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I. INTRODUCTION

The observed attenuation of neutrons by air ducts in shields can be under

stood on a simple phenomenological picture. In Section II it will be shown

that the wall scattering in a straight duct is small compared to the uncollided

neutrons which have traveled directly in air from one end of the duct to the

other. In Section III the attenuation due to a duct which consists of two

straight sections joined at an angle 0 is considered. Finally the formula is

extended to the case of any number of straight sections joined at arbitrary

angles. Part 2, Experiment, will be issued shortly.

II. WALL SCATTERING IN A STRAIGHT SECTION

Consider the neutron attenuation of a long thin circular air duct in an at

tenuating medium. It is assumed that the inner mouth of the duct is adjacent to

a plane isotropic source of neutrons of strength nQ per unit area. There will

then be a flux of neutrons at the outer mouth of the duct, due to those neutrons

which have traveled directly in air from the inner mouth of the duct, of an

intensity given by

"o TT& °2 m
F = - nn (1)

2rri2 ° 2l2

where 6 is the radius and $> the length of the duct.

In addition to this flux, there will be contributions due to neutrons which

have collided with the walls. The effects of single scattering in the walls can

be estimated in two ways—one is by use of an albedo approach.

A) Single Scattering (albedo)

It is assumed that the walls of the duct reradiate a flux that is propor

tional to the flux incident upon it. The constant of proportionality, a', is the



albedo. The emergent neutrons are assumed to be essentially undegraded in energy

and it is assumed that they have either an isotropic or a cosine distribution

about the normal to the wall. For simplicity, the source of neutrons is assumed

to be a point A of strength NQ emitting isotropically into the forward hemisphere

and located at the center of the mouth of the duct. (See Fig. l). The detector,

similarly, is at the center of the other end; point C.

A -*-\

Figure 1

Consider, first, the effect of isotropic reradiation. The flux at C due

to a single reflection from the wall is:



i

Fc = / -No . S_ . * ^ 5 dy
2tt rf r. 2rr r|

NoO'o2 / dy

"T"J (o2+y2)3/2 [52+ (y.y)2]

N a' X /°' dt
o

27T/2 J0 (X +t2)3/2[x +(1 _t)2]

where X = (6/£)2 and t= y//. It will be assumed throughout this report that

only ducts which are long compared to their diameter are to be considered. In

that case X«l and the integrand will be sharply peaked at t = 0 and t = 1.

The integrand rises to the value X~5'2 -f—) at t=0. At t= 1, the
-i m2 Vsymaximum value is X =(~ • Hence, the major contribution to the integral is

obtained by neglecting the second peak and integrating up to some upper limit 0,

where p is of the order of l/2. Now

'= - -

NQ a' x r? dt

^7V &+t2)5/2 [x +(l - t)2]

and in this range, X can be neglected compared to (l - t)'

N^ a' x n& dt
• F C °C= 2TT/2^ (l-t)2(X+ t2)5/2'

This integral has been done exactly. However, the same result may be obtained

more easily by noting that because of the sharp peaking of the integral, due to

the quadratic, at t=0 it is permissible to replace the (l - t)2 term by

unity in the last equation. Then
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Fr ^

Now

Fc -

NQ a' x r^ dt

2tt£2 / (X + t2)?/2

jta.

(x2 + S2)3/2 a2 Vx2 + a2

N0 a' X

27T/,2

N0 a'

xVt2 + X

P ^, "oN« «'

27T, :2 -\pT"x 2jtjZ.
(2)

Hence the entire effect of isotropic reradiation from the walls is to produce a

flux at the mouth of the duct which is formally equal to the uncollided flux

multiplied by the albedo.

In the case of cosine reradiation from the walls

Fc =

J
N0 8 26 a'

2f 5 dy
2tt r± rx r2 2w r|

N0 &3 a- / dy

(62+X2)3/2 [62 +U.y)2]3/2

£

N a'
_2 (x.)3/2
wl2 J (X +t2)5/2 [x +(1 - t)2] 5/2

dt

where the notation is the same as before. The integral now has two symmetrical

peaks at t = 0 and t = 1.



2N0 a' , *3/2 rl/2 dt
' ' Fc ="7I2" y (X +t2)3/2fx +(1 . t)2jV2

In this range X can be neglected compared to (l - t)2.

1/2
* 2Noa> M5/2r dt

C" rrl* J (1 -t)3 (X +t2)3/2

Once again 1 - t can be replaced by unity and the ramaining integral evaluated

as before. Then

2N0 a'Vx 2N0 8 a'
F = - = =- . (3)
C Tt£2 7T /3

Thus the effect of cosine reradiation by the walls is to provide a flux at the

outer mouth of the duct which varies as the inverse cube of the length of the

duct.

The reradiation from the walls of the duct, per unit solid angle, may

be written in the more general form

dF A+2Bcos6_a, p^ {k)
&IL 2 ir

where F-«nc = flux incident on wall.

a' = albedo of wall

and A and B express the relative percentages of isotropic and cosine reradiation

respectively. By conservation of neutrons, however, one has

A + 2Ecos 9 , .

27 a' Finc dn - a' Fmc ' (5)

/. A + B = 1



By the use of Eqs. (l), (2), (3) and (k), and noting that NQ - n07r8%

the flux at the mouth of the duct can be written

Nr kB a' 6'

2 wi
ll + A a' + (6)

I

B) Single Scattering in the Walls

An alternative way of estimating the neutron flux is to consider the

effects of single scattering in the walls of the duct. In this derivation it

will be assumed that the scattering is isotropic and that there is no appreciable

energy degradation. Consider a scattering at a point B in the wall located at a

distance y down the length of the duct and at a depth x into the wall. See Fig. 2.

•4

Figure 2

If d is the total length of travel in the wall, the probability of this scat

tering is



where

Now

and

N0 Zs dV e-£t d
27T [y2 + (8 +x)2]W [{I - y)2 + (8 + x)2]

Zs = macroscopic scattering cross section

Z^ = macroscopic total cross section

dV = volume element at B.

x x

d = +
sin 0 sin

~l\ V(x + 6)2 +y2 +V(x +6)2 +(£_ y)2
x + 8

dV = (x + 8) d(x + 6) df dy

(7)

>,

where |[ is the angle of rotation about the duct axis. The total flux at c, inte

grating over <£, becomes

A

NoZs (x + 8) dx dy e"^t d
kr J J [y2 +(8 +x)2j ]-(X- y)2 +(6 +x)2j (8)

Because of the quantity x in the numerator of the expression for d, the

exponential results in a sharp peaking of the integrand at x = 0. Hence all

slowly varying parts of the integrand can be replaced by their values at x = 0.

The integral becomes

,i . °P _^t 1x

where

8 dy

(y2 + eg) [(£_ y)2 + 62J

q s Vo2 + y2 + V(t - y)2 + o2

dx e 8



B2 / dy .
Zt J0 (y2 +82) [U- y)2 +82]q

Now q is almost a constant and equal to £ since §*-<£ Neglecting its varia

tion over the region of integration

^ N0 82/Zs\ f dy
c *^[zM (y2 +s2> [(I -y)a +s-J

No &A ^ dt
lurj^^zj^/ (X +t2) [X+ (1 - t)2J

f and t-(J)
1/2

_no_/m r dt
2irJL2{LtrJ (X +t2) [x + (1 - t)2]

2
In this range, one can neglect X (^^l) compared to (l - t) and replace

(l - t)2 by unity as before

1/2

where X = /_) and t =

£ If J!. \ *-M- '2irjL2Ut/ J X+ t?

n /ZA — t io ( -i|Vx tan"1
>7T^2VZJ 2-0:

Finally, since 1 >>1. one has
2VX

_! 1 ^ 7T
tan —- = —

2i\ 2

N_ 6 fZ,
Fc = -&_ -1 (9)
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Thus isotropic single scattering results in a flux which varies as the inverse

cube of the length of the duct.

The agreement of this result with the previous albedo calculation as

suming cosine reradiation is not completely unexpected. In a sense, the rera

diation arriving at C (see Fig. 2) can be regarded as due to a uniform distribu

tion of sources in the wall with an effective mean free path for the medium which

is smaller than the actual one by the factor b/J>. As is well known, such a uni

form distribution of sources results in a cosine distribution of the radiation

leaving the surface.

If one makes a reasonable estimate of Zs and Zt in water for a neutron

energy of 3 Mev, it is found that the flux given by Eq. (10) is somewhat smaller

than that predicted by Eq. (3) using the experimentally measured value of the

albedo for water. This again is reasonable since the albedo includes the effects

of multiple scatterings in the wall.

C) Multiple Reflections (albedo)

The calculation in Section A of the flux at C is incomplete since no

account was taken of the effect of multiple reflections from the walls of the

duct. This will now be done for the case of cosine reradiation by the walls.

The location of an element of area da in the wall will be specified by cylin

drical coordinates (x, 8, £), where x is the distance measured down the duct from

the mouth to the area da, a is the radius of the duct and <£ is an azimuthal

angle.

Let F(x) denote the total neutron flux per unit area emerging from a

surface area dO]_ at the position (x, <£). This function must be independent of

3[ by the symmetry of the problem. Recalling that this flux has a cosine distrib

ution about the normal, the partial flux falling on another area at y, <£y due

to this radiation is

9



F (x) cos 9, cos 82 do-^
dG (y, I ) = -5 . • ' ^r—Xy tt (y -x)2+ 2 8^2 &2 cos (|x -£y)

where 91 =emerging angle at (x, £x) and 92 =incident angle at (y, j^), and

the denominator is the square of the distance between the two elements of area.

The value of cos 9^ can be found as follows. The location of da1 at

(x, §[ ) is given by the vector A = x +/°x where x lies in the direction of

the duct axis andpx is the radial vector to the area. Similarly, the other

area is at B = y +"jOy» Then

(2-3)<px a (B-A).^
cos 0n - x cos 02 = _ _—i1 IA -B$> | 2 IB -A|Pyl

now

since

and

(A -B)-j5c = pi (1 -cos $)

(B -t)f - Py (1 -cos $)
1/

where ft is tne relative azimuthal angle of the two areas.

82 (1 -cos <j))2
cos 9t cos 60 = ••—K -w '—;- =

2 (y - x)2 +2 6£ -2 62 cos J

/>! - p% - #

I - |x "ly

JA -B|2 = distance between the two areas.

82 F(x) (1 -cos f)
^ tt [(y - x)* + 2$ (1 - cos J)J

10



The total flux incident at (y, <JL) due to radiation by the walls is obtained by

integrating over the total surface area of the duct.

2rr

G(y) =
7T

F(x) / (1 -cos $) if dx
' ' [(y -x)* +28* (1 -cos If

In addition to this there will be a flux due to direct radiation from

the point source at A

N0 6
r1 ** oS5 j P (1 -cos ij[)2 d$ dx

•'•G(y) =2ir (82 +y2)5/2 +7 J0 F(X) J [(y-x)2 +252 (1-cob J)]2
Finally, the flux emerging at (y, (£„) is related to the incident flux

by the albedo.

Nrt a" 8

F(y) = a' G(y)

5 i 27T
a' 5

2 •*-(l - cos jjjQ d£ dx
.\F(y) =

2tt (62 + y2)37i
F(x)

IT /(y - x)2 +2 82 (1 - cos fjl2
(10)

This is an integral equation in the unknown function F(x)

The integral in the azimuthal variable is easily done.

2ir

(1 - cos f)2 d| 1 6f s2tt

jtn [(y - x)2 +
[(y - x)2 +2 82 (1 - cos l)]2 k d(62)2J0

1 d

k d(82)2
2tt J^n

+2 82 (1 - cos J)1 d([

(y - x)2 +2 82 + (y - x)V(y - x)2 +k 82
2

tt d 2 [(y - x)2 +k 62]+ 2(y - x) !
2d(S2) IV(y - x)2 +4o2 [(y - x)2 +282 +(y - x) V(y - x)2 +U82] j

11



The quantity in the brackets can be rewritten by rationalizing the denominator as

[2(y -x) +V(y -x)2 +iTs2"] [(y -x)2 +262 -(y -x) V(y -x)2 +k62]
h sV(y -x)2 +k 62

y - x

82 62V(y - x)2 + k 52

the integral becomes

TT

*S2 8

|y - x|[(y - x)2 +6 82]1 r
1 -^ — - , S = r- K( |y - x| ) .

[(y - x)2 + 1* 62J3/2 j 2 64

The absolute value sign is required since (y - x) was obtained from under a

square root sign. Using this result, the integral equation (10) becomes

(11)

r,/ \ Ho a 6 a / / \ / , IsF(y) = -ro 57x7? + / F(x) K( y -x ) dx •
2 tt 6^ + T-y' 2 8l/

(12)

An exact solution of this equation seems quite difficult to obtain.

However, a simple approximation yields a reasonable result. Consider the func

tion K (|y - x| ). At x = y this function is equal to unity and drops off very

rapidly from this value as |y - x| increases. The function is already down to

0.1 at ly - x| = 2 8 and varies as
6 bH

-£ for |x - yl^./'S. This sharp
|x - y|

peaking makes the kernel act almost as a delta function. If the function F(x)

is assumed to be smoothly varying the integral equation becomes

J
N_ a' 8 n1 F(v) f

F(y) *

Writing

N0 a' 8 a' F(y) r+_ y K( |x -yi )dx
2 tt (82 +y2)5/2 2 6

I(y) = K( |x - y| ) dx

12



Nn a* 8
F(y) =

2 tt (82 + y2)5/2 l

1

a' Ky)
28

The quantity l(y) is easily evaluated

I(y) = / K( |x - y|) dx = / ) 1

2 S2 {y - x|
[(y_x)2 +l,52]5/2

dx = JL + 2 6 -

|y - x|

[(y - x)2 +k 62Jl/2

y2 + 2 62 • (/- y)2 + 2 62

Vy2-+ 4 62 V(^- y)2 + * 82

Except near the edges of the duct, the conditions y» 6; (/ - y)» 6 are satis

fied. Then l(y) ^2 8. At the edges the function is

l(o) * 6 1(A) * 8

Thus, except for an edge effect which reduces the function somewhat, one can

write

Ky) = 2 6

rJ
F(y) tf

N0 6 a1

2 tt(82 + y2)5/2 1 -a' (13)

The flux at C due to wall scattering is now found by integrating over the flux

emitted by the walls, recalling that this has a cosine distribution.

Fr
F(y)

tt [(/-y)2 +62p/2

.JL

2 r 6 dy

N0 S5 (a' /l -a') dy

TT (62 +y2)3/2 [(£_ y)2 +s2]3/2

13



Comparing this with the previous equation for single scattering with cosine re

radiation (in Section II A) it is seen that the effect of multiple scattering is

simply to replace a'by a'/1 - Of1 .

A similar procedure can be followed for the case of isotropic reradia

tion. The integral equation for F is now

F(x)F(y) =
C 52

2 TT

2 TT

r (1 - cos <])) d£ dx

[(y - x)2 +262 (1 - cos £)]5/2Wo

N0 a' 6

+2Trty2 +82)3/2

which by the sharp peaking of the kernel at x = y gives

F(y) *
a' 82 F(y) 2 IT

(1 - cos |)) di£ dx

2 TT
^ ^o

[(y - x)2 +2 62 (1 - cos £)]5/2

N0 0!* 6

2 ^(y2 + 82)5/2

Interchanging the limits of integration

2 TT

Ky) = / (1 - cos $) /
r dx d(j)

[(y - x)2 +2 62 (1 - cos J)l 3/2

2tt
i

(1*0

^-y

2 8<= VU- y)2 + 2 52 (1 - cos f) Vy2 + 2 62 (1 - cos <j>)
dfi .

For ^ - y7>8; y>^8 this becomes

I(y) * 2j[
52

11+



and near the edges
l(o) * T I(i) tf -I

82 8^

Thus, to the same approximation as in the case of cosine reradiation, there

results

_/ v • N0 8 a' , .
F(y) - —r- • • (15)

2 tt (y2 + 52)3/2 x.a.

Once again the flux at C is immediately seen to be identical to that predicted

by single scattering except for the replacement of a' by a'A - a1.

For the general case of isotropic and cosine reradiation by the walls,

including multiple reflection,

H„ / a' k B 8 a' \
Fc = °—/l +A + : • (l6)

2 iri2V 1 -a' (1 -a') /

It has been found that the albedoes for water and concrete are of the order of

0.1. This result, coupled with the fact that A and B are less than or equal to

jnity allows one to neglect all but the first term to a reasonable approximation.

Hence, the flux at the end of a long thin duct is due to just the uncollided

neutrons to within a few percent.

III. ATTENUATION DUE TO A SINGLE BEND

Consider two equally long circular ducts of radius 8 joined with a bend of

anele 9. See Figure 3 on following page. The results of Section II show that

the majority of neutrons arriving in the region of point B are uncollided neu

trons entering the region of point B is then

Dg = n0 (tt 62)2 —L, (17)
2 TTJL

wnere -£is the length of either straight section. This dose of neutrons is com

pletely absorbed in the walls of region B and as a result a reradiated flux

15
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Figure 3

leaves the walls with a source strength proportional to the albedo of the medium.

The exact effect of the complicated scatterings at the corner is unknown. How

ever, it will be assumed that the reradiated flux is emitted uniformly from the

walls of region B with an angular distribution which is equal to a' V

A + 2 B cos 9

2 r
The effective wall region is taken to be of area A^ By con

servation of neutrons then

a Dg A + 2 B cos 9 a' Dg
__ dJ-}, = _
A+ 2 TT A+

where the integral is over all solid angles d-fi-.

or

a' Dt, a1 Do

••• tt <A +B) - -^r

A + B = 1 (18)
16



The neutrons arriving at C are once again those that have come on an uncollided

flight from the virtual sources in region B. ThJs dose is

^' Dg\ A+2 Bcos £ ir 82
lH TV~ TT d°'

where \ is the angle of emission relative to the normal, see Fig. 3, da is an

element of wall area,and the integral is extended, over the region of the wall

visible from point C. Denoting this area by Ay

Dr - a* (A + 2 B sin 0) -2L tL . Db2/2 At ^

since the angle \ is essentially aconstant and $ +9=tt/2. An approximate

value of A is easily obtained. From the diagram it is evident that

Figure k
17



A "f ~T 62
^ sin 9 (19)

/ P 2
D - a , x 8 /<r 8 \c ^Te (A +2Bsin e> II? ("aTJ^'

Substituting the value of Dg obtained in Eq. (IT) there results

D= -"o ^£^W)U-2..tae>

Recalling that Atis an area essentially independent of the angle of bend, one

can write

At = Ktt 82 (20)

where K is an undetermined constant.

r0L\ , ov/ 82\2 A + 2 B sin 0
,'.Dc " M — Or 52)

K/ \2jL2) sin 0

If a general constant a is defined as a = a'/K the dose at C becomes

82 \/o S2\4 + 2 B sin 9, o, / 5 \f<* trvA. + 2 B sin 9 \

IV. ATTENUATION DUE TO MANY BENDS

Eq. (21) may be easily generalized to cover the general case of n + 1

straight sections each of length X±{i =1, 2, ..., n+l) and joined at

angles given by ©^ where the subscripts denote the angle between the ap

propriate straight sections. The result is

18



D - nQ (tt82)
,2/2

a 62 (A + 2 B sin 8i, 2)

2ilsin9l,2

g &2 (A + 2 Bsin 9n< n + 1)

2^2 +x sin Qn> n+1 (22)

In the special case of equal lengths of straight sections with equal bends, this

becomes ^ c2 \ / n r2

' • ^«'^Yi^rJ «* + 2 B sin 9)n (23)

Using Eq. (18) this can be written

It should be noted that Eq. (2*0 is not valid for angles that are so small

that neutrons can go directly from A to C. In addition, the formula breaks down

at angles such that a very large section of the wall [y A^) can be seen from

point C. In this region of 9, the predicted dose should be an overestimate of

the measured effect. The best results should be obtained at large angles.

Rewriting this equation in terms of the diameter a, there results

*2 \ / &2 \ / rv adD- ru/~)/^g)f.g.r. J [1- B(1 -2sin9)]n8JZ/[Q12 sin©>

In the remaining experimental sections it is assumed that there is no cosine •

reradiation by the walls; i.e: B = 0. A reasonable fit to the experiments can

then be obtained. However, the present experiments are not sensitive enough to

allow one to conclude that B Is strictly zero or even very small. Future experi

ments using a dosimeter, should be able to decide on this point.

19



ACKNOWLEDGEMENT

It is a pleasure to thank Mr. E. P. Blizard

for many helpful discussions and suggestions.

20


	image0001
	image0002

