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ABSTRACT 

4 

A diffusion battery consists of a number of long, 
narrow rectangular channels arranged in parallel, 
through which an aerosol moves in streamline flow. 
The object of the work described in this report w a s  
to develop an equation relating the fractional penetra- 
tion of aerosol with the diffusion constant of the aerosol. 

An equation has been developed which allows the 
calculation of the diffusion constant f rom known oper- 
ating parameters  in the case of negligible settling due 
to gravity; and a second equation developed to permit 
calculation of the settling velocity in case of particle 
removal due to both diffusion and gravity. A method 
for calculating the particle size and mass  from the 
diffusion constant and settling velocity is given. 
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THEORY OF A DIFFUSION BATTERY 

I. Introduction 

5 

The "diffusion battery" is primarily a device for measuring the dif- 
From the meas- fusion constant of aerosols (smokes) dispersed in air. 

ured diffusion constant, the particle size of the aerosol may be calculated. 
It is also possible to use the battery for determination of the settling veloc- 
ity of the particles due to gravity. This permits the calculation of the mass  
of the particle. Rodebush2 w a s  probably the f i r s t  to use  the t e rm 'hiffusion 
battery" since his apparatus consisted of 40 parallel rectangular plates, 
somewhat resembling an automobile battery. 

A sketch of a typical diffusion battery is shown in Figure 1. It con- 
sists of a battery of long, narrow, parallel channels, through which the aer- 
osol moves in streamline flow. 

The battery may be used in either of two positions. One of the positions, 
as indicated on the sketch, has the short dimension of the channets perpen- 
dicular to the direction of gravity. The other position, obtained by turning 
the battery on i ts  side, has the short dimension parallel to the direction of 
gravity . 

To measure the diffusion constant of the aerosol with the apparatus, 
the short dimension of the channel is placed perpendicular to gravity, and 
the fractional penetration of the aerosol measured at  a known flow rate.  
The mechanism is as follows: As  the aerosol travels through the channel 
in streamline flow, those particles near the w a l l  of the channel diffuse over 
to it and are removed from the a i r  stream. This sets  up a concentration 
gradient in the c r3s s  section of the channel, and the particles then move by 
diffusion in the direction of decreasing concentration, that i s ,  toward the 
wall, and a certain fraction of the particles a r e  removed f r o m a e  a i r  s t ream. 
The fraction removed for  the air s t ream, hence the percentage penetration, 
is a function only of the diffusion constant of the aerosol, provided the effect 
of gravity is negligible. 
plates a r e  parallel to gravity. 

This is almost always the case when the battery 

1. 

2.  

Langmuir, Irving, '%'Filtration of Aerosols and Development of Fi l ter  
Materials'' (Part IV), OSRD-865, Sept. 4,  194z4 
Rodebush, W. H . ,  C.E.  Holley, J r . ,  B. A. Lloyd, 
on Fi l ter  Penetration by Aerosols of Very Small Particle Size'' Univ. 
of Illinois, OSRD-2050, Nov. 24, 1943. 

I t  Progress  Report 
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To measure the settling velocity of the particles, the battery is used 
with the short dimensien of the channels parallel to gravity, and the per- 
centage penetration again determined. Frequently, in this case , both 
diffusion and settling contribute appreciably to particle removal, and the 
resulting differential equations a r e  difficult to solve. 

Probably the f i r s t  work done relating the diffusion constant with the 

Townsend used a circular tube a s  his battery, to determine the 
fraction of diffusing particles penetrating the battery was done by Townsend 3 
in 1900. 
diffusion constant of ions in air. 

In 1935 Nolan and Guerrini, with the aid of Timoney, developed an 
equation for a rectangular battery such as is described here. However, 
their equation is not valid when the penetration is nearly 100%. 

For this reason it was  decided to re-derive the basic equation for the 
case of negligible effect due to gravity. After the work was complete, a 
la ter  paper by Nolan and Nolan5 was  found, which confirms very closely 
the final equation given here. This is given below: 

- J(s) = fraction of aerosol penetrating battery 
J (0) 

4DL s = -  
3Qa 

D = diffusion constant of aerosol, cm2/sec 

L = length of battery in direction of flow, cm 

a =one half the channel width, cm 

Q =flow rate  through one channel, cm3/sec per  unit height 
of channel 

3. 

4. Nolan, J. J. , and V. H. Guerrini, The Diffusion Constants and Velocities 

Townsend, J. S. "The Diffusion of Ions into Gases,'' Transactions Royal 
Society, 193-A, 125-158 (1900). 

of Fall in Air  of Atmospheric Condensation Nuclei, 
Academy, 43, 4-24 (1935). 

sation Nuclei," Proc.  Royal Irish Academy, 45,  p. 47 (1938). 

1 1  

1 1  Proc. Royal Irish 

5. Nolan, J. J. and P. J. Nolan, '!Diffusion and Fall  in Atmospheric Conden- 
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This equation applies when the channels a r e  placed parallel to gravity, 
and is valid when the influence of gravity can be neglected. 
of the dimensions shown in Figure 1,  calculations show that gravity is 
negligible f o r  a particles of 0 .3  microns radius o r  less.  

Fo r  a battery 

It was also decided to attempt to develop an equation for the case of 
the channels perpendicular to gravity, where both gravity and diffusion 
contribute to particle removal. 
the numerical values of the lowest eigenvalues have been calculated. 

A formal solution has been obtained, and 

Subsequent sections of this paper give the mathematical theory of the 
Implicit assumptions in the derivation of the equations diffusion battery. 

are: 

(1) The aerosol is homogeneous with respect to particle size 
(2)  All particles which contact the wall of the channel adhere 
(3 )  The effect of turbulence in the entrance to the channels is negligible 
(4) The pressure drop across  the battery is small 
(5) The diffusion of the particles is not affected by electrostatic changes 

on the particles o r  battery wall. 

11. Derivation of General Equations 

The diffusicn battery considered below consists of a large number of 
rectangular channels of lateral dimensions 2a, 2b and longitudinal dimension 
L. The dimension b is very 
much greater than the dimension a s o  that for  many purposes one may con- 
sider b as infinite and deal with the case of parallel planes. A s  origin of 
coordinates, we take the center of the front entrance of the channel with the 
axis of X perpendicrdar to the long width of the channel and axis of Y per-  
pendicular to the short width of the channel. The axis of 2 we take positive 
into the channel. 

It is sufficient to consider only one channel. 

Thus the channel is bounded by segments of the planes 

x =  a 
x = -a 
y =  b 
y = -b 
Z =  0 
z =  L 

In operations,eiiT containing dust o r  smoke particles is forced through the 
channel at  low rates. Neglecting entrance effects, the flow wi l l  be laminar; 
and disregarding this entrance effect and edge effects of the long width, the 
velocity profile wi l l  be parabolic. Let V (x) be the velocity at  a point x 
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centimeters from the central plane of the channel and Vc the velocity at  
the central plane. Then it is we l l  known 6 that 

v (x) = vc ( 1  - x2/a2) 

for a viscous fluid. 
unit height of the channel. 

Let Q be the volume of air per second flowing through 
Then we have 

We can thus express the velocity profile in term? of Q,  

Let the diffusion coefficient of the dust o r  smoke particles in the air be 
D and let $6 (x, y, z) be the number of particles per unit volume at  the 
point x, y,  z. 
whose components a r e  

Then diffusion alone will  give r i s e  to a current density vector 

--f 
( J ~ ) D  = -D a@/ax, 

or 
4 
(J),, = -D grad $. 

In addition there will  be a net current density in the Z direction due to 
convection of amount 

* 
(Jz)c = 3W4a ( 1  - x2/a2)$b, 

and a current due to the influence of gravity directed vertically downwards 
whose magnitude wi l l  be 

6 .  Lamb, Sir  Horace, Hydrodynamics, Sixth Edition, p 582, Dover 
Publications, 1945. 
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. 

where $ is the terminal velocity of f ree  fall for the particles considered. 
As mentioned in the introduction, there are two experimental arrangements 
of primary interest. 
parallel to the axis of negative y and i ts  effect is negligible since the dimen- 
sion in this direction is large. 
the negative x direction. 
evant to the problem can now be written down by applying the equation of 
continuity, viz 

g. 

The f i rs t  arrangement has the direction of gravity 

In the second case the force of gravity is in 
The necessary partial differential equations rel -  

- a 4 t d i a =  0 
a t  

o r  more explicitly 

a 4  3 - DV2+ t (1 - x2/a2) a i  t vg div ( b g )  = 0. 
4 a t  4a 

+ In the above, g is a 
L aplac ian operator 

unit vector in the direction of gravity and v2 is the 

If we  consider a steady state of the arrangement in which the effect of 
gravity can be neglected we have 

Neglecting diffusion effects in the y and z directions further reduces this to 

4D Let x = a x ' ,  s = -z. 
3Qa 

In te rms  of the new variables x' and s we have, for  (x' 8 S) 

If the direction of gravity is along the negative axis of x, by neglecting 
diffusion in the Y 2 plane one obtains 
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4D Again letting x = ax' , s = - z, the equation becomes 
3aQ 

If w e  assume that the streamline flow is established exactly a t  z = 0 and 
that the entrant air contains a uniform concentration of particles, the 
boundary conditions a r e  

# (*a ,  z) = o z >  0 

o r  in te rms  of x' and s 

(i 1, s) = 0 

The f i r s t  boundary condition expresses the fact that particles impinging on 
the walls of the battery adhere thereto. 

The quantity which is measured experimentally is the ratio of the total 

Let K (s) be the total number per  unit time crossing the plane s = 
current of particles leaving the battery to the total current entering the 
battery. 
const. Then K (s) is proportional to the quantity J (s) where 

111. Solution of the Boundary Value Problem When the 
Effects of Gravity are Negligible 

The partial differential equation to be solved is 

with the boundary conditions 

@(x,  0)  = 1, 
m ,  s) = 0 ,  
@ ( - L  s) = 0 
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where we have dropped the prime on x. We note that there a r e  solutions 
to the partial differential equation of the form 

p (x, s )  = )l/(x)e-as 

where a is constant. The differential equation for y ( x )  is then 

and the boundary conditions are 

ym= F(-l) = 0 

This is an eigenvalue problem with a discrete spectrum of eigenvalues ai . 
Let the function correspondingto the eigenvalues a i be yi (x). W e  shall 
now show that the sequence of functions {vi} is orthogonal in the interval 

- 1 <= x <= t 1 with weight function ,O (x) where 

P(X)= 1 - x  2 . 
The differential equations for  Y,fi (x) and qj (x) are - 

Multiplication of the f i r s t  equation by% , the second b y v  and subtrac- 
tion of the results gives 1 

The te rm in curly brackets above is the derivative of 

Accordingly if we integrate the foregoing expression from - 1 to t 1  w e  get 
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Since b o t h Y i  and '3/1 vanish at  x = *l we have 

This is the required orthogonality relation. 

We now assume that the set  of eigenfunctions [ v i ) a n d  the set of 
c \  

eigenvalues La$ a r e  known. In addition we suppose that the eigenfunctions 
have been normalized, i. e .  

1 

(1  - x 2 )  \yT (x) dx = 1. 

The formal solution for s) can now be written down Px 

The problem is solved if we  can determine the constants + so that 

p(x, 0 )  = 
y =  1 

Multiplication of the two members of the preceding equation by ( 1  - x2) 
y n  (x) gives 

and integration from -1 to t1 gives further 
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. 

the coefficients of a11 the other constants being zero by virtue of the 
orthogonality of the functions 

It is of interest to examine the behavior of the function 

J (s) = i (1 - x2) 9 (x, s) dx. 

We have formally 

At s = 0 we have 

Therefor e 

2 -a s a y e  T .  

dx 

This completes the formal solution of the problem. 
with obtaining the eigenvalues and eigenfunctions needed. 

eigenfunctions wil l  appear in i ts  expansion. Accordingly for the present we 
seek only solutions for which 

We a r e  now concerned 

Since the function f (x) = 1 is even in the interval -1 <= x si- 1, no odd 
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These two conditions above completely define the value of the solution to 

a t  the points x = *l. Denote this value by 

The desired eigenvalues a r e  the roots of F (a) = 0. 

Several values of F (a) can be obtained by direct  integration of the 
differential equation. 
equation for (x) is 

x) = 9) (x) e - W 2 )  Wx2 . The differential 

and putting t = all4 x gives 

d S  - 2t dt (6- 1)+ (t) = 0. 
dt2 dt 

This is Hermite' s differential equation7 and if 
integer, solutions are Hermite Polynomials of degree n. 
solutions so that we restr ic t  ourselves tot= 4n t 1 ,  
solutions are then 

- 1 = 2n where n is an  

(n = 0 ,  1, 2). 
W e  need even 

The 

9 = H2n [(4n t 1 ) 1 / 4 ~ ]  
o r  

= Hzn i(4n -t 1)1'4 -(2n t ?j) x2 wherein Hzn is 

the Hermitian Polynomial of degree 2n. The even Hermitian Polynomials 
for the f i r s t  f ew orders  a r e  given below; 

7. Courant, R.  and D. Hilbert, Mathematische Physik, p. 440, Springer, 
Berlin, (193 1). 
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H2 (u) = 4u2 - 2 ,  

. 

The solutions obtained do not yet give values for F (a) since we do not 
necessarily have ( 0 )  = 1. The correction solutions are Y 

W e  have thus evaluated infinitely many values of the function F (a) whose 
.roots we desire.  

Suppose that 
00 

The differential equation gives the recursion relations for the a, (a) as 

Dropping the argument a and rearranging w e  get 

Our boundary conditions give 

a, = 1, 
al = 0 

The value of F (a) is then 

where the a, (a) a r e  computed from the recursion formula above. 
w e  give the f i r s t  two roots of F (a) = #O and the se t  of a, corresponding 
thereto which define the eigenfuwtions. 

Following 
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a = 2.827764 

. 

n 
0 
2 
4 
6 
8 
10 
12 
14 
16 
18 

yl (XI = x a n  xn 

a = 32.147265 
n 
0 
2 
4 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 

a n  
1.000000 

- 1.413882 
.568824 

- .007071 
,038160 

- .007071 
.000969 

- .000125 
.000013 

- .000001 

a n  
1.000000 

- 16.073633 
45.739217 

64.280955 

27.008805 

5.359767 
- 1.929368 

.616647 
- . 177159 

.046230 
- .011048 

.002436 

.000498 

.000095 
- .000017 

.000003 

- 66.237136 

- 46.619996 

- 13.005300 

- 

Further solutions can be found in the same manner but the number of con- 
stants required in the expansion rapidly becomes prohibitively large. 

A second method of obtaining solutions makes use of a variational 
principle. Consider all sectionally smooth functions (x) for which simul- 
tane ou s ly 
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. 

c 

(1 - X2)  # 2 ( ~ )  d x =  1, I -1 

and consider the value of the integral 

1 

-1 

for every function of the c lass  defined above. Then the eigenfunctions y i  
(x) are those functions p (x) which give stationary values to I (p). W e  
make use of this in the following manner: 

Using the Schmidt orthogonalization process,  8 we construct a sequence 
of even polynomials F,, (x) which individually satisfy the boundary condi- 
tions 

FZn (*-1) = 0, 

and in addition, 

1 

As an approximation for  x) we take 9 

The value of I (v*) will  then be a homogeneous quadratic form in the vari-  
ables A , ,  A2, . . . . , A,; i. e. of the form 

8. Courant, R. and D. Hilbert, Mathematische Physik, p. 41, Springer, 
Berlin, (1931). 
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I 

. . .  c , N  c12 

c12 c 2 2  aS22 C2N 

......................... 
... 1 N  

I = C l l A l t  2 C12A1A2 t C,,A2 2 -t 

2 
i- CN-I , ,N A ~ - i  A N + C N N  AN 

where the Cij are constants. The condition that 

1 

will  be expressible also a s  a quadratic function of the A, viz. 

2 2 2 S =  S11Ai-k S22A2 + - * + S N N  AN= 1 

since the polynomials a r e  orthogonal among themselves. 

W e  thus need to minimize the function I of the N variables Ai subject 
to the constraining relation S (A 1, A 2, ..... AN) = 1. 
we make use  of Lagrange' s undetermined multiplier. 
following equations for a minimum of I; 

To accomplish this 
This leads to the 

........................................ 

The N homogeneous equations for the N unknowns Ai have a nontrivial 
solution if and only if the determinant 

D =  

is zero. Solving the equation D = 0 involves finding the roots of a poly- 
nominal of the Nth degree. 
D = 0 w e  can solve for 

For each value of the N values a which made 
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A N  A A 3  

A1 A1 A1 
$ . . .  - Y -  

2 

and finally determine A, f rom the condition 
2 

1 

The approximate eigenvalues are thus determined and the approximate 
eigenfunctions likewise. 
The function 

obtained for  their u se  is given below: 

-2.827785s J(s) = .91489 e 
J (0) 

t . 059245 

The last  method of solution we present is similar in technique to the 
In essence it is an expansion in Fourier standard perturbation methods. 

Series. We s ta r t  with the solutions to the simple boundary value problem 

with boundary conditions u (*l) = 0. 
functions 

The solutions a r e  of two types. Even 

u, = cos (m t 112) Tx m =  0, 1, 2 s  * . .  

with eigenvalues A ,  = (m t 1/2)2 IT' and odd functions 

u r n =  sin m IT x m =  1, 2, ... 
2 2  with eigenvalues X, = m TT . 

odd functions f rom consideration so that in the sequel Um wi l l  always denote 
the cosine function. Now we turn to the differential equation for the rnth 
eigenfunction of the equation 

For  reasons already stated we dismiss the 
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C u d  and expand ym in t e rms  of the orthonormal se t  

The second derivative of ‘f/, is 

- A, U, - X n  P n m  u n  
n 

by virtue of the differential equations satisfied by the U n .  Accordingly the 
differential equation becomes 

+ a m  ( 1  - x2) c p n m u n  = 0. 

If we multiply throughout by u m  and thereafter integrate from -1 to 1 using 
the orthogonality of the u, we get 

-1, + a m (  1 - C m m )  - a, B n m C m n  
n 

In the above we have made use of the definition 

x2 umun  dx - 
‘rnn - C n m  

- 1  

One notes that the C m n  are determined from this relation once and for all. 
If, instead of multiplying the differential equation throughout by urn 
multiply throughout by us (s # m) and integrate the result we  obtain 

we 

-1s Psm - a m  Csm P n m C n s  * 
n 

Rewriting the two equations we have 
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The form in which we have written the equations suggests a method of 
successive approximations to solve the equations for a m  and the B s m  
( s  # 4. 

As a zero approximation we take B,,") = 0 (s # m). The f i r s t  approx- 
imation for am is then 

and the f i r s t  approximation to psm is 

In general the (K -t 1) approximation for  am is 

(K + 1) and similarly for the psm 

The resul ts  of calculations using the above formulae agree exactly with the 
results obtained by the power se r i e s  method, thus affording a check on the 
results . 

lV. Integration of the Part ia l  Differential Equation Including the 
Effects of Gravity. 

For this case the partial differential equation becomes 
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Before integrating this equation, it is of interest to solve the problem in 

the limiting case of %Vg - >> 1. W e  may then neglect the te rm involving the 
D 

second partical derivative and deal only with the simple equation 

a"p - ( l - x )  2 M = o  
D as 

We have 

o r  

which integrates to 
3 

x - ~ = - - f $ s + x o - 3  x3 av X O  a 

Thus particles describe the family of curves in the x,  s plane described by 
the above equation with parameter x, being the initial value of x. The path 
traced by a particle which initially entered at  x = 1 is given by 

x3 av x -7 t b" s =  5 
and at  s the function# = 1 for - 1 = < d  x = 7 and j$ = 0 for  7 2 x 5 1 where 

Hence 

J(S) /(l - x2) dx = ?-- t 2 e 

3 
-1 

From the preceding equation 
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. 

. 

av s 
D 

2 -  A, 

1 
and therefore 

av s 
J(S) = $ - 1 D 

On recalling that 3 9  as = 4D and using J(o) = 4 there results 3 

If the length of the battery L is greater  than 9 / v g ,  no particles will 
penetrate. 

Returning to the equation 

and again putting fb (x, s) = Y ( x )  e '  as, one obtains 

D dx 

The relevant boundary conditions a r e  

Y(* l)  = 
Next put 

The differential equation for %(x) is 

Again, we need solutions which vanish a t  x = 1 ,  and therefore we have 
once more an eigenvalue problem giving r i s e  to eigenvalueoci. 
we may not ignore the odd eigenvalue. W e  express 9 ( x , s )  as the sum 

This time 

I = o  
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(1-x2) ti (x) and integrate from av /2D) x If we multiply both sides by e (  g 
-1 to 1 after putting s = o we obtain 

f 

This form is necessary because it is the function sj (x) and not the 
corresponding lfj (x) which form an orthogonal family. (The orthogonality 
proof is exactly like the corresponding one when gravity w a s  considered 
negligible. ) 

The numerical work involved in a complete solution of the problem 
would be much greater than for  the corresponding case of v = o since 

g one more parameter has to be included. 
only the f i rs t  two eigenvalues as  a function of 

Therefore below w e  present 

t f 2  

Several numerical pairs  of eigenvalue as function of g2 were obtained with 

represented satisfactorily by the formula 
# varying from 0 to 10. Over this range the smallest eigenvalue can be 

06 = 2.827764 + 1.141113 f2 - . 001332 4 f 4  , 

and the second eigenvalue % by 

= 13.485758 t 1.339451 d2 - .002109 d4 

Thus for s > 0 
second eigenvalue, for 0 < e2< 10,  is always much greater  than the 
smallest eigenvalue. 

J(s) wil l  be essentially a constant times e -&’, since the 

Thus, for all practical purposes, we may write, 

where K, is an unknown constant. 

This is equivalent to writing 
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Since S - - 4DL - , it is possible experimentally to vary S by changing the 

J(s) the fractional flow rate Q through the battery, obtaining a value of 
penetration through the battery, for  each value of S. By plotting the natural 

3Qa 
JT 

logarithm of J(S) - against S, <, is obtained as the slope of the curve. From 
J(o) -- 

. I  

the value of do , e2 is calculated and from this, the quantity obtained. 

Since the value of D can be determined by use  of the battery in the position 
where gravity is negligible, v the settling velocity of the particles, may 
be obtained. 

D 

g '  

V. 

one 

- 

U s e  of Battery for  Assessing a Homogeneous Liquid Aerosol 

Essentially, use of the battery and the equations developed herein allow 
to determine the diffusion constant D of the aerosol and the ratio 

. Langmuirl gives the relation between the diffusion constant of the 
D 
aerosol and the particle radius: 

- C i  
A = A o t  B e  

r = radius of the particle, 
D = diffusion constant of aerosol, cm2/sec, 
K = Boltzman' s constant (1.38 x 
T = absolute temperature, OK, 

A = mean f ree  path of air molecule, cm, a t  T. 

ergs/oc), 

= viscosity of air a t  T, cgs units, 

Many investigators particularly Millikan, 9 have measured the ABC 
constants, but the values reported vary and also depend on the value of X,  
the mean free path, used in each particular case.  

9. Millikan, R .  A.  , "The General Law of Fall of a Small Spherical Body 
Through a Gas,  I 1  Physical Review, - 22,  1-23. 
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. 

From the values and formulae given by Partingtonlo and Kennard 11 
w e  may take the modern value of the mean f ree  path of an a i r  molecule at 
20°C, 760 mm, to be 6.47 x 
of previous investigators and gave A, = 0.62, B = 0.22, C = 2.2. Langmuir 
used an obsolete value of the mean f ree  path, 1. 31 x 
mm. 
there is obtained, 

cm. Langmuirl summarized the results 

cm at 20°C, 760 
Correcting his  results to the modern value of the mean f r ee  path, 

A o =  3 1  (0.62) = 1.25, 
6.47 x 

5 
B =  lo'- (0.22)= 0.44, 

6.47 x loa6 

6.47 x loe6 c =  (2.2) = 1.09 . 
1.31 IO-' 

Using the value of D found by use of the diffusion battery, r, the radius 
of the particle, may be calculated by the above equation. 

V The quantity $-, determined by use of the battery, permits the calcu- 

lation of the mass  of the particle by 

1 
D 

where m is the mass  of the particle 

the following relationship: 

= m g ,  
KT 

and g the acceleration of gravity. This 
relationship may be derived a s  follows: For a homogeneous aerosol, sta- 
tistical thermodynamics shows that in the equilibrium state the concentration 
of particles as a function of height Z in a uniform gravitational field is 
given by 

The one dimensional diffusion equation in a gravitational field predicts 
a net current upwards of the amount 

10. Partington, J, R. , "An Advanced Treatise on Physical Chemistry," 
London, Longmans ( 1949). 

I 11. Kennard, E. -H. , kine t ic  Theory of Gases ,"  New York, McGraw-Hill 
(1939). I 
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In the steady state the current is zero and hence 

Comparison of the two exponential t e rms  yields the identity 

When using the battery to assess a homogeneous aerosol, the density 
of the aerosol particle wil l  be known. Since it is possible by use  of the 
battery, to obtain both the size and mass  of the particle, i t  is possible to 
check the validity of the method and equations by comparing the density of 
the particle as given by the battery to the known density. 

I 

* 

Another check on the battery performance and equations may be made 
by holding all conditions constant except the flow rate ,  and comparing the 
experimental ra te  of change of battery penetration with flow rate to that 
predicted from the equations given herein. 

UNCLASSIFIED 


