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A. INTRODUCTION

The objective of the following pages is to place in one report

a large portion of the work connected with the kinetics of homogeneous

reactors of the kind envisioned in the Homogeneous Reactor Experiment.

This report deals primarily with particular thermal, nuclear and press-

urizer systems containing only bulk or average quantities and no posi

tional coordinates. The leading reason for considering only bulk quan

tities is that the mathematical problems become much easier. Further,

the motion is considered only for a short period of time. This again

reduces considerably the complexity of the equations to be solved.

Most of the investigations have dealt with the results of step

increases in reactivity. Since such step increases in homogeneous reac

tors seem unlikely, any calculations made with this assumption are on the

conservative side. The effect of a linear function increase in reactivity

has been investigated to a small extent.

It is worth noting that the following is largely a mathematical

discussion. In particular, no justification is given here for the equa

tions which are used to represent the equations of motion. Consequently,

any physical conclusions reached here are only as good as the equations

from which they are derived.

Since the systems of equations which arise contain one or more

non-linear equations, it is necessary to resort to non-analytical methods.

Two general methods have been used to obtain approximate solutions. The



most detailed and accurate results can be obtained by using numerical

integration either with desk computers or larger machines. Unfor

tunately, these numerical methods are somewhat lengthy and expensive,

and do not lead to results or formulas which may be used for equations

with different values of the parameters. Sections B and C deal in

turn with "Hand Computations" and "SEAC Computations". The other gen

eral method consists of using semi-analytical methods in order to

obtain approximate formulas. Sections D and E are respectively, "Anal

ysis - J. M. Stein" and "Analysis".

The final section, F, Contains "Comments and Conclusions".

There also exists an Appendix devoted to some mathematical notes. For

convenience pages 87, 88, and 89 contain definitions of the symbols which

are used. When necessary the values of the parameters or constants

used in a particular computation are listed in the text.

B. HAND COMPUTATIONS

Various systems of differential equations have been numerically

integrated by desk computers. The first set of such calculations was done

in 19U9 under the direction of I. Spiewak and C. B. Graham. Insufficient

records remain of these investigations in order to draw conclusions con

cerning them.

The results of the next numerical integration appear in ORNL 92$.

The following system formed the basis for this integration:



jf-XoC?1 " P) k~kc^+ iXi°i
Ci - -X^ +PjXqI^ (i " 1» •••» 6)
T = S (P - P0)

P =tfk0k^>

kc = kco + a (T - T0),

where the constants are given in ORNL 92$. Figures 36, 37, and 38 of

ORNL 92$ exhibit these results and are reproduced here as Figures 1, 2

and 3* Figure 3indicates that the assumption of one group of delayed

neutrons is a fair approximation.

Five systems of differential equations have recently been in

tegrated. The following system is the first which was investigated;

P=-|(T -T0) P«• i^P+XC

c=_xc + 2. p

T - S ( P - Po)>

where £=0.01, a-0.001, X-0.0001, p=0.0075, X -0.08, P0 -1000,

S=0.00$73. These results appear in ORNL 1121 and in Figures U, $and

6.

Partly in order to test the assumption of aconstant source of

delayed neutrons as compared to one group of delayed neutrons the follow-

ing reduced system was integrated.

T = S (P - P0)

P- -2. (T -T0) P«• S-^±V +1?x °'

* Many of these figures will not appear here, but will appear later

in a supplement.



where the above constants are used. It is apparent that a constant

delayed neutron source is a good assumption.

Systems 1 and 9, as listed under SEAC computations were cal

culated both by the SEAC (the National Bureau of Standards' Eastern

electronic digital computer) and by desk computers. The hand computa

tions were carried out before the SEAC computations since it was desir

able to have these results both as a means of checking the machine re

sults and as amethod of estimating magnitudes. Figures 7through 16

exhibit these results.

The most recent hand computation was carried out on System Ik,

also listed below. In this case it was thought desirable to shock the

pressurizer system only and follow the early motion of the neutron and

pressurizer systems. Figures 17 through 21 present these results.

All five of the above systems were integrated by the Runge-

Kutta method. For the more difficult systems such as System 9, one com

puter can calculate at about the rate of 0.3 sec» per system per month.

C. SEAC COMPUTATIONS

The following set of equations dealing with the thermal, nuclear

and pressurizer systems form the basis for the computations performed on

the SEAC:

(1) T = S (P - Po)

Ap0
(3) p-—~u



(5) p- Po -^r (p - Po) -/^(* - To)

From the computational viewpoint it is desirable to replace

equations (1) through ($) by a corresponding set with fewer constants

or parameters. Using equation ($) in equation (U) and letting

*-5-<T-To>' x=|;^=^(if)^Uandz =i0(P-po) oneC£m
obtain

(6) y - x-1

(7) z = - v

(8) x =zx +Sl-£ x +i-
v y XX

(9) v =- cijv - a2v| v|* wH2 [z *w/yj

where ** -*& vs*, ^ -^JSP,, «x -£ and a, -|- ^ -1

Thirteen such systems were computed on the SEAC. In all the systems

equations (6) and (7) and the initial conditions x(0) =1, y(0) =0,

z(0) =0 and v(0) =0 are kept fixed. The systems were completed by

adding one of the following pairs of differential equations:
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(8)x i - « +37$x (9)x v- 2.$ (10^)z «• 1.2$ (106)y
(8)2 x - zx OOOx +?$ (9)2 v=2.$ (10^)z *1.2$ (106)y - 0.3v
(8)3 x =zx +300x +7$ (9)3 v=2.$ (10^)z +1.2$ (106)y - 0.01v|v|
(8)u i - zx *300x +7$ (9)U v=2.$ (10^z +1.2$ (106)y -0.3v -O.OlvJv]
(8)5 x *zx +100x (9)5 v- 2.$ (lO^z ♦ 1.2$ (106)y
(8)6 x - zx +2$x +7$ (9)6 v=2.$ (10^)z ♦ 1.2$ (106)y - O.lv
(8)? x =zx *2$x +7$ (9)? vB2.$ (10^)z +1.2$ (106)y - 0.03v
(8)8 x - zx +2$x +7$ (9)8 v=2.$ (10^)z +1.2$ (106)y -O.Olv v.
(8)9 x - zx +2$x M? (9)0 v=2.$ (10^)z +1.2$ (106)y -0.3v -O.Olv|v|
(8)10 x - zx - 2$x +7$ (9)10 v- 2.$ (10^)z *1.2$ (106)y -0.3v -O.Olv|v|
(8)1]L x - zx - $x +75 (9)u v=2.$ (10^)z +1.2$ (106)y -0.3v -0.01v|v|
(8)12 x - zx +$Ox'+ 7$ (9)12 v- 2.$ (10^)z *1.2$ (106)y -0.3v -0.01v|v|
(8)-,, x = zx+100x+7$ (9)13 v=2.$ (lO^)z +1.2$ (106)y-0.3v -O.Olvjvl

where (JJL)m 0.007U, V=1.7$, L=$.9, A=0.037, vs2 =7.0$(106)
wn2 =$0, wH2 =2.$(10U), x =0.0001, p =0 or 0.007$, <*i =0 or 0.1 or
0.3 and g=0.00$0 or 0.0070 or 0.010 or 0.012$ or 0.017$ or 0.037$. For
convenience in identification each system is named according to the number

which is a subscript for its equation (8) and (9).

A fourteenth system with

(8)lU x=zx - 7$x ♦ 7$ (9)lU v=2.$ (10^)z - 1.2$ (106)y
and x(0) =1, y(0) =0, z(0) =0 and v=- 10* was computed with a desk
computer

The general system (6), (7), (8), (9), with initial conditions

was programmed for solution by the modified Euler method on the SEAC.

The parameter values, integration interval (of order 10"^ sec), and the



interval at which the results were to be printed out were read into the

machine independently of the main routine. Since it was not necessary

to change the main routine from system to system, it allows the possibility

of using in the future the main routine with different values of the

parameters. The range of integration was either from t = 0 to t = 0.3 sec.

or t s 0 to t = O.k sec. The total machine time, including one hour for

checking the programming and coding, for all thirteen systems was about

five hours. However, the actual computation time per system was less than

twenty seconds. The remaining machine time was taken up by the printing

out of the results and to a small extent by reading the routine and

parameter values into the machine. One hundred values of x and fifty

values for each of y, v and z were printed out. Table 1 gives a summary

of these results while Figures 22 through 60 exhibit the results.

Some comments may be made concerning these results. For this

purpose consider in turn power, temperature, density, velocity and pressure

as represented through the symbols x, y, z, v and p. Figure 6l and 62 ex

hibit respectively maximum x and time of maximum x versus S. It is inter

esting to note that there exists a maximum time in Figure 62 which occurs

at about prompt critical, i.e. a = 0.007$. This value of a separates, of

course, the two general types of motion of x. That is for S^p= 0.007$,

x has an exponential like rise at first and is brought down only by the

negative temperature coefficient, while for £<Cj3, the rise in x is more

step like at first and is brought down not only by the negative temperature

coefficient but also by an exponential like fall. From the SEAC numbers it

is clear that increasing the damping in the pressurizer increases the maxi

mum value of x and increases the time at which x reaches this maximum. For
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5*10.002$ this effect is probably negligible. Two general effects may be

noticed on the x vs. t curves as the f increases. Although at S = 0.01

no noticeable motion due to the pressurizer appears, it does not take a

much bigger S, and in particular atS-0.012$, before small oscillations

appear on the x vs. t curve. Overdamping, while being only clearly de

fined for linear equations, may in the sense of never allowing a motion

to oscillate about its equilibrium position be used to describe the other

effect. Up to $ m0.01 the x is overdamped. At %z 0.012$ the x is barely

overdamped, while at S s 0.017$ the system becomes underdamped. It may be

emphasized that the suffixes over and under do not refer to the degree of

the damping, i.e., being more or less damped.

The curves of temperature versus time indicate that the general

motion for S^0.012$ goes up smoothly to the new equilibrium temperature.

The equilibrium temperature is given by y-g = £, i.e., Tg = — +T0.
xwn

Figure 63 shows the value of the temperature at t = 0.2 sec. versus d .

This curve indicates that beyond S = 0.013$ the temperature is no longer

overdamped. The pressurizer motion does not show up in the temperature

curves.

The curves of density versus time fall steadily toward their new

equilibrium values until around C=0.012. For larger S the pressurizer

oscillations can be seen. Figure 63 also shows the value of z at t = 0.2

sec. versus S. Again overdamping disappears at about S - 0.013$. The

S c ( J*)'1equilibrium density is given by z£ = -, i.e., p = p0 +* (."Jp"' *

The curves of velocity versus time give a good picture of the

pressurizer oscillations and the effects of the damping coefficients.

Figure 6U shows a curve of maximum velocity versus 6 .
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Figure 6$ exhibits a curve of maximum pressure versus S. At

$ r 0.022$ the pressure is seen to be U000 lbs./sq.in., the assumed burst

ing pressure. Around S - 0.01 the largest maximum occurs at the second

rather than the first maximum„

D. ANALYSIS - J. M. STEIN

This section will be devoted to summarizing the analytical re

sults obtained by J. M. Stein in ORNL 630, ORNL 730 and ORNL 92$ which

are relevant to the previously discussed computations.

ORNL 630. Consider the case of no delayed neutrons and no pressurizer.

Then

T-S(P -Po), P=X0[k -k^P and kc =kc0 +a(T -T0),

where T(0) = T0 and P(0) = Pq, form a complete system of equations defining

the change of power and temperature with time. Upon eliminating time by
e o

dividing P by T one can integrate and obtain

P-P0 log |- -P0 =-̂ g [T -T0J [T -T0 -iL]

The maximum temperature excursion is T0 +%£- and the maximum and minimum
e

power excursion which occur at T = T0 +—• are given by

Pm -PD log *» -P0 -£o£
ro daS

or approximately

„ Xoe , n Pmin - Xo©Pmax -_ and -log — "l-^a.
For very small values of e the oscillations are nearly sinusoidal with fre

quency -1 «z—nfknaSVa ' ' Figures 66, 67 and 68 exhibit the character of
2ir 2TTr

these oscillations, where X0 = 10^, a = 0.001, S= 0.00571, P0 • 1000,

&k e ., wn _ 1 o
Tc- 1.5 2TT-
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If gas generation is taken into account the k required for criti-

cality is given by kc =kc0 +a (T - T0) +€ (vg -t&q ; and an equation

for gas generation is given by vg = r (P - P0). Proceeding in the fashion

of the above paragraph one can easily obtain that

Pm - P0 log -En. - p0 = Xo e2
P° 2(aS * € r)

Figure 68 also exhibits for this case maximum P vs. e, where € = 1

and r = O.OOOOOlu

The following rough calculation is used to give the order of

magnitude of the pressure rise. Taking into account the thermal expansion

and compressibility of the coolant, the density may be written as

p•Pop -*i (t -T0) +rz (p -p0)j
The volume of the tank may be written as

V=V0 £l +*3 (p -Po)J ,
where the elastic expansion due to pressure is taken into account but the

thermal expansion is neglected. The mass of coolant in the tank then becomes

approximately

M=PV =p0V0 [l -*! (T -T0) +(^2 + <T3) (p _Po)J .
The continuity equation when coolant is allowed to escape becomes

M - - pQAU.

Consequently

The equation of motion for the material in the relief pipe is

MrU = p - E]U2.

V
The condition for a maximum pressure is p = 0 or U = _£ ^-,T . Therefore, if

one assumes U = 0 or since T = S (P - P0) that P = 0 , i.e., where P is max-
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imum, then

p-B]. (r^if -Bi (h-^S)Z (P^-Po)2.
A A

Figure 69 can then be constructed by using the previous power maximum and

the following constants:

*! -0.00153, S-0.00571, V0 - 3060 in.3, A- 1.765 in.2, P0 = 1000,

El =0.01U3 E2L522i
ft2

ORNL 730. Consider the following set of equations which include gas

generation and a linear function of reactivity but does not include de

layed neutrons:

P =X0 (k - kc)P, T - S(P - P0), vg - r(P - P0),

kc " kco + a(T - T0) +6 (Tg - vg0) and k = k0 + ott.

Let w be defined by

w - k - kc = k0 - kc0 + ctt - a(T - T0) - 6 (vg - vg0).

Using this new variable and eliminating time one can obtain

dP X0wP
dw " ot - (aS +*rj(P - P0)

The solution of this equation in the phase plane is

P-Pi -Pp0 + ~ Jlog — - 2 (w,2 +w2)
1 L aS +6rJ 6 Pi 2(aS ** r) x

where Pj_ and wj_ represent initial values. From the equation for P it is

clear that the maximum and minimum power occur when w = 0. To obtain Pmax

therefore set w = 0 in the phase plane solution. Figure 70 exhibits the

phase plane solution. The solution represents an undamped oscillation which

for small c-t and $ k = k0 - kc0 approaches an harmonic oscillation of fre

quency ^ =4frY(aS +€r) P0\0 '.
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Figure 72 shows a family of curves with parameter X.j_ Pi

P P°
where Xmax = -S— is plotted against Sk and where ct = 0. For small

po

S k the maximum power is seen to be quite sensitive to initial power

level but for large € k the maximum power level is almost independent

of this level. Figure 73 shows a family of curves with parameter

Pi c-t-Xi = — where Xmax is plotted against Y= v and where £ k = 0.
P° (aS +€ r) P0

The values of the constants used in Figures 71 and 72 have been given

above.

ORNL 92$. Consider the following system of equations:

p=X0Ql - p) k - kj <f> +^Xic1 (i - 1, ..., 6) 0i =-XiCjL +pA0k^
T - S (P - PQ), P = ^X0k^, k0 = koo + a (T - TQ).

The solution of .the equation for c^ is given by
t

eiOO =CiCOje^i* * piXoke^^C e+XiT p{x)dx, where

Ci(0) =?ixok#0).
xi

Using integration by part this becomes

ci(t)-t_X0[^(t)-k^e
Substituting this equation in the equation for rf) and writing the result

in terms of P, one can obtain

P=X0 (k -kc)P -X0k 2 Pi f e^t(s) ~t(P^ds,
1 Po

where X0p (k - k0) is neglected as a second order quantity. Dividing this

equation by the equation for T, one has

ar -^ ik - ^j p-z-p^ - -§- i Pi 5-77
j. x o

The last term on the right hand side of this equation may be evaluated for

various values of time and various values of loss of delayed neutrons in the
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system external to the core. By replacing the integrands by their arithme

tic means the term tj =-? B^V ^ "t(F)^ becomes Tj« ^Jill +e"Xit(P)J
i -e - f0 i 2 L

This last expression may be evaluated for various values of time and various

values of loss of delayed neutrons in the system external to the core. For

times up to 0.1 sec, i.e., through the maximum of the power surge for the

reactor of the Homogeneous Reactor Experiment, this expression for r\ changes

on the order of five percent. Hence, one may write

dP- ^o (y _ y\_ P _ ^pkT]ar s^ kc)p-r-p-0 --V~
where tj is considered as a constant.

Let Y=ll [e -a(i -T0)7 X=£ -1and K=~ k-n then this last
equation can be written as

ar*5rY-K = °-

The corresponding equation on a time basis is

Y +(K - Y) Y +wn2Y = 0.

Although the above first order non-linear equation cannot be solved by the

usual analytical method, it may be conveniently investigated by the method

of isoclines. Any curve along which jj£ is constant is called an isocline.

A plot of isoclines and the resulting paths is shown in Figure lk- In gen

eral the motion starts with X = 0 and Y = Yo and rises to a maximum value

of X. If then Y0 was not too large X and Y drop to zero in infinite time

never having changed signs.

Three convenient approximations may be used with the equation

dx Y
— +- + Y-K = 0 which lead to analytic solutions. First from Figure 73

it may be noted that Y does not change much from Yo during the rise of X

provided Yo is fairly large. Consequently, with large e and short time a

dX Y Y
good approximate equation is given by^£=-Y-i-Ki. This has the

dY X Yo
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solution

Yo
Yo - K x-fc^rj210{^ *+$-Yo2 - Y2

Figure 71 exhibits this solution when Y0 = 20.6$ and t) = 9.1, i.e., e = O.Oli;.

In the region of the maximum where X^>>1 the equation may be approximated by

^ =K-Y. The solution of this equation is X=Xj,^ -| (K -Y)2. Auseful

approximation is therefore given by Xmax = |(K - Y0)2, where X ='0 when Y = Y0.

Figure 75 is a plot of Xmax ^'Xmax + X versus e- The third approximation-

applies to the case of small Sk or e. In this case the isocline-gy- =0 is an
Y

upper bound for, the maximum X and therefore one can put X-^ = 2 .
Tuax. K - Y0

E. ANALYSIS

El. Linearization. Although it is not the objective here to treat linear

ized equations in any detail, it does seem worthwhile to note the method

and to indicate the conditions for stability in the linear case for the two

main complete systems considered in this report. Consider first the system

formed from equations (6) through (9) subject to the usual initial conditions

which were the basis for the SEAC calculations. The equilibrium conditions

are found by letting the right hand sides of equations (6) through (9) be

equal to zero. These conditions are x? = 1, vo = 0. zn = " v = °

Assuming that i- and L -iu. are small, letting x = x - 1, v = v, z = z + ~
^ ' w«

- & 1 n
and y = y - ~ —-g-, and keeping only the linear terms, one obtains

y = x

»

z = - v

X = z - £ X
T

v = -aiv +wjj2 (z +wn2 y)
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The conditions for the stability of this system of equations

about the origin (x = 0, y = 0, z = 0, v = 0) may be determined in various

ways. Wiether one assumes a solution of the form e , uses the Laplace

transform with parameter or uses some other technique, the problem resolves

itself into finding the solutions of the equation

rk +(£ +ai) *3 +(|ai +wH2y)>2 |̂wHV^wHV =o
If all the solutions of this equation have negative real parts, then the

system can be considered stable. The Nyquist technique of mapping by means

of a polynomial gives a quick way of obtaining the conditions for no roots

with positive real parts. The conditions are

7(b)2 - h(d?> 2|f£- (b)> - V(b)^ - U(d)'and (b)2-, U(d)
where (a)= i- +a^O, (b) =-£-a.1 +wH2> 0, (c) =JtwH2;?-0 and

T x x

(d)=wH2 wn2 ~,0 . For the Homogeneous Reactor if one lets wn2 = $0,

Wh2 =2.5 (10^), p=0.0075 and x =0.0001 tnen these conditions are not

satisfied ifai ^ 0.1 but are satisfied if ai =0.2.

If ai and pare set equal to zero, the case of no friction in the

pressurizer and no delayed neutrons, then the solutions are purely oscilla

tory provided wjj2 -^ \± wn2. If —2 is se^ equal to zero then the fourth de

gree polynomial in Ybecomes >^+J_Y+wn2 =0 and the pressurizer system
X

has been uncoupled.

In the case of the system T=S(P -P0) and P=t-(|- P-<x(T -T^JP
+ — P0the equilibrium conditions are x = = 1 and y = (T - T0) -—L__

T _ f 1 Po SP° ™*^
Letting x = x - 1 and y = y+- —*— anci keeping only the linear terms, one

obtains y = x and x = |l_ x - wn2y. The conditions for stability of this

system about the origin (x = 0, y = 0) depends as expected upon the solution

of the equation
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Since ZV- - —±l/cr) - Wn , "the solutions all have negative real parts
8 p

provided — >0 and wn j» 0. This system is therefore stable for small

oscillations.

E2« Iterative Formulas. It would be extremely desirable to have useful

analytical solutions to the non-linear systems considered here. Unfortu

nately, the best one can aim for are analytical approximations to the solu

tions. Approximations generally apply only to certain ranges of the

parameters and variables, and for this reason caution must be used both in

obtaining and using approximations. The technique for obtaining approxima

tion formulas in this portion has the dubious advantage that it could prob

ably be shewn to be a mathematically rigorous technique. On the other hand

the formulas are not easy to use.

Consider again equations (6) through (9) along with their initial

conditions. A first approximation for x may be obtained, since z(0) « 0,

by setting z(t) = 0. Solving equation (8) gives

XL- 1
s- p

[f^t -p]
Using equation (6) one can then obtain

&l_(.^-1,.*].
Assume next that ct]_ and az are small enough that the terms aiv and 0.% vl vj

may be neglected in a first approximation. Actually these terms are not

considered in the next approximation, but they could be. Equations (7)

and (9) give then

"2 2 2z + wH z = - wjj wn y.



Substituting y, in the right hand side of this equation leads to

zl = Al cos ^H* + Pi sin wH"fc + Dl * El't * Fie^*

where

X

»1=™-4>*1 =i^ Fl ---^wH2wn2 [y2 ♦ wH2J -1

Ai = - (DX + F]_), pi = -— (EX + IFi)
wh

If desired V]_ can now be obtained from equation (7) and p can be obtained

from z-y f wn2y-[_.

It is apparent that the above first approximation can be useful

only for the early rise in x before the z has any importance. The next step

is to use this first approximation in order to obtain a second and better

approximation. The simplest way to do this is to put x-^ and z\ into the

right hand side of equation (8) and then integrate. This gives

2lt ^ - . Yt
te-x2 =f]_ +f2t +f3t2 + f£6 ft + f&Q J +f?

where f± --[f5 *f6 -l], f2 --f f?, f3= -f- f?,
2 £2

fr[x- +̂ 3whV ir^r] T>f6" - "n2 ^ ^

2 J2f7 =wn ^3

Letting y2 - ax +agt +a3t2 + a^t3 +a^eft +a£e2It + a^te Yt

17

and

ZZ = wn2(ci+C2t+C3t2'*-ci;t3+c5eI'';+c5e2^fc+cyteY'fc+A2 cos w-gt + B2 sin Wgt)

2 2. 2one can then show using the equationsy = x - 1 and z + w^ z - - w^t^ y that
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1 „ l„ _ 2 _ 6
~2a3 " al» c2 " 71*6 " 2/6' a7 =ifV cl =W>a3 ~ al' c2 =^ " *2' c3 = " a3'

wH2 a5 2^H2 a7 WH2 a6
CU " - au, c5 - "&h2 +^ +jwH2 +Y^]2' °6 =Uf2

c7 - - WH2 a7
Wg2 + Y2

wg2 '

A2 - -joi +c5 +c6J , B=- J-[c2 +Yc5 +2Ic6 +c?J .
H

Note again that no friction in the pressurizer has been taken into account .

by these formulas, although formulas with friction terms could easily be

derived. Again V2 can be obtained from equation (7) and P2 can be obtained

from p2 = z2 + wn2y2o

The above formulas for x, y, z, v, and p were first evaluated

using the constants that were used with the SEAC computations. The formulas

with subscript 1 lead to numbers which are close to the SEAC numbers only

during the time from the beginning of the x or power rise to about half the

total x rise. The formulas with subscript 2 lead to numbers which are close

to the SEAC numbers to times slightly beyond the maximum x. This time proves

to be sufficient to also obtain maximum p values. The SEAC results and the

formula results are compared in an overall fashion in Figures 6l, 62 and 6$.

Using the above formulas Figures 76 and 77 exhibit the result of

changing p, the percentage of delayed neutrons, on the maximum of xversus S

and the time of maximum x versus &.
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These formulas have also been used for calculating such things

as power and pressure maximums for intermediate and large homogeneous re

actors. Table 6 indicates the constants used and the values of maximum

power and pressure for each reactor with various £'s. Table 7 indicates

the corresponding time of power maximums. Figures 82 through 88 exhibit

the results for the six foot diameter in further detail. Figures 89, 90

and 91 exhibit the results indicated in Table 6 and 7.

It is interesting to compare the curves of pressure versus time

as given in Figures 87 and 88. For S^ p, as represented in Figure 87,

the pressure reaches its maximum on its first upswing. For S> p, as

represented in Figure 88, the pressure reaches only a relative maximum

on its first upswing, the actual maximum being reached on the third up

swing. The time of maximum pressure is determined largely by the time

of maximum x. For S^p, the time of maximum x is very small, but for

S<> pthe time of maximum x is appreciable.

Table 2 contains the iterative formulas.

It is possible, of course, to use the formulas with subscript 2

in order to obtain still better formulas. This seems to be unnecessary

for sufficient accuracy and undesirable for evaluational purposes. One

may note, however, that another iteration would extend the time of validity

of such formulas. For S>p the formula for x-j_ indicates through the terra

with eYt the exponential rise in power while the terra e2?t in the formula

for x2 indicates the decline in power due to the temperature coefficient.

The solution of the system of equations

T-S(P -P0) and P- -ft -p-a(T -T0)J + -&» PQmay be approximated
in the same fashion. In the case one has again X]_ «f_gli e^ ~^-" and

S r T° r T («^t - 1) - t . The second approximation formulas become:
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x2 =gi +g2t +g3t2 +g5e*t +g6e2Yt +g^e^
and

where

=bx +b2t +b3t2 +b^t3 +b5e¥t +b6e2?fc +b7te¥t,

gl -"[g5 +S6 ~l] >S2 =~| S7, S3 ="If" f7
g5 jt* +gsLlL, S6 - - jL*L, g? - £?£,

LT ^f3 J I 2Y^ <^Y3

r- -I 11bx - - [b5 +b6J, b2 =fX - 1, b3 =- f2, bu =- f3

b5=7[s5-^7]^6=~^ b7=7^7.

These formulas are very much like the previous formulas for x2 and y2. The
Y^_1 -1
H2

In cases then where |f/<*wH, i.e., &"" P is much smaller than the pressur-

izer frequency, the pressurizer may be neglected in calculating power.

only difference occurs through the factor WgZJwg2 +Y^ -|l +̂ -^J

Ey Short Formulas. The results of this portion are primarily due to

T. A. Welton. Consider again equations (1) through ($). Upon differentiat

ing on both sides of equation (3) and making use of equations (k) and ($),

equations (1) through ($") are seen to be equivalent to

T = S(P - P0)

p*ap +*/ (p -Po) --wH2|(^.)|(T -T0).
The quantities p - p0 and T - T0 are more convenient to work with than p

and T. Keeping in mind that p and T are actually p - Po and T - T0, the

following equation may be used:



p4B<-rt«Oap^p°
T = S(P - P0)

P^alP^wH2p =-wH2^|T.

The objective of this part is to obtain approximate solutions or formulas

which are easily evaluated for the above system subject to certain initial

or external conditions. The numbers resulting from these formulas may then

be compared with the SEAC calculations.

The following three types of initial or external conditions are

considered:

(A) P=P0 up to time t=0, at which time areactivity step £is

introduced.

(B) P = constant up to time t - 0, at which time a step in P is

introduced, i.e., P = P0 for t^O, P(0) = P0 -*•

(C) &is a linear function of time passing through zero at t =0.

Besides these conditions, the following two simplifications are used:

(1) p = 0, i.e., no delayed neutrons

(2) —n = 0, i.e., uncoupled pressurizer.
wg^

Consider first the case where conditions (1) and (2) apply, i.e.,

8 = Oand -—n- - 0. The equations (1) become
H

Letting Q = log — and substituting for p, one can obtain
po
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^""xfr" aT ' T"^o^1)
(11) or

Q--wn2 (e« -1) *1 g

r

The (A) condition may be written as: Q(0) = 0, Q(0) =-«-, £ = 0.

The (B) condition becomes: Q(0) - log (1 -JI ), Q(0) = 0, £ -0.

Condition (C) is determined by setting £ equal to an appropriate value as well
e

as choosing Q(0) and Q(0) in some manner yet to be decided.

For all three cases the energy argument may be used effectively.

Equation (11) has the form

dV["f" *wn2eQ "wn2 (1 +lwTT) o] =0
- *

Consequently, if the quantity E(Q, Q) = Q2/2 +wn2eQ -w 2 (l + S \q is
XWn

evaluated from the assumed initial conditions, its value remains the same

thereafter. In particular the maximum power P can be obtained by putting

P or Q equal to zero. For case (A) one has

eQ - Q - € n » *1

or

2P , P , S
«-- log---- 1 •
ro ^o 2wn<T<

This formula for power extremum was obtained previously by J. M. Stein in

ORNL 630 (see page 7 in this report) by another method. For large power

surges e is much larger than Q and 1, and therefore

P =PeQ=_£fPo_
max o _

2wn2'c2

Since the quantity wn2 is proportional to P0, Pmx is actually independent of P

For case (B) the power extremums may be obtained from

o'



or

3Q _Q -1-i-- log (1 -4")
*o ° Po

-£- -log £--1-5--log (l~f)
ro o o ^o

For large power surges the power maximum is given by

Pmax =PoeQ =P0 """Po log (1 -£-)•
o

For case (C) one puts %- d, a constant. Since the initial condi

tions have not yet been specified many solutions of this type are possible.

However, there exists one solution which is steady. By putting

1 •wn2 (eQ - 1) -— d and Q - 0
X

2 0 1at t = 0 one has, since Q is then zero at t = 0, that wn (e1* - 1) »-d for

all t>0. Therefore

d

2.
P - P0 (1 +— )

23

wn T

where PQ was, and remains, the power being removed. Therefore, such a steady

rise of reactivity will give a power which is steadily above the power being

removed.

In general, one can obtain power maximums from

»»2 eQ "*n2 (1 +—)Q "T^ *V^1 "V* ^XwnZ
or

+

wn

L,

d

TWn'
T) log Pi

To"ro xw^ ro 2w_'cv'ri/ ro

This, of course, includes all of the above special cases. In general, the

plot of power versus time can be described as a conservative non-linear

oscillation about a steadily changing equilibrium point.

Although the above method of obtaining these formulas is quite

satisfactory when p = 0, it is not applicable to the case when p f 0. The
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above cases will therefore be investigated with another method. Since in

case (A) T(0) »0and T(0) •0, Tmust start off at least as t2. As Qor P

increases T becomes rapidly larger and the net excess reactivity 6 - <iT must

appear about like that in Figure 78. The excess reactivity is approximately

equal to the constant 8 for a time and then rather suddenly drops to zero at

a time t = A. At this time the power is a maximum since P is then zero. The

reactivity will therefore be approximated by a constant up to time A and then

a perpendicular drop to zero. Up to time A, one has then Q =_t and conse-

quently T = SP0 (e - 1). Since for large—-, 1 may be neglected in compari-

son with eT ,it follows that T= -£— eX . Consequently, the excess reac
ts -It ttivity becomes £ - _ w2 eT . A may now be determined by setting the excess

reactivity equal to zero, i.e., £-^r-wn2 eT =0. The maximum power in
0

turn becomes

p . p flT A - S po
*max *oe •

-c2wn2

This approximation is seen to overestimate the previous approximate formula

by a factor of about two.

For case (B) the initial conditions are Q(0) = log (1 - -—),
Po

Q(0) - 0, T(0) = 0, T(0) = - nS and £- aT - S= 0. Since T - S(P - PQ) = - nS,

the temperature at first drops linearly going as I = -nSt and the system there-
P n

fore has a steadily increasing excess reactivity. Consequently, Q » * wn*- r- t
22 o

and therefore Q = log (1 - -p—) +5— ^L— • An improved expression for T can
0 ° • n

be derivrd by substituting this result in T and obtaining T » SP0Rl - -jr)
w 2*- iS. -1 n
e n Po 2 - 1/. To derive a simple expression, let r— be nearly unity so

that the exponential term will not outweigh the constant term until large

values of the exponent are reached. For large exponents a fairly accurate

integral is given by
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fist _l_ (i_ n-)e^ w»2 h - ijT = SPQt
L n w_2t2 P,

n o

The excess reactivity is therefore zero at a time A defined by

JL 2 4l
eP° Wn 2 = 2 JL wn2A2

, 1_Po 2-
Po

w2A2
or ef = #<r where £" = and <f ™—-

! _ 5- po 2
Po

With y much greater than one the root may be found by iteration, i.e., since

z * log + logsone lets z^ = log a, Z2 = log a + log log a, zo = log a +

log (log a + log log a), etc. Since the first iteration gives the uninter

esting result P = 2P0 and the third iteration is probably more accurate

than is justified by the crudeness of the other approximations, the second

iteration formula will be used. The peak power then becomes

P0 (1 -^V -Po (1 -T~)-...2 .l°g-JL- =2P0 log JL.
po po , n , ix n

1 - v- 1 --5- 1
o "o

P0 p p.

2$

Comparing this with the previous formula for case (B), this formula differs

by being about a factor of two too large. Since this was also the situa

tion in case A one can adopt the procedure of solving the e act equation

by these approximate methods and finally dividing all peak powers by the

"fudge " or w experimental n factor of two.

In case (C) a simple argument may be used to obtain the previous

result. Corresponding to P a constant there must be a linear increasing

temperature just canceling the applied reactivity change, i.e. S = aT. In
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order to maintain this steady increase of temperature, the difference be

tween the reactor power and the power removed must be such that

S(P -P0) =T=4 ' Tnerefore P=Pq (X +̂ T$> thS Same f0rmula Pre"
viously obtained.

Consider now the case where condition (l) applies but condition

(2) no longer applies, i.e., p=0and ^ /0. For case (A) the initial
conditions are Q(0) =-~~, Q(0) = 0, T(0) - 0, p(0) -0 and p(0) - 0. Just

as before the excess reactivity may be taken as equal to £up to time A.

Therefore as before T=̂ f- e**.The density p£an now be calculated
„ f-1 d2 ., g d .. i7 -/ <>pVr ~f*p\ SP°T oT .Hi? P" VdT^J p (l?)T hf) —

For large *rt one has p -—fi—^rf 72 ,

the damped oscillatory terms being considered negligible. The time A for

which the excess reactivity becomes zero can be found from

V^ _ ~A
"X~ Ppe

_ - - _ %mQ

<**__ 4 82
Wg2T Wg^T^

Peak power in turn is given then by

"- Iflo. (1 +_jlL+ £i
r 2^2 WH2'C Wg2i&

P=P0eTA °a (1 + p—+ p ') and upon dividing by the
wr

" experimental factor two by

i2P„ a% s2
P •-- g ft (i *~^+~Vd2wn2^ Wg2T wg2^^.
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Comparing this with the case where « = 0 ©ne can see that this result
wg

r ,2
differs only in the factor (1 +-—*• + 0 0). This factor tends, as it

WH WH^*-

should, to one as -—ft tends to zero. The physical origin of this increase

in peak power lies in the delay introduced in the expansion process by the

inertia and friction of the fluid pipe leading to the pressurizer. The

relative effects of inertia and friction may be compared by comparing ^~

and a.

For case (B) the initial conditions are T(0) = 0, p(0) = 0,

p(0) = 0, Q(0) = log (1 -~), Q(0) • 0 and T = -nS. Consequently,

r ^ d2 a d
LW^ltt2 +Wg2 dt

Since the change in temperature is slow, density changes are slow and the

friction and inertia terms will be neglected, i.e., let p=-Sn^^t. This

leads to the same formula for power and temperature as a function of time as

those obtained when—-™ = 0 and in particular
w *"
H

l]p --s<—)t

r 1
n w 2t2

"n

sp„

r~ n

(1-f)e°

Substituting this value of T into the equation—o p +~"o p + p * (—-)T

one can obtain as an approximation

SP, (ir)

n

1 ~ Po
re o

TT w.H
o

n wn2t2

Po 2e o

an 1 yrt \2
1 *~"PT w 2t +w 2 Cp Wt,2^WjJd ^0 n ™g \-^0 n /

where as before the oscillatory terms are neglected- When p s 0S t = 4e
p p

Letting C =* ~ .IsJL, Amay then be found from
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2z " ""
n

1 - p
ro

1+-~ /-w wn2z' + * -J- w2z|
w„2 Y Po n w* ro u J
'H ' " "H

With the previously used iteration method one has zx = log — and
1 ~ f!

o

2 ""z*' losTtf- *l0E los rx*l0i* #• /IT^2 l0E rr^
Aw 2 n 2 "1
* -2_ p- log ——

Dividing by two the "experimental" number the peak power becomes

P
< w *o " i _ |

o

^I!©2 2_ ioe ,2 ^
+*? po gr^y

ro '

As expected this formula differs from the previous formula for case (B)

only by a factor which tends to one as w Z Lends to zero.
H

For case (C) the condition of steady power is satisfied if the

excess reactivity £+frr)p is equal to zero. It follows that

|p0 (1 -f-;.» -P0 log -^-(l +%y^-n2 108 ^
P. v * P0

- fll^ p = £ =d. Since

rid2 .a d_ -I; _/^P\'

° cl
T must also be constant and be given by T = -. As before one has then

a

p = p (1 * )- That this result should be the same as before follows
w Zx

n

from the fact that the steady pressurizer motion has no finite frequency.
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When condition (1) does not apply, i.e. p / 0, the obtaining

of simple formulas for maximum powers becomes much more difficult.

Formulas only for case (A) will be derived here, although undoubtedly

formulas for case (B) and (C) could also be derived. Starting with the

equations T-S(P -P0) and P--i- [fi -P-ai] P+4 Po one obtains by
approximating the reactivity by £ - p up to time A that

P-/« .^t_lL-)Po,T-8P0--fi-|LL (e * "-l)^].
u-p s-p' s-pU-p

Setting P equal to zero and substituting for T

£ P S-MS-P *-P /J p E F^7^o * /J
p

+ B -2. = 0 . Therefore

o w 2-^2 w 2x2
n n

i*. -L^^-p?The above equation for Pleads to —*= g_ g' los( c p' g}

Using the experimental factor of two the formula for obtaining maximum

power becomes

2L- , +{Lzjf +-1-1oJ±z±*+±+MIlzJ) p-°.)
Po "1 2wn2x2 J- p gV £ ^ % 2wn2x2 P'*

This formula with p = 0 reduces to the previously obtained formula for the
p

case p = 0. As £ increases first the term in_JL and then the logarithm

term may be neglected.

Proceeding in the same fashion for the case w %,'f 0, the first

equations for P and T remain the same. The density p can now be determined
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from the equation

"* 2 -/JfV -/^P\qp J f—1—(e x - 1) - t .

One obtains o* " P. ^
-i/^)p -z=A-l cos wHt +B]. sin wHt +Dx +E^ +F^ u ,

1 r R wn2x2where Ax =-(DL ♦ Fx), B, =— (E, ♦ A^l F^, Bx =—^

£ ? SX 2Ti *(o~ -P)2 M"1
s - p (s - pr h

S

Setting P equal to zero now gives 6"- P n
—^— *\ J P0

Tg_ p_wn2T(Ai cos wHt +Bx sin Wgt +Dx *Bxt *FjO JJ+ p— -0.

Using the approximations cos wfit =1 and sin Wgt =wflt this equation

reduces to £_ •
A £ - 8 "I po

[S-P+V^ Fl (e "l T" A)J+P~P~"

i- p♦ -n2pi^ (s - p) (p- -1 -4 A)J* P̂ =°
Therefore

p1 -i*4a--2-^~TT^-P+Pt!•po x wnztF1(S-p) L PJ

Again using4A-j^j log (^f1 |"*|") and the factor two the maximum
power formula becomes

p , +(B-b)zc . (8-p)27, _x_, rizj.p , L

<g - P)2 IP*
2wn2^ X ^WH -1
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Wheni-= 0this reduces to the previous formula. Letting p=0 one obtains

^•^s^t^y*10*"^-
It is interesting to note that here as with the iterative formulas the

1+ ~o^g" J

For SZ.pa rather simple approximation for maximum power can be

made. Again approximating the reactivity by f-p, or rather p- o", up

to time A one has

V -P S-P' Mi-S p -s

P is clearly an upper bound for Pand in case S is much smaller than p
P -o
it is not much larger than maximum P. Therefore, one has for a formula

TMiax g _ g

Next a formula can be obtained for the time of maximum power.

In obtaining the above equation for maximum power the equation

S- PA C R 1 P|~S -P*wn2xFx (e^^ -1- LA)J +p—2. =0 was used. It

only remains to solve this equation for A- On rearranging one has

M* -1 *&j£ [i *(-^f2] t -«• *^> ^*T*yi U t^wg2 J "- pJ x

Since for large S,small £-pand small &*the quantity g [S -p♦ P-^-J

is close to one, it may be approximated by one. Therefore

JL, s~p.
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*—*-, log A-£-(i ♦ £-w logTi *u.(i *iL)]t|S_B| 6l wn2 \ w2/ L w^ V^ J

is a fairly good formula for the time of maximum power.

Finally a short formula can be obtained for obtaining pressure

maximums. Consider again, equations (6) through (9). Differentiating

equation (7) and using equation (9) one obtains the pressurizer equation

z+a^z+apz|z|s- w2 (z +wn2y) = - wg2 P•

The pressure is therefore proportional to z + a-i z + a? z\z|. The z

represents an inertia force and the q z + o2 z\z\represents a frictional

force. Under the constant pressure assumption or upon differentiating

p = z +wn2v one obtains

z = -wn2 y and z = -wn2 y.

Now equation (6) states that y = X - 1 and consequently

z=-wn2 (X - 1) and z--wn2 X.

Although the maximum X and X occur at different times, an upper bound for

— _ w 2 •p" should be given by p = v± + pf, where pi = _£_ Xmax
Wp.<C

and

Wg2 wH2

The formula for p^ requires a formula for £„__. This is most

easily obtained by starting with equation (8). With the usual trick of
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setting z =0up to time A, one has X=Lll X+L. or for large Sthat
6--p

X=^T^ X' Since ^ax does not occur at Xmax aproportionality factor
may be used. Therefore let Xmax =O.kZ Lll W The constant 0.1*2

was chosen first because it agrees pretty well with the SEAC computations

and second because superficially one would expect Xm£K to occur when X

has reached about half its maximum (see Table 8). For € much smaller than

Pthe formula i=izlX+J- indicates that Xmax -i. is avery good
approximation since X has its maximum value almost at t = 0.

The question now arises as to how well the numbers given by

these formulas agree with SEAC computations and the iterative formula

computations. Tables k, 5, 6, and 7indicate the comparisons, while

Figures 61, 62, and 65 exhibit the comparisons for the HSE case. The

short formulas are seen to give results which agree pretty well with the

other results. Of course, the agreement is best for }arge £, since most

of the formulas are developed for large S. The short formula for pressure

leads to values about one-half to three-fourths of the SEAC and iterative

formula values. This can be explained by either choosing another propor

tionality constant between Xmax and Xmax or better by noting that the

pressurizer oscillation might be expected to increase the pressure above

that predicted by the formulas.

Table 3 gives the list of short formulas.
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F. COMMENTS AND CONCLUSIONS

Again, let it be emphasized that this is largely a mathematical

discussion of the equations of motion which are thought to represent the

important features of the kinetics of homogeneous reactors of the HRE type.

This report deals primarily with the non-linear features of these equations.

This aspect of reactor kinetics is probably third in order of development

and importance. First, of course, is the problem of obtaining equations of

motion which approximate the reactor motion sufficiently well and can be

mathematically investigated. The next problem is to investigate the

"stability" of the motion determined by the selected equations. In particu

lar, this means a careful investigation of linear stability. Only after

stability questions are answered does it appear worthwhile to investigate,

as this report has partially done, the actual motion under various initial

conditions. Since a large step change in reactivity seems highly unlikely

most of this report deals with a greatly idealized motion.

Having indicated the relative unimportance of the type of calcu

lations made here, it seems only proper to give some justification for

spending time and effort on calculations of the type in this report. The

following four reasons may be given as partial justification:

1. Certain safety calculations can be based on such calculations.

2. The design or selection of a reactor might require such calculations.

3. Other investigations of reactor kinetics might profit from such results.

k. In contrast to the linear techniques, the non-linear techniques are

less straightforward, less explored, more difficult, and more inter

esting.
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A number of physical assumptions have been made before equations

(1) through (5) were written down and they may be noted as followst (1)

constant heat removal, (2) the effects of gas may be neglected, (3) the

essential features of the motion are determined in a short time, (k) con

stant delayed neutron source, (£) around the loop effects may be neglected,

(6) bulk coordinates are used and no account need be taken of positional

variation of the symbols, (7) the only non-linear effects of importance

occur through the reactivity and the velocity of the fluid in the relief

pipe, (8) step changes in reactivity will give results on the safe side,

and (9) a linear equation of state may be used. There are undoubtedly

other assumptions made but it is believed that these are the main ones.

The latest HRE design has constants which differ slightly from

those used in the SEAC calculations, e.g., w„2, w 2} T and a-, are larger

in the present HRE design. It may be noted in this regard that the SEAC

calculations were carried out with practically dimensionless quantities.

Each calculation therefore could be applied to many reactor models.

It is probably better to deal with entropy rather than tempera

ture. However, for convenience of understanding the terra temperature is

used here.

From the "practical" viewpoint of homogeneous reactors of the

HRE design the short formulas are probably very good rules of thumb. If

more detailed results are desired and a greater assurance of the proper

magnitudes of the results is asked for, then the iterative formulas appear

to be useful. Finally, if complete assurance for details and magnitudes

are desired, one must resort to numerical integration. The regular usage

of high speed computing machines will undoubtedly make it economically
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feasible to choose numerical integration. At present, however, it seems

economical to develop short formulas.

This hierarchy of approximate solutions to systems of non-linear

differential equations could probably be developed for usage with other

reactor types, e.g., boiling reactors.
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APPENDIX I

Short Derivation of Power Equation

The following short and rather novel derivation of the power equa

tion, P= —\g - p-aTjP +"^" P, is due to T. A. Welton. Consider the
X

equation

P(t) = \ K(s) P(t - s) ds,i
where s is a delay time and K(s) is a kernel indicating in what manner the

past effects the present power. The kernel K(s) may be considered to be the

sum of two kernels, Kp and Kd(s), one due to prompt neutrons and the other

due to delayed neutrons. Therefore:
OO OO OO

P(t) =\K(s) P(t - s)ds = \P(t - s) Kp(s)ds +jP(t -s)Kd(s)ds.
0 o o

Since for the prompt kernel P(t - s) can be approximated closely by the

first two terms of a Taylor series, one has

P(t) = |̂j(t) -sP(t)J Kp(s)ds +\ P(t -s) Kd(s)ds.
o . o

Upon solving this equation for P(t), one obtains

^(sMs -1 ^P(t -s) Kd(s)ds
o , . o

P(t) = -^» P(t) + -^55
)dsCsKp(s)ds \sKp(s)(

0 0

Defining s by the quotient of VsKp(s)ds and \Kp(s)ds and defining
r°° o o

k(l - b) as equal to \Kp(s)ds, this last equation becomes

1 ° 1

p(t) .1''^j^ P.H^S JP(t -.) K^ds
o

OO

k - 1 - kbor P(t) = *";"K° P+-7T \Ht-s) Kd(s)ds

where x -k(l -b) s. Since \Kd(s)ds = kb if \Kp(s)ds =k(l - b) and
a©

K(s)ds) = k,S
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one may write

(j P(t -s) Kd(s)ds =kbP

where P is an average value for P(t) over its past history. Letting

k - 1 = £ - aT and kb = p one therefore has

P-^H-aT-p]p+ tf-P •

In the case of a S step function the power is assumed to have been

at P0 for a long part of its past history and consequently P can be replaced

by P0.
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APPENDIX II

Factorization of Certain Second Order Non-Linear Differential Equations

Many second order non-linear differential equations, including

some of interest in the treatment of reactor kinetics, fall into one of

the following three classes;

(D [cGET +f(xlj Lh(xl' X2' x3ll =°>
(2) [h|- *g(xx, x2, x3)J [g (g(Xl, x2, x3)jj =0

and (3) [gg ♦ k(t, y)J [x{k, %., t\\ =0
where x±, x2, x^ represent t, y, g£ in any order.

For class (1) the equation may be written as g^- "* f(xi)v = °>

where v = h(x]_, x2, X3) is considered to be a function of x^ The solution

of 3x7 +f<xl)v =° is rxl
L -j f(z)dz

v s ce

where c is an integration constant. Consequently,

fXlf(z)dz
h(xx, x2, x3)e = c.

The equations of class (1) can therefore be solved if one can solve this

last first order equation.

For class (2) the equation may be written as -^- + sfx-^w = 0,

where s = g(xx, x2, X3), and consequently, w =G g(xx, x2, X3) are con

sidered to be functions of X;j_. Using the integrating factor

J s(z)dz
r(xx) = e ,

one obtains r(x]_)w(xi) z c, where c is an integration constant. Since

$* = sr it follows that
dx-j_



ko

,dr

r '

for r(x^) and then solves the first order equation

dr

3x7
s(xx) = g(xx, x2, X3) = for y.

For class (3) the equation has the form -rr- + s(t)w = 0, where

dk
s(t) = k(t, y) and w(t) = K(k, -w- , t). Using the integrating factor

\ s(z)dz
r(t) = eJ

•

one obtains r(t)w(t) = c or since r(t) = s(t)r(t) and s = k(t, y) one has

,2
• • *

r(t)K f£, I-^ ,tl =
Cr r r >*

The equations of class (3) can therefore be solved if one first solves this

last second order equation for r(t) and then substitutes for r and r into

the equation k(t, y) =£ in order to obtain y either implicitly or explicitly.

Particular solutions of class (1), (2) and (3) can be found by

merely setting the inner factors equal to zero, i.e., solve for y after

putting respectively either h(x]_, x2, X3) or G<g(x1, x2, X3)* or

K(k, -sr, ts equal to zero.

The following three elementary examples illustrate respectively

the above methods for classes (1), (2) and (3).

(a) yi 1 y'2 1- ay2 + b = 0
y

_ yt 2 + ay3 - by = cy



The integration may now be completed by the use of elliptic functions,

(b) 2y'y" = - y'4 or 2y'" = - j^

/• 2$ 7 (z)dz .
r(t)w(t) = cly where r(t) = e and w(t) = y (t).

.'. r(t) = c-l

r(t) = C]t + c2

•2 r(t) . cl
•> " rTtJ ' cxt + c2

y=*2j/ t+c3 '+c^

• • • • /

(c) 2yy + 2y2 + 6y3y * y° = 0

t

y2(z)dz . ,
r(t)w(t) = c, where r = e" and w s 2yy + y4

2 >

§ y2(z)dz
* * • M

r = c-it * Cot + c-

E =y2 = 2t * Cl.
r t2 + Cl.t + Cr

If T is eliminated between the equations T = S(P - P0) and
*• '2

" i— -i P PP r - [aT + pj P the equation 2 = - a S(P - P0)

is obtained. This equation is a special case of class (1).

Ill
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APPENDIX III

Quadrature in the Phase Plane
For Certain Second Order Non-Linear Differential Equations

Certain non-linear second order differential equations can be

solved or at least their first integral can be found by replacing the

second order equation by two first order equations which may be integrated

directly by quadrature in the resulting phase plane. The following three

classes of differential equations fall into this category:

(2) 7• ^ 7 ♦ F(^)r2h(y) ^
e

(3)7 .^J'«W^j ?•
The corresponding sets of first order equations aret

(1). ;=xh(y)r(t),x =F(^(yjy) r(t)

(2)« y=xh(y) r(t), x=[p(x) -x2J r(t) g|

(3). y=xh(y)r(t),; =x2r(t) ^ \fy)h^
The phase plane equations therefore becomer

^,, <& fa2(y) x
W" &- GTyT FT3ET

/mm dy x h(y)
<2) 3x = F(x) - x^ 73in

\J7'

^mi <& 1 h2(y)<3>" cE=x £(y) - dhh(y)]



The corresponding solutions are:

y 2
(1)... C ^L.dz-) ^-ydz.c

^ h2(x) " W

? z(2)«•' log h(y) - C F(z) . z2 dz =c

h2(z")(3) •" log x ♦ log h(y) - f ^7T7 dz s c

U3
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APPENDIX IV

Flow Chart for SEAC Calculations

The following chart is included merely to indicate a portion of

the thinking that goes into the preparation of a problem for high speed

digital machines. This flow chart indicates in block diagram form the

sequence of operations which the machine is to perform. With this chart

as a guide the programmer translates the sequence of operations into

machine language. Members of the National Bureau of Standards and

B. M. Drucker, ORINS Fellow attached to the Mathematics Panel, did the

programming and coding for the SEAC calculations.

Note: These notes apply to the flow chart.

* Machine automatically stops here to allow auxiliary tape contain
ing 8 constants (of Box IV) to be read in.

*# T1 denotes time interval increment for which the x values are to
be printed out.
T!' denotes time interval increment for which the y, z, v values
are to be printed out.
A-, s time at which the next computed value of xi is to be printed out.
Ao = time at which the next computed values of yi, Zj_, v± are to be

printed out.
«

**# xi_i denotes the derivative computed at t = t^_^, etc.

# denotes a purely notational box. No operations are performed.
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,2"20 h
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Solutions of ••
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Z = - V

v = cv +• dvlvl + ez + fy

t
Read main routine

from tape into

the memory

Sum check
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^ Initial conditions

X(O) = 1
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TABLE 1

Maximum Maximum Maximum

System** X Time T 2£_ Z 2t?. V Time P Time

k U560fe7 .032 55.0 7.5 -2800.* -375 67,300* .039 i860* .039
9 1U.9 .081* l.it9 2.0 -7U.5 -100 717.3* .080 .73* .060

12 36.2&1 .072 2.27 2.5 -liU.* -125 1920* .07U 2.77* .062
13 1U5.I*3 .055 U.70 3.5 -252.* -175 7567* .061* 28.0 * .055
10 2.53 .08U •k2 1.0 -21.0 -50 90* .070 .156*.018
11 U.71 .091 .76 l.U -38.0 -70 200* .070 .250*.Ol8

1 7U70. .026 58.1 7.5 -5U00* -375 Uoo,ooo* .036 2500* .065
5 128.8 .058 U.i 2.0 -236* -100 8,550* .06U 32.0* .098

2 3360&J .032 32.8 7.5 -2938* -375 205,000* .039 1275* .067
3 U560W .032 55.0 7.5 -2800* -375 67,300* .039 i860* .039

7 1U.9 .08U 1.U9 2.0 -7U.5 -100 720* .078 .6U* .058
8 lU.9 .08U 1.U9 2.0 -7U.5 -100 720* .082 .73* .060
6 Hi.9 .081+ 1.U9 2.0 -7U.5 -100 720* .078 .6U* .058

** Sks ro

* oscillation observable

[*] oscillation occurs but not observable on curve
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TABLE 2

Iterative Formulas

x =f-L *f2t +f3t2 +f5e^t + f6e2lt + f telt
y = a^^ &a2t +avt2 +a^t^ +a^eYt + a,e2Yt + a t,eIt

z =cl *c2t +c3t2 +%t^ +c0eIt +c6e2Yb + c +e It +Acos wflt +Bsin wt
p=z +wn2y =E-l *E2 t +E^eY* +E6e2Yt +E?teYt +Acos wRt *Bsin wRt

x

where:

f, "I2 "-f *7

f3- V
-wn2 Wh2^2

2 0 2TM0* *wH2]

7
*r,2 c 2f „ = n °

l^Y3

al ' " [a5 *a6j a. = f5 _f7
a2 - f x - 1

a3 = f2/2 "u ~2I

*k = f3/3 a„ ° f7

°i -[sr -3 - njV fL. *2J^£r^_V

°2 =[^"aU "*2j wn2 i^f ' fl *_] Wn2
H

O "W-n^fo
c3 = ~ a3wn = n 2

2 =-n!£3
CU = - al*wn

fA

H
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TABLE 2A

Additional Iterative Formula

80

•61 +g2* *S3t2 *65e¥t *66e2Yt ♦ g^e1* *—[~ A^in Wgt +Bcos wHtJ
H

where

81 " - 02

62 = - 2c3

63 - - 3cu

g5 --[ro5 ♦ o?]
g6 - - 2Yc6

g7 - - To



TABLE 3

Short Formulas

81

2wn2 L wH^J . $-B L^ . • J 2wn T u WH ^MX

[_•: £(i *$* >-« fr *5 fc *$d* of Xmax ' Hi l0g

=W - •>* * Vax

For ?>£ x^ - i-

w 2 .
Pi =Wh2 *max

wn2 ^ 2
Pf -Bl "^ (Xmax "X) +a2 "T (xmax "^

WH H
v^2 x

Scaling Formula For pt AP -P 3* (32>g)

* r = a + b log r ♦ c -

for large r and a- r-^ • a
1

r2 - a+ b log r, + c7>

r-i = a + b log r, + c-
3 r2

etc.

Second short formula w^ = 0

Xmax * * -»2 M$* *it2 +^s2It -TtsIt -(•& **>* ^ ^-^
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TABLE U

Sys
tem

1

SEAC

P

Po

7U70.

iterative
Formula

P

Po

Short
Formula

P

Po

Iterative

SEAC Formula

AP Ap

#/Sq. #/Sq.in.
in.

Short

Formula

Api

#/Sq.in.

Short

Formula

AP^

,#/Sq.in.

w 2 =
wH2 =

x »

f

.0375

50
25000
.0001

a

0

a2

1* 9326.5
3U000
50000 58756. 0 0

2 3360 ia5i.ii
15000
25500 20923. 49.80 .0375 0.3 0

3 U560 U151.U 37200 20923. 3UU520. .0375 0 0.01

U U560 U250 U151.U 37200 37U00. 20923. 3UU520. .0375 0.3 0.01

5* 128.8 1U5.98 280
600

2U5.2U 0 .0100 0 0

6 1U.9 Ht.5U2 12.8 6.1077 .05U17 .0100 0.1 0

7 1U.9 1U.5U2 12.8 6.1077 .1625 .0100 0.3 0

8 1U.9 1U.5U2 1U.6 6.1077 3.668 .0100 0 0.01

9 1U.9 1U.5U2 1U.6 6.1077 3.830 .0100 0.3 0.01

10 2.53 2.U3 3.0 3.1Si 3.20 2.1875 .101*0 .0050 0.3 0.01

11 U.71 U.U25 15.0 5.0 U.76 3.0625 U.088 .0070 0.3 0.01

12 36.2 36.88 36.U21 56.0 50.0 30.59U 25.52 .0125 0.3 0.01

13 1U5.U Ik9.k9 560. 251.15 UU2.8 .0175 0.3 0.01

1U l.UUi 1.32 .0025 0.3 0.01

15 78.5 157.k .0150 0.3 0.01

16 268.3 8UU0. .0200 0.3 0.01

#6=0; all others 8 - .0075



TABLE 5

Iterative Short

System SEAC Formula Formula

t of t of t of

Xmax

.026

'Snax Xmax

1* .0375

2 .033 .030 .0375

3 .032 .030 .0375

k .032 .058 .030 .0375

5* .058 .057 .0100

6 .084 ill .0100

7 .084 .11 .0100

8 .084 .11 .0100

9 .081 .11 .0100

10 .084 .068 .0050

11 .091 .076 .0070

12 .072 .066 .082 .0125

13 .055 .057 .0175

1U .060 .0025

15 .058 .0150

16 .046 .0200

*B - 0; all others B - .0075

83



* Diam.
of Core

10

15

w,n„

P =
T •

wn2a
wH2-

P"
x °

.0030

.00028
18.2
14,000

.0034

.00021

22.3
12,000

.0038

.00077
4.98

•Wjj2- 11,000

20 B -

30

WH a

B *

T •

wn2"

,oo4i
.00127
2.00

9,000

.0049

.0p237

.517
6op

k

S

vs2=
.00714
1.065 X
87.36
.130

lO'

s -

k _

S -

Oi-

.00217

.825 X 107
I67.O
.050

.00227 „
1.083 X 10?
768.4

.031

f - .00194 _
•,2- 1.182 X 10'
S - 1619.

.023<*1

k

P,
rs<

S •

aia

vs2=
.001%

1.271 X 107
4145.
.014

84

TABLE 6

.0025

.0050

.0075

.0100

.0175

.0010

.0025

.0050

.0075

.0100

.0010

.0025

.0050

.0075

.0010

.0025

.0060

Iterative Short Iterative

Formula Formula Formula

P P AP

Short Short

Forirmla Formula

APi AP
f

"*o

2.085
5.114

11.84
23.0
95.0

.0250 255.

.0025 2.06

.0050 5.50

.0075 14.2

.0100 30.0

1.216
1.70
3.20

6.13
10.9

1.20

1.64
2.98
5.50

1.178
1.560
3.46

To #/Sq.in. #/Sq.in. #/Sq.in

6.00

4.1614
11.477
22.915
94.052
251.53

2.796
5.242
14.85
35.56
353.8

1512.

3.7778 6.847
5.0771 18.87

13.531 59.29
29.486 182.0

1.3571
2.9231
1.7067
5.4938

10.615

1.3226
2.5625
1.3746
4.5367

.8652
2.148
4.882

10.30

21.55

.5524
1.489
1.3746
5.887

1.2564 2.715
2.0417 7.059
1.6096 49.74

1.014
1.418
8.798

27.33
232.3
942.7

.07382

.04667

.1023

•3235
1.374
3.699

3.695 .1692
5.042 .2366

34-44 1.706
120.8 4.472

.4518
1.129

.3886
3.857

12.49

.2833
.7082

1.525
1.835

1.507
3.768
1.121

.00385

.02074

.00762
•03115
.1037

.00729

.00267

.01293

.02927

.01282

.05210

.03047
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TABLE 8

SEAC Short Formula**

0

^max ^ax

1468908 9326.5

Second Short

System
•

xmax Xmax

7470

c

.374

Formula***

wH2 = 0
Xmax

1 1047700

2 401767 3360 .399 523068 4151.4

3 478467 4560 .350 523068 4151.4

4 478900 4560 .350 523068 4151.4

5 5122.5 128.8 .398 6131.2 145.98

6 248.03 14.9 .666 152.69 14.542 13.9

7 248.07 14.9 .666 152.69 14.542 13.9

8 248.53 ' 14.9 .667 152.69 14.542 13.9

9 248.59 14.9 .667 152.69 14.542 13.9

10 41.673 2.53 •* 50 3.0 2.42

11 67.270 4.71 •* 70 15.0

12 823.33 36.2 .455 764.86 36.421 32.3

13 6482.8 145.4 .446 6278.6 149.49

*B > £ Xmax- -|-

**B*l£ Xmax- -U2U %«

*** second short formula for x^^



TABLE 9

Symbols

P = power level of reactor, kw

P * steady state power level (1000 kw)

Pi f initial power level

x- P/P0

d * log P/P0

T • temperature, "C

T0 = steady state temperature (240°C)

Tg » equilibrium temperature

Sa reciprocal heat capacity, "c/kw-sec. (0.005 'c/kw-sec.)

a p -57- =temperature coefficient of reactivity (10~-y°c)

X •» lifetime of prompt neutrons (10""^ sec.)
1 . o

w 2 =—aSP„, square of nuclear angular frequency (50/sec. )
n x o7 *

8 - bulk or average fraction of delayed neutron in core (0.0075)

"X. • delay constant for the assumed single group of delayed neutrons
emitted (0.08)

c " lumped concentration of delayed neutron emitters

k * material multiplication constant

p • density of core fluid, lbs./cu.ft.

p0 • steady state density (50 lbs./cu.ft.)

p™ - equilibrium density

-i£» density coefficient of reactivity (0.0074 cu.ft./lbs.)
l /ik \ r~ "IzaT(^j^-Po)» 74[]p-p0)J

87
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S • fractional step change in reactivity

p = pressure in core, lbs./sq.in.

p0 = steady state pressure (1000 lbs./sq.in.)

vs • velocity of sound in core (2560 ft./sec.)

T**"n*7- ^(f) (P "Po). [l0 (P -Pc)J
U = exoess velocity of fluid in relief pipe

V = volume of core (1.75 cu.ft.)

A « average cross-sectional area of relief pipe (0.037 sq. ft.)

M * mass of coolant in core

Mp - mass of coolant in relief pipe

B,E • constants determined by pipe flow loss
B

cei -—• - frictional constant in relief pipe

E A«o /dk\
a? - — Jd /—) turbulent constant in relief pipe

L • length of pressurizer pipe (5.9 ft.)
o

WB^ - 2.vs2, square of pressurizer angular frequency (25,000/sec.2)

w 5~ P

d ** rate of change of reactivity

n • step change in power

A - time of maxi*num power

ty - thermal flux

Y• proportionality factor between thermal flux and power

\0 - reciprocal lifetime of prompt neutrons (loVseo.)



ci

kc

£co

5k

89

concentration of delayed neutron emitters

time constant of delayed neutron emitter

multiplication constant required for crit icality at temperature T

multiplication constant required for criticality at temperature T0

material multiplication constant at time t

material multiplication constant at time t = 0

e • k0 - kc0 = fractional step change in reactivity

pi ** fraction of neutrons from fission having time characteristic \i
-1

%

Y

X

w

K

ct

vg

Tgo

E-,

Po\)T

1 /4P*-1
pcAjp/

ip1-A-f.M[t(-)-*(plIdB
i Pi P - PQ J

wn

P

[e -a(T -T0)J
- 1 - X - 1

k - It.

Ira
S-lCT)

rate of change of reactivity (external)

volume of gas as a fraction of core volume

steady state volume of gas as a fraction of core volume

- gas coefficient of reactivity

= gas generation per unit core volume

= steady state volume of core

Vo \ >P'

= constant determined by pipe flow loss

(HRE constants)
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