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SUMMARY

This paper concerns itself with forced convection heat transfer in long,

smooth pipes whose flowing fluids contain uniform volume heat sources; also,

heat is transferred uniformly to or from the fluids at the pipe walls. Di-

mensionless differences between the pipe wall temperature and the mixed-mean

fluid temperature are evaluated in terms of several dimensionless moduli. These

analyses pertain to liquid metals as well as ordinary fluids.



NOMENCLATURE

Letters

A cross sectional heat transfer area, ft2

a fluid thermal diffusivity, ft /hr

B0 parameter in equation (f), ft/hr

bj_ parameter in equation (23), dimensionless

Cp fluid heat capacity, Btu/lb °F

c-j_,C2,Cx parameters in equation (26), dimensionless

eo>el>e2>e3 parameters in equation (31)> dimensionless

f parameter in equation (h), dimensionless

g gravitational force per unit mass, ft/hr2

g0,g-,,g2 parameters in equation (3*0> dimensionless

h heat transfer conductance, Btu/hr ft •°F

k fluid thermal conductivity, Btu/hr ft2 (°F/ft)

p fluid pressure, lbs/ft2

<j heat transfer rate, Btu/hr

r radial distance from pipe centerline, ft

r-, radial position at which the reference temperature
t^ is stipulated, ft

r0 pipe radius, ft

si,S2 parameters in equation (33)> dimensionless

t fluid temperature at position n, °F

t^ a reference temperature at radius r^, °F

tm mixed-mean fluid temperature, °F



t fluid temperature at pipe wall, F

t}_ fluid temperature at n^, F

tp fluid temperature at n2> F

tfc fluid temperature at the pipe center, °F

u fluid velocity at n, ft/hr

i^ mean fluid velocity, ft/hr

W volume heat source^ Btu/hr ft5

x axial distance, ft

y radial distance from pipe wall, ft

V fluid weight density, lbs/ft-*

e eddy diffusivity, ft2/hr

5 friction factor defined in equation (c), dimensionless

yu absolute viscosity of fluid, lb hr/ft2

1) fluid kinematic viscosity, ft2/hr

p fluid mass density, lbs hr2/ft^

f fluid shear stress at position n, lbs/ft

"t0 fluid shear stress at pipe wall, lbs/ft

a' = 1 - Pr

a"= -0.0304 Pr Re0'9

b" = 0.0152 Pr Re0*9

b"= 0.0304 Pr Re0,9
dt

Z =dr

Terms



Dimensionless Moduli

F = 1
2

Wr, IdA/

n = y/i

nl = yl/ro

"2 = V2/ro

nL = yiAo
Nu = h 2rQ/k, Nusselt Modulus

Pr =i)ycp/k, Prandtl Modulus

Re = u 2r0/ i> , Reynolds Modulus

+
u —

u

fo
N P

To

y+ = 7^ p



INTRODUCTION

At times it is necessary to determine the radial temperature distributions

in flowing fluids that possess internal sources of heat generation. Consider the

heated-tube system (electric current passing through the tube walls) which is now

so commonly being used to measure convective heat transfer conductances. It is

of interest to known how much the electrical volume heat source influences the

radial temperature distribution when a significant fraction of this source is

generated within the flowing fluid. Such volume heat source problems also arise

in fluid flow systems in which continuous chemical reactions are being supported

within the fluids; a combustion heating system represents a specific example.

Particular volume heat source systems have been considered in this paper.

Mathematical temperature solutions were developed for a circular-pipe volume

heat source system for the cases of laminar and turbulent flow (reference l).

The idealized system to be considered is defined by the following postulates:

1) Thermal and hydrodynamic patterns have been
established (long pipes).

2) Uniform volume heat sources exist within the
fluid.

3) Physical properties are not functions of
temperature.

k) Heat is transferred uniformly to or from the
fluid at the pipe wall.

5) In the case of turbulent flow the generalized
turbulent velocity profile defines the hydro-
dynamic structure.

6) In the case of turbulent flow there exists an
analogy between heat and momentum transfer.
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A heat rate balance on a stationary differential lattice reveals the heat

transfer mechanisms which control the thermal structure within the idealized

system. At steady state, the heat generated within the lattice is lost from the

lattice by axial convection and radial conduction (in the case of laminar flow)

or radial eddy diffusion (in the case of turbulent flow). These heat rate balances

are expressed by differential equations in the following analyses.
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LAMINAR FLOW ANALYSIS

The differential equation describing the heat transfer in the pipe system

for the case of laminar flow is

where,

*•' -(£f at r = a
iDx 3r

ar
at

2>r

Wr

•YCT

^m*

t,

x,

a,

W,

mean fluid velocity in the pipe

temperature

axial distance

radial distance

thermal diffusivity

uniform volume heat source

fluid weight density

fluid heat capacity

One boundary condition for the problem consists of a uniform wall heat

flux which may be positive, negative or zero,

£& (r = r ) = l^\ = -k ~ (r =•r„)

(1)

(2)

where d1 is the radial heat flux and ($&) is the wall heat flux. The second
dA \dA/0

boundary condition is, td, a reference temperature, such as a wall or center-

line temperature,

t(r = rd) = td (3)

Note, the mixed mean fluid temperature may also be specified as the reference

temperature.
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Downstream from the entrance region where the thermal pattern (tempera

ture gradients) of the system has become established the axial temperature

gradient, JLE, , is uniform and equal to the mixed-mean axial fluid temperature
<Dx

gradient , (-Si) . The latter gradient can be obtained by making the followingUx/m
heat balance. The heat generated in a lattice whose volume is jtr0 dx plus

the heat transferred into (or out of) the lattice at the wall must all be lost

from the lattice by convection, that is

Wrtr02dx - L||j 2rtrDdx =«r02 um-ycp (-||) dx (4)

Hence, in the established flow region the axial temperature gradient is

W- J_ PSL)
11 = <±£ - ro ldA/o (5)
ax Ux)m~ % ^p

Upon substituting equation (5) into equation (l), the following total differential

equation results:

w

k
2F

I

where F = 1 - _fL (*SL\
Wrn \&A/

° o

of variable, z = && . or
dr

. 1(~£k| . Equation (6) can be solved by making the change
V&A/

r-2
6xd * dr

1. Note, that the mixed-mean fluid temperature at any given axial position
is defined as,

J t u

ro % rQ
tm = _ —-— / t u rdr

Yn u™ r_d

o

2«rdr „ ro

o

u 2rtrdr



dr r k -(£)'
The solution of equation .(•?')- i?,

z = ££ = i
dr r

W [2F
•(£)

Upon integrating there results

dt W

dr = k
(2F - 1)

r F r^
2 2 ro2

12

(7)

- 1 rdr +
const.

(8)

(9)

The constant in equation (8) was found to be zero from the boundary condition

given by equation (2). Note that the radial heat flow is

d£ _ . dt Wtq
dA ~ " dr ' 2

(X -»> X +r(i)'

The desired temperature solution can be obtained by integrating equation (9),

t - tn =

or
t - tr

Wr,

2k

Wrf

2k

(1 - 2F)
2

(2F - l) JL - f [JLY m

&)' (0-

(10)

(id

U2)

where the reference temperature is, t0, the wall temperature. The temperature

solution in terms of the centerline temperature rather than the wall temperature

is given by



t - t£ 2F - 1

Wrc
2k

r \2 F/rf
r7) "irl^j

13

(13)

where t<^ is the centerline temperature. Equation (13) is graphed in Figure 1

for several values of the function F.

It is often of interest to know the difference between the wall temperature

and the mixed-mean fluid temperature. This difference is obtained as follows:

to " "''m =

J u (t0 - t) 2*rdr

"m^o

2' ^-*>(£) »£) <»>
o

Upon substituting the laminar velocity profile relation and equation (12)

into equation (14) there results,

tm k
IIP - 8
—W~

(15)
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Fig. I. Dimensionless Radial Temperature Distributions in a Pipe
For Laminar Flow (Equation 13)
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TURBULENT FLOW ANALYSIS

Fluid flow in a pipe under turbulent flow conditions has been characterized

in terms of a laminar sublayer contiguous to the wall, a buffer layer, and a

turbulent core by Nikuradse (reference 2), von Karman (reference 3) and others.

Figure 2 shows the well known isothermal generalized velocity profile and some

experimental data of Nikuradse (reference 2), Reichardt (reference k), and

Laufer (reference 5). Table 1 reveals some of the specific hydrodynamic relations

for the various flow layers in a smooth pipe; a discussion of some of the details

of this table can be found in Appendix 1.

The differential equation describing heat transfer in the pipe system for

the case of turbulent flow is

a+ 6(r,u) jr -|1u(r) _|1 r=4-
3x <5r

Wr
(16)

where, u(r), the turbulent velocity profile given in Figure 2

6 , the eddy diffusivity2 given in Table 1

Upon substituting equation (5) into equation (l6) for the established thermal

region the following total differential equation results,

u(r) |W
ro ^io.

um re.
Wr _d_

dr
(a + e) r

dt

dr

2. The analogy between heat and momentum transfer (characterized by the
postulate that the heat and momentum transfer eddy diffusivities are pro
portional to each other and in fact nearly equal) has been proposed by
Reynolds (reference 6) and used successfully by von Karman (reference 3),
Martinelli (reference 7), and others. Thus, in the present analysis it
is postulated that the heat and momentum transfer eddy diffusivities are
equal.

(17)
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REGION

Laminar Sublayer

o<y+< 5

or o<JL <—
rn Re-y

Buffer Layer

5<y+< 30
or

Re-9 rn^i^

Outer Turbulent

Layer

Re*-5' ro

Inner Turbulent

•5<JL_<1

Buffer Layer

Outer Turbulent

Layer

Inner Turbulent

Layer

GENERALIZED VELOCITY

DISTRIBUTION

To
Vu

P

w^ 0

N

u

fo

\ p

= - 3.05 + 5-00 In y
To

P

b

u
= 5-5 + 2.5 In

To

\P

u

1°
\|P

= 5-5 + 2.5 In

7N
To

P
z)

To

SHEAR STRESS STRESS EQUATION

T-Yn

f-X,

T=f0(i-X)

t=fod -J- )

T-"S

^v / ^ . duT = p(«>+6) ^

dy

Y = pe^i
dy

EDDY DIFFUSIVITY

= 0

-4- = .0152 Re*9 y _1
* ?o"

4- = .030^ Re<9(l _y^ X
ro ro

6 = .0076 Re*9

pipe center

TABLE I

HYDRODYNAMIC RELATIONS FOR THE VARIOUS FLOW LAYERS IN A SMOOTH PIPE
H
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Tlfe boundary conditions are given by equations (2) and (3). The boundary

value problem denoted by equations (17), (2) and (3) can be separated into two

somewhat simpler boundary value problems whose solutions can be superposed to

yield the solution of the original problem. The two boundary value problems

to be considered are,

u(r) Wr _ Wr _ d
um r c_ 7 c,

d_
dr

(a+e)r§

& (r
dA K rQ) = 0

t(r =rd) =tdi

u(r) ± (&)

"m rcp

t <* - *o> - (&)o
t(r = ra) = t*

=d7[(a+e)r]§

(18)

(19)

Equations (l8) represent a flow system with a volume heat source but with no

wall heat flux, and equations (19) represent a flow system without a volume heat

source but with a uniform wall heat flux. Note, that the superposition of

equations (18) and (19) yields the boundary value problem defined by equations

(17), (2) and (3); the sum of reference temperatures tdl and % being equal to
3

the reference temperature td. The problem defined by equations (19) has already

been analyzed by Prandtl, von Karman, Martinelli and others (see reference 7,

for example). The solution of equations (18) is carried out in the following

paragraphs.

3. Note, in the superposition process, all temperatures are expressed
as increments (to be discussed in section D).



A. Radial Heat Flow Distribution

Upon integrating the differential equation of (l8) once there results,

or £a =
dA

JL Wr dr - W(r2 - rn2) = (a+e) r^
% 7cx

- re (a + e ) — =
p dr r

n

2r cT

-HL r dr + £[r - ^°-
"m

u /-, ^* ,. Wro/-2n+ n2\— (1-n) dn + —
"m 2 \ 1-n /

19

(20)

(21)

where n = X . The evaluation of the integral in equation (21) is presented in
r0

Appendix 2; the radial heat flow profiles for various Reynolds moduli are graphed

in Figure 3.

B. Radial Temperature Distribution

The second integration of the differential equation of (18), which will

yield the temperature solution,will be accomplished layer by layer utilizing the

the hydrodynamic relations listed in Table 1 and the radial heat flow expressions

developed in Appendix 2.
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Fig. 3. Dimensionless Radial Heat Flow Profiles in a Pipe with no Wall Heat Transfer



Laminar Sublayer; o< n-<66/Re*"

The temperature distribution is obtained by integrating the heat flow

equation,

t n

(22)

21

where k is the fluid thermal conductivity. The radial heat flow equations (i)

and (k) can be represented by somewhat simpler forms in the various flow layers

in order that the integrations that are to follow can be effected more simply. For

example, in the laminar sublayer the heat flow may be expressed as,

*& = biWrnn (23)
dA L °

where the parameter b]_ is determined by fitting equation (23) to equation (i).

Thus, equation (22) reduces to

t "fe - 5L n2 (2M
Wr02 2
TE

Buffer Layer; 66/Re'9~m<:396/Re>9

The temperature distribution within the buffer layer is

dt =

J k + Te^etx n-i P

(25)



In this layer the radial heat flow can be represented by

£3> =Wr0(c;jn + cjjn2 + eye?)
dA

The ratio -JL. in this layer is equal to
1

Thus, equation (25) becomes

-£- = 0.0152 Re'9 n - 1
•0

*•*-¥
(cxn + cgn2 + cyo?) ^
1 - Pr + 0.0152 Pr Re'9

nl

where, Re, Reynolds modulus

Pr, Prandtl modulus

cl> c2> c3> are parameters obtained by fitting equation (26)

to equations (i) and (k) in the buffer layer.

Equation (28) becomes,

t - t]

Wr 2

cib^^a'b'co + 3a'c2 b'c0 - 3afc, o
— r-= 2(a'+Vn) + £—- 2_ (a'+Vnr

..*•
(a' + Vn) + 7~-K

2b'4

b'a,2e~ - b,2a'c, - a'5c

-in

22

(26)

(27)

(28)

3b,k
— (a' + b'n)5 +

>
^ln(a' +Vn) (29)

-JTL1

where, a1 = 1 - Pr

0.9b1 = 0.0152 PrRe
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Outer Turbulent Layer; 396/Re'"< n<0.5

For convenience in the analysis, the turbulent core is divided into inner

and outer layers. The outer layer extends from n2<n<0.5 and the inner layer

from 0.5<n<1.0. The temperature distribution within the outer layer is

dt = ^

t2

n

n2

S*>
1 + Pr _§_

0

In this layer the heat flow can be represented by

f£ =Wro (eo +ein +e2n2 +e3n5)

(30)

(3D

where e0, e^, e2, and e* are parameters obtained by fitting equation (3l) to

equation (k). The —— ratio is equal to
v

-M- = 0.0301+ Re0,9 (l-n)n
t>

Equation (30) then reduces to,

t - t£

Wro2
k

(eQ + e^n + e2n2 + e*p?) dn
1 + 0.0301)- PrRe°*9n - 0.030^ PrRe0*9 n2

e2a" - ejb" v
1^2

J3 2
n + —— n

e,

2a"

(m" „ _«-Vs»~ . a,»2^ „w„ \

2a"5 /

Je.+ a"b"2e2-2a"2e2-a"2b"e1+3a"b"erb'̂ e^ ^ !L^L

(32)

-tn

..32a! b"2-W
Jn2

(33)



where, a" = - 0.030U FrRe0"9

b" = + 0.030^ PrRe0'9

S-i =

1 2a"
-b" +v|b"2 - W

_b" -Nib"2 - ka."

2k

S2 2a"

Inner Turbulent Layer; 0.5<n<1.0

For the inner layer, the radial heat flow relation, equation (k) can

be represented by

|SL =Wr0(g0 +gln +g2n2) (3^)

The ratio £ ±n the inner turbulent layer is postulated to be uniform with

radius along the lines proposed by Berggren and Brooks (reference 8),

~- = O.OO76 ReG»5 (55)

Upon substituting equations (3*0 and (35) into the heat flow equation and

integrating, there results



-̂ =0.5 _( (gQ +Sin +g2n2)dn
Wr02 / i+0.OO76 PrRe°-9
k

n=0.5

1 + 0.0076 PrRe0'9
gQn + fl n2 + f2 r?

2 *

25

-in

(36)

Jn=0.5

where g , g, and go are parameters which are obtained by fitting equation (3^)

to equation (k) in the inner turbulent layer..

Thus, the radial temperature distribution for the case of turbulent flow in

a long, smooth pipe containing a fluid with a uniform volume heat source with no

wall heat flux is given by equations (2lt-), (29), (33)> and (36); some typical

radial temperature profiles in dimensionless form are given in Figures k and 5«

These profiles reveal the following characteristics: l) the dimensionless

temperature (above the centerline temperature) decreases as Reynolds modulus

increases, 2) the dimensionless temperature (above the centerline temperature)

decreases as the Prandtl modulus increases, and 3) dimensionless temperatures

(above centerline temperatures) are high in the flow layers near the wall where

the fluid velocities and eddy diffusivities are low. These characteristics could

also have been derived from physical reasoning,

C. Difference Between Pipe Wall and Mixed-Mean Fluid Temperatures

The difference between the pipe wail temperature and the mixed-mean fluid

temperature is obtained by evaluating the integral
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Fig. 4. Dimensionless Radial Temperature Distributions Within a
Fluid Flowing in a Pipe with Insulated Wall for Several Prandtl
Moduli and Re = 10,000
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Fig. 5. Dimensionless Radial Temperature Distributions Within a
Fluid Flowing in a Pipe with Insulated Wall for Several Reynolds
Moduli and Pr = O.OI



to " *m

Wr02

D. Superposition of Boundary Value Problems (l8) and (19)«

The superposition of solutions of the boundary value problems (l8) and (19)

yields the more general boundary value problem defined by equations (17), (2), and

(3)« In the superposition process, all temperatures are expressed as temperature

increments above datum temperatures. The radial temperature distribution above the

wall temperature, centerline temperature, or mixed-mean, fluid temperature for the

composite boundary value problem defined by (17), (2), and (3) is obtained by

adding the radial temperature distributions above the wall temperatures, centerline

temperatures, or mixed-mean fluid temperatures, respectively of boundary value

problems (18) and (19)« Note also that the rise in mixed-mean fluid temperature

at some point in the established flow region of a pipe above its value at the pipe

tp ~ tm
-g-

k:
Wr,," 2JL %pt rQ

/

t0-t

28

'o k

The velocity profile is given in Table 1 and the temperature distribution by

equations (2k), (29), (33), and (36). The dimensionless temperature difference,

Ml Wr02/\ro/ \r0

, is graphed as a function of Reynolds and Prandtl moduli in Figure 6.
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entrance for the problem defined by (17), (2), and (3) is obtained by adding the

corresponding temperature rises for problems (l8) and (19). The solution of

boundary value problem (19) expressed in terms of Nusselt, Reynolds, and Prandtl

moduli as developed by Martinelli is presented in Appendix 3.
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DISCUSSION

Currently, several new forced-flow volume-heat-source analyses are being

completed. One analysis pertains to a parallel plates system which is infinite

in extent. Another analysis concerns itself with heat transfer in the thermal

entrance region of a pipe (short tube); it should be noted that laminar flow

systems in particular have long entry lengths. A third mathematical solution

pertains to laminarly flowing fluids whose viscosities are dependent on tempera

ture; only the established flow region is being considered.

Although the experimental turbulent velocity data presented in Figure 2 seem

to be represented satisfactorily by the generalized velocity expressions in the

various layers, the exact location of yi+ (whether it is 3, k, 5, 6, or 7, for

example) becomes important in boundary value problem (19) at high Prandtl moduli

(about 10 and above) and low Reynolds moduli. This region appears to need further

consideration.

It is planned to include the effects of pipe roughness and differences between

heat and momentum transfer eddy diffusivities in future forced-flow volume-heat-

source system which corresponds to the one investigated mathematically in the

present paper.
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APPENDIX 1

HYDRODYNAMIC RELATIONS FOR TURBULENT FLOW IN A SMOOTH PIPE

The hydrodynamic relations for turbulent flow in a smooth pipe noted in

Table 1 are briefly considered. The velocity equations for the several flow

layers as well as the expressions for the layer thicknesses define the gener

alized velocity profile under turbulent flow conditions. The fluid shear stress,

T, varies linearly from TQ at the wall to zero at the pipe center. The shear

stress has been postulated to be equal to T^ in the laminar sublayer and the

buffer layer because these layers lie so near the wall; the exact linear variation

is used in the turbulent core. Laminar shear stress can be expressed as the

product of the fluid mass density, kinematic viscosity, and velocity gradient,

and turbulent shear stress can be expressed as the product of the fluid mass

density, eddy diffusivity, and velocity gradient. In the buffer layer both laminar

and turbulent shear stresses must be considered, whereas in the turbulent core the

laminar shear stresses are small compared to turbulent shear stresses and are thus

neglected. Upon the substitution of the generalized velocity profile and the

shear stress variations into the shear stress equation one can solve for the

dimensionless eddy diffusivity ratio, €. ji> } for the buffer layer and the turbulent

core. These ratios can be reduced to the forms that appear in Table 1 with the

aid of l) the well known hydrodynamic expression which relates the wall shear stress,

friction factor, and the mean fluid velocity in a pipe, and 2) the relation between

the friction factor and Reynolds modulus for a smooth pipe. These two expressions



follow:

and

T0- 5 2-§- Pum

5 _

8

0.023

Re'2
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(a)

(h)

where the friction factor is defined by the Weisbach equation,

*£ =!*_ fa (c)
Ax 2r0 2g

Dimensionless distances from the pipe wall, y/r0, can be expressed in terms

of the parameter y+ and Reynolds modulus with the aid of equations (a) and (b).



APPENDIX 2

RADIAL HEAT FLOW RELATIONS

3k

The turbulent velocity profile in the radial heat flow expression, equation (2l)

may be represented satisfactorily by two layers (a laminar layer and a turbulqnt

core) rather than the four layers which are used in the temperature analysis. The

laminar layer, which, i» postulated to extend to y* = 12, is represented, by the

;iocit-y cicpz'&ssion,

or

-To
u _ \|p

%
N P

ft is8u = .0115 %Re* n, 0<n<i^o

(d)

(e)

Equation (d) was reduced to equation (e) with the aid of equations (a) and (b).

The turbulent layer, which is postulated to extend from y'" = IS to the pipe

center, is represented by the one seventh power law expression,

u = B0 rT/'

where Bn is related to the mean velocity on the basis that the sum of the

volumetric flow rates in the laminar layovr and turbulent core is equal to

total volumetric flow rate; this relation is obtained cc follows:

"Til
u(l-n)d:c -!- 2 / u(l~n)dn

*ro

•;->,•-•



or Bo =

2a
dA

Wr.

nL

2 / .0115 uja

o

nm Re'8 n(l-n)dn +2/ B0n1/T (l-n)dn
nT

•°23 Re'8 ^ |J*/n2 rw3nL' + 2B,
QA 7 15/7

1 - .023 Re
0.8 nL2 ^3

\"2 3~/J

8"

u
m

= f %

it2_-l nT°/f + in.8/7 ~ 15/7

120 8 " 15

where nL is the dimensionless distance from the wall equivalent to y = 12, and

the function, f, is defined in equation (h).

The radial heat flow in the laminar layer is obtained by substituting

equation (e) into equation (21) and integrating,

n

-2_ / .0115 Re*8 n(l-n)dn +SiHlfl
1-n

o

023 Re \ r?_ _n£ +n(n-2)
1-n L 2 5-1 1'n

1-n

n

15
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<e)

nT

:oo

(i)

The radial heat flow in the turbulent layer is obtained by substituting

jquations (f) and (h) into a modified form of equation (20) (limits are nL to n),



SSL-
dA

dq

or <3A _ + _
WrQ \l - n / Wr_ (1-n)

hi!i] "c f
P

r

*a\
dA/M- - nT \ VdA,'

l-nT &U
+ 2-1-n / Wrn 1-n
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dA/L
W

ULrdr +
%

W(r - SL_ )
r

(j)

n

fn1'7 (l-n)dn

nL

n

8/T 7 15/7
n

-•nT

-2n + n2 + 2nL - nL2

+ (~2n + n2 + 2nL - nL2)
1-n

Equations (i) and (k) are graphed in Figure 3 as a function of Reynolds

modulus.

00



APPENDIX 3

TURBULENT FORCED CONVECTION IN A LONG

PIPE WITH A UNIFORM WALL HEAT FLUX BUT

NO VOLUME BEAT SOURCES WITHIN THE FLUID
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Heat-momentum transfer analogies for the case of turbulent flow in pipes

have been developed by Reynolds (reference 6), von Karman (reference 3),

Martinelli (reference 7), Lyon (reference 9) and others. These analyses

represent solutions to boundary value problem (19)> the latter analyses being

more exact. Martinelli's solution expressed in terms of Nusselt, Reynolds and

Prandtl moduli is graphed in Figure 7. Note that Nusselt modulus can be ex

pressed in terms of the wall-fluid temperature difference and the wall heat

flux(pertaining to boundary value problem (19) ),

/dq\ 2r

k (t0-tm)k

where h is the heat transfer conductance.
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