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A, INTRODUCTION

The objective of the following pages is to place in one report
a large portion of the work connected with the kinetics of homogeneous
reactors of the kind envisioned in the Homogeneous Reactor Experiment.
This report deals primarily with particular thermal, nuclear and press-
urizer systems containing only bulk or average quantities and no posi-
tional coordinates. The leading reason for considering only bulk quan-
tities is that the mathematical problems become much easier. Further,
the motion is considered only for a short period of time. This again
reduces considerably the complexity of the equations to be solved.

Most of the investigations have dealt with the results of step
increases in reactivity. Since such step increases in homogeneous reac-
tors seem unlikely, any calculations made with this assumption are on the
conservative side. The effect of a linear function increase in reactivity
has been investigated to a small extent.

It is worth noting that the following is largely a mathematical
discussion. In particular, no justification is given here for the equa-
tions which are used to represent the equations of motion. Consequently,
any physical conclusions reached here are only as good as the equations
from which they are derived.

Since the systems of equations which arise contain one or more
non-linear equations, it is necessary to resort to non-analytical methods.

Two general methods have been used to obtain approximate solutions. The




most detailed and accurate results can be obtained by using numerical
integration either with desk computers or larger machines. Unfor-
tunately, these numerical methods are somewhat lengthy and expensive,
and do not lead to results or formulas which may be used for equations
with different values of the parameters. Sections B and C deal in
turn with "Hand Computations™ and "SEAC Computations™. The other gen-
eral method consists of using semi-analytical methods in order to
obtain approximate formulas. Sections D and E are respectively, "Anal-
ysis - J. M. Stein" and "Analysis".

The final section, F, Contains ®"Comments and Conclusions™.
There also exists an Appendix devoted to some mathematical notes. For
convenience pages 87, 88, and 89 contain definitions of the symbols which
are used. When necessary the values of the parameters or constants

used in a particular computation are listed in the text.

B. HAND COMPUTATIONS

Various systems of differential equations have been numerically
integrated by desk computers. The first set of such calculations was done
in 1949 under the direction of I. Spiewak and C. B. Graham. Insufficient
records remain of these investigations in order to draw conclusions con-
cerning them.

The results of the next numerical integration appear in ORNL 925.

The following system formed the basis for this integration:



b - P k- k] s T

. Ci = - NCi 7 Bixok¢ (i =1, «.., 6)
T =35 (P-P)
P =0\ k¢

ke = koo * a (T = To)s
where the constants are given in ORNL 925. Figures 36, 37, and 38 of
ORNT 925 exhibit these results and are reproduced here as Figures 1, 2
and 33* Figure 3 indicates that the assumption of one group of delayed
neutrons is a fair approximation.
Five systems of differential equations have recently been in-
tegrated. The following system is the first which was investigated:

a &=
-E(T—TO)P'P—?P-P*XC

P=
. c=-x+bp
T
T =8 (P ~"Po)

where § = 0.01, ¢ = 0.001, © = 0,0001, B = 0.0075, » = 0.08, P, = 1000,
S = 0.00573. These results appear in ORNL 1121 and in Figures L, 5 and
6.

Parily in order to test the assumption of a constant source of
delayed neutrons as compared to one group of delayed neutrons the follow-

ing reduced system was integrated.

L]
1]

S (P _Po)

a §-B B
- (T ~T + 2 Ppa+ b
1:( o) P T ch°’

# Many of these figures will not appear here, but will appear later

in a supplement.



where the above constants are used. It is apparent that a constant
delayed neutron source is 2 good assumption.

Systems 1 and 9, as listed under SEAC computations were cal-
culated both by the SEAC (the National Bureau of Standards' Eastern
electronic digital computer) and by desk computers. The hand computa-
tions were carried out before the SEAC computations since it was desir-
able to have these results both as a means of checking the machine re-
sults and as a method of estimating magnitudes. Figures 7 through 16
exhibit these results.

The most recent hand computation was carried out on System 1L,
also listed below. In this case it was thought desirable to shock the
pressurizer system only and follow the early motion of the neutrQn and
pressurizer systems. Figures 17 through 21 present these results.

All five of the above systems were integrated by the Runge-
Kutta method. For the more difficult systems such as System 9, one com-

puter can calculate at about the rate of 0.3 sec. per system per month.

C. SEAC COMPUTATIONS

The following set of equations dealing with the thermal, nuclear

and pressurizer systems form the basis for the computations performed on

the SEAC:
(1) i = (P - Po)
(2) 1'>= L (2o - 00) #5- ) P 5%
. Apo

(3) p==-—7F 0



(L) &=%(P—Po)'%U-% [ ul

(5) p = o =;i-z (p ~ Po) -/‘JLS—J(T - To)

From the computational viewpoint it is desirable to replace
equations (1) through (5) by a corresponding set with fewer constants

or parameters. Using equation (5) in equation (L) and letting

-_1'.._ _P _1 dkAo 1 (jk .
y ‘SPO (T - To), X "?o-, v '—T(—d-;)—%—U and z = ig-p_)(p - po) one can
obtain

(6) y=x-1

(1) z==-v

8) x=zx+L x4+l

T
6 %= - - el w2 1 + ]
2 o A%po o2 214k - _E Apgukyt

where Wy T Vs W, T(J—T")SPO’ ay .ﬁ-and ap M—r?—v(Jp .

Thirteen such systems were computed on the SEAC. 1In all the systems
equations (6) and (7) and the initial conditions x(0) = 1, y(0) = O,
z(0) = O and v(0) = O are kept fixed. The systems were completed by

adding one of the following pairs of differential equations:



(8)1
(8)5
(8);
(&),
(8)cg
(8)¢
(8
(8)g
(8),
(810
(811
(8)12
(8)13

5 e

oe Moe Moo

X

X

X

ZX

X

X

ZX

zX

X

zX

X

ZzX

ZX

X

zX

+375x
+ 75
+ 175

+ 300x
+ 300x
+300x * 75
+100x

+25x 475
+ 175
+ 75
+ 79
+ 75
- Sx 475

+50x * 79

+ 25%
4+ 26x
" 20x

- 25x

+ lOOxr* 75

(9);
(9,
OF
on
()¢
(9
(9),
(9Ng
(9,
(910
)11
(912
(915

v

2.5 (1042
2.5 (1042
2.5 (1042
2.5 (1042
2.5 (1042
2.5 (1042
2.5 (1042
2.5 (1042
2.5 (1047
2.5 (1042
2.5 (1042
2.5 (1042
2.5 (1042

3

3

1.25 (106)y

1.25 (10%)y
1.25 (10%y
1.25 (10%)y
1.25 (10%)y
1.25 (10%y
1.25 100y
1.25 (10%)y
1.25 (10%)y
1.25 (10%y
1.25 (106)y
1.25 (106)y

1.25 (loé)y

where (f}%): 0.007L4, V = 1.75, L = 5.9, A = 0.037, vs2 = 7.05(106)

- 0.3v
- 0.0lv[vl

=0.3v -0.0lv'vl

- 0.1v

- 0.03v

-0,01lv v.
-0.3v ~-0.01v|v|
-0.3v -0.01v }v|
-0.3v -0.01v|v|
-0.3v -0.01lv|v|

-0.3v -0.01v| v]|

w2 = 50, Wy = 2.5(10%, © = 0,000, g = O or 0.0075, &) = 0 or 0.1 or

0.3 and § = 0.0050 or 0.0070 or 0.010 or 0.0125 or 0.0175 or 0.0375. For

convenience in identification each system is named according to the number

which is a subscript for its equation (8) and (9.

(8)y), =x= zx- 75x + 15
and x(0) = 1, y(0) = 0, 2(0) = O and v = ~ 105 was computed with a desk

computer

A fourteenth system with

(91, v = 2.5 (1042 + 1.25 109y

The general system (6), (7), (8), (9), with initial conditions

was programmed for solution by the modified Euler method on the SEAC.

The parameter values, integration interval (of order 10

-L sec.), and the



interval at which the results were to be printed out were read into the
machine independently of the main routine. Since it was not necessary

to change the main routine from system to system, it allows the possibility
of using in the future the main routine with different values of the
parameters. The range of integration was either from ¢t = 0 to t = 0.3 sec.
ort = 0tot = 0.4 sec. The total machine time, including one hour for
checking the programming and coding, for all thirteen systems was about
five hours. However, the actual computation time per system was less than
twenty seconds. The remaining machine time was taken up by the printing
out of the results and to a small extent by reading the routine and
parameter values into the machine. One hundred values of x and fifty
values for each of y, v and z were printed out. Table 1 gives a summary
of these results while Figures 22 through 60 exhibit the results.

Some comments may be made concerning these results. For this
purpose consider in turn power, temperature, density, velocity and pressure
as represented through the symbols x, y, z, v and p. Figure 61 and 62 ex-
hibit respectively maximum x and time of maximum x versus &. It is inter-
esting to note that there exists a maximum time in Figure 62 which occurs
at about prompt critical, i.e. $ = 0.0075. This value of S separates, of
course, the two general types of motion of x. That is for 8:713: 0.0075,
x has an exponential like rise at first and is brought down only by the
negative temperature coefficient, while for 5<:ﬁ, the rise in x is more
step like at first and is brought down not only by the negative temperature
coefficient but also by an exponential like fall. From the SEAC numbers it
is clear that increasing the damping in the pressurizer increases the maxi-

mum value of x and increases the time at which x reaches this maximum. For



$£.0.0025 this effect is probably negligible. Two general effects may be
noticed on the x vs. t curves as the § increases. Although at & = 0.01

no noticeable motion due to the pressurizer appears, it does not take a
much bigger 5, and in particular at $=0.0125, before small oscillations
appear on the x vs. t curve. Overdamping, while being only clearly de-
fined for linear equations, may in the sense of never allowing a motion

to oscillate about its equilibrium position be used to describe the other
effect. Up to & = 0.01 the x is overdamped. At § = 0.0125 the x is barely
overdamped, while at & = 0.0175 the system becomes underdamped. It may be
emphasized that the suffixes over and under do not refer to the degree of
the damping, i.e., being more or less damped.

The curves of temperature versus time indicate that the general
motion for &<-0,0125 goes up smoothly to the new equilibrium temperature.
The equilibrium temperature is given by yp = —é—z, i.e., Tg = f% + Toe
Figure 63 shows the value of the temperature :¥h£ = 0.2 sec. versus o.

This curve indicates that beyond § = 0.0135 the temperature is no longer
overdamped. The pressurizer motion does not show up in the temperature
curves.

The curves of density versus time fall steadily toward their new
equilibrium values until around § = 0.012. For larger & the pressurizer
oscillations can be seen. Figure 63 also shows the value of z at t = 0.2
sec. versus . Again overdamping disappears at about § = 0.0135. The
equilibrium density is given by zp = %, ic€e5 p = pg *§ ({£§ ’1.

The curves of velocity versus time give a good picture of the

pressurizer oscillations and the effects of the damping coefficients.

Figure 6l shows a curve of maximum velocity versus .



Figure 65 exhibits a curve of maximum pressure versus 8 . At
§ = 0.025 the pressure is seen to be LOOO lbs./sq.in., the assumed burst-
ing pressure. Around § = 0.0l the largest maximum occurs at the second

rather than the first maximum.

D. ANALYSIS - J. M., STEIN

This section will be devoted to summarizing the analytical re-
sults‘obtained by J. M, Stein in ORNL 630, ORNL 730 and ORNL 925 which
are relevant to the previously discussed computations.

ORNL 630. Consider the case of no delayed neutrons and no pressurizer.

Then

T = S(P - Po), P=No[k - ké]P and k, = kyo * a(T = To),
where T(0) = T, and P(0) = F, form a complete system of equations defining

the change of power and temperature with time. Upon eliminating time by

dividing P by T one can integrate and obtain

The maximum temperature excursion is T, *ﬁ%% and the maximum and minimum

. . e .
power excursion which occur at T = T, +E- are given by

P, Aoe®
P, - P, log wit = P, = "0
m” Yo %8 Py T 0 e
or approximately
7\062 Pmin 1 = 7\06

P = and - lo -
MEX  RaB * 5 2SPa

For very small values of e the oscillations are nearly sinusoidal with fre-

2

quency ;%_=5%? 0aSPo ' » Figures 66, 67 and 68 exhibit the character of
. Q

these oscillatiohs, where Ao = th, a = 0.001, § = 0.00571, P, = 1000,

Sk —L—’W = 12
_E’— °
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If gas generation is taken into account the k required for criti-

cality is given by ke = ko * a (T = T,) + € (vg -V and an equation

*

for gas generation is given by Vg =T (P - Py). Proceeding in the fashion

go’

of the above paragraph one can easily obtain that

Pm‘Pologfm‘*Po=__L_ 6?
Po 2(aS * € 1)
Figure 68 also exhibits for this case maximum P vs. e, where € = 1

and r = 0.00000L.

The following rough calculation is used to give the order of
magnitude of the pressure rise. Taking into account the thermal expansion
and compressibility of the coolant, the density may be written as

p=po[1-3‘1 (T -To) + &y (p-poﬂ
The volume of the tank may be written as

v=vo[1+>’3(p-po)j )
where the elastic expansion due to pressure is taken into account but the
thermal expansion is neglected. The mass of coolant in the tank then becomes

approximately
M=oV =polg[l =¥ (T-1)# (Fp+ &3) (P“Po)_]-

The continuity equation when coolant is allowed to escape becomes

M= - p,AU.
Consequently

‘V' . -
U=_Z.D’1T—(a’2+/3)pj.
The equation of motion for the material in the relief pipe is

MU = p - EyUR.
The condition for a maximum pressure is p = O or U = _%,XiT . Therefore, if

one assumes U = O or since T = § (P - Py) that P = 0 , i.e., where P is max-
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imum, then

v, * v 2
p=E (Vl-f-T)z = Ey (131—2- 5)

R
Figure 69 can then be constructed by using the previous power maximum and

the following constants:
Xl = 0,00153, 8 = 0,00571, Vo = 3060 in.3, A =1,765 in.z, P, = 1000,
psi sec®

E, = 0.0143
1 ££R

ORNL 730. Consider the following set of equations which include gas
generation and a linear function of reactivity but does not include de-
layed neutrons:
P =%y (k-k)P, T =5(P~P,), Vg = r(P - P,),

ke = keo * a(T - T,) + € (vg - Vgo) and k = ko 4 cgt.
Let w be defined by

Using this new variable and eliminating time one can obtain

4 AgnP
dw cy - {aS *er)(P - Pg)

The solution of this equation in the phase plane is

c P A
P - Pi —[Po + t ]log - = ° (Wi2 + Wz)
aS +€r P; 2(cS +€r)

where P; and wj represent initial values. From the equation for P it is
clear that the maximum and minimum power occur when w = O. To obtain Ppax
therefore set w = 0 in the phase plane solution. Figure 70 exhibits the
phase plane solution. The solution represents an undamped osecillation which

for small cy and §k = ko - ko approaches an harmonic oscillation of fre-

1l
quency g%_ ='-z=ﬂ..')l(as + €r) Phg
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Figure 72 shows a family of curves with parameter Xy = ;i
o)

Pnax ;g plotted against § k and where cy = 0. For small

o
é k the maximum power is seen to be quite sensitive to initial power

where Xpax =

level but for large § k the maximum power level is almost independent
of this level. Figure 73 shows a family of curves with parameter
Xi = -—-where Xpax is plotted against ¥ = °t and where £k =

Po (aS +€ 1) Po
The values of the constants used in Figures 71 and 72 have been given

above.

ORNL 925. Consider the following system of equations:
P o[(l—ﬁ) k-kc]¢+2x c; (=1, ooy 6) c3 = =Ng05 +'pi>\ok¢
S(P-P,), P= a’xok¢, ke = koo *a (T -7T).

T
The solution of the equation for c:L is given by

ci(t) = ¢;(0)e~ M 4 Biroke™ N ti +)‘lT¢J (T)dT, where
c;(0) Pi = Aok $(0).
i

Using integration by part this becomes

i ¢ 1 t ) - t
cj(t) = %)\o [ko¢(t) -k é(o) o [t ﬂde

Substituting this equation in the equation for ¢>and writing the result

in terms of P, one can obtain
- -3t
P =%o (k = k)P - Nok 2 B3 SP o (o) (P)st
1 P
where A\op (k - k,) 1s neglected as a second order quantity. Dividing this

equation by the equation for T, one has

P

. 2i[6(s) - 4(P)]
aP _ A P Aok Poe ds
ar =35 (k- k) p—p; - —5’0_%13 : P - P,

The last term on the right hand side of this equation may be evaluated for

various values of time and various values of loss of delayed neutrons in the
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system external to the core._ By replacing the integrands by their arithme-
S Sﬁ MB(s) - 5(P)] J Bi “\;t(P)
tic means the term 1 = £ p; “Po® becomes 1= £ _[f +e 1 J
i P - P5 1 2
This last expression may be evaluated for various values of time and various

values of loss of delayed neutrons in the system external to the core. For
times up to 0.1 sec., i.e., through the maximum of the power surge for the
reactor of the Homogeneous Reactor Experiment, this expression for ) changes
on the order of five percent. Hence, one may write
- _ _Ao* T
ar= § (k- k)pp, - %
where 7, is considered as a constant.
Ao P Ao .
LetY=w_n ‘:e—a(T -Toﬂ, X:E- 1andK:w—nk‘r]then this last

equation can be written as

dx , Y R
FryrY-Kk=0

The corresponding equation on a time basis is

2y = 0,

Y4 (K=-Y) 7 +wy,
Although the above first order non-linear equation cannot be solved by the
usual analytical method, it may be conveniently investigated by the method
of isoclines. Any curve along which %% is constant is called an isocline.
A plot of isoclines and the resulting paths is shown in Figure 74. In gen-
eral the motion starts with X = 0 and Y = Yo and rises to a maximum value
of X. If then Yo was not too large X and Y drop to zerc in infinite time
never having changed signs.

Three convenient approximations may be used with the equation

ax + X, Y - K = O which lead to analytic solutions. First from Figure 73

dr X
it may be noted that Y does not change much from Yo during the rise of X

provided Yo is fairly large. Consequently, with large e and short time a

good approximate equation is given by g% = ~-Y - % - K % . This has the

(]
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solution
2 2 2
Yo _ Yo Yo - K Yo©" - Y .
Y——-—-—o = K x [Y—-———o - KJ logl: Yo X + J: '——T——

Figure 71 exhibits this solution when Yo = 20.65 and 1= 9.1, i.e., e = 0.01}.

In the region of the maximum where X>>1 the equation may be approximated by
%% = K - Y. The solution of this equation is X = Xnax - % (K - Y)z.'A useful
apprcximation is therefore given by Xmax =  L(X - ¥,)%, where X =0 when Y = Yo

Figure 75 is a plot of Xpay = Xmax T 1 versus e. The third approximation -

applies to the case of small §k or e.. In this case the isocline%?%-=(3:is an

upper- bound for. the maXimum X and therefore one can put X ., = e
~ ‘o

E. ANALYSIS

El. Linearization. Although it is not the objective here to treat linear-

ized equations in any detail, it does seem worthwhile to note the method

and to indicate the conditions for stability in the linear case for the two
main complete systems considered in this report. Consider first the system
formed from equations (6) through (9) subject to the usual initial conditions
which were the basis for the SEAC calculations. The equilibrium conditions

are found by letting the right hand sides of equations (6) through (9) be

it = = = - 6
equal to zero. These conditions are xm 1, g 0, zp = 2 ¥ = ol
Assuming thatg-andé._w_l.zare small, letting X = x - 1, V = V,E=z+-;§—
n

andy =y - %‘;iz, and keeping only the linear terms, one obtains

. n

y =%

zZ==-7

x=2-£ %

T
T= T twg? (T 4wl )
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The conditions for the stability of this system of equations
about the origin (X = 0, ¥y = 0, 2 = O, v = O) may be determined in various
ways. Whether one assumes a solution of the form egt, uses the Laplace
transform with parameter or uses some other technique, the problem resolves
itself into finding the solutions of the equation
b *(% +ay) ¥3 *(:%al +WH2) ¥ *QWHZY"' wgfwy® = 0
If all the solutions of this eguation have negative real parts, then the
system can be considered stable. The Nyquist technique of mapping by means
of a polynomial gives a quick way of obtaining the conditions for no roots
with positive real parts. The conditions are
JOZ U@ 28 - > - /(0 - L@ and (0)°> k(@
where (a)=%+ ay >0, (b) =-E—al + WH2> 0, (¢) = E.WH2>O and
T

(d)'—'v.vH2 Wwp? =0 . For the Homogeneous Reactor if one lets w 2 - 50,

n
WH2 = 2.5 (104, B = 0,0075 and T = 0.0001 then these conditions are not
satisfied if @1 £ 0.1lbut are satisfied if ¢7 Z=0.2.

If g1 and Bare set equal to zero, the case of no friction in the
pressurizer and no delayed neutrons, then the solutions are purely oscilla-
tory provided wy? = L Wn2' If W—;L{-z is set equal to zero then the fourth de-
gree polynomial in ¥ becomes )/2+_’BFY+ an =0 and the pressurizer system

has been uncoupled.

. ° 1
In the case of the system T =z S(P - P,) and F “I."[S" B - a(T - TO):’P

+ E—Po the equilibrium conditions are x=f =1 and y=—l—(T - To) - §
T ¢ 1 o SP, w2

Letting X = x - 1 and y = y-tE Tv'}?é- and keeping only the linear terms, one

obtains ¥ = X and X = !_;_ X - wn2§. The conditions for stability of this

system about the origin (X = 0, ¥ = 0) depends as expected upon the solution

of the egquation

72+ﬁ wn2=0.
T
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2
Since 2 = - g;i é) - l;wn2 , the solutions all have negative real parts

provided g-:>0 and wn%> 0. This system is therefore stable for small
oscillations.

Eo. Iterative Formulas. It would be extremely desirable to have useful

analytical solutions to the non-linear systems considered here. Unfortu-
nately, the best one can aim for are analytical approximations to the solu-
tions. Approximations generally apply only to certain ranges of the
parameters and variables, and for this reason caution must be used both in
obtaining and using approximations. The technique for obtaining approxima-
tion formulas in this portion has the dubious advantage that it could prob-
ably be shawn to be a mathematically rigorous technique. On the other hand
the formulas are not easy to use.

Consider again equations (6) through (9) along with their initial
conditions. A first approximation for x may be obtained, since z(0) = O,
by setting z(t) = O. Solving equation (8) gives

X] = S}ﬁ[geg—;—p-t -13]

Using equation (6) one can then obtain

__5 < ng:;é'— -t .
yl'S-B[S-B( Ty ]

Assume next that qj and qp are small enough that the terms qjv and qp v|v}

may be neglected in a first approximation. Actually these terms are not
considered in the next approximation, but they could be. Equations (7)
and (9) give then

z + szz = - szwnzy.



17

Substi@uting Y, in the right hand side of this eguation leads to

2] = Al cos wHt 4 By sin wyt + Dy #+ Byt # FleYt

where
_§-B 1
Y= =—07=> A4 =-(D *F1), f = -= (E *+ W)
WwH
wng $ § 1
D1= E1=——W2 F =—_W2'W2 Y2+w2]
) 1;5 ’ oo ‘1 T Hn [ H

If desired v| can now be obtained from equation (7) and p can be obtained
from 2z, + w,2y;.

It is apparent that the above first approximation can be useful
only for the early rise in x before the z has any importance. The next step
is to use this first approximation in order to obtain a second and better
approximation. The simplest way to do this is to put x; and 2z into the
right hand side of equation (8) and then integrate. This gives

2%t ¥t

xp =) +fyt + 382+ foe¥® + fe * fote

= gs 2.2 1 L - 2 WH_
5 [?*@YBWH "o R *WH:ZJY 2 167 = ¥n” T 2l

f7 =Wn ?_BY

t

Letting yo =a; +ayt + a3t2 + a)_Lt3 +age LA aée2Y T a7te ¥t and

2o = whz(c1+02t+03t2+cht3+c5eyt*c662§t*c7tewt+A2 cos wyt # Bp sin wgt)

one can then show using the equationsy = x - 1 and 1z + szz - - szwnzy that
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= l—f = lf c1 < —E—a - a1, Co = —éLa - a5y €3 = = a
aq 5y 65 a7 v 7 1 sz 3 1s C2 WHz L oy €3 39
) _ wfes AWy L Wit a6
cl = - al, 05—-EVH2 N Yz_] +EH2 +Y4:|2’ 6 )-LYZ +WH2 9
c7 = - wy® &7
= = ! + + 2Vcg * ]
Ao = -E:l + o5 * °6J , B = -VE- co + Yog + R¥cg *+ cqd .

Note again that no friction in the pressurizer has been taken into account .
by these formulas, although formulas with friction terms could easily be
derived. Again vo can be obtained from equation (7) and P2 can be obtained
from Py = 2o + Wp2yy,

The above formulas for x, y, z, v, and p were first evaluated
using the constants that were used with the SEAC computations. The formulas
with subscript 1 lead to numbers which are close to the SEAC numbers only
during the time from the beginning of the x or power rise to about half the
total x rise. The formulas with subscript 2 lead to numbers which are close
to the SEAC numbers to times slightly beyond the maximum x. This time proves
to be sufficient to also obtain maximum p values. The SEAC results and the
formula results are compared in an overall fashion in Figures 61, 62 and 65.

Using the above formulas Figures 76 and 77 exhibit the result of
changing B, the percentage of delayed neutrons, on the maximum of x versus ®

and the time of maximum x versus é.
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These formulas have also been used for calculating such things
as power and pressure maximums for intermediate and large homogeneous re-
actors. Table 6 indicates the constants used and the values of maximum
power and pressure for each reactor with various §'s. Table 7 indicates
the corresponding time of power maximums. Figures 82 through 88 exhibit
the results for the six foot diameter in further detail. Figures 89, 90
and 91 exhibit the results indicated in Table 6 and 7.

It is interesting to compare the curves of pressure versus time
as given in Figures 87 and 88. For §4 B, as represented in Figure 87,
the pressure reaches its maximum on its first upswing. For 8.>'p, as
represented in Figure 88, the pressure reaches only a relative maximum
on its first upswing, the actual maximum being reached on the third up-
swing. The time of maximum pressure is determined largely by the time
of maximum ;. For SALB, the time of maximum ; is very small, but for
8;>;3the time of maximﬁm ; is appreciable.

Table 2 contains the iterative formulas.

It is possible, of course, to use the formulas with subscript 2
in order to obtain still better formulas. This seems to be unnecessary
for sufficient accuracy and undesirable for evaluational purposes. One
may note, however, that another iteration would extend the time of validity
of such formulas. For 8:73 the formula for x; indicates through the term
with e Yt the exponential rise in power while the term e?¥t in the formula
for xo indicates the decline in power due to the temperature coefficient.

The solution of the system of equations

° °1r .
T= s(P - Po) and P= —,&[ig - B - a(T - To)] + % P, may be approximated

1
in the same fashion. In the case one has again X) = [;se‘ft - B] and

§-B

(¥t — 1) - ﬁ] . The second approximation formulas become:

71 =£fs ke
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and
Yo = by + bt + b3t? + byt3 + boe¥® + bgeP ¥ 4 bowe,

where

g1=-\:g5*g5-1],g2=-ﬁg7, g3=-‘£ﬁ-f7

S RS
R
g5 =E%+ Spwn ]_’ g4 = _S__L;_:zl_ 3 g7 = i2V3\Tn2 ,
RY 5

1
by =—[b5 +b6], bo = f7 -1, b3=§' f2, bh=§'f3

b 1 1 ] b 1 esy b 1 e

[ J—— g __g IZ e I e .

5 Y[5 g BT U6 T g B0 T ¢ 7T

These formulas are very much like the previous formulas for X and Yoo The

£,

-1
only difference occurs through the factor WHZ{%HZ * Y%] =[} *
E

In cases then where [T1<‘WH, i.e., §;%Ji is much smaller than the pressur-

izer frequency, the pressurizer may be neglected in calculating power.

E3. Short Formulas. The results of this portion are primarily due to

T. A. Welton. Consider again equations (1) through (5). Upon differentiat-
ing on both sides of equation (3) and making use of equations (L) and (5),

equations (1) through (5) are seen to be equivalent to

et - S G- er
T = S(P - Py)
eah o (o 0o) = -] (5)

The quantities p - p, and T - T, are more convenient to work with than p

(T - T.)-

and T. Keeping in mind that p and T are actually p - p, and T - T,, the

following equation may be used:



21

perlis -0 (Ll e £
T = S(P - Py)
p.; + a.lp; +WH2p = —sz(%f;_)’ T.

The objective of this part ié to obtain approximate solutions or formulas
which are easily evaluated for the above system subject to certain initial
or external conditions. The numbers resulting from these formulas may then
be compared with the SEAC calculations.
The following three types of initial or external conditions are
considered:
(A) P = P, up to time t = O, at which time a reactivity step § is
introduced.
(B) P = constant up to time t = O, at which time a step in P is
introduced, i.e., P = P, for t&£0, P(0) = Po - n.
(c) S is a linear function of time passing through zero at t = O.
Besides these conditions, the following two simplifications are used:
(1) B =0, i.e., no delayed neutrons

1
(2) 7= 0, i.2., uncoupled pressurizer.
H

Consider first the case where conditions (1) and (2) apply, i.e.,

B = Oand ;lg = 0., The equations (1) become
H

P =—,1c-[g . —E—) ;JP, T =S(P ~P), o= -,(:—;)IT.

Letting Q = log ;’ and substituting for p, one can obtain
o
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Q =—,]".-[{- aT , T = sp_(e%-1)

(11) or
. 1

Q= ~wf? (¥ -1) 4z §

L[] 8 .
The (A) condition may be written as: Q(0) = 0, Q(0) = § = 0.

The (B) condition becomes: Q(0) = log (1 -.;.o), Q(0) =0, § = o.
Condition (C) is determined by setting é equal to an appropriate value as well
as choosing Q(0) and é(O) in some manner yet to be decided.
For all three cases the energy argument may be used effectively.
Equation (il) has the form
ge[—g'z + wp2ed - w2 (1 *%;Z)QJ =0

: e Blo o) = a? ) .
Consequently, if the quantity E(Q, Q) = Q</2 + w2 -wR (14 %;ZZQQ is

evaluated from the assumed initial conditions, its value remains the same

thereafter. In particular the maximum power P can be obtained by putting

P or Q equal to zero. For case (A) one has
2
£

Q -
e* - Q -y +1
2wn
or
P top P g 8F
Po &%, Rwn< TR

This formula for power extremum was obtained previously by J. M. Stein in
ORNL 630 (see page 7 in this report) by another method. For large power

surges e is much larger than Q and 1, and therefore

_ Y o
Prax Pl =28 70
2wpRTR

Since the quantity w,R is proportional to Pos Pmay is actually independent of Poe.

For case (B) the power extremums may be obtained from
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Qo =1-2-_1 1
e Q =1 P, og ( Po)
or

d
o

n n

g .
[e]

For large power surges the power maximum is given by

n
Prax = Per =Py, =T = Py log (1 - 5;).

For case {C) one puts § = d, a constant. Since the initial condi-
tions have not yet been specified many solutions of this type are possible.
However, there exists one solution which is steady. By putting

w2 (eQ - 1) =']"'dandé=0
at t = 0 one has, since Q is then zero at t = 0, that w, 2 (eQ -1) = l d for
all t>0. Therefore

d
P=Po(14‘-—2)
Wnt

where P, was, and remains, the power being removed. Therefore, such a steady
rise of reactivity will give a power which is steadily above the power being
removed.

In general, one can obtain power maximums from

d 1 . d
wR el - w® (14 —)Q == q;° +wRed —wR (14 =2)q,
TW, R TW R
n n
or
P _ Py
- (1+1:W )log 5 sz(_PL) —(1+—12-)log-P;

This, of course, includes all of the above special cases. In general, the
plot of power versus time can be described as a conservative non-linear
oscillation about a steadily changing equilibrium point.

Although the above method of obtaining these formulas is quite

satisfactory when B = O, it is not applicable to the case when B f 0. The
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above cases will therefore be investigated with another method. Since in

case (A) T(0) = 0 and T(0) = 0, T must start off at least as 2. As Q or P

increases T becomes rapidly larger and the net excess reactivity § = aT must
appear about like that in Figure 78. The excess reactivity is approximately

equal to the constant § for a time and then rather suddenly drops to zero at

o

a time t = A. At this time the power is a maximum since P is then zero. The
reactivity will therefore be approximated by a constant up to time A and then

a perpendicular drsop to zero. Up to time A, one has then Q = é‘b and conse-
it ~
. T
quently T = SP, (e - 1). Since for lar e%—, 1 may be neglected in compari-
t SPot Tt
son with e s it follows that T = -39— e- . Consequently, the eXcess reac-—
S

tivity becomes £ - '_;Ewnz ot t. A may now be determined by setting the excess

~ = A

reactivity equal to zero, i.e., § - -g—wn2 e° = 0. The maximum power in

turn becomes
§ A 2?
= Poe? = S o]
TRw, R

n

This approximation is seen to overestimate the previous approximate formula
by a factor of about two.
For case (B) the initial conditions are Q(0) = log (1 =- E-),
é(o) = 0, T(0) = O, '1°‘(o) = _-nS and §~-af = § = 0. Since 'i‘ = (P 31>0) = - n§,

the temperature at first drops linearly going as T = -nSt and the system there-—

o

fore has a steadily increasing excess reactivity. Consequently, Q = # wn2 g——t
and therefore Q = log (1 L) + Rt An improved ex ion for T .
g - B Py p pression for T can

be derived by substituting this result in T and obtaining T = SPo[(l - %3)
I
Po

that the exponential term will not outweigh the constant term until large

W, B 2
e X Fold - ]J. To derive a simple expression, let be nearly unity so

values of the exponent are reached. For large exponents a fairly accurate

integral is given by
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o

R o
T=SP°t Lo 1 (l”Tt_ﬁe%(.) Wn 3 _]J
n wn2t2 PO

The excess reactivity is therefore zero at a time A defined by

n A2
— w2 =
n P -
1 -5 o ®
o
2R
w,.~A
or e¢ =J6 where J = = and § = n .
1 = — Po 2
Py

With ¥ much greate; than one the root may be found by iteration, i.e., since
z = log + logzone lets z; = log a, z5 = log a + log log a, 23 = log a #*
log (log @ # log log a), etc. Since the first iteration gives the uninter-
esting result P = 2P, and the third iteration is probably more accurate

than is justified by the crudeness of the other approximations, the second

iteration formula will be used. The peak power then becomes

1
P =P, (1 nﬂﬂ‘ﬁe( =Py (1 - R log 2 = 2P, log 2
P P n nt bis
° RS S N L -
o o o

Comparing this with the previous formula for case (B), this formula differs
by being about a factor of two too large. Since this was also the situa-
tion in case A one can adopt the procedure of solving the e act equation
by these approximate methods and finally dividing all peak powers by the
"fudge " or M experimental # factor of two.

In case (C) a simple argument may be used to obtain the previous
result. Corresponding to P a constant there must be & linear increasing

o

temperature just canceling the applied reactivity change, i.e. & = aT. In
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order to maintain this steady increase of temperature, the difference be-
tween the reactor power and the power removed must be such that

= ; = S = —5.———
S(P = Py) =T == Therefore P = P, (1 + an'c)’ the same formula pre-
viously obtained.

Consider now the case where condition (1) applies but condition
(2) no longer applies, i.e., p = 0 and ~—&" Hz # 0. For case (A) the initial

° 'y . ¢

conditions are Q(0) == Q(0) = 0, 7(0) = 0, p(0) = 0 and p(0) = 0. Just

as before the eXcess reactivity may be taken as equal to £ up to time A.

=t
Therefore as before T = -Sfi.-’i e® ~ . The density p gan now be calculated
2 5
from[ 12 <, 2 d J )T )SP°T .
wE©  at?  wg® dt
SP,T ( ap)er

For large %t one has p = 54 s
- 1+ WHEZT +WH TZ

the damped oscillatory terms being considered negligible. The time A for

which the eXcess reactivity becomes zero can be found from

Peak power in turn is given then by

Y

wngtz WHZT WHZTZ ) and upon dividing by the

P = Pge

" eXperimental " factor two by

= §%Po a§ §°

n
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1
Comparing this with the case where ==——2-=‘ O one can see that this result

2
differs only in the factor (1 +— < 8 + ;212,. This factor tends, as it
W

should, to one as;%—tends to zero. The physical origin of this increase
in peak power lies in the delay introduced in the expansion process by the
inertia and friction of the fluid pipe leading to the pressurizer. The
relative effects of inertia and friction may be compared by comparing "SE"
and . |

For case (B) the initial conditions are T(0) = 0, p(0) =
(o) =0, Q(0) = log (1 --—=-=), Q(O) 0 and {‘ = -8, Consequently,

O
1 4R

[+ at2 wH2 & ie- S”(

Since the change in temperature is slow, density changes are slow and the
friction and inertia terms will be neglected, i.e., let p = =~ Sn(‘)p t. This

leads to the same formula for power and temperature as a function of time as

those obtained when 12 = 0 and in particular
W,

H

1 n wn2t2
TSP | T (1 --%')e_Pg 4 =t:‘
P W 2't

1 13 a o ap
Substituting thi lue of T into th tion ™3 + =3 +p = T
ituting s valu in e equation WHZ prT3 PP (:E)

cne can obtain as an approXimation

i
1 -% P2

: (o}

where as before the oscillatory terms are neglected. When p = 0; t = A.

n Wn2A2
Letting € == 5 A may then be found from

P
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- 2z a T 1 h14 P
e = n[l-*;—sz-rownzz *;'?'P;'wnz:l"
1'— Po H H

With the previously used iteration method one has zy = log and
1 - T
Po
R 2 a /211 2 !
zo = lo 4+ log lo 4+ log|l + e w_ 2 lo
P g g 10g T g "-’_IF n g T
1 - 1 = = Po 1 -
¥ 2 ¥
R
w. n 2
+ 0 log
_ WH2 Fg ] -
o

Dividing by two the W"experimental® number the peak power becomes

1 ) (A ) 2 a n 2 2
P=>P. (1~ e” = P, lo 1+ = W~ lo
2 o( PO) o) gl—%"( 2] PO n gl_

T
o Po
L
4-;? 7 1°gf__£
P
o

As expected this formula differs from the previous formula for case (B)

only by a factor which tends to one as ;rl'z-’bends to zero.
H

For case (C) the condition of steady power is satisfied if the

ak
excess reactivity g *c‘—:;)p is equal to zero. It follows that

_(a_kap = § =d. Since
P

T must also be constant and be given by T = %c As before one has then

P =P, (1 + § ). That this result should be the same as before follows
w_RT
n

from the fact that the steady pressurizer motion has no finite frequency.
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When condition (1) does not apply, i.e. B 7‘ 0, the obtaining
of simple formulas for maximum powers becomes much more difficult.
Formulas only for case (A) will be derived here, although undoubtedly
formulas for case (B) and (C) could also be derived. Starting with the

. ° _ ° _ 1 .
equations T = S(P - P_) end P == [:8 -B - aT] P +—,€- P, one obtains by

approXimating the reactivity by § - B up to time A that

S__g 2=§
P=<5 o k __E_)PO,T=SP—8—8-—E[ (e T t—)-t:(.

Setting P equal to zero and substituting for T

ans §:'EA ] P W TR ]
E'B ad o KIS o A),*B'?[S’p'g'_}(%’l'%“)

P
+ B 2 = 0. Therefore

. P -
2
2 =1+§.A+(8—B) +B(8_B) To
Fo * wnz’cz wnz’cz

The above equation for P leads %o %—t = 8 log(g SB I; +_E),
)

Using the experimental factor of two the formula for obtaining maXimum

power becomes

P (5-p*, § g -
Po—:L 2w21:2 S-ﬁlog(

pP_,B,BG-P) Po)
§ % g awpwm p!
This formula with B = O reduces to the previously obtained formula for the
case Bp=0. As S increases first the term inf_% and then the logarithm
term may be neglected.

1
Proceeding in the same fashion for the case -‘-‘;I-I?;! 0, the first

equations for P and T remain the same. The density p can now be determined
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from the equation |
. : £-p
oo (0 R gy T -

One obtains ’ §-8
1 /dk — t

ap)p =z = Ay cos wHt 4 By sin wHt + Dy 4 Elt + F,e ’

. 1 -
H

I S S L - (§-p° 1
Byt e 3

Setting P equal to zero now gives

[S—B—wnZ'r(Al costt +B1 Siant+D1+Elt ,,,Fle T ) *ﬁ'—§=0.

Using the approximations cos wyt = 1 and sin wyt = wHt this equation

reduces to £
o= B a

[g-p+wn2TFl(e * ,—1—8

Bay)«p 2=

. » P P
E-p +m?ris (5 - B) ('g'l"—i'”]*ﬁ_;' = 0

Therefore
P §
= 1 pm— + —]
Po T - wnz’t‘Fl(S [8 B P
- P
Again using-,-ac-h = Sf B log (-S—S.—E 3 + %—) and the factor two the maxXimum
o

power formula becomes

_=1+£§___§.).2{ (8'5)2}.. gﬁlog[_g_:_al) +%

2w, TR WH2T2

* __(_S," E) 1 4 Tg - ﬁ)z Pa

H P
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When%= 0 this reduces to the previous formula. Letting B = O one obtains
R 2
P g S ] P
— 1 &+ 1 4+ s 1 —— .
Po 2Wn2"l.'2 wERTR ) °¢ P

It is interesting to note that here as with the jterative formulas the

+ (& - 13)
WH21:2

For § 4.8 a rather simple approximation for maximum power can be

pressurizer introduces the factor [1

made. Again approximating the reactivity by § - B, or rather B - S, up

to time A one has

e 549,

- : )Po (B - § e *
s-p1" 'p-8 p-S
g is clearly an upper bound for P and in case & is much smaller than B

F-3

it is not much larger than maximum P. Therefore, cne has for a formula

hax S_B"f’i""s’ 5 <ep.

Next a formula can be obtained for the time of maximum power.

In obtaining the above equation for maximm power the equation

'é’—c‘E‘A § - P
[_S- B+ wyRTFy (e -1- --T—EA)_—J *P—2 =0 wasused. It

only remains to solve this equation for A. On rearranging one has

GL_‘—EA=1 gy;ﬁ) [_1+(———-ﬁ)—][8-l3*ﬁ-?ﬂ* %EA

1
Since for large $, small § - B and small § the quantity g [8 -p+ BE%

is close to one, it may be approximated by one. Therefore
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o LEDPTL (5= B, go
’ IS-BII%{1 ENPI R .5

2 2
T ¥
T 10g{1+ (1 LT +10g[1 +Y—2-(1 +3 )]_%
,g- B w, 2 Wﬁ? w Wi
is a fairly good formula for the time of maximum power.
Finally a short formula can be obtained for obtaining pressure
meximums. Consider again equations (6) through (9). Differentiating

equation (7) and using equation (9) one obtains the pressurizer equation

z ¥a)z*a zlzl s - Wﬁz (z + whzy) = - WH? .

The pressure is therefore proportional to z #+ a z *a z\z\° The =z
represents an inertia force and the a; z + ay z|z|represents a frictional
force. Under the constant pressure assumption or upon differentiating

D=z +-wh2y one obtains

° © os ce

Z = - th y and z = ~ an y.
Now equation (6) states that y = X ~ 1 and consequently
z = - an (X -1) and z = ~ w R X,

o

Although the max'mum X and X occur at different times, an upper bound for

2 o

— . - - — f— W,

P should be given by p =p; # Pp, where p; = ;EE'Xmax
H

and
- R L
W,
Bp = (X-1)  +a, Mmt(x- 12
WHZ ‘ Wﬁz

°

The formula for P; requires a formula for xmax’ This is most

easily obtained by starting with equation (8). With the usual trick of
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setting z = O up to time A, one has X éiﬁrﬁ.x + B or for large & that

X = 5- B X. Since Xmax does not occur at Lhax & proportlonallty factor

§ -8
T

may be used. Therefore let Xmax = 0.42 Xhax The constant 0.42

was chosen first because it agrees pretty well with the SEAC computations
and second because superficially one would expect Xmax to occur when X
has reached about half its maximum (see Table 8). For & much smaller than

B the formula X = é;:_E X +.E_ indicates that Xmax =.§.is a very good
t T T

approximation since X has its maximum value almost at t = 0,

The question now arises as to how well the numbers given by
these formulas agree with SREAC computations and the iterative formula
computations. Tables L, 5, 6, and 7 indicate the comparisons, while
Figures 61, 62, and 65 exhibit the comparisons for the HRE case. The
short formulas are seen to give results which agree pretty well with the
other results. Of course, the agreement is best for large S, since most
of the formulas are developed for large §. The short formula for pressure
leads to values about one-half to three-fourths of the SEAC and iterative
formula values. This can be explained by either choosing another propor-
tionality constant between imax:and Xmax:or better by noting that the
pressurizer oscillation might be eXpected to increase the pressure above
that predicted by the formulas.

Table 3 gives the list of short formulas.
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F. COMMENTS AND CONCLUSIONS

Again, let it be emphasized that this is largely a mathematical
discussion of the equations of motion which are thought to represent the
important features of the kinetics of homogeneous reactors of the HRE type.
This report deals primarily with the non-linear features of these equations.
This aspect of reactor kinetics is probably third in order of development
and importance. First, of course, is the problem of obtaining equations of
motion which approximate the reactor motion sufficiently well and can be
mathematically investigated. The next problem is to investigate the
stability" of the motion determined by the selected equations. In particu-
lar, this means a careful investigation of linear stability. Only after
stability questions ares answered does it appear worthwhile to investigate,
as this report has partially done, the actual motion under various initial
conditions. Since a large step change in reactivity seems highly unlikely
most of this report deals with a greatly idealized motion.

Having indicated the relative unimportance of the type of calcu-
lations made here; it seems only proper to give some justification for
spending time and effort on calculations of the type in this report. The
following four reasons may be given as partial justification:

1. Certain safety calculations can be based on such calculations.

2. The design or selection of a reactor might require such calculations.

3. Other investigations of reactor kinetics might profit from such results.

L. In contrast to the linear techniques, the non-linear techniques are
less straightforward, less explored, more difficult, and more inter-

esting.
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A number of physical assumptions have been made before equations
(1) through (5) were written down and they may be noted as follows: (1)
constant heat removal, (2) the effects of gas may be neglected, (3) the
essential features of the motion are determined in a short time, (L) con-
stant delayed neutron source, (5) around the loop effects may be neglected,
(6) bulk coordinates are used and no account need be taken of positional
variation of the symbols, (7) the only non-lincar effects of importance
occur through the reactivity and the velocity of the fluid in the relief
pipe, (8) step changes in reactivity will give results on the safe side,
and (9) a linear equation of state may be used. There are undoubtedly
other assumptions made but it is believed that these are the main ones.

The latest HRE design has constants which differ slightly from
those used in the SEAC calculations, e.g., sz, whz, T and aj are larger
in the present HRE design. It may be noted in this regard that the SEAC
calculations were carried out with practically dimensionless quantities.
Each calculation therefore could be applied to many reactor models.

It is probably better to deal with entropy rather than tempera-
ture. However, for convenience of understanding the term temperature is
used here.

From the "practical" viewpoint of homogeneous reactors of the
HRE design the short formulas are probably very good rules of thumb. If
more detailed results are desired and a greater assurance of the proper
magnitudes of the results is asked for, then the iterative formulas appear
to be useful. Finally, if complete assurance for details and magnitudes
are desired, one must resort to numerical integration. The regular usage

of high speed computing machines will undoubtedly make it economically
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feasible to choose numerical integration. At present, however, it seems
economical to develop short formulas.

This hierarchy of approximate solutions to systems of non-linear
differential equations could probably be developed for usage with other

reactor types, e.g., boiling reactors.
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APPENDIX 1

Short Derivation of Power Equation

The following short and rather novel derivation of the power equa-
. 1 = . .
tion, P = ;[g -B - aT]P + -% P, is due to T. A. Welton. Consider the
equation

P(t) = Sx(s) P(t - s) ds,

o
where s is a delay time and K(s) is a kernel indicating in what manner the

past effects the present power. The kernel K(s) may be considered to be the
sum of two kernels, Kp and Kq(s), one due to prompt neutrons and the other
due to delayed neutrons. Therefore:

-] o0 @0

P(t) = SK(S) P(t ~ 8)ds = SP(t - 8) Kp(s)ds + SP(t - s)Kq(s)ds.

0 0 0
Since for the prompt kernel P(t - s) can be approximated closely by the
first two terms of a Taylor series, one has

P(t) = Sbﬁr(t) - sfv(t)] Ky(s)ds + S P(t - s) Kq(s)ds.

Upon solving this equation for P(t), one obtains

. Sool:p(s)ds -1 S’l:(t ~ 5) K4(s)ds
P Sst(s)ds o SO:Kp(s)ds
0 0

[-=-] Qo
Defining s by the quotient of Sst(s)ds and SKp(s)ds and defining

o0
k(1 - b) as equal to SKp(s)ds, this 1ast°equation becomes
o

1 1 oo
. 1- T =%7 g
P(t) = % P+ —l—l-.—g;—ﬂ S P(t - s) K4(s)ds
3

o0
or P(1) = k-i-ka-P ’1r gP(t-s)Kd(S)ds

o oo
where T = k(1 - b) 5. Since SKd(s)ds = kb if SKp(s)ds = k(1 - b) and
%o

S K(s)ds) = k,

0o

o 0



38

one may write
o0

§P(t - 5) Ky(s)ds = kP

where P is an average value for P(t) over its past history. Letting

k =1=§-al and kb = B one therefore has

LE-ar-grr £5.

L v IR
fl

In the case of a § step function the power is assumed to have been
at P, for a long part of its past history and consequently F can be replaced

by Py.
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APPENDIX II

Factorization of Certain Second Order Non-Linear Differential Equations

Many second order non-linear differential equations, including
some of interest in the treatment of reactor kinetics, fall into one of

the following three classes:

(1) [3.?:_1 + f(xljl [h(xl, Xo) xﬁ] = 0,
(2) [ai—l + g(x7, X0, x3ﬂ [G {g(xl, X0 XB)}] -0
and (3) [a% + k(t, y)_] E{{k, g—kt-.: t}_] =0

where x1, X2, X3 represent t, ¥y, g% in any order.

For class (1) the equation may be written as gj’c_l + £(x1)v = 0,

where v = h(xy, X, x3) is considered to be a function of x;. The solution
dv .

of &g * f(x)v = 0 is x]

-S f(z)dz

VvV = Ce

where ¢ is an integration constant. Consequently,

f"l
f(z)dz
h(xy, %9, x3)e = C.

The equations of class (1) can therefore be solved if one can solve this
last first order equation.

For class (2) the equation may be written as cal-;%i + s(xl)w =0,

where s = g(x3, Xp, X3), and consequently, w = G g(x1, xp, x3) are con-

sidered to be functions of x;. Using the integrating factor

fl‘s(z)dz

r(x) = e s
one obtains r(xy)w(xy) = c, where c is an integration constant. Since

dr s
= sr it follows that
'd.x_l T



Lo

dr
, EEI‘)
rG ” =
for r(xl) and then solves the first order equation

dr
)

s(x7) = g(xp, X ) x3) = for y.

dw
dt

s(t) = k(t, y) and w(t) = K(k, %% , t). Using the integrating factor

t
f s(z)dz
r(t) = e

For class (3) the equation has the form + s(t)w = 0, where

one obtains r(t)w(t) = ¢ or since ;(t) = s(t)r(t) and s = k(t, y) one has
r(t)K{-I-',E—Eg, t} = c.
rr r

The equations of class (3) can therefore be solved if one first solves this
last second order equation for r(t) and then substitutes for r and ; into
the equation k(t, y) = ; in order to obtain y either implicitly or explicitly.

Particular solutions of class (1), (2) and (3) can be found by
merely setting the inner factors equal to zero, i.e., solve for y after
putting respectively either h(xy, xo, x3) or G {g(xl, X0 x3{§ or
K {k, g%, E} equal to zero.

The following three elementary examples illustrate respectively

the above methods for classes (1), (2) and (3).

(a) y'' - L y'2 + ay2 +b=0
J

G-Aheee o2 wlo

%Y'2 + ay3 - by = cy®



The integration may now be completed by the use of elliptic functions.

(b) 2y'y't = - y'h or 2y't = - y13
d _ 2] .
EE‘;.”._Y 2]'-'0 .
jn y?(2)dz .
r(t)w(t) = ¢y, where r(t) = and w(t) = yz(t).
o I.'(t) = C1

r(t) = cqt + ¢

e2 _r(t) _ %1
J r(t) c3t + ¢o

b 2|/t + c3 V4 e

() 2yy + s+ 6y3y + y0 = 0

EX J[zmh]

e
]

t
j; y2(z)dz .
r(t)w(t) = ¢, wherer = e and W = 2yy + yJ'L
LN ] .2 .2 .e
r r r
r(t)[—- 1--]: r =¢
TR !

rs= clt2 + Cot + C3
r 2 2t + ¢y,
-IT = y = 2
te + cht + cg
If T is eliminated between the equations T S(P - P,) and
. '2
: . b
-l:a,T + p:IP the equation ; - 2-2 ==-q S(P - B,

P

is obtained. This equation is a special case of class (1).

Ll
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APPENDIX III

Quadrature in the Phase Plane
For Certain Second Order Non-Linear Differential Equations

Certain non-linear second order differential equations can be
solved or at least their first integral can be found by replacing the
second order equation by two first order equations which may be integrated
directly by quadrature in the resulting phase plane. The following three

classes of differential equations fall into this category:
o 2 .
. r dh(y) ¥ y 2
Q) vy ORI F('ﬂ"Frh)G(Y)r’

(7= Ty v Fe

(3).}’. =RI"ET;'*G(Y)K§](:;)‘ ;’2

The corresponding sets of first order equations are:

(1)1 3 = =) T(t), x = B2 3(3’) r(t)

()1 ¥ =3y ), x = [F@) - 2] 1) F
dh

3 = xh(y) r(b), x = xar(t) gly) - h(}’ﬂ

h(y)
The phase plane equations therefore become:

2
& _ b
@ E: P o

h
@ &= o (g.))
&

2
o Z-z e



The corresponding solutions are:

X

J
(l)”'Si?l) dZ-S ﬂz_z.ydz=c

X
(2)1r log h(y) - S m)—f—z?- dz = ¢

e y G(z)
(3) 1ogx*1°gh(y)-g -h'é—(z—)dz=c

L3
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APPENDIX IV

Flow Chart for SEAC Calculations

The following chart is included merely to indicate a portion of
the thinking that goes into the preparation of a problem for high speed
digital machines. This flow chart indicates in block diagram form the
sequence of operations which the machine is to perform. With this chart
as a guide the programmer translates the sequence of operations into
machine language. Members of the National Bureau of Standards and
B. M. Drucker, ORINS Fellow attached to the Mathematics Panel, did the

programning and coding for the SEAC calculations.

Note: These notes apply to the flow chart.

3* Machine automatically stops here to allow auxiliary tape contain-
ing 8 constants (of Box IV) to be read in.

## T' denotes time interval increment for which the x values are to
be printed out.
Ttt denotes time interval increment for which the y, z, v values
are to be printed out.
A4 =
A% = time at which the next computed values of y;, z4, vy are to be
printed out.

wet xy_q denotes the derivative computed at t = t3_y, etc.

B3

denotes a purely notational box. No operations are performed.

time at which the next computed value of xj is to be printed out.



Solutions of : Read in 8
xz=ax +Zx + b Read main routine Sum check Initial  conditions scaled constants
y= X - | from tape into Sum of orders) X(0) = | 0-2'20 h
z= -V the memory y(o)=2(0) =v(0) =0 b.-2-22 h~2I2
v=cv + dvivl + ez + f))| c-2-14 e T'
d-26 T"
- Xx
X =%, + DXt hx; , etc % = xi-, thii_, etc. Compute hx.-, , etc. Store initial values
2 * X% Ay and A>p
N
P
TZA, No T2A2 No Go to a i— -1
Yes Yes
[} [ 1}
A+ T'— A A At T" A,
xi-lo‘4 goes to y;-lo‘4goes to Go to a
binary - decimal binary- decimal No
conversion routine 1 conversion routine
P M ' t . 0.4 . . ..4 E’
rint out x;-10 Print out yj-10 Go to B Yes 1T 3’0.4 v
‘__J
&
8
Y - . -
4o to Print out z;-10™® vi-ro~ & 1o Print out v;-10-€
B-D routine B-D routine &
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Tterative formula for v

List of short formulas for xp.y, t of x,,, and p
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Maximum x and Ap from formulas (larger cores)
Time of maximum x from formulas (larger cores)

Maximum x from SEAC and formulas (HRE)

Symbols
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TABLE 1
Maximum Maximum Maximum

Systemit+ p. Time Y e Z Zn v Time P Time
L LS6okl  .032 55.0 7.5 =-2800.% -375 67,300% .039 1860% 039
9 1.9 .084 1.49 2.0 -74.5 -100 717.3% .080 J73% 060
12 36. %] .072 2.27 2.5 =1ll.% -125 1920%  ,O7L 2.77% .062
13 145.L4¢ .055 4,70 3.5 -252.%# -175 7567% .06l 28.0 # ,055
10 2.53 .08L A2 1.0 -21.0 -50 90% .070 .156%,018
11 L4.71 091 76 1.4 -38.0 -70 200% .070 .250%,018
1 7470. 026 58.1 7.5 <-5L00s -375 L400,000% .036 2500% .065
5 128.8 .058 4.1 2.0 =236 -100 8,550% .06L  32.0% .098
2 33601  .032 32.8 7.5 -2938# -375 205,000% .039 1275% .067
3 Lo6ok] 032 55.0 7.5 =-2800s =375 67,300% .039 18603 .039
7 1.9 .08L 1.4k9 2.0 - =7L.5 -100 720% 078 .6l ,058
8 4.9 .08L 1.49 2.0 -74.5 =100 720+ ,082 .T3%* 060
6 1.9 .08L 1.49 2.0 -74.5 -100 720% .078 .6l# 058

..ZE

M 5 k = TGC.).

# oscillation observable

[#] oscillation occurs but not observable on curve
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TABLE 2

Iterative Formulas

- 2 ¥ ¥t
X = £y #8pt #2582 4 £e¥0 4 £eRY 4 ppe T
Y=o hast 4 a3t2 +aht3 + ase‘lpG + aéezyt + a,?teYt
- 2 3 ¥t R¥: ¥t ;
zZ=cp # 02t +c3t. “+ cht + 058 + c6e + c7te + Acos wHt + B sin wHt.
P=zz +wn2y =B #Ey b +Ese1’t + EgeR¥t +E7teYt *+ Acos wyt + B sin wyt
‘! = 5- ﬁ 4 ‘ ‘
T
where:
2 _
f1=—[f5¢f6—1__’ fe =L [va BS . v ]
> ¥ LT RS TR L, .2
) WH
- W R wH2g2
£y = fo¥ fg = 2
2 2RY[¥R * wid]
2¢2
_f_‘7 = wn S
Ry
f f
a1 = = [a5 + ag] a5 = 5 =7
Yy r
&2 = fl -1 f(,
ag =_0
a3 = £3/2 RY
£
&, = f3/3 8o = T
L §
e f RYfp - 2f #+ ¥f
eq —[w—z- a3 = a]]wnz =E_2_2 + 5 7 6]wn2
H wy R¥R
6 44
= = 222 2
Co [ ah-azjwnz [-—--—f]_*l_]w
> n
Wit W
2 = ""n2f2
C3 = —agwp* = &
P
-an.fB

c) = - ahwn?- =

3
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-y Yy WH2 - + 3y ’
2 n2 . £7 | 3 )
[ ; a 2 aZ]““nz = Y[W R 4 ?l{ 5 4 wH2 + yz
;E-] 5 ( Ea H

- —wpR 2 _ W= wyRfg
__WH2 + LW 6] RY WHiz + hii_]z

2 Re
2 w? wley
[ -WH a:,] 'Hn2 =

;WH! + Y! Y[W !2]

-‘Egl + c5 + 66]
1 v

co + !c5 + 2Yc6 + 073
WH

P4 w, 2
2wn a.3 — f2
WH2 Wy

P4

c] +w,a) =

R
w, =2wnf=!E
Tor tmPey t 6=y et L f3 W

had: had: 1

c3 4 wn2a3 =0
o) + anah =0

w2 W2 V=P ]
—-———-—2Y2 5= ¢ £,

o5 + w 2a5 = = CF ST, DT R ,a 5% eZ s

W

B
- Wi R¥wy2
1

‘w2+u12]a6’w52+uyz f6

2
c6 * WyRag = w

f7
¢, +wRag = w2 T—yz—

7
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TABLE 2A

Additional Iterative Formula

1
v =g % et g31;2 + gse!t + géezlt + g,rte!t + — [— Asin wgt + Bcos wHt_]

where

gl = = ¢2

By = = 23

gy = = 3c),

g5 = - [Yo5 * o]
gg = - RY¥cy

g7 = -!07
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TABLE 3

Short Formulas

o 10 2 [ Bl Sl 4] B [a e B 2T

For ;3>S xmax='[§,'.§._§‘-

2
t°fxmax"fi—1'1°gE*;!‘22(l*;;—z)*l°g {ld-é(ld-ﬁ)}J

n

Xpax = 42 ¥ Xpax

For p>£ xmax = -i—

- "’n2 .
P = Wi *max
2 w.lt
Wn n 2
Pf = ay _2' (xmax - 1) + 02 —é' (xmax - l)
Wy Wy

Vsz T

2k
3 (1Lk) (32.2)

Scaling Formula For p: AP = D

*r:a-l»blogr-rc%
for large r and 2 I} = &
r2=a+blogr,+c%.-,
r3=a+blogr,+c%2

etc.

Second short formula wn2 =0

Xax = 1 +wn2;§_!2_ frefe "%eez"‘ _%te!t '(%f%ﬁeﬁ %*%_E%%)
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TABLE L
Sys- Iterative Short Iterative Short Short wn2 = 50
tem SEA;C Fongila Fongila SEAC Formula Formula Formula WH: : 20288({
Py Py Py Ap Ap Api AP >
#/5q. #/5q.in.  #/8q.in. #/5q.in. a e,
in. Iy

1+ 7L70. 9326.5 23888 58756. 0 0375 O 0

2 3360 51l 32009 20923. L9.80  .0375 0.3 O

3 Lséo 41s1.L 37200 20923. 3Lh520. .0375 O  0.01
L Lséo  kL250 j151.L 37200 37L0O.  20923. 3LLs20.  .0375 0.3 0.01
¢ 128.8 15.98 259 2i5.2h 0 0100 0 0

6 1kL.9 14.542 12.8 6.1077  .05417 .0100 0.1 O

7 1.9 1kL.5k2 12.8 6.1077  .1625  .0100 0.3 O

8 14.9 1h.542 1.6 6.1077 3.668 0100 O 0.01
9 1.9 1k4.542 1.6 6.1077  3.830 .0100 0.3 0.01
10 2.53 2.L43 3.0 3,12 3.20 2.1875  .10L0  .0050 0.3 0.01
11 L.71 hL.L25 15.0 5.0 L.76  3.0625 L.088 ,0070 0,3 0.0l
12 36.2 36.88 36.h21 56,0 50.0  30.59h4 25.52 .0125 0.3 0,01
13 145.4 1L9.L9 560. 251.15 puz.s .0175 0.3 0.01
1k 1.4l1 1.32 ,0025 0.3 0.01
15 78.5 157.L .0150 0.3 0.01
16 268.3 8LLO. .0200 0.3 0.01

#B = 0; all others B = .0075



System

13t

10
11
12
13

15
16

#B = 0; all others B =

SEAC
t of

.026
.033
.032
.032
.058
.08l
.08l
.08l
.08L
.08l
091
.072
.055

TABLE 5
Iterative Short
Formula Formula
t of t of
*max Xmax
.030
.030
.058 .030
.057
11
.11
11
11
.068
.076
.066 .082
.057
+060
.058
.0L6

.0075

.0375
.0375
0375
.0375
.0100
.0100
.0100
.0100
.0100
0050
.0070
.0125
L0175
.0025
0150

.0200

83
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Diam.

of Core

)

10

15

RO

30

ﬁ =
T =
Wn2=

wpR=

.0030
.00028
18.2

1L, 000

.003L
.00021

22.3
12,000

.0038
.00077
hc98
11,000

ool
.00127
2'00
9, 000

.00L9
.00237
517
60p

p-
v o=
8.
a*
k

v§2=

s-
a1 ™

L0071l
1.065 X 107
87.36

.130

.00217
.825 x 107

167.0
.050

.00227
1,083 X 107
768.L

.031

.0019L

1.182 x 107

1619.
+O0R3

.00152
1.271 X 107
LikLs.

.01l

»00R5
.0050
.0075
.0100

.0175
.0R50

.0025
.0050

0075

.0100

.0010
.00R5
.0050

.0075
.0100

.0010
0025
.0050

.0010
«00R5
.0060

8L

TABLE 6
Iterative Short Iterative Short Short
Formula  Formula Formula Formula Formla
P P AP AP; AP,
_F; P, #/8q.in. #/8q.in. #/5q.in.
2.085 6.00 2.796 1.01L4 .07382
5.11L L.161L 5.242 1.4,18  .0L667
11.8L 11.477 1L.85 8.798  .1023
23.0 22.915 35.56 27.33 .3235
95.0 9L.052 353.8 R32.3 1.374
R55. 251.53 1512. o9h2.7 3.699
2.06 3.7778  6.8L7 3.695 .1692
5.50 5.0771 18.87 5.042  .2366
14.2 13.531 59.29 gLl 1.706
30.0 29.486 182.0 120.8 L.L7R
1.216 1.3571 .8652 4518 .00385
1.70 2.9231 2.148 1.129 .0207L
3.20 1,7067 L4.882 .3886 .00762
6.13 5.4938 10.30 3,857 .03115
10.9 10.615 21.55 12.L9 .1037
1.20 1.3226 5520 .2833 .00729
1.6l 2.5625 1.L89 .7082 .00267
2.98 1.3746 1.37L46 1.525 .01293
5.50 4.5367 5.887 1,835 .02927
1.178 1.2564 2.715 1,507 .01282
1.560 2.0417 7.059 3.768  .05210
3.L6 1.6096 L9.74 1.121 .030L7



Diameter
of
Core

6

10

15

20

30

.0025
.0050
.0075
.0100
.0175
.0250

.0025
.0050
.0075
.0100

.0010
.0025
.0050
.0075
.0100

.0010
.0025
.0050
.0075

.0010
.0025
.0060

TABLE 7

Iterative
Formula

t of Xpax

.19
.18
.16
013
.10
.08

.16
els
1l
.12

.36
.37
37
3l
031

1.06
1.09

Short
Formula

.16
023
.18
.15
.10
008

21
o2l
.16
.13

L2

85



System

10
11

12

13

#g > §

#wpe§
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TABIE 8
SEAC Short Formulass Second Short
. . 5;5‘"‘:‘13***
Xmax *max ¢ ¥max Xax Xmax
10L7700 7470 374 1468908 9326.5
L01767 3360 399 523068 L151.h
L78L67 4560 .350 523068 L151.L
478900 4560 .350 523068 41514
5122.5 128.8 .398 6131,2 145.98
2L48.03 1L.9 666 152.69 1h.542  13.9
21,8.07 1L.9 666 152.69 14.5L2  13.9
21,8.53 1.9 .667  152.69 1W.542  13.9
2L8.59 1L.9 667 152.69 1L.542  13.9
L1.673 2.53 3 50 3.0 2.2
67.270 L.71 * 70 15.0
823.33 36.2 .L55 76L.86 36.421  32.3
6L82.8 1L5.4 L6 6278.6 1L9.L9
Xnax = &

Xmax = +L2L Xpax

e second short formula for xp,



TABLE 9

Symbols
P = power level of reactor, kw
P, = steady state power level {1000 kw)
Py = initial power level
x = P/P,
Q = log P/P,

T = temperature, °C
To = steady state temperature (240°C)
Tg = equilibrium temperature

S = reciprocal heat capacity, °C/kw-sec. (0.005 °c/kw-sec. )

y = g5(T - %), [ & (T - o)

ok . . -3 /e
@ = —57— = temperature coefficient of reactivity (1073/°¢)
7+ = lifetime of prompt neutrons (10')4 sec.)
1
w2 =T;(1SPO, square of nuclear angular frequency (50/390,2)
B = bulk or average fraction of delayed neutron in core (6.0075)

N = delay constant for the assumed single group of delayed neutrons
emitted (0.08)

¢ = lumped concentration of delayed neutron emitters

k * material multiplication constant

p = density of core fluid, 1bs./cu.ft.
po = steady state demsity (50 1bs./cu.ft.)

Pg ° equilibrium density

2k
oP

z =Ti: (?pi) (p = po)s 7th - po)J

= density coefficient of reactivity (0,007l cu.ft./lbs.)
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fractional step change in reactivity
pressure in corse, lbs./sq.in.
steady state pressure (1000 lbs./sq.in.)

velocity of sound in core (R560 ft./sec.)
1 ok 1 J
4w Ry = 2L - -
z +w Ry .——'2'"(8 " (P = po)s [20 (p ~ po)

excess velocity of fluid in relief pipe

volume of core (1.75 cu.ft.)

average cross-sectional area of relief pipe (0.037 sq. ft.)
mass of coolant in core

mass of coolant in relief pipe

—i(:—:-)—“’-‘;‘;& u, (790)

constants determined by pipe flow loss

B
Il = frictional constant in relief pipe

-1
E .A_P‘i ( gk turbulent constant in relief pipe
M «V\sp

length of pressurizer pipe (5.9 ft.)

2
A% vsz, square of pressurizer angular frequency (25,000/590.2)

§-B

T

rate of change of reactivity
step change in power

time of maximum power

thermal flux
proportionality factor between thermal flux and power

reciprocal lifetime of prompt neutrons (loh/sec.)
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?
L

concentration of delayed neutron emitte}s

time constant of delayed neutron émitter

mltiplication constant required for criticality at temperature T
multiplication constant required for criticality at temperature T,
material multiplication constant at time t

material multiplication constant at time t = O

e = ko = kgo = fractional step change in reactivity

fraction of neutrons from fission having time characteristic Aj
L o)

Po 9T

1 9o\t
(5

SPGM [6(s)-(p)]

Po

S By e
T LT oE,

%%- e-o:(T-To)J

L o1ax-1

o}
k - kg

32 kn

rate of change of reactivity (external)

volume of gas as a fraction of core volume

steady state volume of gas as a fraction of core volume
gas coefficient of reactivity

gas generation per unit core volume

steady state volume of core

1s
Vo \ 3P

constant determined by pipe flow loss

(HRE constants)
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