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ABSTRACT

The variation of the reactivity of a pile as a function
of width of a transverse gap is obtained. The method involves
first finding the boundary condition satisfied by the flux at
the gap face. This, in principle, provides enough information
for a complete solution of the pile equations. A method for
calculating the reactivity change is presented. The calculated
reactivity is compared with experiment and a brief discussion
of the validity of the approximations is given.



THE EFFECT OF GAPS ON PILE REACTIVITY

S. Tamor

I. Introduction

The problem of a transverse gap in a cylindrical reactor has been

treated in some detail by Goldberger, Goldberger, and Wilkins several

years ago '. They develop a method for calculating the flux depression

at the gap which is somewhat restricted in its validity because of an

approximation which is invalid for small gaps-. The method used here is

exactly that of GGW, but the approximation to large gaps is not made.

No serious complications is introduced by the generalization. Once the

boundary condition at the gap is obtained, it is possible to replace

the gap by an. equivalent thin absorber; i.e., an absorber which produces

the same flux depression. It is then a simple matter to calculate the

reactivity change by means of perturbation theory (assuming, of course,

that the adjoint flux for the reactor in question is known).

At the risk of repeating previous work, for the sake of complete

ness the principles of the GGW method will be presented in detail. We

will restrict ourselves to reactors in the shape of a right (not neces

sarily circular.) cylinder. As pointed out by GGW the general method is

applicable to other geometries, the only requirement being that the flux

be separable into parts normal and transverse to the gap.

II. The Method

Consider a bare cylindrical reactor of length & , which has been cut
along a transverse plane, and the two parts separated a distance h

(fig.. 1). For convenience, we let the gap lie in the mid-plane of the

' Goldberger, Goldberger, and Wilkins, CP 3^3> hereafter referred to
as GGW.



reactor although the generalization to an off-center gap is trivial.

The flux in the one—velocity diffusion problem is separable into

transverse and longitudinal parts, so that within the moderator the

longitudinal part is a cosine distribution and the transverse part
2 2satisfies the two dimensional wave equation ^7 0 + 7 0 = 0 with

appropriate boundary conditions.

Figure 1

We assume the reactor to be sufficiently large that diffusion

theory is applicable and gives correctly the flux emerging from the

gap face. This restriction implies that for reactors with several

gaps they must not be too close together. Following GGW, we now

inquire as to how many neutrons leave an element of area at p' on

the + face and arrive at p on the - face.

If_fL is a unit vector directed from p * on the + face to p on

the - face, the rate at which neutrons leave p' headed into djft. is

—(0.(p') + *. VfLCp^v-nJcos k dii
ha



so that the total number of neutrons arriving at p is given by

_1_

iw
v.

1_
kit

0+ (p') +xV0+.(p').n cos (f> dJX

#+(p«) + \V0+(p')-n.
cos VdA'

where A' is the element of area containing p'. This is to be equated

to the total incoming current at p which is

_(p) ^ c)0.(p)

Making use of the symmetry of the system about the mid-plane,

*-& =rf+G5) a*d0'(£) m0;(P) -m d^ _ .3ft(p)
5~z d z

we have

. - {-$+ - -
kit.

0+ \ V0+. JTi-
h cos fC dA

(1)

(2)

(3)

At this point it is desirable to make one more approximation.

Let us assume, the gap to be small compared to the transverse dimensions

of the reactor so that there, is no appreciable communication between the

outside and the middle of the reactor. This is the region of maximum

importance, and the incoming flux will not be seriously falsified by

continuing the integration in (3) over the infinite plane. We will see

that this device leads to a very great simplification in that the spatial

distribution of the entering flux reproduces that of the flux emerging.



To evaluate the intergrals it is convenient to view figure 1 as

projected onto the gap face (fig. 2). The coordinate system is chosen

arbitrarily and u is directed from p to p'

Figure 2

Then

q(p) = -JJ- -£

n0(p') +\ 0,(P') l+XV0(p')-g

= *$.-£(*•(?})

1

Vit.,
R R cos2 </>dA' (*)

Here the GGW calculation neglects the last term in the numerator

of the integrand. It is easily seen that this is equivalent physically

to ignoring the azimuthal asymmetry of the emerging flux. Since the

flux is directed preferentially toward regions of low density, the

azimuthal distribution favors those neutrons heading toward the edge

of the reactor, thereby contributing a net streaming out of the gap.

We will see that this gives most of the neutron loss for sufficiently

small gaps.

Since

V0tf').u = ulgg:> R2 - 2 v2
u + h



and cos •P = h/R, eq. (k)becomes

q(p) = -
••lw

i^- 2s2(h +u )
• dA* (5)

But the flux is separable so that 0'(p') is- equal to 0(p') times a

function of z which is constant over the gap face. Therefore the

integral may be written in the form K(u)0(p')dA' where K(u) is

explicitly a function of u alone.

Choosing the point p as a new origin, the Fourier Bessel trans

form of 0(p') may be written

0(P') = Z
t

ds a .(p) Jt(su)cos(tX + «.)•

Substituting into v 0 +70=0 and making use of the orthogonality

property, we find

(s-7*)ast = 0

so that

0(p') = Ea^ (p)Jt(7u)cos(tX+i^t) (6)

Now K(u) 0(p')dA' = K(u)u du 0(p')dX

« 2na70(p)cos rjt K(u)Jq(tu)u du (7)



2)

But we now observe that if p = p' (6) becomes

0(p) = a »(p)cos kj. so that'70VK/W" *)t

K(u)0(p»)dA' = 2«0(p) K(u)jQ(7u)u du

10

(8)

This proves our assertion that the incoming flux is proportional to

the emerging fliix, and further that the constant of proportionality

depends upon h, 7, \, but is independent of the geometry of the system.

Returning to the original integral, (5) becomes

q(p) = 0(P?
2

4 h '0(711)
( 2 .2,2(u +h )

u du.

+^Xh^ 0(7*0
, 2 .2,5/2
(u +h y

h2A

u du.

dl(7u) 2, ,
,2'g 5/2 UdU^
(u +h ) '

2)
These integrals are all Hankel transforms and are

r*> Jn(7u) 7K,(7h)
u u du = _

1 2 .2,2(u +h )
0

r°° J0(ru)

r^oo J^Tu) 2
(u2+h2)5/2 Udu " ^73-1^

2h

r3/2K3/2(7h)

^^i/ii^)
2^v^r(5/2)

See Watson, Bessel Functions p.^3^.

<1+ 7E>
7e

-7h

3hc

7e
•7h

3h



where the K functions are the usual Bessel functions of the second

kind with imaginary argument. We now have

or

q(p) '- «& ~X0'(P)

- 7hK1(7h)

0(^)#K1(7h) -L*%&i

+0.(p)2l^) e-7h

2

5
-7h(A)(7h)e

V
_3_
2\ 1 + (l+7h)e'

•7h

•7h

tNote that as h-»0 0 -» 0 and as h -> c» t*-

theory boundary condition.

The result of GGW is identical with (9) but for the omission of

the last term in the numerator. For small gaps, the last term is

2X
the usual diffusion

11

(9)

linear in h, while 1 - zK,(z) starts off as z log z. Thus for very

small h the last term dominates. For reasonable dimensions of the

reactor, the two parts become comparable for h «\/3,which for graphite

is about 1 cm. For gaps much larger than this the last term may be

neglected.

For small h eq. (9) can be checked by an elementary method. Let

h be small enough that the flux and its angular distribution are

essentially the same in the gap as in the neighboring moderator. The

total flux leakage out of the gap is then

fxh d0
dn

ds (10)



d0
where ds is an element of arc along the gap edge, and •—• is the out

ward gradient of 0 at the edge.

The rate at which neutrons are fed into the gap is

2.|X V 0.dA*

where dA is an element of area on the + face. For 7h « 1

V
7 h

so that (11) becomes

I An 0dA.

But 0 satisfies V 0 + 7 0 = 0 giving

fxh V2 0<5A«
u

Integrating by parts, if we let s, be a unit vector along ds, we have

(Vx s,)0.ds. Since 0 is constant along the gap edge, this-^ Xh
is simply Xh !

d0
dn

ds, which is precisely the result (10),

III. Calculation of the Reactivity Change

So far we have considered the effect of the gap on neutrons

diffusing with constant velocity. While this is an unrealistic

picture of a reactor, our result does provide enough information to

obtain the 6k of a real system. For a truly thermal reactor the

following somewhat crude method may be used.

.12

(11)



3)

3)We start with the pile equation'

- * Poa (Bg)
eff " * nA2

13

where k is the infinite medium multiplication constant, p is the

resonance escape probability, p^ is the Fourier transform of

the infinite medium slowing-down kernel, L is the diffusion length,

and B the geometrical buckling.

For h = 0 the boundary condition at the gap in 0* = 0. Knowledge

of ^r thus determines the increase in buckling of the system. If B
is small,we have

Sk
eff

eff

6" + L p5(B2)
1+iT "h2

_2
when r is the mean square distance traveled in slowing down to

thermal.

Fitting a cosine distribution to the new boundary condition, we

find

e<B2> - i V
5k

so that -r—
k L2 +g 0'

"i i+A2 r
(12)

See A. M. Weinberg and L. C Noderer, Theory of Neutron Chain Reactions,
Vol. II, Part I, Chapter V, (CF 51-5-98).



k)

Ik

This method assumes that all the fissions are caused by thermal

neutrons and breaks down if an appreciable fraction of the fissions

are fast. ;

It is, however, possible to obtain the 6k for more general reactors

provided that the flux and its adjoint for the unperturbed system are

known. This can be done by noting that the gap may be replaced by an
k)

equivalent thin absorber '. The presence of the gap causes a net flow

of neutrons into the gap from the two faces of ^ X0'. These neutrons
M< 3

are effectively "absorbed" by the gap. If **- is small, we replace the

gap by an absorber whose cross-section is E(z) = 8 5(z-z ) where z
o o

defines the plane at which the reactor is opened. This will absorb the

correct number of neutrons if

§* i _ 0£(z)dz = 0e6(z-zQ)dz 0(zo)e
u

or

0 = 3XT * (13)

The effective absorption cross-section is seen to be a function of

energy through its dependence on X.

In the spirit of the multigroup method we consider the slowing-

down process as a succession of one-velocity diffusion proccesses each

providing a source for the next lower one in energy. At each energy

the result (9) is applicable. If we have solved the slowing-down
6k

problem for the unperturbed reactor, —r- may be obtained from perturbation

theory. We have

6k q(r,u) .3*1 q+(£,u)drta (1*)

This method was suggested to the author by D. K. Holmes.



where q(r,u) is the slowing-down density at lethargy u and coordinate

r, Z(z) is defined by (13), and the other symbols have their usual
meaning.

For a bare reactor q(r,u) is separable into q(u)«Q(r) where

Q(r) is self-adjoint and (Ik) becomes

5k

k
Cf(r) 5(z-zo)dr <l(u) ^rSr" qT(u) du ,G(u) „+/

and if Q is properly normalized

15

6k 2, r , 2
"k " cos (t^J q(u) °M q+(u) du (15)

where 6 is the longitudinal buckling.

It is easily shown that (15) is valid also for the case of the

off-center gap. The result implies that the 6k produced by a gap of

given width is proportional to the importance of the plane along which

it is cut.

Substituting into (15) from (9) and (13) we have

8k

k

where

a =

cos2(£zo) J 1*0!^ +3I2|

1 - (7h)K1(7h)

1 + (l+7h)e
^ 0

q(u)

**t
<l+(u)

2 7^ e-7h
31+ (l+7h)e"7h

4(u) ^- 4+(u) du.

(17)



lb

The GGW result is obtained by setting p = 0.

By this method 5k is calculable in a straightforward way involving

only two integrations. In many cases, X is independent of u over a

wide range, and may be considered constant so that actually only one

integral need by evaluated.

IV. Validity of Approximations

The approximations made in obtaining the boundary conditions at

the gap are a) use of diffusion theory for the outgoing flux at the

gap face, and b) the continuation of the surface integrals to infinity.

A qualitative justification of the diffusion approximation is

simply this. The diffusion approximation gets poorer as the angular

distribution of the neutron flux deviates more and more from isotropy.

The worst possible case from this point of view is when h becomes

infinite. However this leads to the elementary diffusion boundary

condition which, for large systems, is an excellent approximation to

the correct one. The error arising from this source is then probably

no worse than that from using the diffusion approximation in the pile

or multigroup equations.

To justify the continuation to infinity, one observes that the
2/2 22

integrals involved go something like h /(u + h ) times a relatively

slowly varying function of u. The first factor is very sharply peaked

in the neighborhood of u = h and falls off as a high power of u. If

the distance from the edge of the reactor is large compared to h, the

controbution to the integral from large u is small. For points close

to the edge the approximation breaks down, but these regions have low

importance and can be ignored. The error was estimated by numerical

integration at the center of a circular cylinder of radius = lOh

(a relatively large gap). In this case the leakage is overestimated

by about 1.5 fo. For smaller gaps it is easy to see that the accuracy

improves very rapidly.
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The replacement of the gap by an equivalent absorber and the

use of perturbation theory require that the flux depression at the

gap be small.

V. Comparison With Experiment

The methods developed above were used to calculate the reactivity

change as a function of gap width for the CA-1*- graphite moderated

critical assembly-5'. This reactor was a rectangular parallelepiped

130 x 112 x 112 cm with a gap perpendicular to the long dimension and

slightly off center. Measurements of -j- for gap widths up to about
1 cm were made, the maximum opening determined by the available control.

It was unfortunately extremely difficult to obtain accurate measurements

of the table separations for very small gaps, hence the large experimental

uncertainty.

Figure 3 compares the experimental points with theory, curve 1

representing the GGW result obtained from eq. (17) but with 0=0, while

curve 2 is calculated from the complete expression. Eq. (12) does not

apply to this system since a large fraction of the fissions are caused

by fast neutrons. For this case eq. (12) gives about one-third of the

total effect.

In view of the rather large uncertainty in the data the check

between theory and experiment should be taken as only qualitative. At

this point it cannot be said whether the apparent divergence between

theory and experiment for large h is real.

The comparison is, however, sufficiently encouraging that for

reactor in which diffusion theory is applicable one may expect to predict

the effect of a small gap with some degree of confidence.

5) For further details of the experiment see Report Y-881.
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