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Our problem is concerned with engineering in its application to the 

design and useo! reactors. In order to limit the scope of the problem ,to 

,lija terial which can be covered fairly adequately in the time, available I I 

wish to consider reactors only in one context, as part of a verysiDlple 

four component system, which we can vis~lize schematic-.lly l1,ke this:, 

... T, , (I) ~ 1i ,. 
(?£At.TI>K! 

(Z\ ' , ti) 
P"MP 

liP 
rtJIta'Hf i 1. 

l4-) 
HeAl ... 

'ClCCHAMGER 

(1) Here we haVe a reactor operating at some limiting temperat~e 
Tm, taki~g in a quantity W per unit time ef some cooling f'lw,d 
at a temperature Tl a~ dischariing it at temperature T

2
• 

(2) A pump or compressor providing a' presaure r1~. 'A p suf'tici-..,nt 
to overcOJlle the pressure losses in all other comp,onents o 

(3) • turbine for dev~loplng external power ~.d for running the 
PUJf9P mayor may ,not be provided, depending on the purpose ot 
the sYlte:\l!.. {' , , ' 

(4) And fina1l7 a heat exchanger which r(ldvoe. t.he ~mpeftt..N to • 
value appropria t. to the requirement.. ()f the qat.. JlU.I1P. ' 
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It should be pOinted out that ma~ aspects of reactor engineering are 

completely neglected in this simple system and will be pretty much c~ 

pletely ignored in this series.of lectures •. For ins"ta:nce, our system 

includes no chemical processing equipment for fissionable materials or 

fission products. 

In this context, as parto! a system, weare going, to discuss reactors 

from two aspects: (1) How do the operating characteristics of the reactor, 

or at least some of them, depend on the' internal design of the reactor and 

(2) what do the design specifications for the system demand for operating 

characteristics of the reactor. so far as internal design of the reactor 
! 

is concerned, we will need to know first about the distribution of neutrons 

and the requirements for criticality, and here we will borrow from the reactor 

. theory course enough information to enable us to determine the distribution 

of power in the reactor as a function of space and time. In discussing the 

thermal ou~put of the reactor we will combine enough heat transfer, fluid 

now, thermodynamics, and theory of elasticity to el3tablish the dependence 

of power output on temperatures, pressures, velocities and material charac-

teristics in the reactor. We will try to establish limitations on power 

output due to (1) top temperatures allowed by materials, (2) temperature 

difference· allowed by thermal stress, and (3) pressure drop allowed by power 

consUlIlption. 

The handling of thermal energy without neutron considerations is a fairly 

commonplace engineering problem, and a considerable amount of engineering 

development has been expended in determining its application to engineering 

problems. The handling of neutrons, however, is not yet a commonplace engi-

neering problem, and the distribution of thermal energy in a reactor cannot 
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be considered as a problem completely independent from neutron consideratioD3~ 

The distribution of thermal energy, or even its existence, in the reactor 

is entirely dependent on neutron distribution. Materials requirements for 

neutron purposes seem to be set in antithesis to requirements for the 

utilization of thermal energy. 

The first large reactors which were built, for instance Hanford, ~d 

as their only purpose the utilization of neutrons for the production of 

plutonium from uranium fissions. The economy of neutrons determined largely 

the reactor configuration, ~ile the problem in handling thermal energy was 

to minimize its nuisance value. A considerable plant, as well as a large 

amount of Grand Coulee electrical power, are needed to dissipate ,the energy 

of fission into Columbia River water. In mobile power plants using nuclear 

energy, like the naval and aircraft applications, the conversion of thermal 

energy to mechanical energy is the central problem. The neutron problem, 
I 

due to the use of enriched fissionable material, is important only in its 

bearing on achieving criticality with a reasonable amount of fissionable 

material and a reasonable size of reactor. Reactors in the future may have 

to combine the emphases of these two types. If nuclear energy is to compete 

economically as an extension of world sources of power, it will probably be 

necessary to use fissionable materials economically including both con-

siderations of power plant efficiency in the usual sense and including the 

maximum use of neutrons in making new fissionable material. It will be our 

job here to try to understand the interrelationships between nuclear con-

siderations and the more usual engineering problems of power plant design. 

In this connection, I plan to discuss in a very few lectures the overall per-

formance of power plants as it depends on reactor characteristicso This 

will involve mostly an analysis of a sample power cycle from the point of view 

of efficiency and power output. 
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I would like to give a few general reference for those who wish to 

pursue these topics further. 

1. Heat Tram.ission. W. H:;. McAdams, McGraw Hill Book Co., Inc o , 

New York, 1942. 

2. Theon of Elasticity - S. Timoshenko, McGraw-Hill Book Coo, Inco~ 
New York. 

J. ThermodYnam1cl$ - J. H. Keenan, John Wiley & Sons, Inc., New York, 19410 

4. Handbook of Engineering Fundamentals - Eshbach - John Wiley & Sons, 
New York. 

5. The Science and Eniineering of Nuclear Power - Co Goodman - Addison
Wesley Press, Cambridge, Mass., 19470 

II. POwer Generation in Reactors 

1. Heat Distribution 

In a given position in a reactor the total heat generated is pro

portional to both the neutron flux and to the concentration Of fissionable 

material. The energy released per fission is about 200 Mev. Since 1 ev = 
1 .. 6 x 10-19 Joules or Watt. sec then to obtain 1 watt of power it requires 

______ l;;;...;;;X~10;;..-_6_ =:3.1 x 1010 fissions per sec •• The number of fissions 
200 x 1.6 x 10-19 

per second taking place in a volume element dV of a reactor is given by 

(for a thermal reactor) 
Nf crf (nv)th dV 

where Nf is the number of fissionable atoms per unit volume of the material, 

cr-f is the microscopic cross section for fission for these atoms, (nv)th 

is the flux of thermal neutrons, dV is the element of volume being considered .. 

The number of fissionable atoms per unit volume can be expressed 

Nt = ~ 
A 

*The Science and Engineerin& of Nuclear Power, C. Goodman, Addison
Wesley Press, Cambridge, Mass., 1947, po 1960 
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where df is the density of fissionable material in space. If the mass Mf 

of uranium is unifor.iDl.y' distributlid.; :tb .a 'iv~lume Va then 

Nf=~ 
A VR 

Here a is Avagadro' s number (0 0 6 02 x 1024), and A is the mass number of 

fissionable uranium. The. power available from the increment of volume dV, 

using uranium' 235, is 

9602 x 1024 x 545 x 10-24 

235 x 3.1 x 1010 
(dt ~ th dV) 

where cJ> = nv, and the c,ross section for fission for U235 is about 545 

~ns. The power trom volume dV,is 

0.45 x 10-10 'dt cfo th dV watts. 

'Let us take 'for example a reactor in which there are 100 Xg of U235 

··:-'or less uniformly distributed and an average thermal nux ot about 

1013 neutrpns per sq am per sec. For this reactor then we woUld expeot 

the total power output to be 

-10 5 13 
0.45 x 10' x 160 % 10 x 10 = 45 mesawatts 

10 

Let us see how this energy is apt to be distributed in space and time. It 

has been estimated that the energy of t~ssion is dissipated about as follows.-

KE of fission fragments 

prays 
KE of neutrons 

Dray. 
Energy from neutron capture 

Neutrinos 

MEV -
1651: 15 

7 

5 

11 

1& 

2OO.i. 15 

10 

*The Elements of Nuclear Reactor Theor,y, Part I, Glasstone and Edlund, 1951, po 
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The fission fragments are large particles and do not travel far. Their 

en~rgy is absorbed very' close to the point of fission, as:is that of .... ~ . rays 0 

Neutr.ons have a much larger range and conceiv~bly large numbers could escape 

from the reactor. However, for most reactors neutron economy will dictate 
• I" , 

that ~ostof them will stay in the reactor., ((raY's having very high ranges 

can be absorbed only by large masses of materialo . Most of these Will escape 

the reactor, but for health reasons must be caught in shielding o Neutr1nos,? 

have such long ranges that, so far as we are concerned, they never enter 

the picture at all. Of the 200 Mev per fission to be accounted .for we 

might assume, depending on the configuration, that 5 to 10 percent will be 

absorbed in the shielding outside the reactoro For specific cases a 

,da~td,,~~iiDg·:lIlUst. be· .made-G 

· ..... f~~i.=~at:~=:~~:~~i~~~~:.::e=a 
. t!ia~~'t""''4it~if,;an.·ti,.tdoVn ~oWlng ,A, long period of. operation, the . . .. 

reactor is operating at 6 pereentof its total paver, thisp~wer then a .. 

'caying, according to the formula 

. p - 00 065 P t-l / 5 [1-
- 0 

.+1/5 
t 

t ... t1 

where t • time in seconds after shutdown. 

t l = time of pile operation at Po in seconds 

for periods from 10 sec <:: t .c:::::. 100 dayso This must be taken into account 

in the design of the heat transfer system, so that suffiCient heat transfer 

is available after shutdown to prevent damage to the reactor. 

In summary we might say that 200 Mev of energy are formed per fission. 

Of this, 86 percent is absorbed at the point of fission, 14 percent somewhere 
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within the reactor, its reflector and its shield. Some 94 percent, tor 

engineering purposes, is created 1mm~d1atelJ" at the'time of ,fission, while, 

6 percent isdelaled, and gradUa1l;y, decays atter shutdown" the delayed 

power' decreasing b7 ab&etQrfofttvoofor.VJeaebl'fac'bbrl¢t j2rtietiJi16liT 1,:1] 'mmo 

2. Dimensional AnI] yais of ReactorS' 
.' - . 

We have seen how' the generation' of power locally in a reactor 

depends on the local densities of ,neutron flux 'andf1ssionable material a 

It would seem appropriate now to investigate relationships which dete1'Di1ne 

the neutron £lux distribution and density of fissionable material.. This 
'. .' . . 

requires a: consideration of criticality condi,tionso For thia purpose 'we 

will write down three equations, which are taken from the reactor theo:r;r texto 

These 'are 

2 ' c q 
V q= c:,'( 

;...l.... 
3 ~t 

'\]2 nv - fanv.,. p qth :0 

qt =t~ € ~ a nv 

(1) 

(2) 

en 
These equations, subject to appropriate boundary conditions, represent criti

cality requirements for a nuclear reactor. The first of these equations 

represents the slowing down of neu:t.rona from the fiS8ion to the tbe1'll8l. 

energy llm1 t8 II The ,eoQDd ihova the ci1frua1on &Dd 1088 by captllU"8 ot tber.mal 

neutrons and the third ahovs the formation of nev fission neutrons fra. the 

captUre of thermal neutrons in fissiODable _terial.. Equations (2) and (:3) 

provide boundaq conditions for the slowing down rangeo Some explanation 

, of terms is pr,obably in order, although an attempt has been DIade to use terms 

from the Edlund noteso* 

* The Elements of Nuclear Reactor Theory, Part III, Glasstone and 
Edlund, CF-5l-9-l2'1. ' 
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q = nv5 ":i:,;p = slowing down density, neuts/cm.3-see 'passing 
, . energy E " 

n = density of neutrons 

v = velocity of neutrons 

Jf = averageulOgaritbmie energy 1088, per collision 

T == exp ( , . . '1 . du 5 
. . 

. .3 Zt(5 ~s + )f t a) 
= age of neutrons in 

slowing down 
o 

u '. 

p = eXp ( ... 5 ,2. .. ' du = resonance escape probability 

. 0 5~s+1!2a 
~t • macroscopic transport cross section 

:!:. s = macroscopic scatteringcrostl, section 

, 2 a = macroscopic absorption 'cross section 

u = lethargy = log Eo/E 
E = neutron energr 

't = (See Reactor TheorY text, eCiuation (6ollOo2) 

f= ~u = thermal ~tlliz&tioD 
~a 

, 1:=:!(, ~ f = neutrons per capture in fissionable material 
, , '. ~. . 

.' u 

e = fast effect, fissions from fast neutrons 
Y go neutrons per fission 

The limitations on the use of these equation! do not particularly con-

cern us hereo What we want to do' with them is to demonstrate a general method 

of handling such equations, and to find what we can from them about the 

characteristics of reactorso However, some limitations on the equations 

should probably be mentionedo Diffusion approximations to the Boltzmann 
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equation are in general not good where anything very rapid is happening to 

neutron nux (Marshak, Ellis) .. * E:xtrapolation length depends on transport 

mean free path and if this is a function of lethar.gy this amounts to saying 

that the effective size of the reactor is a function of energyo If trans

port croes section is a function ot space variables we must write 

\l . (-1.., V nv '\ instead of --l.. \/2 nv 
\2.t ,), , ' ~t 

If the reactor is not thermal, E must be defined in terms of an integral, ' 

over the slowing down r.nge, of fast fissions. All of these errects are 

given serious consideration in connection with the ADP reactor, and some of 

, them are of significance 0 Weare going to ignore all of this vi th the claim 

(not yet entirely established) that the necessary changes can finally be 

taken care of by methods similar to those weare now using .. 

THmen§iopal Analvsis** 

Physical quantities are associated both with a number and a, 

dimension. Dimensional analysis tries to study separately the dimensions, 

, leaving the numbel8for experiment or calculation. There are three different 

outlook. 'op. dimensional. analysis, depending on the kind of information 

avaUablel (1) hUnch or exper1merit; (2) differential equation; (3) algebraic 

aqua tiona (1) Here we have cauBe to think a certain phYSical q~ti ty of 

interest depends on certain other physical quanti tie II" What are the possible 

combinations? We can never get a number to go with the dimenSions.. (2) Here 

a differential equation gives a relationship between physical quantities, but 

* The PrinCipal of Reactor Crlt1cal+ty, Co B. El118, ABP-69, March 2, 1949 .. , 
Theory of the Slowing Dom of ieutron8 to Elastic, Collision. vi tb Ato.1o 
Nuclei, b7 Robert E. Marahek, Rev .. Mod, Ph,..8." Vl9, Noo ), JUly" 194'10 

** Handbook of Engineering Fundamentals, 0'1 Eshblch, John Wiley and Sons, 
New York. 
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numbers oan be found only by integrating ,the equationo 0), A. physioal 

equation g1ve~ both physical relationships ,betveen dimensions,~JldnWllbel'tJ~' 

Not all e~uations have unitary' homogeneityo" Engineers' are .noto:dous 

for equations Whioh do not, one vell known example being the equation for, 
, . 

, the ve~ooi ty of .£nux from, a nozzle 

where 

v =2~307-V hl - h2 . 

v = velooity in feet'per seoond 

h = enthalpy in Btu perlb 

.'!'his '~t.40D _sbeeD d~:t:~ed t,.. 

v(ft/seo) =-{2g(hl -h2)= -../2 x 32.2 (ft/seo2) (h1-h2)ft 

In this both sides of the equation have units or rt/seco If we are to 

express (hl -h2) in the units or Btu per lb. then ve have 1 Btu = 778 ft 1bs 

or 1 Btu/lb !! 778ft. Thus (h~~~a)Btu/lb .. 778 (hl -h2)f't and the above 

equation becomes 

v :;'~r2 x 32.2 x 778 (h1-h2) = 22307""'1 hl-h2 

where v is in rt/sec and. (hl -h2) is measured not in feet but in the units 

ofentha1p7 or Btu per lb. This is not a depreciation of the non-dimensional 

. formula since in engineering routine it is very handy,. but a warning of caution 

in its use. In the partioular case mentioned here, elaborate charts are in 

existenoe from which h1-h2 can be read directly in Btu/lb, while velocity 

is desired for engineering reasons iri feet per secondo 

Let's see vhat we can find out about these equations fram. dimensional 

analysis, vhichisjust the statement that physical lavsmust be given in 

equations all of whose ter.ms have the same dimensions or units - the rule of 
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unitary homogeneity. A check which you can easily do 'Will show that our 

equations are in this form., the terms in equation (1.), for instance, having 

the dimensions of L-;T~l. Noticethedlmensions of~ 2(d2/dx2) areL~2, 

of a are L -.3r1 t of" are 'L2, whereL represents the dimension, of length , 

and T of time. If we multiply through equation (1) by any quantity having, 

the dimensions L'T we wll1flnd that, the equation has been separated into 

dimensionless parameters. Some of these parameters will be useful. Such 

a quantity, as for exsmp1e,q/t'th has the' di'me~sio:ris of L-' r1 where r:: th 
2~ , 

is the thermal age. Since V !f/q' has the dimensions 1/L2 is can be 

written 

~ 
_ _..,2 -- ~ -q R2 

where R is a critical length dimension of the reactor and oL 18 a parameter 

for a particular reactor. Mult1~ both side. of equation (1) b7 1:' tt/q 
'2 ',.,..., 

we have '1:th ' '2 Q = ',J:::..ih ~ which is a dimensionless eca-.tiOD. 
q q 0(;' 

this may be rearranged to give 

2, ~ 
- (; t.Ja eX. : J2Jl 
' 2 q 

I 
1 

~'?;'/7:th 
= ~ (~ g,» 

.. ('t" ~th 

This can be int~grated with respect to enerlY frOll tission energ to thel'Jll8.1 

1 to give 

- &""th 
R2 

S 01..
2 d(~/~th) = 

qth S d(logq) = log(qt!.lqr) 

o 

or q,l qth - exp (-Z-th 
'< - -. 2 

, R 

qf 
1 r 01.. 

2 d(~/'6"th) 
o 

Likewise, equations (2) and (.3) can be made dimensionless by dividing by 
.' 

(~ nv), giving 
a 

(4) 



~, 
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and 

2 
V nv 

'2: ~',nv ta ' 
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-1'" P ~, 
, :E.nv 

a 

=0 

P <it qth'· = it 
qtb ~a nv 

Eliminating P Q.tb between the two equations' 

~a nv 

2 
;g nT 

J 2 ... ~. .. - 1+ pt'l')E 
ta: nv "t 

!!.:t.L = 0 
CIt . 

Again, as in equation (1) (V2nv/nv) has the d1mensions of 1/L2 so let 

2 '\1 ny =.. ($2 
" 

. nv R2 . 

where ~ i8 a constant for a particULar' system, and R is some critical length • 

..,. auD.ti w,'t1on we. have 

_ . (? 2 

32~ R2 
. t a 

- 1 .. pf'~€ ~ , = 0 
: \ qr 

. (;) 

Eliminating qtniqf between tvo equations (4) and (;) gives an expression for 

the criticality oftha reactor. 
1 

( ~2~ . ~l)exp J::a 
"2 • J eL

2 
d(t'/'rth) =pr~E:. 

o 

It should be noticed that the form of this equation is essentially that of 

.the Fermi age. equation in which 

@ 2 = B2 L2 

'3~ ~R2 
t a 

(6) 
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~2 r 2 " 2, ' 
0'- d(-Z-Ie: th) = B "2::' th 

o 

and 

pf'( E = k 

We can use equation (6) to find out something aboy.tthe mass of fiE!sionable 

material in the reactor which is ,needed for criticality. 'For this purpose' 

let us say that the cross aectionfor absorption is caaposed of tvO~rt8; 

one ~ u in uranium or other fissionable ater1al; the other 2." c in all 

other materials 0 Then 

2_"" "L 
a-"'u'" c 

and from our defin1tionof l' 

~ ,2: 
J. • u 
~,~~ u c 

The macroscopic cross section for uranium is 

where 

,<::' . - 0. lu = er
u Lu - u ~ .JL 

VB Au 

0. = the microscopic cross section l' or absorption in 
U fissionable material 

Mu = the critical mass, 

a • Avogadro's number 

Vll = vol1,lU of the reactor 

Au = _ss nuJlber of fissionable material 

If we let Va _ '( I.", then' 

~ crp, Ha a 'u= 'tvAu 
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For convenience let 

(~ R2 

1 

5 r:J...2 d(~/~tJ)= I 
o· , 

Then dividing and substituting for· f arid substituting for '2a in ~quat1on (6) 

gives 

+y 
or 

or 

( 

~2 . 

. ·3 r t(2:'u"~ 0)£2 
'Zu+~sa 
~u 

" Pee .-I 

( 

~2 .... 

3 ~ t 2.c
R2 ,f 

l..ui :aQJ = P7 cb 
. . 2:.c 

-I e 

( 

.~ 2 . " 
.,~., 

.. 

~ 
., <., 

l ··'.>::.ii··,'· ,co; 
., .• "J.l~\/ .. i: (P1 e.-I

_ 0 
or we obtain a dimensionless equa tion involving the .. ori tical 1'18.88 

.~2"1 
~ 11, =~";.& a = 1 & t R2 . . ... 1 

tc . ~A." Pl€exp [- ;~ t .,(.2 d(~/'rth)l 
(7) 

We can separate this equation into class parameters of two kinds, geometrical 

and physical: 

geometrical: 0\. ,. (J , ~ 
ph7sical: rv ~ a , ~t ~c R2, h , p, " , e 

~c R3~ a2 ( 

Certaingeneralstat .. ents can be .. de about the ,eaaetrioal factors; for 

instance, for all bare reactors of praotical interest, 0( , f and 't have 

magni tudes olose to ,.". Their accurate values can be found only from an 
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integration, generally numerical, of the differential equations, but for . . 

classes of reactors for which dimensionless parameters are the same, one 
. . . 

calculation does for the whole class. Equation (7) can be put into a .ore 

generai form' by referring the dimensionless ratios to a definite value of .. 

the cr! ticial.dimension, R. 'Since we are now going todemonstratethEit. a . 

minimum value of the mass exists,far one value of R, let us express the 

ratios in terms of' this minimum. 

M 

/= ~ 
. A = Au ¥ ~c 1\,,;.3' 

cr a"Mmn u 

B = Au '6 R,in @2 
. .3 ~ a 14min "'Z:t, 

Then equation (7) becam.es 

/= J..]>3 , B.? 
Ce-D(p2 - 1 

A minimum occurs when 

Then 

d(loc/> = 0 
a.fi 

1= a!. 
C =Ple 

D = ~ th 

Rain2 t 
o 

o(.2 d ('"t') 
"t'th 

(8) 

and at this point,)t and /:are both 1. The Blinimum then occurs when 

or when 

0:
11 *14 

A , 

-t- + 1 

·.l ~ 1 
'B 

= 

- 21? Ce-D 

Ce-D - 1 

~ 
C _.D 

(9) 
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From equation (8), for the minimum point 

1. A.f.B· (10) 

C -0'·1 e· -

Equation (9) ca.nbe. solved by numerical approximation for the ratio of 

A/B, and hence for the critical radius. Then equation (10) can be solved 

for the critical mass. It is obvious that the critical mass approaches 

infinity for two values of ./, one when/>.oc, for which equation (8) 

becomes appropriately 

/=~c-:~ (for large.!) 

if 2 is re1a ti vely large, and o .. 

/= Bf 
. 0-1 

. (for large/) . 

if L c is relatively small. The second infinity oocurs when 

Ce-D/./IQ() 
2 = 1 .. 

. or when 

l¥xRIQ~le: 

2 
j) - -=-D_ 

J IQkIO - 10, C 

If there is no absorption of neutrons outside the uranium, 

2c = A = O. Then Eq. (8) beoomes 

:B~ ./= 
_D,2 

Cs 'e -1 

Equation (9) and (10) are 

C'_~D 1 

and 
If = 1 

C -D 1 . e -

then 
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Latus try this for a mixture ofaeO and U235, for which 

2 c= 0·. (for purpose ·01' 1l:1ustration onl,.) 

2. t =0.67 em-1 

. . . 2 .. ?: th= 110 em 

~u= 645 x 10-24 . 0142 . 

A=O 

.:8 = 235. ~ 4/3 ",..3 ~an . 
.3 x 645 x .602·x 0.67 Mm.n 

o = 2.15 

D 
2· . 

= ~¥lJQ 
.. - R. 

-lII1il 

=~ 
Rmin2 

= 12~5 

Substi tut1Dc the _bOY.· value ot 0 

2; 2.1~ xp ~ 1 
.... D 

or 
2.15 - e 

D=t-~ 
4.3 

.By- trial 

Let 1) = 0.3 then 

" D = 0.2 It 

" D = 0.22 • 
" D = O.2ll " 

" D= 0.212 " 

or 

.3 1 t - .314 = .186 ... 

.2 j .5 - .284 •• 216 

• 22 ~ .5 - .29 = .21 

.2ll 'F .5 - .287 = .213 

. 1.2121= .5 - .288 = .212 

D = .212 

is a solution of the above equation. 

~ 
.Mm1n 



.: 

So 

-18-

t 
Rmin = ( 1080\ = 71.2 em • 

• ~2·J 

Mmn. = .2,5 x 71.2 
B 

B = 2.15 x ~81 - 1 = 0.74 

~ = 12.5 x 71.2 = 1.2 kg 
.. 0.74 

j':J 
~ = Q.Z4_~ _ 1 

2.15 e 

f 
1 

, . t .. 
k = L ,2U \; = (,277)1- - 05'1:/ 

~Og 2.15)· -

/--
1 

2 1.48/1.04 1.4 

5· 3.7/1.15 3.2 

• 6 .443/~·193 . 2.3 

A roUgh plot of this resUlt is shown in Figure 1. 

As a problem· I would suggest that you find approximate curves for Jand 

values for Rmn and Mmn using enriched ure.n1um. in three moderators - heavy 

. water, bel"111ium oxide and graphite. For contrast ;you might tl"1 th1s~lso fer 

natural water inwhieh absorption in the moderator is. relatively large. You 

will n.ed the follow;l:r,ag values. 
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Di> BeO 

~ - ~ 

-1 .00008 .00074 cem. 

'2 em-l 
t 

.4.35 .67 

~ .";'J.:' :., r tit", .. c' 120 110 

~ x 10"24 cm2 
U . 645 645 

Bare'SRher~ - ~ ,;9, 3/4 i = '1T 

2/4/52 

1 

I • Sd... 2. d 7: = 1r 2 
'0 . t th 

Au. = 2.35 . 

a • 0.602 x 10~24 

p:1 

E-1 -
1=)1 ~ 645 

= 2.5 x ~ 
645 

c H2O 

.000.36 0.017 

• .30~ .90 

.350 .3~ 

645 645 
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DIMENSIONLESS CRmCAL 'MA~S CURVE 

I 

~:. dimensionless critical mass 
f :.dimens1onless critical 

I r!'-~~·---·--1-_-·-

2. 3 4-
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.. OAK RIDGE SCHOOL OF REACTOR TECHNOLOOY 

LORture Notes - EpciAeerin& A 

By S. Thompson 

3. ~eding Po§sibilities 

A subject of much interest in the field of nuclear energy 

now is the possibility of using nuclear energy as a means of extendin, 

our natural resources for the production of power. In this conn.ctien it 

is necessary to know how much fissionable material is economioally available. 

One determining faotor here involves the question whether onl7 materi~. 

which are fissionable in their natura.lstate, like U235' areavaUII.'D~, 

or whether it is feasible to Cf>nvert other uterials, like U2;8 which are . 

not fissionable in the natural stat., to fissionable materials in s1~

ficant quantities. The importance of this question arises from the faot 

the U238 is 140 tiaes as plentifUl as U2351 and that large quantities'of 

non-fissionable Th232 are available~ It is common knowledge that the 

Hanford reactors and others do _ke Pu.239 from U238 at the expenSe of 

using up U235' and that Th232 can be converted to fiS,sionable ',J1233 b7 

neutron bombardment. The question is whether, in using up the relativel1 

small quantity of U235 we can make available a significant part of these 

other materials ll 'Tile" l_lIt we would have t9 ask of a system fc;>.r this pur

pose would be that for each atom of U235 used up, including chemical pro

ceSSing losses, etc., one new atom of fissionable material would be produced. 

Then supposedly this new material produced could be plae.a in another 

reactor and the proces's continued until all the non-fiesionable material 

could be _de fissionable and burned up. If we wish to add to the cur .. 

rently available stockpile of fissionable material it is necessary to 
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produce more than one new atom for each one usedup~ Let us see what the 

limiting possibilities are. 

The ratio of atomsproduced'to those used up can be expressed as 

2::.P 
'2:u 

where L:"' p:the cross section of the ,production material (for instance 

(1) 

U23S) and, Z::::u is the absorption cross section of the fissionable material 

(for instance U23')0 The fractional increase of fissionable material 

available is then 

r. ~p 

~u 
-l-~ 

where ~ r~presentsthe tractional loss in chemical processing, leakage, 

etc. For example, if 110 atoms ot plutonium are pr9duced when 100 atoms 

(2) 

of fissionable uranium are destroyed, and if one percent of the current supply 

is lost in chemical processing, etc., then the gain in the system would be 

r= 110 - 100 - 1 :0.09 
100 

We wish to know now an upper limit on the ratio -:Z:p;~. This limit is 

set by requirements ot critioality tor ,the reactor, and is stated for an 

infini te reactor (since we are taking care of leakage in the factor,e ) 

k:::l (3) 

where k can be represented by 

k ::: pf'l f (4) 

If we idealize the system by the assumption that all absorptions occur" 

in the thermal range (for a real reactor a detailed accounting is necesS&r,y), 

then p = E = 1 aDd Equation t~) become. 

r~:::l (4) 
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where '1 is the number of neutrons available per absorption in fissionable 

material, and where f, the thermal utilization, is by definition 

f= h 
a 

Here ~ a is the total cross section for absorption in all materials of 

which the reactor is composed. Let us assume that L is composed of , ,a 

(5) 

three parts, absorptions in fissionable material ::L u' ,absorptions involved 

in production material ~, and non useful absorptions ~ (structure, p ,c' 

moderator, poisons, etc.) 0 Then the thermal utilization can be written 

f = 2: u 

Z:u +rp +Tc 

Since from Equation (4) f = l/~ , we can write 

,~ = ~ u f ~ pi ~s 
2: u 

or 

-:E:--p- = ~ - 1 - ~ 
~u . 2: u 

Substituting Equation (8) into (2) 

r:1- 2 - ~c -.,e 
2. u 

Let us assume we have somehow acquired a perfect reactor, in the sense 

(6) 

(7) 

(8) 

(9) 

that there are no losses in non usetul capture, leakage, or chemical pro-

ceasing. Then the upper limit on the breeding gain is given by 

r = ~ - 2 (10) 

For a system using U235 we know that the number of neutrons per fission 

is given by 'Ji" = 205 
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At thermal energy we know also that not all of the neutrons absorbed in 

U235 cause fissions, giving a value of ~ less than r, or 

VI _545 
l - 205 x 6,45'= 2011 

If it were possible to eliminate all the radiative captures in U235 by 

some means, then we might achieve 

~ :' y = 205 

The maximum possible gain in the system then is bounded 

0.11 < r < 00 5 

Actually, of course, we cannot obtain this upper limit, due to the 

various losses in our systemo 

It might be thought that it is not necessary to achieve a positive 

value for the breeding gain. For considering this possibility let us 

imagine that all the natural uranium available in the wor1d.has been 

separated into two neat piles, one of U235 and t.he other of U238 and that· 

these are at our disposalo Let us\ say that our problem. is· to figure out 

the minimum breeding gain which w1rl:'.,enable us to use up all the U238 at 

exa.ct1y the time when we run out of U~ ,If we consider that this is 
) 

to be done by a series of processes, each having afk1~r, then the re-

quirement is that 

. ~ 

1 + (1 t r) + (1 -t r)2 - - - (1 t r )' + - - - - ': 140 

Since there are 140 times as much U238 as U235~ If the series in infinite 

then it can be written 

1 ... 140 

1 - (l+r) 
or, solving for r 

1 
r = -140 
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This is a small number,an~ would be even smaller if we had been trying 

to use up all the thorium als~e Since ria negative, this implies a 

~",:nuclea.r economy, in which the number of operable reactors at the 

start, determined by our supply of U235' steadily decreases until finally 

the last lonely reactor grows cold just as all the fissionable material 

is used up. Since even then r is so close to zero, it would seem that 

we get very little relief' from our technical breeding problem in the dWi'lild

ling . economy, and we may as well :face the necessity to make r positive • 

. It is generally assumed that our nuclear economy should be an ex-

. panding one in which we use our U235 to make as much fissionable material 

available as possible and as soon as possible. With a positive gain, r, 

a use:ful concept is the requirement :for doubling our supply b.t :fissionable 

material. Considerln~ again a series o:f repetitive processes, each with 

a··gab~~r. ,The nth process is assumed to be operating wit h twice the origi

nal amount of fissionable DB. terial. . Then 

n 
(1 + r) = 2 

or 
n = _ log 2 

log (ltr) . 

For example, if r = 00 01, the number of' processes required for doubling 

the supply of fissionable material is 

n= 0 .. 693 - = 69 
0.01 

It is apparent from the above considerations that for the'811oo ••• of 

an expanding economy we want r as large as possible, and we certainly want 

it posit::ive. 

How much fissionable material is used up in breeding? It takes 
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,J, 

G, 

301 x 1010 fissions persacond to make one watt of powero To make one 

megawatt day of energy hence :requires 

301 x 1010 x 306 x 103 x 24 x 106 
III 2068 x 1021 

fissions 
megawatt da,. 

The mass of U235 used up,:1.:i£:~ea~, is hence 

,"'1'" " 2.68 x 1021 x 235 

.602 x 10.24 
1 . / ': 'I " =):. ",.J •• ) gnc ..• (.~j ... ____ ~~~.:I .............. ~ . ., ._~.'.~4-.~"_"._ 

5~gawa tt day :'<.\;.',:.l.i:.:.'~,t:' .. ~l.y 

. In the process .plutonium is produced at the rate 

1.. ;~a.( 1.+ r ) 
gill 

'megawatt 'day" .. 

The gain in.fissionable material is 

'I ""1 gm ......... r, .. ,,~--....... __ _ 

•• ,a_tt day' 

If we have available .a limited supply of'fiesfonable 9terial ~d' 

• wish to make as muoh new material as quioklyas possible, it is obvious 

that we must burn oUr available material at the highest ratepoa.1ble, . 

assuming the breeding gi.!D is positive, andinoidentally aestmdng' th~t . 

we have E!.ome c~petittv. use'·tor' th~' theri .. .:a:,.nUig,'·.createdo 

.,~ Calculating r for any specific reactor requires a detailed accounting 

• 

for all neutrons and for all fiseionable atomso Until breeding has been 

demonstrated experimentally its possibility is a matter for conjecture, 

and the ultimate usefulness of atomic energy for more than military pur= 

poses probably hangs in the balanceD 
f 

References t f" , 

10 Physics and Atomic Energy, Ho Brooks, ORNL Co Fo 50-3-180, 1950 

~o Sourcebook on Atadc Energy, Glasstone, D. Van Nostrand Coo b InCtl 
1950 (eee index) 
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4~ Numerical Methods for Reactors 

It has been ~hown, by a dimensional analysis of the differential 

equations for therma~ reactors that the criticality conditions cantle 

expressed in terms of :Iimensionless ratios of the physical quantiti'8s ' 

. which describe the reactor and numbers which describe the geometrical 

configuration of the reactor.. For one special case" nameiy bare. reactors'" 

the values of the geometrioal numbers cl and ~ , as given by definition. 

, ". a.nd 

, 2 V,g 
q 

2 V nv 

nv 

"" 

= .... 

.(2 
2'" 

R 
2 

£.. 
12 , 

,are equal and cOnstant. For this, case it is easy to find analytioal 

solutions, . For instance it can be verified by substitution that a sphere 

yieldS 

0(=":: 1r' 

and. 
q/A = nV!B:. sin 1r CrIB> 

(ria) 

More complicated cases generally a:re handled more easily by numerical 

methods~ The following discussion is intended to give some familiarity 

with numerical methods for this ptlI"pOse 9 since tl:ese enter in large 

measure in reactor engineering calculationso 

Many types of numerical methods are available for the solution of 

differential equationso ' These can be roughly separated into two cJasses8 

(1) Those which use approximate differentiations; and (2) those which 

use approximate 1ntegrat1mD8~:\It is proposed here to demonstrate the 

application of both types to the· differential equations for the critical 
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reactor. This example will show the sort of approach which can be 

made to a reactor problem not readily susceptible to analytical methodso 

The equations for the reactor are written as they were before: 

2 
'\7 q:; = 

2 

() q 

dT 
1 

3 L t 

q., 
\7 (nv) th· - 2: a (nv) th + P q th : 0 

= f f) € {nv)th. 2: a 

To make 'the problem definite let us consider a sphere. In spherical 

ooordinates, Equations (1) to (3) become 

o 2 (rg) = 
~r2 

d (rg) 

~ ,.. 

(1) 

(2) 

(3) 

(4) 

~ V 2 (rnv\h - '~a (rnv)th ..,.. p r qth Z 0 (5) 

3 ~ t 

r q,:: f 'V) € (rnv)th ~ a 

If we let (rnv\h:: R A f and 't"q = A cp , where f and <f are 

made dimensionless by the factor A of arbitrary numerical magnitude~ 

then if r -= 5 Rand r ':;;, 'e I th' Equations (4) to (6) become 

1 

:3 ~t R 

2 
~ 4J 
~~2 

d2 P 
d 52 

Iff: 

Slowing Down Equation 

R2 

'th 
La R 

II 
~ . 

f T P 

f ~ € ~a R y 

rth= 0 

(6) 

(7) 

(S) 

(9) 

Let us now apply the finite difference procedure to Equation 

(7). This prooedure begins with the definition of a derivativeo We write 
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~ "tjJ.= r' _Yl (5 + Ll 3) e) - St'C.§i e ) 
,d5, "'d-..- A 5 

(10) 

L\ 5~O ' 
Likewise the second derivative is defined 

2: . 

~ (j) _~, I, if(jtf1S,B)-IfJ(J.91 _ /9'rs,9)-~?-AS,9) 
~- ~ 4 ~ .. 4· 
d 5' '4S~c 3 Aj ..:..Q 

4 $~O _.' A 5 
If we agree to consider only small interva1s,.4.5 , we can write approxi-

mately (This can be verified by an expansion of 9' (5+Aj, 9) in a 

Taylor series)o 

~ )5 
t(S+Aj, ! e) - . cp (5. 9 l 
',6. .5 

(12) 

and \ 2 
atf 
~'5 2 

(jI (j+~ 5, 9) - 21£ £~ a 9) + lJI (3 -4$' B) 

(~ § ) (13) 

likewise 

~ Y" = 
~ 9 

t c, I Q f' !:::.(;})-Y' ( 5 2 0 2 ". . . 6 (:;) 

Substituting (13) and (14) .into Equation (7) 

(14) 

(jJ(J '!-4 5 ,9) +If'Js -4.5 .' 9) : R2 <JI(§, ~ + Ll S) + (2..4'(5 .~~ - ~ tf (5 .. 9 ) ) 
, (t1 f: J Ith A A 7 

If we agree to use the relationship 

2 = ~ 
(A§ )2 . '1"" th 

1 -
~Q 

(16) 

Equation (15) becomes 

~ (StAS, 9) + tp (5 -8 § ! t;)) =r (~, e +4 b) (17) 

2 
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Let us. try to ·interpret Equation (17). It states that the value of the 

functi~ntp at a point ~ . an.d the age g +A g ·is given by the 

average ~f its values at 5 + A 5 and 9- A S at the previous age g , 

.where the intervals A (;) and D. ~ are related by EquatiQn (16)0 

This can be shown schematically as . follows: i' 
. ~ . v. I "-lA' 

. . ~~) 

~~ 

r -" ..... 

xll~ 
. ~'Vb~ 

fiw:~A9]· r 2 12 

f .6 ~ ....,\( t>~j t. ~ ;., r~--::J >+-
~~-~ ... . )01 

, jjo~ , 

9) 

~L~~t>t,· 

t}' (s) 

. lI( , .. I.:')' 

Using such a graphical method 'of averaging is due to I. Schmidt and is 

called a "Schmidt plot"* It has been used principally in the solution 
. . 

of transient temperature distributions in solids. With it, with any 

given initial condi~ion we oanfind any later condition by purely grap

hical means.. The method will do more than we are asking it to do here. 

For instance, variable coeffioients mean only variable intervals on the 

plot.. Two and even thTee dimensional problems have b8$n solved by a 

numerical variation on the scheme. 

For an example, let us assume a spherical reactor composed of a 

central core of radius ~ = a, with a constant density of fissionable 

material, and a surrounding reflector of radius, 3 = b, composed of 

material with the same moderating properties as the coreo 

*HeatTransfer Notes, Boelter" Cherry, Johnson and Martinelli; 
University of Callfornia Press, Berkeley, California; 1948, p V-36 
Introduction to the Transfer of Heat and Mass, I.. R" Go Eckert, 
McGraw-Hill Book Coo, Inca, New York, 1950 
Thermodynamics, Eo Schmidt, Oxford Press 1949; p .. 428 
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Let 
L - 40 -
Tth 

D~. = 0 .. 1 

a = 00 6, b = 1,,0 

Then 69= (O.1}2 x 40 = 0.2 
2 

This means that there are 11 A&> = ,5 intervals in the slo'Wing down range" 

'rhe slowing down densities as found from a Schmidt plot are shown in 

the accompanying figure, for an arbitrary assumption of the slowing down 

density at the fission 1imito Incidentally, since the slowing down den

sityat the fission limit is proportional to power density, the straight 

line assumption for the spherical core amounts to an assumption of con

stant power density in the core" It should be remembered here that one 

of the limitations ondifrusion theory makes an equation incorrect in 

the vicinity of the discontinuity" 

ThermaJ. Jibuations 

To complete the problem we need to look again at the thermal 

equations (Equations (8) arid (9»0 To d..laons~ate the second type or 

numerical solution, let us use an approx.Lma:te integration to find the 

thermal flux and to let a check on the trial values of slowing down 

densities found from the Schmidt ploto 

Problemg Find difference form for 

" <=>-9 
dx2 

2 
+ 'C q §~. 9 

'0'; d1:" 

-3lP 

llx= Ay= h 

l:::.l' k 
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Let us rearrange Equation (8) for numerical integration 

d
2 f. = 
d S 2 

3 2:::::t 2: a R2 f - 3 2: t R p qJ th :: 0 (18) 

Integrating once 5 
d P = A +;: f 3 ~ t ~ a R2 P - 3 2: t R P ifJ 0 d § (19) 

d5 
Integrating again j .s I 

rp :: A .5 + B + ! i j f· { 3 ~ t ~alt2 rf -,,3 2: t- R p, 'P th} 
.1} .f • 

. Since the flux at j : 0 aust be ·finite 

B: fo='O 

Since the flux is zero at J ': 1 

dE2 

J (20) 

A- - j 1 . 

d 5 1 f [3 r: t '£ a R2 P - ~tR P 'l'th) d§ 2 
o o .. (21) 

Incidentally if we were to integrate Equations (19) and (20) across a 

bound8.l'7 where there vas .a discontinuity in ~ t we would have to accomo

date a di.continuity in d f / Ii ~ to keep current densitiee otnej1trons 

the same on both sides of the boundar:ro This current is liven ~. 

v 

3 ~t 
dn 
dr 

Equation (20) is an integral equation.. * . It is our problem to solve 

it numericallyo A common method tor this is the ~thod of ~terations1 

or successive substitutions or approximationso It is to be noted that the 

tunction If appears on the richt sida ot the equation under an integral 

and on the left ot the aquatio.. The method ot iterat~ons involves a trial 

* Linear Integral F,quations i W. Vo Lovitt, McGraw-Hill (1924) 
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value fune~ion far f wb,ich is substituted :1uto the ri,ht side ot the 

equation, the'ma,nipuiations of integration are. performed, 'boundary condi

.tiona 'are satisfied, and a new value of f is attained at the ~rt of the 

~:uatiOD.. 'fhis is substituted again into the right side of the equation 

and the process repeated.. If the process converges, as it does for certain 

classes of problems Under certain oonditions, a stage will be reached 

where the shape of the. ~urve for f on the left will be a. close I.. • ... 

sired to that on the right.. This then will •• tAe.,eollltiOD ~o tbe pi'''~l_o 

The inte!l"ation,s rar one trial are shown in the accompaDJinc tableo 

"or this table values"ot'_>¥th WeN read trom the Schmidt ploto Integrations 

vere cione by the trapeztddal rule.. Atrial value for 'Pbaving the shape 

of a sin curve and an undeterJlineci IlUltiplierC tor adjusting its amplitude 

va. v.e.d. A. 'brief d~scription ot the problem follows • 

. Let WJ write 

:£"a = ~u' + ~c 

where ~ u is the cross.·section for ~a:pture in uraniUll .and 2: e is the 

oross section for capture outside uraniumo For the eDB.fJle let ~c :: 0 .. 

•. Then in the core 2:" .. = ~ u and in the refiect.r 2: .. :: 0., ileaide., 

these conditions let us forde the solution to a steady state by making 

t.p f obtained frOID Equation (9) coincide 'With that of 4't from the 

Schaidt plot at soae referenoe point, say ~ :: 0.,6. Then this requires 

trOll Equation (9) 

ljJ jJ = 0.6 
:CY( ~uR 1..) = 0 0 6 (22) 

c 3 :: 0 .. 6 

Let us also foroe the convergence by ~g use ot the undetermined multi~ 

plier C to make the trial and' t~8.lcu1~t;~d ,*'alues of' fj 5:: 0 .. 6 agree.. Then 
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.. from Eqyation (20)0.' ~. ,:2- . .' Oll:.~, 

tI.J. . : O.6~+cP',J3Z~t"R (!I-)Jf .. ~ IJr. I~ZtR f (ti .. de 2. . 
,.=0"0 D . .. () 0 . J 

The following values pertain to a Be 0 moderated reactor 

'th :: 110 em2 

2 R· :. 40 x 110 :. 4400 cm2 

. -1 2: t = 0 .. 67 cm 

R = (4400)t = 6603 em .. 

From Equation (22) 

2.11 '£U R C (095) = 0.6 
,", 

or 

C 2:b :: 0.6 = 0 0 00452 
2011 x 6603 x .95 

S.om.e constants needed are 

. 3 ~t '!i:u C R2 :: 3 x 0067 x 0,,00452 x 4400 ': 40 .. 0 

3 2:" t Rp :. 3 x 00 67 x 66 .. 3 :: 133 

From Fquation (21) and the tables ( G> and @ ) 

A :: - 40.0 ( .. 2612) + 133 (o0S78) 

= - 10.40 + 1l .. 68 

= 1.28 

From Equation (2.3) and thetab;:tes ( ®, @' and @ ) 
!P 0

0

6 = - 3 .. 87 + .3 .. 80 + 0 0 77 

- 0070 -
C 0 .. 70 = 0.,74 

= 0095 
-1 '£ - O .. OO~22 = 00 0061 em u - 0.74 
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We can calculate critical mass frOil the definition of I u 

~ = u 
M 0-" a 

V Au. 

or ... ... 3/2'· 3 
0.0061% 4 x 11":1 (.4M)()lx (0.6) %235· 

M = 
'3 x 645 x .602·xlcY· 

= 1,,0 Kg 

!rOIl equatioa (9) . 

L/J r # ,'1 :':~ u ~. P. 
:·.2.·~i. '~~OO61',x 66~3,·· tp . 
. = ::.o:~ i?' p' ,,' . 

CD ® . 6) .... :@.;. .. :.G) .... @' , 
d; :·~.th .. CD d'~ . ' . . 'J'{{;) 

. . 

G) 'd~ 
,. 

.' ' "" 

" 
.. 

, " , 

0 0 
. ',' 0'" " ,,'. ' 

.1 ~OO;' 
" .',,, : ,,~0003 

" " _., 
" ',.' " . , . 

.1 .10 .•. 90; . ' 

.1 .. .014 00012 
~2 a8' .' ..... ' '0019 

.1 ·.022 . . .0030 . 
.3 ~26 .;041 

.1 0.027' .. .0055 
.4 027 . .068 

.1 .028 .. 00082 
.5 .28 .096 

,.1. 0025' .. .• Ol09 . 
• 6 021 ;. ;. ·"0121 

.1 .018 . I .0130 
~7 015 .139 . 

,I .012 00145 
.g .. 09 0151 

.1 .006, .0154 
.9 .03 .. 157 

.1 .002 .0158 
1.0 0 .159 
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(2) . 

.J® 
,0 ' 

• 003 

00015 

00045 

00100 

.0182 

.0291 
. 

00421 

.0566 

.0720 

.0878 

® 
133 X G> 

"9""",, .. :, , 

.04' . 

.20 

060 

1.33 
-----

2.42 

3087 

5060 

7053 

9057 

11 .. 68 
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® @ @ ® @ @. @ .. ® @) 

f@40.ox @ A~ cmi@ot!~/ Pic ®d~ f@ @d5 
. . . - S 16 

0 0 0 0 0 0 
.Ql6· .0008 

.• 31 o Ole .ooo~ .03 .~3 012 
.045 00039 

.59 .001 00047 '.019 . 026 .. 25· 
0070 00096 

.81 0131 .0143 .0.,57 .38 035 
0088 .,0~75 

.95 .219 .0.318 1.27 .5~ .. 45 
.098 .0268 

1.00 .317 .,0536 2 .. 34 ' .. 64 .. 56 
.098 .0.366 > , 

.95 .415 .0952 3.,80 .77 ,,70 
0 .0415 

.81 • 415 .,1367 5.,'46 . .,90 ,076 
0 .0415 

.59 .415 .1782 . 7.13 1.02 062 
0 ,;0415 

.31 .,415 .. 2197 8.76 1015 034 
0 00415 

0 .. 415 , .2612 10 .. 40 > 1 .. 28 0 

It oan be seen that, by coincidence, the caloulated value of tjJ f is 

'quite close to the curve, &SSUDlea. in the Sclm1dt ploto,' The. calculated if 
il! show for oomparison on the plot., The vagaries in th~ curve f~ fare 

probably an acoumulation of numerical errors in the integration and dif

ferentations, and if so, would be reduced by a closer interval~~ ~ .. 

Such factors as chaDginc aateri&! properties, variable extrapolation 

lengths as a function of enera, etceo, are handled Dice1;:r by a Schmidt , 

plot by changes of spacing ~ 5 ' as described quite fully in the ttUeat 

Transfer Notes" referred to previously. 

0 

.• 10 

' 022 

.,30 

.39 , 

049 
0,,61 
C-

0 

0 

o ' 

0 

In part 11-2 of these lectures, on the "DiIle1l8ional Anll.l;rsis of 

Reactors", an equation was given for the cri tical_ ss of a reactor (Equa

tion (7) ), in terms of dimensionless parameters.. This equation is written 

here 
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3~-t ~ 0 R2 + , c:r:: M' ·a 

U ',"'U 

''2:' ·v;~·· :A, . . '". 

.~.. . '. -----I 

r~·· ~p t r:2,{ . q' 2 d ( ?-/ r-tb] -1 co '. '., u 

Let us look at .this equation ,for our present numerioal example" In it we 

nov mow all q~tities (f;am our nUlll&riotll fio1utlon) except C{ '2 and,o 

It we kneW t~ese we ooUld do an analya1so£ this from whioh we woul. knOW' 
.' ; . . . 

the llAa .• ourve.Inother vords,fromour' one oalculated p~int, we coul«i 

d.t~D8 the obaraotiristios of the family of "siD41ar" reactors 0 For a 

rough eValuation let· ust.ake 
~ , 

. .(J2 -1 . 2d 
I'" - 0 ' .. cr' . = c( 2 

From ,... .. numerical exsmplewemow the following vaiues 8 
• H,' , 

It:' 66 .. 3' om. 
v- ''1 . "'-t :,0.67 om*' 

~a = l:. ,:0.0061 ~-l 
, , u '. 

'7'" thai 110 ai:n2 ... 

p- ,.. . -1 
.-z . C".. .-

f -=1 

"'\ .: 2011 

cr-u :: 645 x 10-24 cm2 

Mu :: 1 0 0 x 103 gm. 

a = Oe602x 1024 

Au = 235 
.~ :0 

({:: ~ Tr (006)3: 0.806 

Because, in an example, we.assumed ~ =?, 
'2 

1 = C( J{ R Au 
3 Lt eru Y"U a 

_ d.2 
rth 

~e ~ 
'":"38-

!qua tion (7) becomes 
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Substituting values 

.((RAa _ 
:3 ~tCS- M a -

0,9~ x 66.3 x 235 = OoOlS 
3 x 0.67 :x: 645 x 00602 x 100"x103 

'l'heD 

Uu 

t-th. = 
a2 

1 :' 

no .. = 
4450 

OoOlSa 2 

1 
40" 

. 2011! - 0(2 40 .~ •. , 
"",to''. 

.approximatel,. 

ard· 

ell" 

.~' e .'. -··1 -- . 
.~ 

40 

2· . 
2011 - 218* .: 0(. ..; 1 .. ·00180<:. 2, 

0( 
2 

(;018 + 0053) = 1~11 
2 

0<:. - 1.11 = . 15.6 
- ;071 

0<.. .. 3095 -
This value of -i. 1s to be compa red Wit.h that ot 7; tor the case ot the 

bare reactor. Using this value>(3095) tor "bOihO(8l1d,.8would give aa 

approximate mass curve tor our ret1ected system. 
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References for Numerical Methods 

Relaxation Methods in Engineering SCience, Ro oW. Southwell; Oxford 
University Press, 1940p 

Numerical Mathematical Analysis, J. Bo Scarborough~ The John Hopkins Press 9 
Baltimore, 1930. 

Numerical Methods of Analysis in Engineering, Lo E. Grinter~ The Macmillan 
Company, New York, 1949. 

A Study of the Numerical Solution of Partial Differential Equations, 
O'Brien, Hyman, Kaplan; Journal of Mathematics and Physics, Vo XXIX, 
Noo 4, January 1951, MoloT. 

Numerical Computation of Neutron Distribution aDd Critical Size, 
A. S. Thompson; Journal of Applied Physics, V022, No. 10, Oct. 19510 

PrOblems Vibrating String of Uniform Seotion 

• 6 == 2w2 /-y 
dx2 T 

d2y III _ w'/tj 2 

d1 2 T t , I ~ == y~ymax 

1- x/1 

Or integrating 

~ h x2!g~ 
f \ f. 1 d 1.J

Q 

7 q 2+ A t + B 

Iterate this equation twioe, starting with the ourve shown above~ solving 

for frequenoy each time. Check with analytical valueo 

"If From 
2 -
~=/ 
"Ox2 T 

","If -"-

x) ~ ~ 

1(; 1) '" 
2 
~ , by assumption of separability of functions. 
~~ 
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OAK RIOOE SCHOOL OF REACTOR TECHNOL()GY 

ENGINEERING A LEcTtmE NOTES - A. S"THOMPSON 

In. Pover Removal fram Reactor-s 
" . . .. 

Until the present, time 'we have beental1dng about the problem that is 
. . 

specrtiea11;r new,vith'nuclear'reactort,n,amely the generation or power ,tram 

th~ fission process.' We lIlight list: the.;! tams we discussed: 
. '," .. 

.'\(1) Power density is Proportio~ tOg (a) neutron flux; and (b) den
sity of fiss~onable materials 

(2) Some power 11 produced 10call;r (at the point or fission), same 
5 to 10 percent is absorbed in reflector, shielding, control rods, 
etc., ' 

(:3) Most or the power is produced at the time of fission, but about:-
6 percent is ~"~di and decays exponentiallY' atter shutdown or 
the nuclear reaction; " 

(4) The critical maSs of fissionable material is atunction of the 
critical radius of the reactor. For one critical r8dius the 
critical mass is 188sthan fer either larger or smaller critical 
radii. The critical mass and critical radius can be expressed 
in terms or dimensionaless physioal and geometrical parameters; 

(5) The, neutron flux distribution is a function of reactor geometryo 
For certain special' cases it oan be ,found analytically, but 
must in general be found numerioallY'; , ' 

(6) Excess neutrons over those required forcritica1it;ri oan be used 
for converting certain non-fissionable materials into fissionable 
materials. It is probably on the possibility of large scale con
version at' these materials that the future' ot atanic energ tor 
peacetime purposes bangs. 

The next task 1s to remove the power ,enerated by the fission process 

in the reactor", If we know the distribution of this power throughout the 

reactor it is now our probl_ to remOTe 1 t consistent with certain limita

tiolUlp .... ot whio~. are nuclear (mostly we cannot use heavy neutron ab

sorbera tor heat removal), and some or whioh are purely mechanical. Th. 

mechanical probleas are oonneoted primarily with heat transfer. ,(1) It 

we are deal1nc with large power den8itiea ta •• there will generally be 
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-, large te.perature gradients and attendant large thermal stressese We 

will try to find out to what extent we can mitigrate tl:t8 thermal stress 

prCJblem and to what extent we lIUSt live within its confines. (2.) If we, 

ar~ designing a thermal power plant, its thermal efficienc~ will depend, 
, , , 

largely on the top t~rat~e available at the exit from the re8.~toro 
Hence we will want, to know,' how much we have to gain from ~~,the creep 

resistance of high temperature materials to their liinits. (3) The removal 

of thermal energy will generally involve the, circulation of a cooling 

fluid. The more power we remove from the reactor, the more, -power we ' 

must use in pum.ping the fluid. We will wish to determine limitations on 

power removal due to pumping power requirements. For this purpose it 

will be necessan'" to discuss some aspeots of fluid flow and thermodynamics., 

Heat transter is conventiOD&ll7 studied in three categoriess (1) 

radiation, (2) conveotion; aQd (3) conduction. Here radiation will be 

ignored on the assumption that enlineerin, applioations ot the~ediate 

future wiil be l1ai ted b:r materials cODsiderations to temperat'Qres at , ' , , 
whioh radiation eft'eote can be considered as correctlons*, ot small mag

ni tude, to the, conveotion heat tranuer. Heat transfer by conveotilon 

will be studied to determine 'thelilllitattons on power density d,. to' the 

pressUre losses which accompany it. Heat transfer by conduction will be 

studied primarily in its relationship to the thermal stress problemo 

1. Order of Magnitude of Thermal Stress 

Most materials, when their temperature is' raised, experience an ex

pansion ot their dimensions, unlessthay are in some manner constrained. 

This is expressed by an equation 

E=c(LlT (1) 

where € 111 the strain in the _terial and (.( is the coefficient of linear 

,expansion, AT being the cbange~in temperature above some reference 

* The Science and Kngineering of Nuclear Power, Clarke Goodman; Addison-
- Wesley Press, Cambridge, MasSo (1947) P<1 326 ' 
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w . , 
temperature .. ·· The strain,E, is' defined in term.s of a deformation, u., 

Let us represent an increment of distance, dX, ata point at distance, x, 

from SOJU reference point" Let us say that the point x, on deformation, 

moves a di~tanoe, u, trOll its original position. It is nOll a distanoe, 

x + u, from our ref,renoe point. At the same time, the point, x.;.J..~, 

has moved to a nell position, x -+ u + dx + ~ dx. The o~e of length 

of the inorement dx ishenoe 

d:x + S! dx ~ d:x :. 
dx 

du dx 
di 

The strain e., being the ratio ot this ohanee in length to the, original 

length is 

E x=, 
S!. u • <ix, 

u' 
S!. 
'dx 

This, is ShOWD below ' 

j X+U-+dx+ii dx ~. 
; x+U . tdx~~ dx 
I '-I'U ax .~ ~ , I ,. • ~ 
I X " i .. ~ 
I ,.' 

Likevise we can define x +dx , , . 

€ y = dv ... dw 
aT,' E z - cti' 

Where T and w are deformations in the yard ydirectionso Likewise if a 

stress (torce per unit oross seotion of the material) is applied to the 

mater.1al, de:l'orua tiona will again ooourand ve Oan define a straiJ:r" whioh 

for an elastio material i8 proportional to th~ stress 

f= <J -J: (2) 

the proportionality oonstant B being oalled the "modultia of elastioi ty" or 

n;rcrungvs modulus"" :&}uation (2) is Bookeus lav relating elastio stresses 

and strainso Also, it has been found experimentally that when stress./3 
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are applied a:~chu.ce in dimension normal to the Iilpplied stress occurso 

This chl\Jlge is opposite in directioa.to that.in the direction of the 

stres., and. related to it by a factor,/, called "Poisson's ratio"" 
;, 

Therefore ,vemust wri te~ due to.,tresli cr- x, cr-7' and CS-z 0 

E x.=; {o-x -/' (~,.+OZ)j 
E y 1m i{Uy:A (Clz +cr-x ) \ 

f z = i{vz-/'t' (<.:rx .,.0-7 ) 5 
iquations (3) are called the generalized HoOkets lav for elastic strainso 

. Tlle factor! has values for different mat8!ials between zero and one-hal.f 

For most engineering materi.8.1s it is about 00 36 For rubber it is close 

to one-half', the li.nrl.ting value for an inoanpressible DB..wrialo If both 

temperature differences and' stresses exist ve must add Equation (4) to 

each of Equations (3) to find the strains 0 

Ex .. i [o-x .,)t(a-,. +crz)} + C(AT 

€'y'= 

€= z 

... 
~.. £<'"7 -/'t'(o-z +O-x)} + o{AT 

{o-z -,/t (CS-x ",0-7)}~ d..AT -L 
l!: 

(4) 

Let us use !1::tuations (4) to f111d out how thermal stresses arise and to 

establish an order of II.8.gnitude;of thermal stresso The simplest case is 

that of a uniform straigh't; rod constrained betveen two fixes walls, so 

that as it is heated its length carmot changeoThen the strain 

E' • x 

~ 

du -dx 
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There are no lateral constraints on'the bar so cr :: 
y 

a-z :;::; 0 0 

Hence from the first of Equation (4) 

CY"x· ~ E. o(4T 

FrOlli the last twoot Fquations (4)' 

E :: E :: . . Y' z 

Combining these two expressions we find 

L. o-x -+ d..~ 
E. 

f. y fa E z . =: (1 + A ) d il, ! 

(5) 

(6) 

For the next case, let f. x and 6. Y' :: 0 anc;i<>z ::: 00 Then for this 

two d.1mensional stress case, froa the first of Equation (4) 

cr x .... /t cr-Y ill ... ,I 0:.4! 

U i ... /'f,ax = '- E <i-.4! , 

Or it Cl"x = u y' thea 

ux=CS- y -- E o(.4T 

1=/t 
(7) 

Fraa the third of lquat10u (4) 

E :: z ~ (OX +oy: ) + d.AT 
E 

or 
£. : 

Z 
1 + fl d....tJ.T 
1-~ 

For the three diJRensional stress cai\le, let £ x::: ~ y 

()x :: 0-;. :: o-z olla .. t~ .... ~t4_-(.4) 
B oZA'f 

1- 2/t 
<Jx ::: o-y d"z = = 

(8) 

:;;: f :: 0 ud z 

(" 

For an incCDpree8ib1e media (/1::; O(5),lltuat1on (9) would gi.,.. aD. in-

t1D1te eJ"t.,-... o 
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.. ~ "!\~~,tlt.~I'! •. :will eJP,S.t in a ·heated material SOB ma"i1mDl stress 
':~,~ ~ "'.::: "d '{ Y = n' Bo(AT . 

max 
.. ",... 1-0 

where n has a Talue depending on the amount of constraint 

o < n ( 1 

and a depends on whether the constraints enst in one, tvo, or three co

ordinate directions 

Constraints 

1 

2 

3 

a 
~ 

o 

1 

2 

The order of magnitUde of thermal stress is given b7 

K =. 
loCAT 

1- a/< 
Where T i8 o0D8id..ed as the mu:I.m:aID temperature diff.rence ex:l.eting bet

ween an7 two points'in the materialo In general, if I is sall compared 
, . 

with the allowable streaa for the .. ter1al, the thermal stress proble. c8:l'1 

be: 19noredo If this is not the ca.s~ a detailed calculat1~n ianseessary 

to determine the value.of n, which depends on geometrical considerationBo 

The determination of the teaperature distribution will inTol ... a atudJ' 

of the conduction of heat thrOtilh the materiale For the detailed case it 

is neoessar;y to. consider further the stress anal;rsis of a specific con-

tieura tiOllo 

The section which follows will consider the conduction of heat, and 

will d.terJl1lle the teapa:ratur. d1stributi~ which resultso 

20 Conduction or Beat 

The study of the problem of conduction of heat led Fourier to the 

equatiQll of heat conduotiCll whioh bears his name aad·i;e the f'owt8" MI'i ... 
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.. 
. aethoi,.·of its solut1oac Th.towler ·equat1oD for heat conduet.ion is 

written 
c· 

q .. = k , 61' 
A . x 

where q 1s the heat energy transferred across a slab of mater1a1hav1Dg 

a cross section. normal to the direction or f1ovof heat
J 
~ and· a tem~ 

erature di~feren-ceJ~ TJ between two faces separated by a s.mal.1 distance) 

L:>. x. The coefficient k is the thermal c onducti vi ty . of the material 

of whi~h the slab is composed, and, for dimensional consisten~y, lIUSt 

have the di~ension 

(enerEY) 

(time) (Temperattire) (length) .. 

If' .4 X is allowed to approach the lim! t zero, the remaining express~on 

gives the heat transferred per unit time across a surface of' areaJAo 

q = - k A 
. 0 T -. ?> x (2) 

. The negative s.ign indicates that heat flovs from higher to lower tempera.

tures o If the temperature gradient, dT/dx, and conducti'rlt;r, k, are 

considered as functioDs of distance, x, a pictori.1 repr.8.ntat1~ of' the 

situation is 

. Heat q 

Tempo T 
Temp dT 

ax 
Gradientd.x 

x 

Thermally insulated 
(heat source) 

S q+~ dx 
d-X 

T +-il dx 
-a. X 

x+dx 

where S represents an internal energy source distributed throUChout the 

_ terial, and has the elimensiollS 
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(enerllY) 
[time) (length») . . 

For an energy balance it is required that the heat which crosses the 

boundary at x~ plus the heat created by the eource i equal the heat flow

ing aeross the boundary at x +dx, plus the heat stored in the element, 

dx. This is expressed 

q+S A dx=q+~ d X dx + cp I A U 
dt 

dx (3) 

where Cp is the specific heat of the material throug~ which heat is 

flowing and~is its density' 

Cp ........,. 

fl'\.; 

Equation (3) becomes 

.IS I: 

(enern-) 

(mass) (temperature) 

(mass) 

. (length)3 

as + A Cp P 
d-x 

~. 
d t 

Substituting the ftlueof q . from Fquation (2) 

(4) 

~ (k il) + S:: Cp f cl (5) 
~x ~x· ~t 

By symmetry if we have heat flowing also in the y and ~ directions 

..:a. (k d!...\ + d (k ~) + ~ (k }1,)t s :: Cp p ~ (6) 
d X' d"-x ) T7;} y ~ ~ d Z . d t 

or in customary. notation 

V·(k \J T)-+ s= Cp f ~ 
d- t 

'4uation (7) is the equation for the temperature distribution in a solid 

body with a distributed heat source.. If' the conductivity is constant!') 

Equation (7) become:s 

.... 48<-
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2 . ~_.p 
" 11 +~. :: .~ ~ .. ~ .t 

(8) 

It Ddght be noted that Equation (8), without the source tera,. is of the 

sam. form as the slowing ~OWDequAtion for neutronso The dimensional 

coefficient 

l "'" (Length)2 
Cp p' (time) 

is called· the thermal diffusiTity.. Being a function only of the physical 

properties of the heat transfer material, it can be found tabulated for 

many engineering aateria1sD 

For definiteness let us fix now a heat transfer model which we will , , . . . 
. . 

use for all our discussions.. This' model is shown beloW' . 

...----....;. Non-fuel bearing' section 

-'T 
~, L1 b , , " .. . "~ f ,- rl_ rt --

4 

A cooling fluid fiows throu,h a tube in whose walls heat 1s being ,ene

rated.. The heat whichil!' generated within the walls IlUSt be carried to 

the inne surfaoe by conduction, and carried away from the surface b;r 

convectiono All variables are considered to be uniform in the tane!ntial 

and azial directioJl8, varyiD& only with radius .. 
\ 

Many other lIodels could be taken.. For instanoe, the heat could be 

generated wit hin the fiuid, the tube in this casebeiD& :merel,. a contahar 

or ·poasibl)" also a moderator 0 This case causes some special proble. of 

~49-



·" 
its own which we viII discuss later. Our purpose at the mOllent is to 

da.onstrate the orlginand magnitude' of thermiU stress , and the causes 

of hl,h temperature in solid materialso Later this sam. model will be' 

used to discuss conv.ective heat transfer and its accompanyillg pressure 

losses 0 For these purposes the tubular model" having heat generation 

'Within its walls" is sufficiento 

For the tubular model· Fquation (8) becomes 

1 .-' r 
.d 

d- r 

since in this case 

(
r ~). + --L :: . dr . .k ¥ 

2 
V" T = 

':1'" ~ (r~) 1 -
Steady state conditions are assumed, 

; ddr f 
giving 

dT \ + 
d rJ S 

~ 
o 

~T 
d t 

(10) 

(ll) 

lrquation eu) ~s the 1.t .... t.d lubject to wo boundar7 cOlJditionso 1'he 

first states:' that 'there is no heat flow acrOS8 the outer boundary. or 

slLJ dr 
o· (12) 

r:' b 

(9 ), 

The second condition states that the tea perature at same point in the ... ~ 

rial. will be fixed by the capaeit y of the convective heat transfer system. 

'1'his can be stated 

T 1 r = b 
~ Tb (13) 

Integrating Eiuation (11) once 

!L. +..L j S:I'l drl + 01 : 0 (14) 
r dr· k a 

Jl'r0ll equation (12) 
1 

l"'* - -_ .... - - k. 
J'b 
a Srl dr1 (IS) 
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SubsUtut:tng this value for C:i. 

r ~ ... +. . (>r. Sr1dl'l • 0 (16) 
.. .. c.J'b 

IntegrAting EquaUcm (i6) 

T++l 
a f b . 

Sr
2
dr

2 
' 02 =0 '. (17) ~ 

r 1 

FrOli FAIuation (13) 
b r 

Tb ++ J, dr]. Jl Sr
2
dr2 + 02 = 0 (IS)·' 

a 1'1 b 

Substracting Equation (IS) fram (17) 

1 (F 
T-Tb'+ k J_ ~ J

r1 
Sr2dr2 , : 0 (19) 

b 
,l'l. 

b 

Tbemaxfmumteaperature difference existing in ~he tube wall is 

Ta - ~b + 1 f .-r. .\) ~ 
1"]. ~ Sr2cir2 = 0 

The aTerace pDwer den.ityfor the space occupied by the tube is 
" b 

(20) 

2 1/ J Srldrl Jb 
S: ,a = 2, SrI dr 

'1/ b2 ~ a 1 

Let us ietine two diaenslonles8 Tariables 

beCOllle. 

Jquatiea (20) is 

§ • 

¥ :: 

rIb 

8/So 

T-~+~ 
k 

~ 

J~ 
1 ~ 1 

alb 

(21) 

J 
1 

2 
T .. 'r.b + ~_ a . k' d5. 

'3 1 

5 .' 
fi'2d 5211 0 
o 
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.' 
. and ·a:,..,t1on (21) is 

. S = - 2 So 

aID 

J :131 d)l 
1 

Cu.} 

Eliminating 80 be:t;,ween EquatiOllS .. C23h, aDd (2,4) .1.· . . . . 
. 2- J .d~l . .o-Y~$2 (25) 
T -To • b 8 1 . r· . 
a b 2k i

. 4 .. .. 

. u( O.§ld 'l 

Th.d~. !~egral ci be 1Jlt~.gratedby par~ to give alb .a 

.• / ;~l· Jillf'24~2 = rloBy f?/'14~1].~ f· . (1~,h)8')14'1 
. 1 ·[, .. 1 . 1 1 . . .. 

·a/b· . J/b ~ = log alb J. C:"<~ld ~ 1- .. (logS l)r 71d Jl (26) 

1 1 

Substit~i~into Fquation \25) 

2-
Ta .. Tb • b_~ , 

A • 

[lo£a/b -

For our case tr. has the fOl"Jll ot a step function 

\ 

(J alb·· a/b d/b 
. For thie caee § 

(/b(lO£ .§ llY,hd,h .. 

Ja/b ?f Sid ~ 1 (~7) 
1 

t 
) 

a/b 

~ (f hd,l-
,c/b . 

J~ld51=- f~-~] 
d/b 2 b2 . 
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aad 
alb 

[ (log .hl ~jIdfh • 

Integrating by- parts , 

c/b 

J (log '1) }ld }l 

c/b 

J 
, d/b 

(log .71) Yld~rl 

= [clOg -') LJ' .,tr , 

alb 

d/b 

a/b 

-tf' ~ cL'l ' 
'/b.7l d ' 

'C C _ ' , 2 () ::i(b) log D t /~)2 log UL) +(;2 '~c2 J 
\- b Cb [ 4 b2 , , 

Hence l!quation (27) becomes , , 

Tb .... Ta· " b2 S f 1- - log (a/b)+L,log (d/b) , - c2 log (c/b) J (28) 
2 k ' d2_rf d2_C2, 

simplifying 

T - T • b, a b2 S 
2'k 

- b2 S - -4-k 

E 1- +log (c/a) t ~(~cl (<lLol2 J ' ,'dId _ 1 i 

[
Cd/c) 2 10" (d/e}2 - 1 Hog (c/a) 2 ] 

, ' (d/012 - 1 

(29) 

Sinew, tt was fcnm.d in the last section that the thermal stress de

pep-ded for it.s order of magnitude on A T, 'Which here is (Tb - T'a)"we 

wquldlike to find trc. Equation (29) the conditions und4!jr which" for a 

given anrag. power density, $, we will have the minimum t_perature 

diftereneel) We can see first that we wish to have a largetbermaJ. conduc

tivity, k, and a small tube diameter, b o Looking lJ1t the quantity inside 
',' . -

the brackets, we see that it becomes zero for (cia) :: (d/c) I: 10 Hence 

we want the thinnest layer of' ~ bearing material from which we can 

abetract the required UlolBlt of heat, and the thinnest eladdiDg layer we 

caa .ted betw~ the fuel and t~. coolhg 'f-Iu1do The'limiting thickness 

for the fuel layer, is of coUrse set by the amQtmt of fuel required. 
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The highest taaperature difference vould exist vhen the fuel vas 

spread throughout the tube material.. Then.· 

~ - T. :: .. b2 S [Cb/a)2 iog (b/a)2 
. 4 k ... {b/a)2 .;.1 . 

-1J (30) 

Portbis cas. it is desirable to"have (b/a) as alose to one as possible. 

For this ~ase. approximately 

Tb - 'fa "'V btS 
2 k. 

where t is the thickness of the tube wa.l.lLo 
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OAK RIDGE ScHOOL OF REACTORTICHNOLOGY 

ENGlNEEBINGA LECTURE NOTES --A. Se THOMPSON 

3. Thermal Stress in Power Producing Elements 

In section (1) it was shown that the order of magnitude of thermal 

stress 1s gi wn by 

(
I c( 4 T) 

11 1-a/ 

where a depended on the number of constraints iaposed on the heated aat,ria1 

and n is a factor depe.eliDe Oil the detailed geoaetr;y of the probl .. , but 

generallT 

0< n < 1 

In section (2) an expression was developed for ,the temperature difference 

.4 T for a hollow tube; in whose walls heat was generated,and in which a 

cooling auld was circulated., It was shown th8.t to some extent the temp

erature difference is under the control of the designer. In these two 

secti ... the purpose was aostl7 to find under what conditions the order of 

, _p1tuie ot tbe1'Ell stress wou,ld be low enough to justif,. ignoring it. It 

is the purpose of the present section to demonstrate the application of the 

theory of elasticity to the detailed investigation of the distribution of 

thermal stresso 

The distribution of stresses in any elastic bo~* must satisfy three 

conditions: (1) equilibrium; (2) compatibility; and (3) HookeRs law. Con

dition (1) states that the summation of forces on any isolated element of 

tb •. b~ BUSt be equal to zeroo Condition (2) states that ,the s~rains in 

th •. 1Dod7 IiU8t acid up' over the waole lJoG7 to fit the deformations imposed 

• TIl.ory of Elalticit7" S. Tiaoshenko, McGraw-Hill Book Co., Ince New York 
'(1934) (Introduction and:Chapters VI and VII) . 

Strength of Materials, Part I, So Tiaosheako, D, Vanla.trand Co .. , Inc. 
, New York (1941) (Chapters I and II) 

l' 
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on the body. Condition (3) ;requires the stresses and straine in the bod7 

to be linearly tnterdepeDdent. ,In •• aeral the •• three oonditions will 

resUlt in a linear system of equations whiah.uat be ~olv.d ~taneaull7o 

Por cert.ain 01.8seso£ probl ... , like the. bending ot beau, .al!S~ptioD. 

can .~ m.ade which enable one to satisfy each .of these conditions separately 

. and a great simplification results. In any of these problems one mel'fl17 

solves an equation for equilibriua for a statically determinate s,ystem,.Dd 

is hardly aware even of the exist.nce of other conditions. 

Fordemonstra tion purposes ve will vri t. down the three condi ti·ons on 

elastic stresses for the heated tube which we discussed in Section (2), 

.. nd'V1ll use th.e. cOJadittoa. to find ·th. distribution ofthemal .t; •••• 
All variables are considered •• waitor. uial17 and tangentially, the onl,. 

aiiatioD. being with radius. It will be noted that a simplification re

sults which mskes the proble. soluble. The directions of the principal 

stresses (stresses in the radial, axial and tangential direct-ions are 

designated cr-r , cr-z' and cr-t respectively) coincide with the directions 

of the principal coordinate axes r,. z, and t.. This means that we do not 

have to calculate a~ shear .tresses, onlY compressions and tensions .. 

. The theory of elasticity shows that any combination of stresses at a point 

can be expressed in terms of three principal stresses, with no shears, but 

it is not always easy to pick a coordinate system, which we can handle, 

which does this everywhere •. Our assuaption of unif'ormity means that ve 

have what is called "plane strain It, in Which cross sections of th. tube r.

main plane during deformation (axial strain is independent of radius). 

The equations we write will fit these idealizations .. 

EguiJ ibrium 

Let us isolate from the tube a section of solid mater~l and find 

·what is necessary to satisfy the equilibrium of forces on it. 
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\ I 

.;,\ 9 k 
\ I 
\ I 
\ I 

, 
!.:. 

~ 

We adopt here the conventions that a positive sign with a stress desig-

nates a tension, a negative sign designates compressiono cr-t is tangential 

stress, a.nd err is axial stress. From the diagram . 

(cr-r + d G'lj dr)( r+ dr) e -err r S - 2 crt dr sin 6;)/2:: 0 
dr (1) 

Since we are deal.:5.ng with differential increments 

2 sin 9/2 • G; 
, 

Simplifying Equation (1) anq neglectin~ second order ter.ms 

or 

or dr + dar r dr - a-t dr = 0 
dr 

d (r 0-;.) 
dr 

... o-t =0 
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Qcapa.tibUitx' 

Equation t~) is, the equilibrium condition on theatre."ea in the 

tube.. In Section (1) we said tUtthe straina were related to 'tal. d,tor

ma. tion" b7" expressioDs like 

''''001'., ... ' 

ud· 

~x=·a .' ,'\ 
ax 

~r: Qs.. 
d r 

~ , dV C::t • ~ 
reG) 

. The, axial. strain is ,1.,.D b7 

E z' = ; -.d_~L 
, ~ 

(4) 

,',' 

(,) 

" 'ta) 

"'~all ctwu:i:t.'I.t1ee ar. lUd..t0l'll i,D. the z directiolls, ~ z i. a " •• tanto 

Since ~.nt1al1lDitcmiait.7 )a •• Mea •• lI'QMd we mow that the taafential 

aw.a:.-t: .. atQDc~i~ .. ot ra.d1ua •. Hencedv/d 9 .lIt be a function 

onl,. of radius. This,u' 'b. d .. onstrated plctoriA"y 
! '. . ' . __ """,-i· 

\ 
I 

I 
, I 

I 
I 
I 

I 

"- '" .. I 
I' .... -...J . ..... /, . . ..., . ~ 

The ori~ d1me~on u the tanjenti&l direction is (r &). The final 

dimension after deformation is [(r -t u) e} 
~. :: (r ± u) '9 - r {) 

t , 
r 

o The strain is hence 

= -Y
r' 

(7) 

Equations (4) and (7) can be combined by' difterentiatlngEquation (6) to 

eliminate u.'1'hen 

..£... (r E t) = € r 
dr 

(8) 

Equation (8) is called the "compatibility condition" for the strainso 
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. Boo. 'I 'Law . 

I~&AC1Iq_t1Oil (.3)~ tvo·o.t ~ equations nece88a17 to express the 
o : '.. "... • ••• ;'" " • " ';, 

.~~ of .tn •• ~. etl'&1D.ill. .thedefome4tube~ • $1noe EquaUon (3) 

11'ft~& relatiOll8h1pfor.stres88swh1le Bquatlon (8)18 tor S\reJ.IlS,· &~~ta.r . . ".' . 

relationship ieneeded to rela:te stre •••• 8.111 8tra1ns.This relatioD8hip 
. ., ';' , . , 

1s proYided bT Hooke'. l.e.w which. we ha".d1ecu8sed'·betore Q In terms of 

the priaoipal stresses tor the tube've C&Jl. vriwtor radial. strain 

Cr • l Yaz.. -./«:crt .TOZ) + '1£ c(. (~-.Tb)} . (9) »2 ' . 
where, &s in the last sectic)Jl,fb 18 teaperature at the outer sUrface ot 

the tube.. '!'he tanlent1alstrain i. 

·ft = + [Ot. -)(0-. +<r;;) + . 1\ q ('1' '- 'fb)} (10) 

A:da.l .train, which is constant, is 

Ez = i {cr; -;4 (err + <:rt >+ I <;:( ('1' -Tb)~ = C (ll) 

Soldng Equation (11) for (j'gives 
. z 

.o-z .:. /I (err +C-t) - I c( (If - Tb) ·tez & (12) 

Substitutinc EquatioD (;t2) 1nto (9) aDcl (10) 

. lOr :; + [ (1- ,;l) cr-r -,/f (I "/U lcr t + (If )I) 1\ c:( (t ..'1'b) 1 AJ< 
. . .' (1,3) 

and 
€ t =..l... [(1 ... At 2)<Tt -~ (Ii)k)() r +' (1 +/<)E q (T-Tb)] - E)<. 

I /'. . . z 
~ (U) 

Substitutilli Equations (13) aDd (14) into (8) gives the compatibility con-

di tioD in tams of stresses instead of strains . 

;.J1. [-,- . [(1 = 1./2 )Gr' - u ('+ )() o-t + (I + }<) E c( (T _Tb)77 
dr .E .' / ' / . (15) ~ ~ 
= if (1 -AJicr;r~J!(1"':~ ) crt + (I+/t') EQ (T:-Tb)] .. 

From, Eiq~tiOns. (.3) and. (15) 'teha,ve tv? equations in two var1abl,es,,<rt andar • 

EliDd,nating<::rt' between these' gives ( E- I;H~swned constant and factor (It)t.) 

removed) . 
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... 1r { r [(1 -~) ...JL 

dr 

..... (1 - /-I .. ) o-r -j-t t 
(r (r)- )10; + E c( (T -Tb) J} 
(r u r ) + .E c{ ('1' - '1'

b
) . (16) 

'. The seoqnd teras on· both .id.. oance1, leaVing , 

~ ( r [<~-I{) 1; (ro;l+Ect (T - Tb~} = (1 -)tkTr + ~q (if - '1'b) 

(17) 

, Ditterent1atinc theproduct(r Clr ) 

.. -ir {r [(1 -J!) err + (1 -/0 r d ~r + Eq (T - Tb~ J = (1 7'QCTr + Ee( (T-Tb) 

. (18) 

Ditterentiatins the product. in the first brackets, cancelling like terms, 

and tactoriDg (1 .;.)1.) 

r2 d2or. t 3r d c:r-; + E/a r .. ...JL ('1' - Tb) =0 
dr2 . d r 1 -ft .dr 

(19) 

The\first tV9terms can be combined, giving . 
2 " . 

-sL' ( r3 . da-r ) + E c( r . .JL ('1' - '1'b ) = 0 
dr . dr 1 ..;.,)t' dr 

(20) 

We substitute the value of srL. from equation (16) of the last section 
. dr . 

which is 

srI.. = - ..l... r S r1 dr1 dr kr Jb 

Equation (20) nov becomes 

....sL (r J d eJ"""r) = E ct. 
dr dr k (1 -)() 

(21) 

r 
r f Sr dr 

db 1 1 

Equation (23) is to be integrated twice subject to appropriate boundary 

conditions 0 Let these conditions be 

dcrrJ =0 . dr . 
r=b 

(24)" 

and 

crrJ . = 0 (25) 
r:O 
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Then integrating once, 8ubject to Equation .(24) . , r . 

Q~r: ' B'., c( ~ '1' r1dr1 
drk (1 -,)() r3 b 

n 
I Sr dr (26) 2 2 

b 

Intecratina,againsubject to Eq~iion(25): ' 

r 
'ar = E ct 

k (1 -/f) J dlJ. 
a r13 i

n. 
r2cir2 

, b ' 

r2 
~ Sr,3dr,3' (27) 

Fr. equat-J;on (,3) the 'tanjentia1, stress is 

<Tt - r d~~ t cr-; (28) 

Substituting Equation. (26) and (27) into (28) 

- :I d.. 
<Y"t - kh-;,A') [

..1,;. 
2 r 

J ~drl f ~zh"2t 1 ~ l rtJr2 IF Sl)dr3l 
b b .a r13.b ~ 'j 

. . (a) 

Froa equation (12) if' the tube is constrained against axial motion, 

~ = C = 0, and z 

O-z= /I (cr-r +cq) - E c( (T ..;. Tb ) , (30) 

SubstitutiDg Equations (27) and (29) 

<3'-: :E q:A [l fr r
1
dr1 

,Ii k(l-fi) r2 
, b 

n r 1 fr

, J J Sr2dr2 + 2 r dr1 . r2dr2,Sl)cir,3 

b ~a r13 b b 

- E c( (T - Tb ) 

The value :0£' T - T f'rom .... -"'uation (20) 'of' Section (2) is b ~ 
r !1. 

T - Tb : -..1- (',~ [, Sr2dr2 
, k ~ ~ b • 

Hence the axial stress is 

(,31) 

(,32) 

- ,....,. [4/ ,rl' f]. 1 u - E '-'\.. . r drSr dr 2 dr . 
z 1, (, h\ r , 1.1 J ,,'. 2 2 1- ~ '~3 r2dr2 Sr,3drj + 

b b ' a ~ b 

r 
(1-)f) f dr] 

'b rl 
-61-
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EquatioDS (27) aDd. (33) can be put J.Dto diaeD.i0nl&ss· form bythesubsti

tution 

and 

. r = b ~ 

S:S (( , ° 
-S. s· = .. o 

2 P'51d '5 1 
, 1 

.OW 'flu tioa (27) 1. 
..., 2 err = -.ti.( I ,!t,a 

2, k l-/(· , , ", , ,~g~gl 

1 

lquation (2c'l) 18, . "", . 

~ )1 . 'Jili,' , 52~5 
31

3 
alb 1 

;2 
2 ! 'd'J)dj 3 1(34) 

1 

2 ' . 

O"'t = - '1(t~)1\d~h '~ 
'r~ , ~1 ' J~ f'1 J 
J~dlj lJO~2d~2+' ~ J Sot d~ 1Y~3 ci53 
1 1" alb ;13 

1 I, , 
1 

c-:: -Iai 112 A..' r4fi~.LS ~~'d.~ .~/f('tb ~~. ~~oLSt(l~ ~~' 
;Equat10D (33) is ", , ~'" ~ ~' 

II 2k (l~ft)f'!oJ L5~ I ,J 1l
.t.t J ~ JSi ~ j'K J J ~ I J~~ 

, d. (f~d'51 I ' % I " I t 

lr~ ~\\&t10J1 ('~l~th. al'lld.Jlmm value orC-roccurs wena- r :C)t,or from 

equations (34) and (.35), w~;n "11 , 

. • P=' }ldh 'If ~2d'<; 2 = 0 
11, 

tn) 

'This happens when.5 = III (r = b) <> Fro. equation (36), at.5 = 1, it is 

evident that 

o-z J ._= 31< ~J = 3ft at ] 
:3 -I ~ =1 , ,::s ~ 1 

From equation (34), then the maximum stress at 5 = 1 is 
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C). J = - -2 [f I f rs \ .3 2 .' J r 2k (1-)( 8.. "(S I . 

. § = 1. .r~ld51 1( 52'132 J?f33dS 3 (38) 
1 % J 1 

When .3 = alb, it can be seen that C-r ': O. At this point 

. .:2 f ~ Id
, ~l.r "2d~ 2 . (39) 

[ 

2 a/b. 11 . ] 

o51d~1 1. 1" 

1 

and . . 1. '-I U , • \ ~ 
_ '. b2 " J .. ) . '(i:~" (: .. ~ .';. ; (4- D 

= -lS~n2 .. . j(;:rf 1, lIS HiI)l;, 1 I· j 
-' 2, 

. t' 0/6 . er,' '.' /;., . F '! -, 

2k(I-Yt)(51d}1 .. :6-)<)'f/~fJ (;r Jtt 
.. I ;,' I, ~ .2.) 

o-z 

Usmrt1¥ the largest stress at .5 = alb is thetanSentia1 stress c:Jto These 

equationS can be simplified by partial integrations. First 

g . ?' * ~ r:.~ 
1'51 d!tJ. J ~ 52 d52 = ~ 5 2} hd~ 1 - t id/d~ 1 

.. , 1 . 1 1 

(41) 

Nrl ,. . 

e § ~1 . ~2 ['Ii:? ~1 j. ft· J 
fd~J. 13 ol,r;.· ·j.)"3·,45 =~. lli r(f; d~ - 1.~ 1J5/d~h 

. ",3 ;.t ~ :3.:3. .1 ~ J G 2 2 .. 1 

1 51 1 .)1. . 1 1 . 51 1 :s 
= 4. 1,013 ~"1d~ - 4 ~...,g.i, ~ t 1 ~2 J~ 1; ,3 d,5 -l ~51dS 1 

2 . 1 1 2 ~~~1' . I 4;;; "1 1 4 ~~~ 
1 

(42) 

From Equation (41) 

alb »~ . J 51d31 i S2d~2 
1 1 

alb alb 

=.1 (!)2 (¥ 51d31 - "J:._!;SlJd§ (43) 
2 b v{ 2 c1.() ,. 

From Equation (42) alb alb 1 !iJ. 152d) 2 r:S d3 = (± -pog alb) (55 d5 T ~ rb'.5 ., § d,$ -
alb 5,3 1 rl 0 J 3 'J " I J V 1 I I J 

':'";" ",' :. 1 1 I 
:\. 'I" " /b . .; , a 
'. '.!' .:. ': . '.. . . . b 2 .3 , ........ ;, .. '''''. .., ' " _ 1 ( -) ];y ~ "d~ (44) , ,:' . t:. 4 a . CJ ;11 .7 1 

,', . ,; y< .. _:'._,,~:. '; ..: ~' 1 

tet~·'=Ji;·d3,!)'lt"=;J~5J.'5 J¥e~r~v = [uvl~ -f~ vdu 
. I I ! !/j h. 1 

. I' , 
r ... 



• 
, Substituting Equation (4.3) into (,39), the ~:tmum str.ss at 1:a/b i~'~' 

'a/b ' . 

J ".3 . 
. 2 . ('(~Sl d,; 1 

·l-IC. ~ 
. &2 J\hd h 

1 

cr: ) . max' . - 2 .... . = - 14.8 b . 
. . . • alb 4k(1~ ,JcJ 

(45) 

.. 9tlbatJ:-.uUzac lquat10n (44)~to (.38), the JIIaJd.mwn stress at 5:1 is . 

. .' '.J.:" . - 2 . [' .' . ' '. a~5l lo .. gg ~d5 1 - l~. flSl.3d5.~ 
0-max . = - lei Sb . 1- log alb + . . .... . 2 a l,.. 

. . 4k(1-/t J 2 r·. . 
. . = 1 ." '. vi 1 ;r 51 d S 1 . (46) 

'ZIt. ~ .w ••• iD ~. tube 1. hence, given by Equation (45)0 Let us 

.~uate~. tor the ca .. of tb~ atepdistributicn ot power 

r 1. 

)( 

d a76 C/b a,'b i .0 

For this case" 

and 

, a/b.· . c/b' 

'JO§ld~l = J 3ld~1 : 
, 1" d/b '. 

clb 

2 2 
- d - ~ 

2 b 

alb 

J~'5/dh .: J $13 d:h 
d/b 

4 '*' = _ d - c 

4 b4 

1 

'< FrOB equation (4S) the maxilllDl stress is hence 

u-max] : _ Ed. S b 2 [1 ~ ~ " 
, . 4k(1-)() a 2 
. : alb 
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Bel! 

4k (1-10 ? 
a 

.. 2 
(42 + ~2 _ 2 a ) 

The positive sign designGtee a tensUe stress. We can write 
2 2 2 '.' . 

'd i C - 2 a = (d -t c)(ct .. c ) ..,.. (c -t' aHo - a) 
. 2' 2 

Let ta .' d - 0 be the th1ckne.. at the fuel..,r1llg layer, and t2 :. c - a 

. be the thickness ,ot the cladding. Let c1 =. ~ 2 
be ,the radius to 

the center of the fuel bearillg' layer and c
2 

= c +. a be the radius to 

the center of the claddingla;yer. Also let f= 4 be the ratio of free 
. , b 

flow area for coolant to tube cross se~tion.Then the maximum stress is 

amax 
E c( 
4 k (l~) 

-.,L, 
f ( ~;. 2 t2 c2) 

The ratio , c( depellda onl7 on the physical properties of ,the tube mate-
4kb-/tl . , , . 

rial,' the factor S is a measure of the power output of the reactor, whUe 

the other terms are geometrical factors. 

For a low stress with a ~iven power density it is important to have 

1. Low' modulus of elasticity, . E 

2. Low coefficient of thermal expansion, c( 

3. Thin tube, (b) ,(a), (ft) 

4. Thinf'uel layer and cladding (t
l 
~nd t

2
) 

·5. Highthe~ conductivity, k 

6. Low value of Poisson's ratio,~ 

. It is evident that the required strength of the material is somehow de

pendent on <::::5'-........... For a really brittle IDa terial cr could not be allowed 
'........... max __ 

to exceed the tensile strepgtb of the material without rupture. ii'or a very 

du<,?/tUe materlal, and on17 a fe l :T cycles of heating and cooling, plastic 

flow. of the rna terial will prevent <::r max from exceedine the failure stress, 
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even for vert largf.lc8.1~ul8.ted .n.lues of elas~ic stress. ·Thi. i. ezpla1ud 

, , bT S8.11~ -that thermals.tre.sesare "d1lplac"en~ stresse.", and aqp].a.tic 
'. '., 

, , flov wblal.. 'OOOtu::tiVill • relieve " the .treSI.,' For larpnuabers of repKted 

CJc1~8~~J'1eld~~re •• ,thealteriaatiDg direction of the plastic flow . . .~ . . '. ,' .. 

wiU eventua.l1.7result in • -tatigue" tailure, very much like. the failure ot 

a ~,blade dUe to aechanical ~brations. The criterion here MUst be 
.', '" 

that ~8.iternating heati~ and coolinc will not result ia clc:+icpla.tic 
. . 

nOVe> A' good rule which can be shown' to hold tor this oa.eliJIit" the 

calculated,ela8Uost1"4l'8 tor cyclic operation to le'lIthat the ... ot'the 

",ald streHtRs in 'teD. ion alld CClllpr"essiollo For dv.ct1l.e _ teri~" where 
, " 

, the t.e11811e .. ccapressi.,...trengtb. are &bo'tlt equal,. t.bis ."U8 that the 

, . ce1~te4.k.ti., .tre •• aut not exceed tw:Lce the 7ield str'l1itb.~ 
,.' '. . .', . 

We _Ye",1I. he" that cert&in·tactors which detera1_ th.ral stress 
'. . . .' .' . ., 

are to 80me e~nt under the cqntrolot thedesigner,both properties of 

_ter1alew.desip. diMneion.. .Another feature of impoz-tance in. limiting 

tber.sllstr.as ~ c.rtain cases is under the c,ontrol of the d.signero It 

can be shown (fram considering Hooke's law combirJed with the cOllpatibllity 

conditio.) tbat the criterion tor all thermal stresses to be zeroi. that 
'. .' . . ~ 

the distribution,ot tuperatun 1n a rectucU1ar co01"diu'te .,..tea 1Ih000d . . . .' . .' ' .. 

. be a linear function of the coordinates;. Consider the follow:bc two _thods 
, ., 

ot 1IO'QIlt1J:a& & cqld bearing in a hot shell:: 

(1) (2) 

I Flat plate 

~-.-

~ 

T ~. 
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In _~(1) ~ atl'e •• ,s v1ll be dotel"Jain8d entire17 by the difference 

h . ~ra~bet"eD1QI1d~ and outsi4e. of the flat PJ,&teo ' 111 method (2) 
.; ',.,..- . " . .' 

it 1s, poisibletode~1gD the cone sotha,t the axial. dis~ribution of temp-
, . . 

. " ." . 

era~.8 i.lln~r,so that there are no thermal stresseso 

'SomeJJJ8n~on of stress concentrations Bhou.ldbe made.o: ;J:t is obviOUs 

tba'" ,i'ta ''ba1- w1~ a notch i& placed between 'two tixed walls, and heated, 
'.' . . , ' 

the "DII:l1 .. '.tr.a. will 'be' uNoh 

. cr.»> I" A 'I' 

1::' X .~ 
... ter th8Il tbat antioipated for a unifOX'm bar. In general, for de&1ps 

. . . 

;lp.ToIV1D&tU f'lCllif ot 1&%'C8 q\18lltlt1es of beat it does not do to have large 

chaDl8S of oro.'· .~otUu or thickness. ·Two parts of radlcall7 'different 

thiCku8' . are not generall7 su,i ted to .Jle welded together for this reason. 

SOIIII 'oCJlllP&r&t1ve lIUIDber. for properties of material& are given below. It. 

should be rememl:ered that these numbers vary- conaiderabli even tor materials 

wppo.8d to be s1m1lar, aDd the ones used here are only indicative. 

Steel 

Al'Wldn1.P 

Gn,.pb1te 

All.llllina: 

~vit:v Dtm:a' Ccmcmc~~ 
aa/lI,r 0 F ft 

15 

125 

100 

2 

MOdulus of ElastiQi1;z 'Ehmna4 a ;.sion Coef'j 

W 

30 x 106 

10 x 106 

1 x 10
6 

50 x 106 

Q 

7 x 10-6 

15 x 10..0· 

1 x 10-6 

5 x 10-6 

Poissonls ratio is taken as OQ3 for all materials. The ratio of E ~ 
. 4k(1 -/) 

is given below for these values of physical properties. 
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"< ( 4/<0U Representative 
Tensile Stren~ths 

- psi 
Steel ,20 x '1 

"'"" 4 x 15 x 07 50 30,000 

Aluminum 10 x 12 r'\..,I 004 10,000 
4 x 125 x ,,7 

Graphite lxl 
4 :x 100 :x ,,7 

1".../ 
0,,004 3 9000 

Alumina 2 :x 20 rv 45 1°9000 
4x2:Xo7 

From the values given above it can be seen that the choice of material 

has a very important bearing on thermal stress" 

P;z:;oblem8 Stainless Steel Sandwich 

F == 0 0 5 

s == 1 lew/cc 

01 == C2 == 0.5 in. 

tl == t2 == 00 010 in" 

Moderator ~< ',< \ 

Claddl.ntl " , .. 

Coolant W) -..,. '" < (\. 

Find maximum stress" IS this allowable if yield point ot materials 

is 50~000 psii' 

Problemg 

)==24 

tl == 003 

t2 == 0,,2 
Aluminum 

Steel 

~ ---+--'-1 t2 =t:"~-l.-T I~~~ 
J T 
71 

Both aluminum and steel members are heated uniformly to 1000 F above initial 

temperature at which members tit with no stresseso What are the stresses 

and strains in the aluminum and the steel at Section "An" 
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OAK RIDGE SCHOOL OF REACTOR TECHNOLOGY 

ENGINEERING A LECTURE NOTES -- A~ So Thompson 

40 Con'\l'eotive Heat Transfer 

Indisous$ing convective heat. transfer we will be interested primarily 

in tvo quantities, heat transfer effioienoy and power density, and in their 

dependence on the geometry of apparatus and physical properties ofoooling 

fluids. Fquations will be developed tor heat transfer into wi~gP'UJ!L fluids. 

and for the pressure losses which neoessarily aooompany the heat transfer. 

The relationship between heat transfer and pressure losses determines to some 

extent a limitation on the power density available in a reaotor, and the 

effioiellOY of operation of the system of whioh the r eaotor is a parte It will 

be found that, to some extent, this limitation on power density, like the one 

due to thermal stress is under the. oontrol of the designer. 

The problem. of heat transfer tov1scO\UJ: fluids will be divided into two 

ma1~parts, the tirst involving the pressure losses in the. fluid, the second 

involving the transfer of heat to the flowing fluid. 

Pressure Losses in VisCull'wL.FloW'.; 
I 

Newton is reported.to have proposed the first law for resistanoe to flow 

of a fluid past a body, based on momentum oonsiderations.. The resistance to 

motion was supposed to depend on the number of partioles ooming into oontact 

with the body ( f A w) and theohange in Telooity imparted to the partioles 

(WI). The ohange in velocity (w t ) was assumed to depend linearly on the origi-

. nal velooity (w), or Wi = fw, giving for the resistanoe to flow 

f fA w2 
It has been found sinoe that the resistanoe to flow depends on the whole 

. shape of the body, not juSt on the frontal area. Nevertheless the form of 

Newton's expression is preserved, at the expense of some oomplioation in 

def'i.n1nc the faotors of whioh it is oomposec4 
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" We are interested in the flow of wJ.scbusc. fluids t1lrough tubes (with 

some modification through other configurations) and will write the expr~ssion 

for the pressure loss per unit length of tube 

where 

S.l!.. == 
dx 

A f if 
D' 

..:2:.. 2, 
" p= pressure loss in dist'ance, dx 

D -diameter of tube 

w - average velocity of flow in tube 

g = accelearation of gravity 

f = friction factor 

¥ = weight density of fluid 

(1) 

We will be' primarily concemed with establishing values for the factor, f, 

which are adequate'forengineering purposes. 

For non-circular tubes, D becomes the hydraulic diameter and is defined 

as four times the ratio of the cross section,A, of the fluid flow JIl. ssage 

,to 'the wetted perimeter , S, or 

D == il 
S 

:: 4 m ( .;2.) 

where m is the hydraulic radiuso ,It is to be noted that the hydraulic radius, 

m, for a circular tube is one-hill the actual radius 0 Authors define f sane

times based on diameter, sometimes on radius, and sometimes on hydraulic radius., 

Definitions of f by different authors hence differ by factors of two or four, 

J and the reader must often be exceedingly wary to infer from the context which 

definition is being used .. 

The pressure loss can be alternatively written in terms of the shearing 

stren, r- at at thewal1 

il- :: S ,r-a = It]a. 
d xA D 

Eliminating dp/dx between liliuatians (1) and (3) 

'w2 1:,=f'('--
a 2 g 
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To find the appropriate values for f, it is necessary to find the shear 

stress, la' which exist at the walls of the heat transfer passage. It will be 

found that the shear stress depends on the type of flow-18mi~ar or turbulent. 

In,l •• inar flow the fluid can be considered a~ mOYing in l~rs with relatively 

little 'mixing of adjacent layers. Turbulent flow is accompanied by an agitation 

of the fluid by eddies which thoroughly mix the fluid. For the laminar case an 

analytical solution for la can be found, while the turbulent case must be 

handled experimentally, 'With same help from dimensional analysis. 

Laminar Flow of a Viscous Fl:gi.t!: 

When a ',visQ0'W9fluid flows past a solid surface, shearing stresses are 

set up in the fluid between moving layers of fluid and the stationarY wall. 

This si1;uation i3 shqwn schematically below 

I 
tt r 

, ' X) 
The viscosity of the fluid is defined by the expression 

,= ~ ..ll
'dy 

where- ,., = shearing stress in thfl. fluid 

u = velocity of the fluid 

y :: distaooe from wall 

11 :: Tiscosity 

For dimensional cODsistency ~ must have the dimensions 

~ 'V (forc.Htime) 
(length)2 ' 

(5) 

Let 'US i.olaw. in a fluid in ]'mnar flow through a tube, a tubular segment 

ot thetluid. The flow is assumed to be incompressible (no inertia forces in 

the straight tube). . 
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I-----r~-

: : .' .j 

~-I--I !A -~ ~I-----
I .' /pl' dx 

1'" I' ..... ~. .---J .... . . . d X 
. " - ~. . .... 

'.' 

The force on the segment due to the difference in pressure across it is 

(pressure assumed independent ofr) 

v:r2 !LP. dx 
d·x 

The frictional force on the . segment is 

2 n r dx .1" 

since these torces must be equal 

or 

From equation .(5) 

n·r2 LlL ax =.2 n r d x ,. 
dx 

-L 
2 H 

,.. =p. 

= I 

~ 
ar 

. Substituting in B:t\Ult1~ (5) 
I . I 

..L(U 
2.d x 

-p. ~ d r 

(6) 

(7) 

(S) 

(9) 

(10) 

ell) 

Equation (11) is to be integrated subject to the condition that the velocitY' 

at the wall is zero t or 

U]r. a =0 (12) 

PertOi'l!ting tb1s integra:tiOll 
" . , 

u - 1 d...J» (a2 -z2) 
I 4 ". ""'7" '. .... ~ x 

(13) 
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Equation (13) states that the velocity profile across a laminar stream in 

a tube is a parabola. 

'(' 

--- - - 1-"1--;---

u 

The ~ velocity in the stream is 

u =1 
·lll8.x· -

d P ,2 _ a 
r jl dx 

The average velocity in the stream is 
. 'a 

w = 2 n£ u r dr = 
·n a2 

.l:.
S jl 

~ 
d x 

From equation (9) the shear strep,s at the wall is 

.1S. =..!.- U 
2 dx 

Substituting this expression into (15) to eliminate 5!lL 

"Ia = 4 jl JL 
a 

. dx 

2 a 

(14) 

(15) 

(16) 

(17) 

Equation (17) gives the shear stress at a tube wall due to the flow of a 

viscous fluid through the tube Wi. th an average velocity, w II From equation 

'(4) then the friction factor for a laminar flow is 

t - 41' Y .(~) 
1) 2g 

Let a = D/2, and f = (fig.. Then equation (lS) becomes 

f = 16(' ) 
!.I. " 

WDf 

In equation (19) the dimensionless ratio 

w De = (Re) 
jl 

(lS) 

(19) 

(20~ 

is called the Reynolds number.. This nUJllber is found to be an important criterion 
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,for the characteristics of the flow of i'Vi:sebus' fiudiiiSi... It will appear many 

times in 0\1r subsequent studies. With this definition Equation (14) becomes 

f 1:1 16 
-meT (21) 

(.( .. , , 

~J.,)( ~ 
....... .,... 

The inertia force in the fluid is given b.Y the mass of the fluid times its 

. acceleration as it traverses the element dB. 

F= ftdxd7 u ~ 
• d x 

(22) 

where f is. the mass delll!li t,. of the fluid. The friction \ viscous) force on 

the element is given by the difference between the shear forces on the upper 

and lower surfaces of the element, or 

F2 = t d x d 7 ~ 
'07 

From Pquation (5) we get for ~uation (23) 

~2 . F2 :;: t d x d 1'.... u 
)y2 

The r.atio of the inertia to the friction force is hence 

d.!! 
Ft. eu aX 
p.2 .~ 

IJ. a.;y2 

Define dimensionless quantities 
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u=V6 

x = L, ~ 

"=L~ 

(26) 

where V is a characteristic velocity andL a characteristic linear dimension 

of the flow passage. Then E::tuat:1on (25) can be written 

F f = a Pv L = a (Re) , . (27) 

F2 
'p. 

where d,Q 
a = e ~"5 

d 2 g 
(28) 

~ 'n 2 

In li4uation, (27),1 aside from the dimensionless Reynolds number, there is only 

the dimensionless geometry factor, ao It is necessary to, exercise a consider-

able degree of ca6tion in the choice of units to make Reynolds number dimen

sionless, using data from experimental compilations. In Equation (5), to fit 

the definition of viscosity, "" was assigned the units. 

(torce)( time ) 
. , (length)2 

The most c,."".,.lyquoted unit forviscosit,. is the poise, which has the di-

mension 

B!!L- = (Mass l 
em sec ~(t:'::;i;;':m:'::;e"+)"'(l~e-n-g-th) 

or the centipoise which is one;"'one hundredth of a poiseo This would require 

using the weight density, <:r instead of the mass density, ;:>. It should be 

remembered that the "kinematic viscosity",,,,,/ jJ must have the dimensioris of 

diffuai vi t7 or 

~ 

-r 
(lengtht' 

f'\..! {time 

1'be d:l.m4maions used should be consisted with this requiremento 
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Turbulent Flow of a Y1scous Fluid 

It was found experimentally by Hagen that, if thevel~city of a fluid 

streaa 1s increased indefin! tely a point is reached above which the flow is. 

no longe1" lui.ar, but break. up into vortices which cause Yiolent agitation 

of the stream. A criterion for the onset of this turbulent motion was foimd 

by Reynolds to be the value of the parameter which Masince been named for 

him 

(Re) == W 
Jl 

When the Reynolds number is greater than some limiting value about 1000, tur

bulent flow m.ay exLat depending ·on initial disturbances in the stream. Under 

most engineering oonditions turbulent flow will exist if 

(Re) .> 2000 

In t:b. tur:b'QIent region the pressure. drop due to friction is expressed 

by the same equation (Fquation (::1.» as for the laminar case 

gL = 
dx 

4 f ~ 
D 

w2 
2 g (29) 

Now however, it is found that f is inversely proportional no longer to the 

first power of the Reynolds number, but to the one-fifth power appro:x:i.m.ately 

f.~ 
~ 

* 
(5000 < :a.e< 200,000) (30) 

Roughness of surfaces acts to increase the value of f. The curve for f (fram 

McAdams) is shown below as a function of ReynoldS number .. 

*' Blasi~, formula is 

f ;;: 0.067 
(Re)·0 .. 25 
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1 
II--------.-------~r_------~------~'~------~r 

l' 

Frict~on Factor vs 

Remolds Number 
I 

f' 

10- t I '\ r o'~ --"""(J r~+J.r _ commerc*l V' I' --=:::::::::: 

1~~ 
1~ ., 

103 104 105 106 107 

Re 

The Navier-Stokes equations express the velocity and presure relationship 

in a 'rlBCotIS fluid.. They will not be used here however since no solution 

tor the. has been, found for the case of turbulent f1ow o B.r experimental 

methods, it has been found that the turbulent flow of a fluid can be approxi

mated by considering it to be composed of a boundary layer in which viscious 

and inertia effects are important and a eentral portion in which the inertia 

f!lffectsPredoBdnate.. B.r a dim!?llSional analysis of' the Navier-Stokes equations 

for two' dimensional tlow Pra:ndt1 has shown that the boundary layer aust have 

a thickness or the orier of 

~cV L tu) 
(Re) 1/2 

When it is remeabered that tor turbulent flow the Reynolds number is generally 

greater than 2000 it can be seen that the boundary layer is generally small 
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compared to the characteristic dimension, L. 

The boundary layer is treated as consisting .of two parts, a laminar 

sub-layer and a buffer layer. Ithas been found that the velocity protile, 

though it cannot be found analytically', can be correlated experimentally for 

turbulent £low by plotting dimensiozUes8 fluid velocity against dimensionless 

distance !'rom the vall. Thedimens.ionlessvelocity is defined . 

--I 

u+ = u/ v' '/"1' 
where u 1s the local fluid velocity, "ra is the shear stress at the wall, and . . 

f is the mass density of the fluid. The dimensionless distance from. the wall 

y+ = fait' is 

where y is the distance from the wa:lland.... is the fluid viscosity.. From 

Equation (4) it is seen that 

(f~: ~ yrr72 

where W is the average streaa velocity and f is the friction factor. Such a 

plot, (here taken from McAdams), is shown below~ 

30 I J 

20 I f 

u+ 

Using the Blasius relationship 

f = 0,067 
(Re)0 .. 25 

y+ 
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Prandtl has shown that the 'experimental distribution of velocity in the tur-

bulent core is nearly satisfied b.Y the relationship 
1/1 

u=umax ll-~l . 
where 'Umax is the velocity.at the center of the tube,' ais themdius of the 

tube and r is. the distance from the center of the tube for Reynolds numbers 
, " . 

from 5,000 to 50,0000 For higher Reynolds numbers the 1/7 power must be chang

ed, for iBstance at (Re) = 200,000 t.o a 1/8 power o 

From Equation (1) the losses due to friction can be expressed 

dp 

dx 
= 4 f,?5 (~ ) 

D· 2g 

where we have found that f is one function of Reynolds number for laminar 

flow, another function of Reynolds number for turbulent flow. There is another 

source of pressure loss besides i!riction, which is due to entrance and e:x::f..t 

losses from tubes, Or to sudden contractions or expansions in the heat transfer 

passage 0 These losses also are expressed in terms of the velocity head 

4 p = a (w2/2g) 
where a depends on the area ratio of the expansion or contractiono All pres

~ure losses due to these sources are additive to the frictional losses due to 

viscosltyo 
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OAK RIDGE SCHOOL' OF REACTOR TECHNOLOGY 

ENGINDRING A LECTURE NO~ - - .,.S. Thompson 

Momentum feuation for Viscous Fluids 

The .equation for the conservation of mOmel1tUll requires that the 

.summation of ~orces over a fluid elementbr zero. These forces are due 

to (1) accelerat.ion of the element, (2) pressure differences across the 

element. ani (3) viscous frio~ion forces along the w.u of the element. 

The fluid element is shewn below 

Velocity, w ') 

./ 
\ 

Heat, d q 1 
area, A. 
pressure, P 
Density, r 
temperature, T, 

oLrf-; 

The momentum equation fOl' the tubular element is 

.~ 

... 
I 

A ax ~ + (p + ~ dx) A - pA + ~ dx == 0 (31) 
g dt d X dX 

where dF is the force due to friction on the walls. If the fluid is accela-

rating then 

~= 
dt 
~ + 
~t 
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,Or if coordinate distances are expressed in terms of distance along the , ' 

stream tube, dx ,:: w, and 
dt 

dw 
dt 

= }.L 
,dt 

+ w 

Substituting in Equation (jl) 

~= 
d- x,' 

d.w 
d t 

+ g ~ ( w2 ) 
~ 2g' 

.J:.... 
g 

d v 
:;s-t 

+ d (v2 \ + .J:....d~ + 
~ 2g)tr TX Al(f ~ = 0 ,d x 

For steady flow, II 
dt 

g 
dx (~) 

=0, and 

+1 
F 

~ 
d x 

+ 1 
rY 

5!.L .. 0 
dx 

(33) 

(34) 

(35) 

Equation (35), is the expression for the conservation of momentum. UsinC 

the expression for pressure loss due to friction from E:tuation (1), Equation 

(35) becomes 

2 2 ) ~ (---:!!-\ +.J:.... .J!lL + 4 f (_,v ' .. 0 
dx '2 g) '0 dx ,D ,2 g 

(36) 

This is the momentum equation in the form in which we will find it useful. 

Equation (36) is essentially Bernonilli equation. The factor, f has been 

discussed previously. 

Conservation of Mass 

The equation of continuity of mass, states that fluid is neither created 
• 

nor destroyed inside the confines of the elemento The flow per unit time 

through the tube is 

~wA 

Its conservation requires that 

~ 
~x 

(","vA) dx= A~ 
~t 

Or for steady state conditions 

't w A = constant 

-SO-

dx (37) 
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For a constant tube area 

"6' w = constant = G. g (39) 

Eiluation (.39) states that, for a constant-area tube, the mass flow per 

un1 t cross section of tube per unit. time, . a, . is constant. Rewriting. 

Equation (38) 

dp +..:LX , rd w :to 2 f . W dx J = 0 l D. 

From equation (39) . 

dp + G r d W + 2 Df " d xI · 0 

(40) 

(41) 

Integrating Pl:{uation (41)· to a point, x, of the heat transfer passace 

P, - p. G [(v -"') + / 2Df " 0: ] (42) 

o 

... where the subscript (1)· designates the beginning of the tube. If the suD-
" " -

script (2) designates the end of the tube, and; the length of the tube. 

.. P, - P 2- G [("2 - ",) + r( 2 .: "d x J . 
Since both f· and w are functions of the temperature along the heat transfer 

passage, which we have not yet brought into our equations, this equation 

for pressure loss will be left at this point for now 0 

Heat Transfer to Flowing Fluids 

The quantity of heat transferred per un1 t time across an interface 

between a solid and a flowing fluid is expressed by Newton's law of cooling. 

This equation is written 

Where 

g 

Q = h A (Tv';" Ti) 

Q = heat flowing per unit time 

At= heat transfer area 

Tw= tempeaature of wall at inter~ac. 

Tt == average total temperature of fluid 

h == heat transfer coefficient 
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This equation looks like the Fourier conduction equation, except that 

due to lack of detailed information concernincgradients in the fluid 

boundary, the coefficient, h, has replaced k/.6. x and (Tw - Tt) has re-
o • • . ' • 

placed ~ To The linear form of the equation has been saved at the expense 

of inventing h, which in general is far from constant. 

For dimensional consistency, h must have the dimension 

h tV ~ energy) 
(length 2 (time)(temperature) 

Newton apparently anticipated that the heat transfer coefficient would 

depend only on physical properties of the cool1ngfluid. Actually h has 

been 'round to have a very complicated dependence on a combination of geomet-

rical and physical parameters. 

The quantitY', Tt , was defined as the total telll.perature of the fluid. 

This is a fictitious temperature which would exist in a fluid if the kinetic 

energy- were changed adiabatioally to internal energy (if the fluid were com

pletely stopped adiabatically ).. .AnalytioaUy this is expressed 

Tt = T + ..l-. ·C.L) 
Cp .·2 g (44) . 

wht;'re T is the temperature in the moving stream which would be sensed by a 

thermometer moving with the stream, C is the .pacific heat at constant 
p . 

pressure, w is the velocity of the stream, and g is the acceleration of 

gravity. For large velocities in the fluid (close to the velocity of sound), 

the second term in E:!uation (2) becomes of iniportanceo Tt and T can be 

used interchangeably except for high velocity gas streams_ 

A considerable discussion* can be found in heat transfer publications 

concerning what temp.raturesho~d be taken as representative of the heat 

tranfer fluid!> It is found that, due to conductivity of the fluid, the 

temperature which actually exists in a gas stream which )las been stopped 
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adiabatically at a wall is notTtt that it rises generally only some 85 

percent of the anticipated amount. Considering the state of knowledge of 

heat transfer, this difference iS t for most purposes, insignificant. 

Many empirical and semi-empirical formulae can be found for the heat 

transfer apparatus, the physical characteristics of the fluid, and the 

velocity of flow. For h as for f it is necessary first to prescribe whether 

the fluid flow is laminar or tftrbulento The criterion for laminar or tur-

bulent flow is the Reynold' I!bnumber 

Re ~(-w~ D ?f ) 

No attempt will be made here to provide an exhaustive list of heat 

transfer coefficients pertinent to specific heat transfer and coolants. A 

designer must use considerable caution to make sure that the experimental 

data which he uses is pertinent to his needs. However certain fairly gen

eral statements can be made about heat transfer coefficients. The most 

general of these statements is that the heat transfer is very sensitive to 

the Prandtl number 

where 

(Pr ) = Cplle 

k 

Cp ~ specifiq heat at constant pressure of coolant 

iJ. . • viscosity of coolant 

k ,. conductivity of coolant 

The Prandtl number is a measure of the ratio of the eddy diffusivity III ;0 

to the thermal diffusivity k/Cp fg 0 It is a measure of the ratio of the 

heat carried across the boundary layer by eddy convection to that carried'~ 

by thermal conductionQ For liquid metals, then, which have a very high 

thermal conductivity, Prandtl num'Qer is low, (~.:J*.~ __ ·£)~I~J":i!ii~~t:::;··· 
."' . .'} . .;f.t'.1~~{' :.~~r ,~.~t;.:,~ ·$~,:.;~"1~f~i'fr~·,~\'Of . :;'.\ .. ~ . ~ .. 

":,,'-

-83-



. . 

\. 

,"1' 

whj.eh,l14ve'ai.~w':'th~~mal cm'ld~t~vity,.P:t:a.p~tl XlUI~l;>EU~' .is~L~·gh.. TIte Prandtl 

number for gases is aboutunlty,while water is somewhat above this, 

depending on the temperatureo For oils the Prandtl number is of the order 

of 1000 For materials having a Pradntl number corresponding to gases or 

higher the Colburn equation has been foundexperiinentally to give a good 

fit for turbulent £lqwo This is .expressed dimensionlessly by 

(Nu ) = lLJL III 0 6 023 (Re) 0,8 
. k ' 

where the Nusselt number is 

(Nu) = ltlL 
k 

(P
r

)0.4 (45) 

(46) 

It is. often advantage~us to divide both sides of this equation b,y the 

Peclet number, 

{Pe' III (Re) (Pr ' 

giving 

CSt) III h III 0,02J 

(Re )0,2 (Pr)Oo6 fw Ope!: 

where' the Stanton number is 

(St) = L_ III 

f wOpg 
h 

G C g 
P 

(47j 

(48). 

(49) 

The reasons for using Equation (48) instead of (46) for some cases are: 

(1) Since the Reynolds number occurs only to the one-fifth power, the results 

in this fo~ are relatively independent of the ~eynolds number; (2) For a 

straight tube G is a constant (mass flow per unit area) and ... ~ easy to 

measure, and (3) the conductivity which is hard to measure for many materials, 

or unknown, appears only in the Prandtl number for which fairly good values 

are known for many materials o 
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For liquid metaJ,s, Lyon gives the ~~ression for tubes 

(Bu) = 7 + 0,025 (Re)O.8 {;Pr)O"S' 

= 7 .. 0.025 (p~)O.8 (50) 

The constant factor, ,7, aQcounts for effect of'the high conductivity on 

the heat transf'er coeff'icient at low Reynolds numbers. and Prandtl numbers. 

For laminar f'low in tubes McAdams recon:anends the equation 

( ) ", { D,' )1/3 · '( Jt.:" ')'0.14 ( ) Nu . == 1.62 Pe , L ...&:.-.~'" " 51 
i-Ls 

where. D ,,= tubE!d~a.meter 

L= tube le~gth(hea:ted,Por.t;oJl) 

.... == viecosi ty of f'l~d in-c~,{) , 

i-Ls =.viscosity of t.~u1dat surface of tube 

, , 

The ~scosity c~rrection is'"d~,~o th!9 ,w~~ge'o'f ~he pro1,'ile :from para-
I' ' I' \ 

bolic due to the v~iable v1~oosity w:1:th·temPe~.t~e 

0~; , ' ~SCosit11oW at wall 
-_--...._.:::!_~::::=--oonstant . visoosi ty ", ' 

~scosity high at wall 

wi th gases v.iscosity rises with. inc~:easinf.: ~~"f~J;&"1I1t'tir"~U;.;: it 
- .' '.' ~ ., " . . . , . 

decreases with rising temperature. 

Correlations have been establisl;J.ed b~tweenheat transfer and friction 

coefficients by means of"heat-transfer analogies". !As a demonstration of 

this for one case, let Us look at p):}uation ( 30 ) and (48). Taking the 

ratio of' these twoeq~at1ons gives 

St)i == 1 I' 2 ~(P~r"("'ll)O-o 6 (52) 
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For cases to ~hich these equations are appropriate, Equation (52) estab-

Ii shes a very convenient analogy bet~een h and f, ~hich is independent of 

the Reynolds number e For gases and low-conductivity liquids Equation (52) 

represents experimental data quite well.. For a Prandtl number close to 

unity 

CSt )/ t ,= 1 , '7 2 
(53) 

This is the Reynolds analogy which is good for gases.. The worst departures 

from Equation (52) occur for heat transfer to liquid metals at low Reynolds 

numbers, and for heat transfer . .in laminar flow (see Equation (50) and (5l)~ 

Several investigators have carried the heat transfer analogy further 

based on the approximate differential equations for the conservation of heat 

and· momentum for a two-dimensional fluid stream*. It is found that the 

differential equations for. velocity and temperature distribution across the 

fluid stream can be solved, to give a relationship for the Nusselt or stanton 

numbers in terms of the Prandtl and Reynoids numbers. Martinelli has gi.ven 

one such relationship. In the acoompanying figure, from Martinelli,is 

sho~ a plot of the ratio of Stanton number to one halt thE? fri.ction factor, 

for a Reynolds number of 50,000 according to Martinelli's formula, and 

for oomparison a plot of Fquation (52). (Note that Martinelli uses r/8 

instead of our f/2 because his definition of f differs from ours by a 

factor of four). ,It is seen that the two curves coincide for Prandtl num

ber of unity. ' Also for comparison two points are show for other Reynolds 

numbers and a Prandtl number of 0 0 01. Martinelli's equ.ation is 

'~ ~ , 'f /2 tw - tc '" 
(St) = . (tv - tm ) ,,' . ,:':;(54) 

[ 
, " I(~) Irnil 

. 5 a (PrJ +::I.n(l, + 5a(Pr» + 0 .. 5 FIn, 60 V ' .... ~ 

* Heat Transfer to Molten ~etals, byR. C.' Martinelli, T;ransactions of 
the American Society of MechanioalEn~ineers, November 1947. 
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. where a III ratio of eddy d1ffusivities for heat and momentum 
(taken· equal to unity in his plot). 

tv = . temperature of tube wall 

tc III temperature of fluid at center of tube 

tm III mixed mean temperature of fluid 

. F III JIUIIlerical parameter defined by Martinelli ( 0 <: F ~ 1) 

1000~~ __ ~ __ ~~~ ____ _ 

100 [ 1·1 I 
10. __ .. 

(st) 1 

f/2 
0,,1 

!.(Re/;;;SQ,QOO) 

It c~ be seen that for liquid metals the ratio of (st) to f/2 is quite 

dependent on (Re) as well as (Pr ). Equation (52) is pertinent primarily 

to gases and to water. For a more general representation we must write 

(st~ = X (55) 

where X is a function of Reynolds number and Prandtl n~ber, to be. deter

mined experimentally. 1!kruation (55) will be used later in our calculations 

of convective heat transfer efficiency. 

1!kruation (43) gave an expression for the heat transferred per unit time 

across an area A'. This area is given by the product of the wetted peri

meter of the heat transfer passage, S, and the length of element, dx. Since 

we have previously defined a hydraulic diameter, D, a~ four times the ratio 
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of the cross section, A, of the fluid flow passage to the wetted perimeter, 

E:tuation (43) can be written 

Q= il..! 
D 

(Tv - Tt ) dx 

The heat absorbed per unit weight of cooling fluid is 

dq =~ 
"'{vA 

= ~ 
((w D 

(Tv - Tt) dx . 

(56) 

(,7) 

Equation (57) expresses the amount of heat flowing per unit weight ~f cooling 

fluid if the wall temperature is Tw a:rld the fluid temperature isTt. 

Copservation of Energy in Heated Fluid 

The thermodynamic equation for the conservation of energy for the moving 

fluid to which external heat is added and fl:"om which external work is . ex-

tracted is given· by 

where 

dq - dw = db + dk + de 

dq"= external heat added per unit weight of fluid 

dw = external work done P.y fluid 

db = change in enthalpy per unit weight of fluid 

dk = change in kinetic energy 

de = change in potential energy 

(sa) 

If for our tubular system no external work is done by the fluid; and ohanges 

in potential energy are negligible, then Eq~ation (58) becomes 

dqi=db+dk 

Enthalpy is, by defini ti on 

h = u + Phr 

where u = internal energy per unit "weight of fluid 

p = pressure in fluid 

([ = weight density of fluid" 

-88-
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The ld.neticenergy is . 

k = w'2/2g (61) 

where w = velocity of fluid 

g = acceleration 9f gravity 

Equation (59) is hence 

dq = du + d (piX') + d (w2/f~g) (62) 

The term d (pI j() is often called by engineers "flow work". 

I Note, It is interesting to note in passing that combining Equati on 

(:36) and (>2) to eliminate d(w2/2g) gives the expression 

dq = du + P d (11,,( ) -J!. (w2/2g) dx (63) 
. D . 

which is the usual statement of the first law of thermodynamics 

except for the last termo This last term is made necessary by the 

irreversibility involved in the visoous frictiono Sinoe entropy is 

defined 
Tds = du + p d (11 '( ) (64) 

Equation (63) oan be written 

Tds = dq + u.. (w2/2g) Wi: (65) 
D 

where again the last term accounts for irreversibilitieso The usual 

statement of the first law applies only to reversible processes and 

hence is not applicable to a great many problems in engineering such 

as this one. For our problem Equation (65) replaces the usual state-

I ment Tds , dq (66) 

For perfect gases the enthalpy is a function only of temperature. being 

independent of pressure.. For ideal inoompressible liquids, also, since 

pressure obviously ~an have no effect, enthalpy is also a function only of 

temperature" fA.ctually many engineering nuids can be treated approximately 

on the basis that enthalpy is a function only of temperature, (within certain 
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pressure ranges)o This can be expressed 

db= ~ h ) dT + d~.· dp 
'dT ~ PT . P 

it~) = 0, then 

d- P T' . 

dh = CpdT (67) 

where Cp . = d- h 
~ T 

p 

The obvious engineering case which C6\-Dllot easily be handled by Equation (67) 

is that ot evaporation in which, although the temperature remains constant 

there is a large change in the enthalpy (calleddlatent heatR). Here the 

specitic heat in Equation (67) would be required to be infinite to give a 

finite change in enthalpy, since .dT is zero. The boiling phenaaenon inTolves 

. a change of state and requires a special treatment. Let us oonsider here 

only cases tor which Equation (67) is applicable. Then equation (62) be-

comes 

dq = Cp dT + d (w2/2g) (68) 

From the definition of total temperature in Equation (44) we see that 

Equation (68) is just 

dq = CpdTt (69) 

Equation (69) is a much simplified form of the expression for the conser

vation or rener.g)ti.·;;t applicable only to fluids for which the enthalpy is 

essentially independent of pressure (not necessarily to constant pressure 

processes - like boiling). 

We noW' have two equations for dq: Equations (57) and (69). Eliminating 

dq between them gives 

d 1ft 
;;-: Tt 

= 4h 
7' w D Cp 
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From Equation (70) we have an' expression for the temperature distribution 

in a heated passage. It can be rearranged by use of Fquation ( ~g) for the 

. ratio of (ST)/f/2 = A, giving 

~ = 2 A .f ~ (71) . 
. Tw - Tt D 

Since A and f can be assigned values .for given conditions, 1D:tuation (71) 

can be integrated to give the temperature distribution in the fluid, assuming 

the wall temperature is given. (or the heat added as a function or length 

along the tube). Several eases of temperature distribution bave bean con

sidered in connection with reactor work, among them (l) constant power out

put per un! t length of passage, (2) constant wall temperature, . and (3) a 

sine distribution of power along the heat transfer passage. The first of 

these, constant power distribution, require" (assuming h constant in Equation 

(57» 

Tv - Tt :II' 6 T • constant (72) 

This represents a desirable situatimn from the point of view o.f heat transfer 

and is approximately achieved in certain reflected reactors wh~re the .fuel 

densitY' and thermal flux are nearlY' constant over the coreo For this case 

Fquation (71) can be integrated t9 give (assUming A and f constant) 

where 

Tt - Tto 

T - Tt w 

• 2)'f ..lL 
D 

x = distance along heated passage 

Tto = total temperature at inlet to passage 

For the total ,length of passage 

where 

Ttl - ~to • 2). t , 1. 
Twl - T'tl D 

Ttl \II: :total t emp$rature at outlet frQ11l passage 

Tvl = wall temperature at outlet 
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Equation (74) can be rearranged to give 

Ttl 

fto 

2 A. f ,..('/D (.75) 
1 + 2X f .RjD 

The second condition, constant wall temperature, requires thatTw • Tvl • 

constant. ,This represents a condition ,which would be advantageous, it 

attainable, in that every part of the reactor would be operating at the 

maximum temperature .set by materials considerations. It is unattain~ble 

in practice and is of interest only in representing a limiting situation •. 

For this case Equation. (71) integrates to 

log (TW1";' Tt) • 2 A. f ..L 
Twl - Tto ,D 

(76) 

Or, with some rearranging, for the whole length of passage 

The third, 

T '(' 1'; ~ ( -2A. f ...IL) --i.L - l. T wI -1 1 - e, D 
Tto to '. , 

or sine distribution, cond.ltion requires 

(77) 

Tw - Tt = A sin fiX/..l (78) 

where A is a constant depending on the maximum power density in the reactoro 

This does not represent a favorable situation £rom the point of view of 

heat transfer or nuclear considerations since the ends of the reactor passage 

do not contribute s:n.y powero However this situat1.on does exist in bare 

reactors if' nothing is done to alleviate ito For this ca.se Fquation (71) 

becomes 

Tt - Tto = 2 A. f A 
fi 

-L 
D 

The temperature difference over the tube is 

Ttl _ 1. 4 A. f A --Tto Tr T
to 

.-£ 
D 
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Sub~tituting Equation (79) into (78) 

Tw - Tto = A [Sin ~ + &..A.! 
. ~ 11 

1 
D 

The ma:ximum wall temperature oocurs when ~ =- 0, or when 
dx 

cos 11 x+ 2~t 
-Z --;- D 

sin 11 x = 0 
Z 

~implitying 

( 1 - cos Uj) 1 (81) 

(82) 

cot 11 X = - 2 ~ t --'- (83) 
. ~ 11 D 

Apparently the highest wall temperature oocurs not at the . end ot the 

passage length.butsomewhere1n the last l/~ ot passage iength. From 
Equation (81) ( ','" )' 

. " . J. = Tv max - Tto K (84) 

Where k is to be determined from Equation (83). Substituting this ,into 

Equation (80) 

Ttl ... 1 = ( Tv max 
Tto' Tto 

-1) 4~tK --1L 
11 D (85) 

Equations (75), (77), and (85) give the relationship among reaotor inlet 

temperature, Tto' outlet temperature, Ttl' and naximum rea.ctor wall tempera

. ture;Tvl or Tv max' in terms of ~, f, and -e'/D for the three cases ot 

temperature distribution considered here o Cases where ~ and t could 

not be considered constant w O'Uld reqUire a more detailed treatment. Let 

us generalize these equations and write 

Ttl - l.=2 (_ Tw maX' -~ a).; f ,f/D 
Tto ~ Tto ~ 

(86) 

where a is a parameter depending on the details of temperature distribution. 
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0A.1t RIlJGESCROOL OF ,REACTOR TECHNOLOGY , 

DGJBalIRG , I..IQ!lJltJIOl'BS - .I.. So' tHQMP$ON 

Pmr pensi tl !D RefCtors ' 

, . 

The average power densit,- (power per unit volum.) generated :1:n a reactar 

can be written 

J = r G g cpi'to (itl -1), 
.-e ,to" 

(S7) 

where Fis the tr •• now ratio (ratio ot tlow &rea tor cooiant through reac-

tor to cross section at reactor normal to direction ot t1ow)~ Subst1tuttDc 

the value tor the parenthesis tromEquation (86) 

s~ 2 F G g Oil r", QAt (tmax -1) (88) 

Fquatiou. (88) c1 Te8 the average powe~ d ••• 1 t;r attainable in a reactor '1;n 

termaot the max:hmDl wall temperature allowable 8.Ild Tariows, other par_eterso 

III the 8eat10. which tollows seae ot these other parameters will be inter-
, , 

'preted 1n teras of pre.lure 101.e. (heat' tra:at. ett1c1a07) us1nc '&luat1on 
'. . . . . 

(42)" It cu .... e. 'hea lItuatl .. (88) tUt 1arp POV."d •• 1t7 requirea . \ 

l.v .... flf)V,Ci.(iat ..... ti\l.. w:l.tll Upetfto1eao7,' or l.ow pref.u:r. 10 •• ), 
,. . "'. . 

1.". •• ,..,.t10 .. t, C"lv •• ftlPot ). (or -no Pr~ctU auml*-, aewith 

Uq1d.4 -~')II ~d llP' .. ~ .. el"at ... d1ttereno.~ (Tv -.z - 'lto)' udllitJ.l 

~auu.c diaaetero \ 

, ,hat TrtVtF .t1S 8BPZ ,', 

'The power ~.d. in ...,1111 coo~t tAro. a reactqr cu be touild. trOll 
. . ' .. 

", ... t1o:a(41).4J " 1'.b1s pover 18 \lied paz'tly1n ov~r coJlliDc vi,COWl friction , 

. , .:a. ... ;.-..... vall. (the •• coad 'tva, _ th., richt) eQCiPtFtq' 1. ,at l.o .... 

Vh1_ .,. ......... d 18 t.ru et .,.looi t,~ad. !be ~~Pt. 't!~ CIP t •• 
........ , ... ,; " 
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right at -.u_ (41) reprea.taa tlhange in kineti,c energy and is not 
.. ",' , , 

-DariN. _,plS,t. poveI'o Let. w1t..,.."," ~,part. ot:&luation (41) 

. ~ob1., ....... bl.,. to p1QIpiDIpowe~o 
, -" . . . 

. dp • - (1 + f3 ,) 3 &: £ G w d 5 . , 'n. 
(89) 

where the factor ~r8pres.nt8· th,. increase in losses due' to end effects, 

and where ~ = xl).. The pumping power required per unit vollime of reactor 

is 

d , ,,~ :-9J? rw (90) 
:.£. . ' 

, where P ill a~ ~b,e tree flow ratio., Combining (89) and (90) 
, " . 2" . 

d ~.'+2,(l +M,~ v 4.5 (91) 

•. Integr~ting' lquatlC1il '(91), aga1D •• sUId.Dg t oon,tat 
. " 1 , 

"\= 2(1+ MF ~'G J w2'd 5(92) 

0:. 

Th,erficieDCY ot~ingcan be deriDed 

. E = l..,"'1/J ' (93) 

SUbat1tuti ..... tiJ.. (88) Uld (92) 

E liB t... (1 +~) t ~ d 5 
o 

g Cp Tto C! A ('!i IN ";1) 
. 'tto ' 

(94) 

For •. a high h •• ~ tl"u.ter etficiency. to 148t te.-m • tbe riFt of eqution 

(94) should be u aall a. po8sibleo This.~ ~t the .... an square" 

velocity fJbouldbeas small &s possible(th18 i81!u:CillDpatible with obtaiDiIlg 

maximum pover dfl1Utity), the specific heat should be as large as 'possible, . 

tl1.41U~o .. ~""IP - Tto} shouldbe .. l&J"~ as po,s~ble, and A should 
.' ." ,", ", 

~e a.larse """JtibJ,eo. Sin~ ~ 111 ~, ~ .. ~ •• Of ,the P.ru.dtl J1UJ&o-
" '" . . ,.' 

bel-. the flou4ti .~Shoul4 be aa .~., Possible. ~s means that 
, > ,. . ":' ,)' '. , : 
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liquid metals. ar.e better~eat transfer medi .. ilIra .... ter t and water is better 

than 011s o 

For gases the v810ci ty of soundls ~ ven by 

a2 = g k R.T 

where k = the ratio .of specificheatsCp"~ 

R = gas constant 

and the Mach number is defined as 
. w 

M· -. a 

If we assume that the Mach :!lumber at inlet is low enough that Tto :: To, then 

. FquatiOJl (94) beoomes tor galea 1 ... 

.~.l - (1 ~ III !{~ ciS (k,. 1) Mt 
(95) 

Q)(\:x-9 
For gases then highefticien01 meEmS low Mach number I> 
. ' '. , 

. . 

The actual solution tor the average velocity tor Blua~ian (42) (or 

average square velocity for 1IA_tion(94) for gases involves the use otthe 

. equation of· state for gases 

pia III R '1' (96) 
. . '. . 

and an appr~:)ld._te or i~rative solution to thetq1ldion. lksmples OaD be , . .. '. . 

found in the published heat transfer literature, and sine. the results: are 

not needed here this work will not be duplicated.,. Fora liquid, sinoethe 

velocity 111 a cylindrical passage is constant, 'E:J.uation (94) becomes 

E. 1 - (1 + Q) v;-
I Cp~to CI .. cry l: -l) 

Eluation (42) bec01lia tor liquidl 

Pl => P2 • 2 t G w ..tiD 

(97) 

(98) 

* now at Heated Gases, Ao So Thompson, Journal otApj;:iUed Mechanios, March 
1950, pp91-9~ . I·· .. 

The Mechanics and tbermoci1Damics ot Stead;r one Dimensional gas nOw, 
Shapiro ad Hawthorne, !ournal ot.lpp1.1ed "'echaaios, Dee. 1947, pp A-.317,A-.351 

COJBpr'e •• 1b111 t7 Iftects on Beat 'l'r~.t.. pd Pressure Ih-op in Smooth Cylindrioal 
!ubes,J" No Nieleen, DCA-MIl Bo" L4C16, Oct. 1944· 

On the One-D1menfl1onal Theol"7 ot· Swad7 CCIDpl'essible nuid Flail 111 Ducts with 
.~~~:,~~n)~~~"~~~i~~~:t~~_, HiO!gl-Montgomerr and" Wassel'lDlm.Octo ..:1947 '~p 891 
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'ExamPle: find the heat transfer efficiency, and ttie'power density, ~ , 

for the following cases: ( ~o= 00 ;) .~ . 

1. Liquid sodium cOoled reactor ·for which. 

F = 00 2' 

w=30fps 

Tv .~ _ Tto III 1000 F 

D = 0.2 in., ,e. 30 1~ •. 

2G Water cooled reactor for which 

F :. DoS 

v=30fps 

T . - Tt _1000 F v max o. 
D =0.2 ino, ..(. 30 in. 

30 Air cooled reactor for which 

F II: 00 5 
1 2 

J~~ ( 2 ',. " ,.,...-~ 

n W.i) :::d: ... , Mo 
o· Wo .'. 

Tv .,.x ... ':to 18 70DO r 

ftc,1I!I5QOO' 

1)" 1 1n~ • .R = 30 in" 

41> Find heat transfer Qoefticient for above cases o What is OUtlet 

temperature of fluid f1;am reactor 0 

5., Plot temperature dia:btbu.ti~ of wall .and fluid along heat transfer 

pu,agetor' (l)cQlUltaDt power density,(2) constant wall temperature, and 

C 3) .iAU~l d1.tr~_t1on of power, tor the last e2;Smpl.es 0 
. , . ",. ( 

';t 
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Thermal ProBerties for use in Exam~e 
. , . . .. ~ 

H~ Na(7000 cl -!P" 
'~, , 

cu/gmO C Cp 1 .302 .24 

i" .010 .0018 .00018 , gm/CIiI. see 

k .0014, 015 .;000056 cal/ sec cmO C 

f 1 0 0, 0 0 78 .00129 gI4/cm3 

Syffim&:[ of Conveoti va Heat 'll;ansfer 

The seotion QD coav.cti •• beat transfer has been conoern.d with pres~e 

los.e. and beat transfer vh_: coouzig, fl14ds flow over heated, surfaces. An 

eq~t1Oa tor pressure losses was given 
2 

U= 4fjr ...'!L 
dx D 2 g 

(1) 

Formulae were given for the friotion factor, f, for laiDinar flow «Re)< 2000) 

f == 16 
(Re) 

aQd for turbulent flow (5,000 < (ie) < 200,900) 

f l1li 0,049 
(Re)0.2 

b equation was gi van for the heat transferred to a flowing fluid 

L9.. == ..u 
dx ~w D 

(T~ - Tt ) 

(19) 

(30) 

(57) 

Equation (55) was given to relate the friction tactor~ f, and the heat 
", 

transfer coefficient, h~ 

{Styf/2 = A ('5) 

Heat transfer analogies for the determination or ~ ,were discus,sed. It was 

found that A. 1s an inverse funotion of the Prandt1 number, heine large wh8J1 

haudtl number, is small\! and vice-vers8.q 

The heat transfer anal0l1.,in COJDbination with conservation laws for the 

CQoUng tlld.d, was uSed to give a relationship between fluid and' ~ssage wall. 

tClllptirature80 
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" Ttl - 1 == 2(TV D&X -'1 ) a). t -I?/D 

TtoTto 

(89) 

Also using the heat transter analogy expressions were qerived tor the P9wer 

deasit;y in a reactor 

~ == 2 F G g Cp fto (t A f 

D 
ITw max ... 1) 
~.Tte 

(88) 

The heat transter etticien~ vas detinedas one minus·the ratio ot pumping 

power to heat removed,or tor ....!...~as 

t-l- (l+~) (;o)(k-l) 

(t ~ (~v lIIIi:t 
\: 'l'to 

For a liquid 

E = 1 - (1+ 13) ~ 
g Op (t A (Tv ~ ~Tt~) . 

2 
Ho (95) 

(97) 

It was tound that tor large power density and high efticiency it was neces

sary to have high specitio heat, 0p' high A (or low Prandtl nUmbSr), large 

temperature ditterence (Tv ax - Tto) 0 For large power density the hydraulic 

diameter should be as small as possible {large ratio ot surface to l"olume) , 

and the density or fluid as large as possibleo However, onecontradictorT 

requirement was tound that high velocit;y give high power density, but low 

ef'ticienc;ro There are other limitations on high velocity, such as erosion 

and corrosion problems, which are often more important than the limitation 

due to efficiency co ~e resolution ot these contrad1ctOrT requirements can be 

achieved onl;y as a result ot engineering experienceo 

BgtYe:l He§t ~apsfF 

A. topic in convective heat transfer vb10h requires somewhat special 

tr:eatment 1s that of heat transter to boiling llquids o As.was indicated ear

lier, no useful information is added by the statement,tor a bo1llDc process g 

ot Equation (69) 
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For the boiUng liquid. sine. the heat added causes negl1c1'bl.7 BJR&l1 changes 
, ' , 

in temperature for engineer1J;ac:procese.s. thespec1.tlc heat would be requifed 

to b~~ntllliu. and the heat·carried away b7~he tlU,1d 1. frcath1a point or 
v!ev 1.tiet~t.o 

, Experimental d.terainatiO!1B have been ,madeot· heat "t1"anster coefficients ' 
. , : . . 

which are appropriate to various ' situation. in bol1ingh~at transfer.' • 

typioalplot* of the results or experiments is shOWJ) 'belo~ for water boiling , 

at ,on, ataosphere and at 100 pei gage under natural convection circulation 

pqt .. eullaerpd chromel w1r.~ Here h i, defined by the equatic 

• ··h '.A T 

.... q c-h,.tt •• fH'!"eQ. per"unit t1ae 

h • heat transfer coeftioient 

./l = heated surtace area 

6T = differenoe between t~perature ot wall and boiling tempera
ture of liquid 

Por appraisal ot the potentialities ot boiiing heat transfer.' part ot 

the 0UJ"'ft for h D. T is sketched 1n t 111 dashed lines 

~at ~4q'to vater Bo1.Ung Under Pressure i Farber aad Scorab, Trans. 
, ASMI.Ma7194S, p 369 ' ,', , " ' 
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One counterpart, in commanexperience, of the boiling phenomenon repre

sented by the plot is the bubble on the top of a hot stove., rfthe tempera

tUre of the stove surface is near the boiling point of the water, the water 

drop will tiatten out OIl the .to.,.. ~d evaporate quietly.. It the tenq>erature 

of tbe surface is considerably arer tb. boiling temperature a f1lm of :Y'apor 
, . ·0 •. '. 

18 tOl"Dled betwecm. the bubble and th. eurfaceo Beat tra:neter into the bubbl., 

in the.later case occurs only through this film and the bubble .. y evaporate 

more slowly than on the cooler surfaceo 

As the temperature of a aurf'ace, nhme::r.ged in a ll.quid, is increased 

above the boiling point, the heat transter coetficient 1ncreasesconsiderably 

$8 ~o_ 1a the plot.. In this region b.,t trusfer 000"". b7 a process 

oalled~ucleate boiling, in which small bubbl,. are f'~td 1amadl.ttly at 

the surface, Qiffusing. from there into the S\lf"l'OundinS f'l-u1d were they are 

r.09I1d .... do The shape of bubble formad and the rate of' format10Q (hence the 
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heat transfer coefficient) are dependent on the properties of the fluid and 

the condi tionof the surface-particularly as the'seaffeot surface tension 

and surface, wetting,1> An oil on the surface will. oonsiderably retard the 

heat transfer. 

As the temperature of' the surface is raised alimi t is r~aoh.d where 

the heatpassiilg through the surface can no longer. be accomodated by the 

. nucleate boilingprooess o Here the liquid b;eaksaway from the surface, 

forming a film of vapor between liquid and surface 0 . Since the amount of heat 

passing through the surface requires a larger temperature difference between 

liquid and surface after the break away, the surface temperat11!'e for equili

briUm . suddenly rises to a new value a8 indicated by the har11011tal dashed 

line in the p1oto This new temperature is in general so'high as to r •• ult in 

failure of the heat transfer apparatus by meltingo . ,Since reactors are to . 
, . 

some extent constant heat output devices, thisJl1&,. be' a problem for boiling 

reactors., 

Before this phenomenon had been recognized experimentally there had been 

some boiler failures, due mostly to local hot spots in boiler tubes where 

filni boiling occurred., One of the deterrent:s to pushing boiliDg hflat trans

to its limit is fear of' tlq.s unstabil1t7, particularly,with hot spots 0 Also 

there is always fear that one tube, which for some reason gets more heat ll 

will generate more ste&lJl than i tsn~ghbar ~ thus its tlovwill be ,impeded, 

it will become hotter stifl, and eventually will passover into film, boiling 

and hence failure., Added to these difficulties, so far as reactors are can-

cerned is the p6ssibility of nuclear instabilities to ohange in density of 

moderators or absorberso 

The interest in nucleate bQiling is sufficiently great, due to high poten

tial heat transfer coef'tici~tst to cause considerable interest, particularly 

under conditions of torced circulation.,' It has been~ound,experlmentally that 
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the heat 'transfer co~fricient8 can be greatly increased by pressurizing the 

boiling,systemo, 

'" 
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. . OAK RIOOE SCHOOL OF RElCTOR TECHNOLOGY 

,ENGINEERING A LECTURE NOTES ~ A. S. Thompson 

50 Thermal Power Czoles 
. . .-

There is much disc\1SsiOll, in connection with proposed applicatione, of, 

nuclear energy, at tJ;le' effect of temperature on the performance of nuclear 

power plants, and of the des'-rabillty, or otherwise, of attaining h.i,h 

temperature. It is, known that the electrical power industry has pushed 

continually fpr higher temperatures, because higher temperatures bave meBl\t • 

higher efficiency and higher output. fran a gj,ven, size of plant, ud n8l1o. 
" 

lower cost at deliv.r~d electricity. The builders ot mQb11epow~ plant. 

, also have been interested in h1gher temperature, primarily tor higher aut

PUt trOJri a given size ot plant (particularly tor p~formaisoe of flilitarl 

appllcations) and tor a saving in the ruel load which' JI1\lSt be c&;Tied.., In 

the case at nuclear ~ergy the fuel load provided far burnup at f'-ssicmable 

material is negligible, and the cost at ruel burned up may be small (or 

subsid1zed by military programs). The ~guments fOr high etficiency for 

miclear applications may well degenerate, to the f'ollowing, where these are 

pertinent! 

(1) More power from a given liz. and weight atplantJ 

(2) Conservation of nuclear fuel; and 

(:3) More tilne befor, repr~essing, and hence less processing cost., 

For many applications (stationary power plants and, some others) size and 

weight are a disadvantage only in so far as the,. are reflectea in coat, and 

it is otten cheaper to use increased weight and size to reduce the necessity 

for .ng1neer1ng4."elo~nto Conservation ~ fuel is generallY' not a pri_ 

consideration in military appl1c.t1OlU1, and processing cost ma::r well be 

•• ctlaclary. The time before reproOes.ing My' de~ermine the uaetulne88 tit 
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Otlll."ta.iJ) mobile applications of nUcle~'ener,gy whic~req.~re rengeo. Fo1" SOlJle 

. ," . . ' , , 

~p'plioa.tions s~c. '8:JlQ . weight $re imp~r:tant considera\1-ou -p8.:rticU;Lar11 

aircraft. 

In most ~es' there will be s9Jl18desire foX" high efficiencsr ~icl;l.:w:111 be 
,. ., 

in c~ct wit~othEn,··rE!lClu1r_nts, the cOnfllcttobe decided tor' the.' . 

4aeepBt.appro~~i~n .t~' tPe ~~jectives ~f' s.~~. over~ design~' Th.·~e8.nt. 
. . ... . . ". .' 

s~oti,on will 'be devo~d' t.O the developmen,t of thermodyna:m:lc ,ex.pres$(ons fw.o 

Power pl,qt ~rtonDance~ 'part1~ularly ~sj,t de~nds on the pert~Q~:"~ a 
. . .., . , . -'." 

,reactor ~ the s7stem.~ T,Qe criteria of ,1mpprta.nce villb~ cq~idl!l~b,.", ' 
. " . 

t9 be ~cl.~ftl~l~~O'· auld Power output. These cri.terla,~ll b.: r'~~.!i ~ , 

~mperatureais~i\>'!1t$.~s, and' f'rict;tp'~a;L pr'~epsUre. 108,el;l iJ:l'the, &S~t~ 
, • " .' t" , : ," ' • • ',' ',' • 

Four Qpmpopeqt§ietti 
. . ~ ", . , ' , ' .,', \,'" 

Fo.rsim,pllo1t,. tl.le,crcle,e~~d~d, vi~ belim1t~d.to fO\1.r: Q~~,.,tIU 
. . . " , , ' ~ ;. 

(1) a cODJPr'e.sar in ~c;b. t4e p;reasure J,e"el 9f th~ \iorld'.l1g fJ.uid,:l.~,: 1'-.J;.'4" 

~bov" ~blEQt.~. ,(g) , a, lle".~er '( ih. '~"'otor) 1~' which' 't4~, flU\d ~,' b~~~~".t~'~~e 
, ..' .., , . . ',' " .' 

top temperature ,(:3) a turb~. by which s~t work is done, and (4) a hera,t 
, , ' , , 

exchanger which cools the fluidag&in toamb1ent temperature for ent~~ce 
, '" 

~ the cQ'!l'lPressoroThis system is considered because (1) it is the fd . .-plest 

thel"llod.7XJ.am1Q ~8t_ capable ot producing an appreciable exce8~, of external ' 

wOl."k, and i,s .tUn~ntal to IIOre complicated systems; (2) some geDer.~ con

clusions can be drawncoDcern:1ng the q.ependence of' ~~~ Q1UlDti t;ie~ of' ta. ... 
, ..', . . . . . 

terest .in pre.~~ anal)"Sfst .d (~) ,s~ actual pow~s~t.~ ~,E?- ,cCllllllOl'lr 
",;,;' 

use correepon<i qui te C~08~ly to ~8 liJ;yst.o, 

It' ~s aasoQm~ tlla1; yl1e phy:siqeJ.statesot' tbe working f~:uid are, comp:t.tely 

d.term1J01,eq by the~~ignme~t of values to two variab~8s, her.e ~ratr\U'e ed 
, , ,',. ,,' .. "" ",:;"," , 

entropy. "pl.ot or 11 t1.Pic~ eycl. 1., then a. ~howil below, ~ere Ttl ~1I[IIri. ... 
"'.: : ' . ' " . .", " " <.' . " '; .... f:.·~ .. 

ture and S ~e eptrop,yo 
. . ': 

':' 
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(1) Compression 
(2) Heating 
(.3) Expansion 
(4) Heat Rejection 

This. is the same siIirple. f'c:nz;-component . system E. o·which. the ~actOl". ~ 

related in the first lectureo 

If the cycle is to operate contin~ously, the plot of S • S (T)t as 

shown above must bea closed tigureo This can be expressed8Jl8.lytical17 by 

stating that the requirements for the .,xistence or a thermodynamic ~le are 

fd T -. 0 (1) 

and 
,.[ d S (1') d l' == 0 (2) r dT 

To use Equations (1) and (2) it is necessary to establish the relation-

ship S :: S (1'). It will be found that this involves friction losses in com-

ponents which will be used to define a component efficiency. The cycle 

efficiency and power output will then be expressed in terms of component 

efficiena.y and temperature ratios across the components. 

Component Pertormgnce 

For any thermodynamics process we can write an incremental expression 

for the conservation of energy 

dq-dv-dh+dlt+de . (.3) 

wh.ere 
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" d q = heat added to unit weight of fluid 

d w =- external work done by flJ1id 

d h == change in enthalpy of fluid 

d k = change in kinetic energy of fluid 

d e = change in potential' energy 

The conservat,ion of momentum requires 
1 

;.. dw = dk + de + V. ,dp + df 

where t( = weight dens! t,. of fluid 

p = pressure in fluid 

(4) 

df = frictional energy dissipated per unit weight of fluid 

Since enthalpy is by definition 

1 "( 1 ) dh=du+7 dp+pd--:::;- (5) 

where du = change in internal energy of the fluid, E:JU4tion (3) can be 

written 

( 1)' 1 dq - d:w = du + pd ~ + 'b"" dp + dk + de 

Subtracting Equati,on (4) from Iquation (6) 

dq + elf II: du + Pd( ~ ) 
B.r deflni tion the change in entropy, ds, is g1 ven as 

ds = du + pd(~) 
T 

Combining Equations (7) and (8) 

ds = dq +df 
T 

(6) 

(7) 

(8) 

(9) 

In r,quatlon (9) it 1e necess4rY to express the frictional loss df in terms 

of the known energy changes in the cycle and then to express these known 

energy changes in terms of temperatnres in the cycle. 

The mechanical efficieney of a procees :\s defined as the ratio of the 

energy output from the process, Eot to the energy input to the process Ein ' 
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" p.=-Eo (10) 
!iii 

For instance, in a compressor, shatt work is the input and an enthalpy change 

in the gas is the output.. In a turbine the. converse is true, the enthalpy 

change in the gas going through the turbine is the input and shatt vork is 

the output.. For a given process - adding or subtracting heat, or doing work

the values of energy input and energy output must differ b,y the· frictional 

losses, Ef , so that 

Eo + Es.n+ Er = 0 (11) 

Equations (10) and (ll) can be combined to eliminate either E:ln0r Eo in 

solving for E
f

- For the process where the input is from an external source 

(compressor or reactor), eliminating Eo 

Er = - ( l-p. ) Efn (12) 

For the process where the output is external (turbine or heat exchanger)~ 

eliminating E.in 
-1 Er = - ( 1 - P. ) Eo (13) 

Now df can be defined for a process involving work (CQmpressors or turbine) 
.. 1 

elfl :: - ( 1- P.l- ) dw (14) 

where the positive sign indicates compression, the negative expansion.. Far 

a process involving heat (reactor or heat exchanger) 
+ 1 

. df2 I: ( 1 - P. - ) dq 
2 

(15) 

where the positive sign indicates heat added to the cycle (reactor) the nega

tive sign heat taken from the cycle. The efficiency p., used in lquation (14) 

corresponds to what is sometimes called by gas turbine designers "small stage 

etficienc,y".. It is the limit of the efficiency for a stage as the number of 

stages to perform a given compression or expansion goes to infinity", 
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. , For a process involving both heat and work simultaneously we can write* 
!1 ±1 

<if = - (1 - .... ) dw + (1 - .... ) dq (16) 
, 2 

Substituting Equation (18) into (9) 

+1 +1 
de 111 - (1 - lJ.-' ) dw + ( 2 - .... - )dq 

1 " 2 
(17) , 

T 

According to our original assumption concerning power media -' that S == SeT) -

the changes, dw and dq, must be expressible as functions ot temperature 

dq :: - til 1 (T) dT ,(18) 

and 

dq: Lf' 2 (T) dT (19) 

It,the processes are considered to extend only over small enough intervals 

that ~1 and ~ 2 are essentially constant 

and 

dw=-C dT , 1 

dq: 0 d T 
2 

Substituting B::iuations (22) and (2,3) into (19) 

dS:! .l!I 
T 

where , ~, ! 1 . !1 J 
K == ~1 - ~ ) 01 + ( 2 - ~ ') 02 

For anyone process, Equation (22) can be integrated to give 

where 

S - S m . L1 

,,111 
m 

~ 
'lrm-1 

• log (1"m
K

) 

and Tm = the temperature at the end ot the mtb processo 

(20) 

(21) 

(22) 

(23) 

(24) 

For the case considered here, where there are tour disar",processes, 

* For a more general treatment see '" Power Plant Analysis If , by Ao S" Thompson 
NAA-SR-19, October 26, 1948 
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" Equation (1) can be expressed 

4 ~ (Tm - Tm-l) ::: 0 
m=l 

This can be rewritten 

1. Tm = :i 
m = 1 m=O 

Cancelling identical terms 

..!L = 1 
To 

Since 
'4 

...!L == rr 1m 
To m=l 

Equation (27) becomes 

4 rr 1'"'m == 1 
m=l 

-" 

T 
m 

(25) 

(26) 

(27) 

(28) 

Equation (28) takes the place of Equation (1) for the four proces~cyc1eo 

For the discrete processes Equation (2) becomes 

4 
~ (Sm - Sm-1hi~ = 0 
m= 1 ' 

(29) 

Substituting Equation (24) into (29) 

4 I( 

2: lac ('1- ) - 0 • 
(30) 

m-1 

From the sUlDD1l!ltion property of 10garithium 

1 (J n- J()} = 0 
og L m=l m 

(31) 

or 

4 I{ 
IT (1'-.)-1 (32) 
m=l 

Equations (28) and (32) are the conditions for the existence of a power 

cycle in terms of temperature ratios, and process efficiencies which determine 
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.. • the factor, k (Equation. (23». For evaporation processes, involving a change 

of phase where the temperature remains constant during a process, a diffe

rent approach is more tractable.* Equations (28) and (32) apply particularly 

to gaseous media. They will now be oonsidered for a simple gas turbine 

oycle. With Equations (20) and (21) a oomplete thermodynamio desoription 
.'\, 

) 

of the cycle will be obtained. 

It is neoessary to evaluate the constants Cl and 02 for eaoh of the 

four processes. . This will be done using E:tuation \3).. Fora oompression 

or expansion in whioh no heat is added and ohanges in kinetio and potential 

energy are negligible Equation (3) becomes 

dw=-dh (33) 

Sinoe for a perfeot gas 

db .. Cp d'l' (34) 

Then 
dw=-C d'l' . P (35) . 

Comparing1!quations (35) and (20) 

Cl = Cp (36) 

Likewise for the case of heating or oooling with no external work 

dq 111 db .. Cp d'l' (37) 

Hence in Equation (21) 

~ = Cp (38) 

Now these values of Cl and C2 from Equations (36) and (38) can be used to 

evaluate k in equation (23) and the work done, A w, and the heat added, 

IJ. q... 'l'his will be oarried out torI (1) an adiabatio canpressor, (2) a 

reactor; (3) an adiabatic turbine; and (4) a heat exchanger. The particular 

combination of processes is that of the simple gas turbine, and is used here 

for demonstration purposes.. The conditions for the existence of a cycle 

will be applied to the processes and expressions for efficiency and power 

* Liquid-Vapor Power System, By A. S. Thompson, NAA.-5R-26, 'eb. 3, 1949 
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. , output will be developed • 

Compressor 

Equation (23) tor. k henc~ becomes tor a compression 

K == (1 - Il) C C rc p 

The work done in driving thecomp~essor is 

A We == - C ('1'1 - '1' ) • P . 0 

== - C' '1' (,- - 1) 
p 0 c 

Reactor 

From Equation (23) , 

~ == ( 2 - '1\) Cp 

The heat added by the r,eactor is 

A ql == Cp ('1'2 - '1'1) 

==Cp To ~ (.,.... - 1) 
. ~ 

Turbine 

From 1!quation (23) 
1 

x., == (1 - ·llT ) Cp 

The work done by the turbine is 

..6. W == - Cp ('1''2 - '1' ) ,T J 2 

(39) 

(40) 

(41) 

(42'" 

(43) 

== - Cp ~c 'f'TB,TJ. -rT- 1} (44) 

Heat Ixaha.nger'; 

P'r0ll Jquation(23) 
1 

KF == ( 2... ~) Cp . 

The heat dumped to th~ ~eat exchanger is 

~q • Cp Cf4 - '1'3) 

(45) 

== Cp To ry-- c ..., R .,.. T (1"" H - 1) (46) 

Let us define a temperature ratio, -,- • equi'Yalent toihe ratio of the top 

temperature at entrance to the turbine to ambient temperature, To0 Then 
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,- = "'Ic I R (47) 

Then the heat added to the cycle, with which it is to h charged is)from 

Equation (42) 

Q·~qR.C T ('1"'-1") p 0 c (48) 

The net work done by the cycle is the sum of the turbine work and compressor 

work, or 

w = - Cp To {,..o - 1 +,... (1-,.. -1) } (49) 

The efficiency is 
.iL 

E = Q. :a 1""c - 1 + r (rT - 1) 

l'-'"'r c 

(so) 

These are subject to conditions from Equations (28) and (32), or 

1"',- r =1 T H 

Ic-IR . KR It Ka. ""c ...., /.." 'H =1 

Combining Equations (51) and (52) to eliminate 1"" a 

Kcr- KH Kc-~ Ka-~ 
, T '1'c ,., = 0 

Or solving tor -r T 

-'"/ T= 

K ... Tl'_ 
C ""fI, 

:?,~ - KT - Ka 

Substituting Equation (54) into (49) 
~ 

Ka _ Ita 

Kr - la 

w = " C To (, - 1 _ .~ + AV, . ~r KR "l'-' 
- p L c I . - IH I c 

The work done by the cycle will be maximum when 

d W = 0 err c 
or when 

-1l3-

(51) 

(52) 

(53) 

(54) 

10 -:-:: lR 1 (55) 

IT - Ka ) 

(56) 



" 

Ke-KR r 
K..r - Kg 

KT - KR 

KT - KH 

1C 

Solving Equation (57) for""'" e 

Ke .- KR + ~-Kg 

KT - KH =1 (57) 

(

K _ It ) Kf - Kg 
...... = t e gR Ke,"!'~+~-KH' 
'eT - H 

J,.-.,._,: Kft ' 
1'- K. - Ka + lIT ... K (58) . H 

Let a= ~-KR (59) . 
Ke - 'Eft + .K.r- .Kg . 

b • Rir - Kg (60) . 

Ke -KR .'Jt.r -Kg 

Then E::tuation (58) 1:eeomes 
. b 

I. = (1 - b\ "'t a 
e b') . 

(61) 

lIquation (54) becomes l ) 
. - 1 - b 

'"rT III rc b (62) 

Substituting Equation (61) into (62) 
. \-(l-b) (a - 1) 

7' T = (1 b b) . I (6.3) 

((1 - b I' - 1 + r fl - b ' ,....... -1 (64) 

Substituting ,Equations (61), (59), and (60) into (55) ~ 

) 
b a ~)- (l-b) a -1 ~ 

.. • - Cp 1'0 L \ b. C b I 

Equation (64) can be simplified by adding and subtracting the quantity 
1/2 

" 2 1 a 1/2 (2 " ) to complete a square [ 1} 
W » CpTo. [ p~ -1 ] - bb H:Vl-b) .--,- - 2 I (65) 

From !quation (;0) then the efficiency of the cycle is 

[ 
1/2 ]2 t 1 a - 2 ,1/2] 

E =, -l' - b (I-b)"" 
b (1-1» . , 

(66) 

i-r;r ,a 
-114-



'. 
The values of' a and b are given by Equation (59) and (60). For the case 

. where the efficiencies of all components are t~e same and the specific 

heat is constant thr()ughouu,;:the cycle, some simplifications result. 

Constant specific heat, Cpa and component efficiency the same for all 

components 

For this case f,quation (60) gi ves 

b==1/2 (67) 

Using this value fo,r b, P4uation (61), the condition for.maximum power out

. put :f'rom the cycle gives fQl"dthe' tem~rata.re·-ratio -across the compressor 
fa."'" ' 

T. == -'" " (68) 
c 

The temperature ~atiQ across the turbiQe is 
, (a-l) , 

t. I; ,,' T 
The work outpu.:t; h'om the cycle is ~ [ ']1 

{~ 1/2 l a 1/2 
W = Cp To l7" - 1 -~ I - I 

The O)'ole etf'ioienO)' /~ ] 2 [ J. 
E = r 1';: -1 _ 2 ,..a _ l' 1/2 

1" _ 'r a 

Also for this case, from Equation (59) 
1 

a-l+; -u. 
2 

Or solving Equation (72) for the efficiency ...------
tL = 1/2 (i - 2 a + {5 - 4&+ 4&2 ) 

Or approximately, for tL not too much less than unity 

tL N 1 .. 5 -a 

(69) 

(70) 

(71) 

(72) , 

(7:3) 

(74) . 

Equation (74) gives a physical interpretation to ~o It is appr~ximately 

105 less the '"average" campo~ent efficiency, for component efficiencies not 

too far from unit yo This hypothetical caSe of equal efficiencies for all 

components is found to be a good indicator of cycle performance, The value 
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" po, to be used is actually very close to the numerical average of the actual 

component efficiencies for the cyclee The result~ using b ~ 1/2 are quite 

close even for cases where b is quite different from 1/2. For specific cases 

actual values should be taken, but for our purposes the results will be good 

enough., 

In the accompanying figure is shown a plot of the dimensionless power 
. . . ., .... . 

output from the simple gas cycle, W/CpTo ~.W:, and the cycle effioiency, I, 

for the case where b.· = 1/2. For comparison the Camot effioienoy is also 

shown., The qarnot efficiency is just 

1:-1 
E- 1"" 

For our gas cycle, from 1!quation (71), fora - 1/2, the efficiency with 

component efficiencies of 100 percent would. be 
. 1/2 

E III 1:' -1 
1'1/2 

By adding various complicating features such as "intercooling". and "reheating"' 

the efficiency of the gas cyc~e can be made to approach more closely that of 

the Camot cycle, if one works only on papere However, in actual experience 

it is generally fOUDd difficult to make these complications pay their w~o 

There is always a tendency for miscellaneou.'pressure losses to dissipate 

the possible advantage of such a scheme. 

The plot shows that efficiency reaches a region of vanishing return 

as temperature is increased indefinitely,> . The power output, within the 

limits of our assumptions, does not seem to.. However it should be remembered 

that it may not be possible to increase temperature along a line of constant 

component efficiency, but that the component efficiency will fall off as 

temperature is increased. This is a specific design problem involving the 

design of compressors, turbines, and heat eJtchangers, and their matching., 

Inspection of the plot of cycle performance will show the justification 

for certain approximations, such as that oflituation (74)" It can be seen . 
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that if' the parameter, a, is as low as .75, the temperature ratio required 

for the system to have greater than zero output is about 11.5. If the am

bient temperature were 5000 R (Rankine - absolute temperature on engineering 

scale - 4600 R = CO F), then the top temperature of the cycle would be 500 x 

11.5 = 57500 R. This would seem like an unwarranted struggle to achieve 

marginal performance. Henee component efficiencies to be of a..ny engineering 

interest must have an average at least greater t~an 75 percent ... Since pre

sent gas turbine practice uses temperature ratios around 3 or 4, as limited . . 

by present materials, the lowest average component efficiency must ge some-

where around 85 percent.. Representative values in current jet-engine 

praotice.are probably about 

Poe = oSO 

Po
R 

= .. 95 

lWr = oS; 

iJ.H = 1 .. 00 

Average po = .. 90 

(Combustion Onamber) 

(discharge to atmosphere~ no heat exchanger.) 

From the plot, iJ. = .. 90 corresponds to a minimum temperature ratio of opera-

tion of about 2 .. 4.. Wi th an ambient temperature of 5300 R (700 F), this cor-· 

responds to a top temperature at the inlet to the turbine of 12700 R (8100 F) 

An additional problem should be mentioned here. Power systems are designed 

for ndesign pointn operation. For a system with a top temperature at the 

design point of 12000 F, the component efficiencies will gene~l1y be arrang

ed to have maximum. values as near as possible to this design point" . At all 

other conditions the components efficiencies will be less than the maximum 

value. Hence the system having an avera,. coaponent of .. 90 at the de.ign 

point of 12000 P would probabl,. not operate at all at SlOO F as shown aboft 

because ot deterioration of component efficiencies.. In airplanes lIoff

design" operation is required by changes in speed, altitude" ambient 
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temperature, cargo load, etc. 

It should be noted in the plot that a marginal design is subject to 

-two very serious limitations.. The first is that, if the design point is 

missed because a component is not as gQod as had been supposed, the marginal 

design will not operate at all. The second is that the marginal design will 

have poor off designpermormance, which, in the case t;Jf a gas turbine,means 

that it will be hard to start.. It should be noted also that a small change 

in component efficiency or temperature ratio results in a large change of 

cycle efficiency ( and power output) in the region of present operation of 

gas turbines 0 

It is not planned here to discuss in detail liquid-vapor power systellllU* 

In general it can be remarked that liquid-vapor systems' ( for instance steam 

power plants) tend to approach much closer than gas turbme cycles to the 

Carnot efficiency and hence are not subject to ~ of th~ limitatibnsof 

the gas turbine systemo For example the overall performanoe is not so 

sensitive to changes in component efficiency or to changes in temperature as 

the gas turbine oycle ~ primarily because the efficiency is already fairly 

high. Pumping power in the liquid vapor system is low and therefore the 

starting problem is almost inSignificant. 

Its 

The Rankine cycle is a good approximation for 'a. liquid-vapor ~18tem. 
i 

temperature-entropy diagram is schematically as ,' ......... " cn , , :; 
T / - (2) \ t (4) 

, 

, 
I 

I 

r 

~."f~ 

'''' \ (5) I \ J 
I 

\: 
"-, 

" ,: 

shown below I) 

(1) Liquid Heating 
(2) Vaporization 
(3) Superheating 
(4) Expansion in turbine 
(5) Heat rejeetiOll' 

,..c;. 
- )~;:~o:·<;::":';r:iit',;, "<1~~' '_ . ~- .... ~;:i'~1~\~~~:;i;\~:,\,<:';~~ ~ _~~_,_;.:i., •. ,,-:.)"J \:JIll_:~~_tr.;;i,_~".j.,,~ ~ __ ~.~»jjfi.~. 

*' LiqUid Vapor Power Systems, Ao S .. Thompson, NAA-SR-26, Feb .. 3, 1949 
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It can be seen that the cycle is a closer approach to a Garnot cycle than 

the gas turbine. Changes in temperature and entropy due to pumping (bet

ween (1) and (5» are so small as to be negligible and do not show upon 

the diagramo 

T T 

Camot 
s Liquid-Vapor 

s 
Gas-Turbine 

s 
.. 

The cycle discussed here for the gas turbine was designed for maximum 

worko It could have been designed (an<i for some cases would have been) far 

maximum. efficiency or for maximum output per unit weight or size of p1ant~ 

and the general approach would have been the same~ 

Examples 

10 Consider a gas turbine cycle consisting of four processes havingtbe 

following values of parameters I 

Compressor 

Cpc m 00 24 Btu/lb 

J.L = 00 80 
c 

Heater 

C :I: 0 25 B /lb 
ph " tu: 

J.L R = 0 0 85 

Turbine 

Cpt = 0 .. 25 Btu/lb 

J.L
t 

= 0.90 

D 

Kc = 0 0 24 (1 - 0.80) 

= 0.048 

K • (2 - 0.85) 0 0 25 
hR 

= OQ288 

1 
Kt = 0 .. 25 (1 - 0.90) 

= - 0.028 
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Heat Exchanger (!Atmosphere) 
1 

Cpe = 0.24 Btuilb 

'iI l1li 1.00 

'Ii = (2 ... 1 .. 0) 0.24 

.'0.240 

For thi.s~example 

a, = - 0.028 - 0.288 ... 0.622 
0.048 ..... 0.288~.0.028.~0.240 

b = - 0.028- 0.2AQ ... 0.527 
0.048 .... 0.288.-.0.028 ...... 0.240 

b (l .... b) .527 .473 
b (I-b) = (.527 ) (.473 ) = 0712 x .702 = 0.50 

For this example then, Figure 1 can be used, for .. 5, 

fhe value of the maximum worJ output is given by 

v' 62 W ... o. 

The efficiency of the cycle is 

E' = 25 per cent 

For an overall temperature ratio of ~= 10, 

W' l1li 209 and.E' = 46 per cent. 

20 Calculate the specific thrust (lb of thrust per lb of air per second) 

for a jet engine designed for maximum thrust at a flight speed of 1,000 fps 

(Mo ~ 1.0) at a flight altjtude of 36,000 ft .. (To ... 3900 R) and conforming 

to the conditions of Example I. It is assumed here that the efficiency of 

compression is the same in the diffuser and compressor, and that the effic

iency of expansion is the same in the nozzle and in the turbine. 

~sum1ng that the mechanical energy expended by the engine on the atmos-

phere is used entirely to create a change in velocity across the engine, 

then this energy i8 

p ... V22 _ v. 2 
o 

2g 

The specific thrust of the engine is 'given by 
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F = v2 - Vo 

g 

Eliminating v~ between these equations, the specific thrust is 

2 F = 2 g P + Vo - Vo 

g 

The jet efficiene,y is then 

F Vo - p 

For ,." III 5 

p = (390)(0.24)(778)(0.62) = 45,000rt. 1bo 

lb. 
2 . 

F = (2){32,2)(45,000) + (ltOOO) - 1000 = 3003 lb. sec. 
. 32.2 lb. 

Jet efficiency = (100)(30,3)(1,000) = 67 per cent 
45,000. 

For 1'" = 10 

p ~ (390)(0.24){778)(2.9) = 211,000 ft. lbo 

1b" 

F = (2)(32.2)(211,000) + (1,000)2 - 1000= S7.2 1bi sec. 
32,2 1bo 

Jet efficiency = (1000)(87.2)(1,000) = 41 per cent 
211,000 

3. Oompute the ~~~ in performance in Example 1 due to SUbstitution of 

a heat exchanger having 80 per cent mechanical efficiencyo For this case 

only KH changes, its new value "being 

KH III (2 - 1/8)(0.24) = 0.180 

Then 

a III -0,028 - 0~2gg = 0,705 
0.048 - 0.288 - 0.028 - 0.180 

b = -0.028 - 0.180 = 00 463 
0.048 - 0.288 0 0.028 - 0.180 
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The values of power out~~ and cycle efficiency may again be found very 
~.~ 

closely from Figure 1. 

1" = 5 

WI = (negative) 

E' = (negative) 

1"-10 

W' = 1.1 

E' = 21 per cent 
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