cycle consisting of four processes having“the

following values of parameterss

Compressor _
Coo = 0024 By /1b K, = 0,24 (1 - 0.80)
B, = 0,80 : = 0,048
Heater | '
= Oo K = - [ 3 o
cph 25 B, /1b 'R (2 - 0.85) 0,25
bR = 0,85 = 0,288
Turbine , °
: 1
Cpt = 0.25 Byy/1b K, =0.25 (1 - 0.90)
pt = 0090 = - 0.028



v

Heat Exchanger (&tmosphere)

‘ 1
Cpe = 0+24 Byy/1b K;=(2- 1.0) 0.24
Wy =100 = 0,240
For this example
a= __=0,028 = 0,288 = 0.622

0,048 ~ 0,288 —.0,028 = .0.240

b = - 0,028 - 0,240 = 0,527
0,048 .~ .0,288 -.0,028 .~ .0,240

47

) = 712 x ,702 = 0,50

b (1- 27 .
b (1-b) = (.527 ) (.473
For this example then, Figure 1 can be used, for =5,
the value of the maximuh work output is given.by
W' o=0.62
The efficiency of the cycle is
E' = 25 per cent
For an overali temperature ratio of M = 10, .
W! = 2,9 and E' = 46 per cent.
2, Calculate fhe.specific thrust (1b of thrust per 1b of air per second)

for a jet engine designed for mximum thrust at a flight speed of 1,000 fps

My ~ 1.0) at a flight altitude of 36,000 ft. (T° = 390° R) and conforming

to the conditions of Example 1, It is assumed here that the efficiency of
compression is the same in the diffuser and compressor, and that the effic-
iency of expansion is the same in the nozzle and in the turbine,

Assuming that the mechanical energy expended by the engine on the atmos-

~ phere is used entirely to create a change in velocity across the engine,

then this energy is

The specific thrust of the engine is given by
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F = V2 - ‘vO
=
Eliminating v, between these equations, the specific thrust is

F= 2gP+v.2 -,

g -

The jet efficiency is then

Fvo
Foi‘ 4" 35‘
= (390)(0.24)(778)(0.62) = 45,000 ,ft. 1b,
| | ~ 1b., .
F= _(2 )(3 . 2(45,000) + (1,000) - 1000 = 30.3 1b. sec,

T32.2 | Ib.

Jet efficiency = (100)(30 1,000 = 67 per cent

= 25,000 ..
For T = o o
| P = (390)(0.24)(778)(2.9) = 211,000 £t, 1b.
" 1b.
F=_(2)(32. 2)(211,000) + (1, ooo)2 - 1000 = 87.2 lbs sec,

32,2 T 1b,

Jet efficiency = (1000)(87.2)(1,000) = 41 per cent
211,000

3. Compute the ehange in performance in Example 1 due to substitution of
a heat exchanger having 80 per cent mechanical efficiency. For this case
§n1y' KH changes, its new value being

| Ky = (2 - 1/8)(0.24) = 0,180

Then
a = =0, 028 - 0,288 = 05705
0048-—0288—0028-0180
b = -0,028 - 0,180 = 0,463

0.048 - 0.288 0 0,028 - 0,180
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The values of power

closely from Figure

T =5
Wt
B
=10
WI
.

outpggxand cycle efficiency may again be found very

1.
(negative)
(negative)
1.1

= 21 per cent
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