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FORCED CONVECTION HEAT TRANSFER

IN THERMAL ENTRANCE REGIONS

PART II

Evaluation of the Mathematical Analysis presented in Part I, which

pertained to Heat Transfer in the Thermal Entrance Region of Parallel

Plates and Pipe Duct Systems, with Uniform Wall Temperatures, containing

Flowing Liquid-Metals with Turbulent Velocity Profiles.
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SUMMARY

Mathematical solutions pertaining to convective heat transfer in thermal

entrance regions of parallel plates and pipe duct systems with uniform wall

temperatures containing flowing liquid-metals with turbulent velocity pro

files (previously derived in Part I) are evaluated. The analyses were based

on the postulate that all heat was transferred by means of the conduction

mechanism and hence are valid only for the low Reynolds modulus range. A

method of extending these conduction solutions for the case where the eddy

diffusivity is small but not negligible compared to the molecular diffusivity

(to higher Reynolds moduli) is proposed.

UNCLASSIFIED



UNCLASSIFIED

NOMENCLATURE

English Letters

a, thermal molecular diffusivity of the fluid, ft2/hr

b, one half the distance between parallel plates, ft

B, parameter in the turbulent velocity expression, ft/hr

cn, series coefficients in equation 7

cp, heat capacity of the fluid, BTU/lb °F

D, diameter of the pipe, ft

hcx, local unit thermal conductance, BTU/hr ft F

T t Bessel function of the first kind and order 1
__±__ m + 'd

k™ + thermal conductivity of the fluid, BTU/hr ft2 (°F ft)

m, exponent in the turbulent velocity expression

t, fluid temperature, °F

tQ, initial fluid and wall temperature, °F

t^, duct wall temperature, °F

U, mean fluid velocity, ft/hr

u, fluid velocity at distance, y, from the duct wall, ft/hr

x, j, Cartesian coordinates, ft

Greek Letters

o^ roots of equation 6

y fluid density, lbs/ft^

€ thermal eddy diffusivity, ft2/hr

V fluid kinematic viscosity, ft2/hr

p fluid mass density, lbs hr /ft^
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Terms

k_

P

m + 2

z = i-£_J. in 2

a =
7 c

,m + 2/ F

zl - \m + 2/ F

F2 =

a

bB

z =

Z

Zl

Dimensionless Moduli

Nux =

hCXD
k

or

^x 2b
k

Pr =
?cpV

k

Re =
2bU

1)
or

UD

Pe = Re • Pr

X =

X

b

Y =
y

b
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RECAPITULATION

A forced convection heat transfer analysis pertaining to thermal

entrance regions in liquid metal systems was presented in Part I (reference 1).

The analysis was based on the following postulates:

1. The established turbulent velocity profile is represented

viaby the power law, u=B(L\
2. The initial fluid and wall temperatures are tQ.

3. The uniform wall temperature for x> o is t^..

4. The thermal eddy diffusivity is small compared to

the thermal molecular diffusivity.

5. Longitudinal heat conduction is small compared to

transverse heat conduction and is neglected.

6. Fluid properties are invariant with temperature.

The fourth postulate implies that the thermal solution pertains to systems

characterized by low Prandtl's moduli and low or intermediate Reynolds'

modulij the specific ranges of these moduli are presented in the Discussion

section.

The differential and boundary equations for the parallel plates system are

<*/2
B(Z) St . a *-t (1)
Vb/ dx. * ,2

t(x,o) = x^ (2)
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4| (x,b) =o

t(o,y) = %

(3)

(M

The resulting thermal solution in terms of the local Nusselt's modulus arid

Reynolds' and Prandtl's moduli is

Nu,

m + 1
5~+-2-

n

n=l

(m + 2)2 °n
c^e m + 1 Pe 2b

x

1
m-r~z

%

(m + i)rf__i + i) Y 1IW + 2 y/m + p
(m + 2)2 °^~

• rn-^r-i Pe 2b
cne

n=l

m + 2

,J 1 (aaY 2 )dY
m + 2

where o^ are the roots of1

and cn = 2T0

where z = —

^ J_i_ (°ri) +«n J._L
m + 2 m + 2

ia + 1
m + 2

<J
1 (anz)dz

m + 2

vJ
! («n)

m + 2

m + d

(On) = o

Note that equation (6) was obtained from equation (18) in

reference 1 by making the change of variable, o^ = Z^ a n.

(6)

(7)

(5)



UNCLASSIFIED - 6

Convective heat transfer in the initial portion of a circular pipe

entrance region may be obtained by utilizing the parallel plates solution

modified by the pipe velocity profile. This approximation is quite good

because in the initial portion of the entrance region the flow artnuli

near the pipe wall are the important heat transfer layers and may be treated

as the flow layers of a parallel plates system. The solution for the

initial, portion of a pipe entrance region is

2

Nux =
(m+1) (m+2) P (_i-+ 1) 1 3 1

1

m+2

n=l

m+p uii-p
I - Y

2(m+2) Ori
m+1 PeD

1

m+2
cn e °ri

cne

n=l

(m+1) PeD
x

W

m+2

2_1_ KY d)«
m+2

The eigenvalues and series coefficients in equation (8) are defined by

equations (6) and (7).

(8)
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ASYMPTOTIC SOLUTIONS

For large values of E2£ the two series solutions (5) and (8) converge
x

very slowly. Asymptotic solutions have been derived which greatly simplify

the evaluation in that region. The boundary conditions for the asymptotic

case are

t(x,o) = t^ (9)

(10)

(11)

lim

t(o,y) = t

lim
t(x,y) = t0 (12)

The differential equation 1 may be solved by making the change of variable

S = c JL (13)

where p and c are constants to be determined. Upon substituting equation (13)

into equation (1), the following total differential equation results

d2t
isz

where p = —i— and c =
m + 2

m + 2

A

,(m + 1)

B

dt

dS

(m + 2)a bm

The solution of (l4) for the boundary equations (9) to (12) is

w
m + 2

w
m + 2

dw
-w

dw

*w - t
m + 2

- w
dw

m + 2
••+ 1

(14)

(15)
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m + 2

where w =
B

~\| (m +2)2 ab1^
(16)

It can be shown that for the parallel plates system, the Nusselt's modulus

is equal to2

Nux =
h 2b
ex

m + 2

and for the pipe systenP

m + 2

-M2'" (m + 1) Pe 2b

(m + 2)2 x

h D

Nux = cx
x

(m + 1) PeD
1-m xP(m-T2 +1) \2"m(m +2)

Note that the significant dimension chosen for the moduli in
the parallel plates system is 2b not 4b.

The difference in these two solutions lies in the fact that for

a parallel plates system B = (m + 1)U, whereas for the pipe
system B = (m + l)(m + 2) ~

(17)

(18)
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EVALUATION OF SOLUTIONS

The exponent 'm' in the power velocity expression is somewhat dependent

on Reynolds modulus. For the Reynolds' modulus range involved, a mean value

of one seventh was choosen\ Values of the fractional Bessel functions

were evaluated by interpolation and also with the aid of Legrange's formula

(reference 2) and are graphed in Figure 1. Derivatives of the Bessel functions

were obtained by the derivative relations and are also graphed in Figure 1.

The eigenvalues, o^, and series coefficients, c , were determined graphically

and are presented in Table I. It was then possible to evaluate the parallel

plates and pipe solutions presented above; the resulting Nusselt modulus

solutions for the turbulent velocity profile are graphed in Figures 2 and 3.

The solutions for the parabolic velocity profile and the uniform velocity

profile have also been graphed for the purpose of comparison.

T

Note that these solutions are not sensitive to the exponent
variation that exists.



Fig. I The Bessel Function Jn At!C and Its Derivative
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TABLE I

n On cn

1 1.51 1.9485

2 4.68 1.1981

3 7-79 .8493

4 10.93 •7986

5 14.05 .5685

6 17-23 .5854

7 20.38 .4703

8 23.52 .5130

9 26.66 .5138

10 29.80 •5023

11 32.94 ,4o42

12 36.08 •3333
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Fig. 2 Conduction Solutions for Three Different Fluid Velocity Profiles Between Parallel Plates with a Uniform
Wall Temperature Entrance Region
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DISCUSSION

The analyses which have been presented pertain to systems where all heat

is transferred via conduction. This is very nearly the case when low Prandtl's

and Reynolds' moduli are involved. It is possible to use conduction solutions

for cases where the eddy diffusivity is small but not negligible compared to

the molecular diffusivity. If the mean _!_ ratio in a duct system is as much

as, say 20 percent, of the a or _i_ ratio it is possible to use an equi-
' V Pr

valent diffusivity5 in the computation (see Figure 4); under this condition the

error in the heat transfer prediction would be only a fraction of the twenty

percent. Figure 5 shows the useful Reynolds'-Prandtl's modulus range of the

solutions under consideration. For each Prandtl's modulus there is plotted

a Reynolds modulus below which the mean e is less than 20 percent of _JL_

or A . The significant dimension in the Reynolds' moduli given in Figures
Pr

(4) and (5) is D for a pipe system and 4b for a parallel plates system.

Note that the one seventh power law solutions fall closer to the uniform

velocity solutions than the parabolic velocity solutions. The greatest

PeD
difference between the three types of solutions occurs at large values of —_

as expected. The seventh power law solution for the pipe system was not graphed

for low values of PeD because equation (8) is not valid there.
x

An average Nusselts modulus in the interval o^x^L can be obtained by

performing a simple integration. For example the average Nusselts modulus for

a parallel plates system is

^The equivalent diffusivity would be equal to the molecular diffusivity
plus the mean eddy value for the system.
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Several other thermal entrance solutions for liquid metal systems

have been derived and are to be presented in subsequent reports. One

analysis differs from the one presented here in that the wall temperature varies

linearly with axial distance. Other analyses pertain to high Reynolds modulus

systems where the effect of the radial eddy diffusivity variations must be

included; uniform wall temperature and uniform wall heat flux cases have been

studied.

Experimental liquid-metal heat transfer investigations are currently

being conducted by Messrs. W. B. Harrison and H, C. Claiborne which are

expected to yield pertinent information on entrance heat transfer. Mr. Harrison

has also aided in the evaluation of the solutions presented here.

W7 *typuJuic
H. F. iPdppendiek

ST. <9. £L^^
L. D. Palmer

/tks
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