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ORNL-1283 Erratum

Title: General Principles of a Proton Recoil Fast-Neutron Spectrometer

Author: B. R. Gossick

)/' Page 8, In Fig. 1, angles PQR and PQO" should be shown as right angles.

V Page 16, Substitute attached revised Fig. 4.

v^ Page 17, Eq. 23 should read as follows:

JH -oX2 +l] f[£- (1 +8)x]2 +n2 +sfo2]

{(?-6x)2 +Il2 +i]2 [[^- (1 +8)xf+n2J

• Page 21, Eq. 35 should read as follows:

• 1 % ~ Ht(r) = t1 for 0< r < *g

tl + *2 „ *2 " *1 ^ I I, *I +*2,or-Vi<|,|<-i.= - r +

\ + t ,
= 0 for x - < r

The same correction should be made on page 6l where Eq. 35 is repeated.
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Page 24, Eq. 55 should read as follows:

k 1/2
*2 - ^+i> \

J^'IPage 27, Eq. 68 should read as follows:

L =
1.65* S% AftEnN(En,%^<VR

The factor R was similarly omitted in Eqs. 74, 8D, 8l, 82, 85, and 86

and in the calculations for Fig. 6. The revised figure is attached.

Page 37, Eq. 97: Minus sign should precede fraction on left side.

Page 43: To make page 43 agree with the revised Fig. 4, add an extra prime

to each of the coordinates x, y, z, except for the expressions enclosed

in brackets.

Page 51, Eq. A1.4 should read as follows:

2 2 2

fa ~ lac f ao jac yao
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GENERAL PRINCIPLES OF A PROTON

RECOIL FAST-NEUTRON SPECTROMETER

B. R. Gossick

Summary

A general equation for calculating the neutron energy spectrum from

proton recoil counting data is derived. This equation is optimized subject to

a constant total error to determine the most favorable experimental conditions.

Feasible accuracy is illustrated by presenting a family of curves of the counting

time (required for one point on a spectrum) plotted against total error with

source intensity as a parameter. The calculations apply only to a "good geometry"

experiment with a point source. The subject is treated for the most part in

terms of a thin radiator, but the calculations apply equally well for the case

of a thick radiator by a simple extension which is outlined.

- 5



Introduction

A proton recoil instrument has the dual purpose of obtaining information

about both neutron energy and neutron intensity. Since the measured intensity

can be increased by only three means (l) widening the collimator, (2) making the

radiator thicker, and (3) increasing the counter detection width, the information

about intensity can be gained only by sacrificing information about energy. This

is shown by the facts that enlarging the collimator increases the uncertainty in

the collision angle, making the radiator thicker increases the uncertainty in the

beginning of the range, and expanding the counter detection width increases the

uncertainty in the end of the range.

That such a relationship exists between energy and intensity errors is not

surprising as it is apparently inherent in the general principles of measurements.

What is of interest is the magnitude of this relationship for particular types of

measurements since the quantitative expression for this magnitude provides a cri

terion of feasibility for the experimenter. The following paragraphs are mainly

devoted to determining the relationship between energy and intensity errors for

the special case of a proton recoil instrument with a collimator. However, in order

to establish the connection between these errors it is first necessary to determine

the counting rate and the separate error contributions.

Instruments which fall into the category considered here have been reported

1 P
recently by B. E. Watt , Los Alamos Scientific Laboratory; D. L. Hill , Argonne

National Laboratory; B. B. Kinsey, S. G. Cohen, and J. Dainty^, Great Britain;
4

B. L. Cohen and C. E. Falk , Carnegie Institute of Technology; R. G. Cochran,

B. R. Gossick, K. Henry, and F. J. Muckenthaler, Oak Ridge National Laboratory,

the prototype of which was described by Gossick and Henry^.

. 6 -



Calculation of the Detection Rate

The essential geometric details of a proton recoil instrument are por

trayed in Fig. 1. As shown, the neutrons are considered to be emerging from a

point, and the radiator and collimator are circular with equal radii. "Good

geometry" is assumed, i.e., separation distances bj and bp are large compared to

a. If the radiator area were small compared to the collimator area, recoil pro

tons could be treated as coming from a point source, simplifying the problem.

Simplication could also be attained by making \>i large compared to b2 so that

the neutron emission angle A may be neglected. However, both of these simplifi

cations involve a loss of intensity which cannot be afforded, n-p scattering is

treated as being elastic and isotropic in the center of mass system. According

to Segre this assumption is good up to l4 Mev, below which there is no departure

from spherical symmetry in the scattering. The departure from spherical symmetry

increases with energy, and at 27 Mev ±21— = i 28 + 008

Let N(En,-/^-^) denote the emission rate of neutrons per unit energy per

unit solid angle, where En denotes the neutron energy and -^-^ the soli(i angle.

The n-p process rate in a small element within the radiator is given by

df = NCEn,^) S ^(En) t(R, A ,7p) dEnd^ , (l)

where d{\^) represents the hydrogen scattering cross section, S is the density of

hydrogen atoms in the radiator, and t(R, "X >7P) the effective radiator thickness

as a function of proton range R, neutron emission angle X > and proton range



0

Fig. f Geometry of Typical Experiment.
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obliquity angle 7p. Since

dJ\± = sin X dA d© (2)

(l) may be rewritten as

df = SH(En,^-1) tfCEn) t(H, A,7p) sin A dA d6 dEn . (3)

Assuming isotropic scattering in the center of mass system, the fraction

of df which is scattered into a small solid angle d-ZT-p equals

sin 2^ d2 V d4> = sin ^ cos ^ df djP
00

When d/l2 is directed toward the collimator, the contribution of the interval

(En, En +dE^ 9, &+69; A, A +*A;^ ,^ +d£/ ; rf> ,^ +d4?) to the
detection rate may be expressed as

S
dL = — N(En,-ai) c<En) t(R, A ,7p) sin^ sinj^/ costf' d« dA d^ &<P dEn -(5)

The counting rate is obtained by integrating (5) over the contributing intervals

of the arguments, and as (5) is the partial weight for a recoil being detected,

it provides the distribution function for determining the errors in the proton

range. Since neither t(R, A >7p) nor the errors are functions of 9because of
symmetry, it is convenient to integrate (5) with respect to 9 at the outset and

ignore it in subsequent calculations. Thus

dL 2S N(En,-ai) o-(En) t(R, A,7p) sinAsinjV cos^ dA d/ d^> dEn . (6)

- 9 -



By Geiger's Law the range of a recoil proton with collision angle, y^

may be expressed in terms of neutron energy En as

g/2 g
R = k En cos if) f (7)

where k is a constant and g is a very slowly varying function of proton energy.

Since we always consider here the interval of resolution for the measurement of

one energy point, which is small, we may consider g as being constant in that

interval. Figure 2 is a plot of g for paraffin, which was calculated from the

range-energy tables of Hirschfelder and Magee ?.

It follows from (7) that

m = -f- \ ^n * (8)

so that

2E
dEn » £. dR , (9)

gR

which, when substituted into (6), yields

4s E,dL » ZZ ^a H(En, _n.1)0(En)t(R, A •7P) sin A sin p cos V d A d ? d 0 dR (10)
g R . v s '

Since "good geometry" is assumed, angle A is always small. Hence sin A may

be replaced by A . Then by using "good geometry" (10) may be approximated by

dL = ~~ ~R~ K(En> ^-iMEnHtR, A ,7p) A sin f cos Ijf dAd^d^ dR . (11)

The effective radiator thickness has been treated by Cohen and Falk as

a function of neutron energy by considering only head-on collisions so that

- 10 -
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neutron and proton energy are interchangeable. The function for the effective

radiator thickness used here is essentially the same because the dependence on

A and 7p can be neglected with "good geometry". To show this, it is conveni

ent to commence with Fig. 3. tQ, t-^ and t2 refer to distances in terms of

the stopping power of the hydrogenous radiator. Only the radiator, shown as

ti in Fig. 3, is hydrogenous, and the values of tQ and t2 must be converted

from range energy data. Protons are produced in t-^, and some traverse the in

tervening distance and come to rest in the detection width t2« t0 represents

the total stopping power of material between ^ and tp in equivalent centimeters

of the radiator material. That the end of the range is within t2 may be made cer

tain by either a coincidence - - anti-coincidence circuit, or by using a

differential counter in conjunction with a pulse height discriminator. The

detection width t2 must be calculated from the characteristics of the particular

detection apparatus employed. In obtaining t(R, X t 7P) we le-fc *l S^^L ^2 re~

present radiator thickness and detection width interchangeably, but choose them

so that t^$ t2. Taking into account only head-on collisions and considering

all possible ranges beginning in the radiator and terminating in the detection

zone, the following function can be readily obtained.

t(B) = 0

= R - t.

= tn

- R + tQ + t-j_ + t2

» 0

for

for

for

for

for

- 12

H/t,

t0^B^t0 + *1

% + %1 *- E ^ to + *2

t0 + t2 Z. R Z tQ + tx + t2

R "> tQ + t-j_ + t2

>
(12)
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Having obtained t(R) it is evident that R must be replaced by the pro

jected range R cos 7p in the general case, and the thickness enlarged by the

factor . for neutrons with oblique incidence. Then in general
cos A

t(R, A,7V) = 0 for R cos 7p/lt0

R cos 7t, - t,.

tl

cos

?p ~ %n for t0 /£R cos 7p Z-t0 + ti
cos A

for to + ti ^R cos 7p ^.t0 + t2 MU)

= "R cos 7y + *q + tj + tP fer t0 + t2^R cos 7p ^.t0 + ti + t2
cos A

= 0 for R cos 7p n^ t0 + ti + t2

Since A and 7p are small with "good geometry", we are at liberty to replace

t(R, A >7P) in (11) by its value in (12).

As an approximation _ N(En^-/^-i)a(En) is now replaced in (ll) by its
R

average in the interval of resolution. JPT-^ is determined from the geometry of

the experiment while En is determined by the equation

R = R(En) = to + tl+ t2 . (14)

Employing the substitutions in (ll) indicated above give for the partial

contribution to the detection rate

dL = j- ^r N(En, JT1)o(En)t(R) Asin ^cos ^dA d^d^fdR (l?)

= K(En)t(R)A sin ^ cos ff &A d^dtf?dR . (l6)

- 14 -



It is now advantageous to make a transformation of coordinates, eliminating

tp and 4? in favor of £ and 7) , where

$ -

and

1-
y

b2

(17)

(18)

Coordinates x and y are shown in Fig. 4. Since the maximum values of both x

and y equal a, then £ and )7 are both small with "good geometry". In order

to make the notation more concise, let

a =
a_

and

*- 2- (20)

We use the Jacobian determinant |j| to affect the transformation of co

ordinates .

&&f= |j| d§ d# (21)

where

(22)

A calculation of J is made in Appendix 1, the result of which is

- 15 -
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sin ^cos If) |J|=

{(S-sa)2+<?£ +1}2 [|;-cit*)Xp +rj {aj)
o

With "good geometry" it is possible to neglect terms of order "£, , and when

this is done, it may be seen that (25) equals unity. Therefore (l6) may be

rewritten as

dL = K(En)t(R) AdAd^dtj dR

Thus

(24)

R=t0+ti+t2 A= a/bi rj=a $=Aa2 ->\2
R=t0 A= 0 r|=-a |=-^|a2-^2 v

The integral of (25) over the dimensional coordinates A, ft, and ^

is carried out in Appendix 2. The following result is obtained

y I (Si)
o Rr= to+tl+t2l =k(e„) iii.r z'l.)' /mt *<*>*• (26)

The final integral is given by the area of the trapezoid in Fig. 5.

Thus

R = tfj+ti+tp
f t(R)dR = tx t2 (27)

R = t„

17 -
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Therefore

,2 /m s2

--«v 4- (-It) (%) h*2
2nS / a \ /a2 / » \2 . . I

g (^l) ("%) tlt2 ~f~ H( '̂J^) ^
(28)

Equation (28) gives the counting rate, and from the experimentally obtained

value of L, one can immediately solve for N(En,-^1).

Calculation of the Range Error

The following error components in the proton range must be considered:

(1) energy straggling, (2) angular straggling, (3) radiator and detection width

errors. The first error is independent of the instrument, and the value for

Q

this error given by Livingston and Bethe° always applies. The second error is

due to uncertainties in the neutron emission angle A > the n-p scattering

angle ^ , and the range obliquity angle 7p; it is an instrumental error, de

pending upon the dimensions a, bx, and b2. The third error is due to the uncer

tainty in the beginning of the range within the radiator and the uncertainty in

the end of the range in the detection width. This again is an instrumental error,

and it depends upon the dimensions t0, tlf and t2- The partial contribution to

the detection rate given by (24) provides the distribution function for calculating

the second and third errors in the range.

The third error enters into the partial weight through the factor t(R)

which is independent of dimension coordinates %, ?1 , and A using "good

- 19



geometry". Let j.' denote the fractional range error due to the radiator and

detection width; and /g the fractional range error due to angular straggling.

LetJt now represent the range error due to ti and t2 which would occur if the

path of the proton were aJong PQ in Fig. 4. However, on the basis of "good

geometry", PQ and O'O" are considered here as being interchangeable so that

J\ may be considered as afunctionJ^(R). The errory^ then is made to account

for the proton path being along PR rather than PQ. In the latter case PQ is

not replaced by O'O", andy| is considered as afunctiony^(g, h, A)- Although

(24) supplies the partial weight in both cases, the two errors are independent

of each other because they depend upon different variables. Hence, we may

write

Pa($,f],/\) = AaA (29)

as the distribution function for "angular straggling", where

^- 5.?)ar?ri (?f G
is the normalizing constant.

Similarly, the distribution function for the radiator and detection width

errorJ\ may be expressed as

Pt(R) = At t(R) (5D

where

At. = -_1_ (52)
tx t2

is the normalizing constant.

20



f-

To simplify calculations involving (3l)> let

R _ + . *1 + t2K - t0 + + r

dR = dr

t(r) = t

= tn for

-r +
*1 + *2

for

= 0 for

Then

t2 . tx

*1 + *2

Pt(r) = At t(r) .

t2 _ tx

By making this transformation, the convenient relation

_. ao

ft = h J ft(r) t(r) dr - 0
-oo

*1 + *2

(33)

(34)

(36)

(37)

is obtained. The combined range error due to yl and /> is then j - j +jZ,

and the combined mean square deviation may be obtained as follows.

i/b-L a ^a2 - n2 oo

(f-ff= y J _T L J (/a-/a+/t)2ptW^,A,j) dr df dy dA
o -a _/>|a2 - ri2 -co

(38)

77v2

" X " W +f
2

t
(39)

(40)

21



wheref^ is the same as &J\ because of the transformation made by (55).

For convenience, we shall proceed to calculate J3^, J^ and J>t separately.

The proton range is given by (7), which may be written as

R = kEn (1 "sin2 y/f'2 (41)

and with good geometry, since lj/ is always small, R may be approximated by

R = kEnS/ (1 -g/2 sin2 <f). (42)

g/2Since k Ens/ represents the range R(En), we shall replace it by

4* +*

r = t0 + ~ + 2 as we did in (14).

Rp.

R = R (1 -g/2 sin2 (f) . (45)

The apparent or projected range is R cos 7p which is denoted here by

Rp = R(1 -g/2 sin2^ )cos 7p (44)

= R (1 -g/2 sin2 tp - 1/2 sin2 7p) (45)

Then, by (45) the fractional error in the range due to "angular straggling" may

be written as

R RJ> = —E_l = _g/2 sin2 y> -1/2 sin2 7p (46)
R

Since the first term represents the fractional decrement due to the scattering

angle & , and the second term represents the decrement due to the angle of

obliquity 7p, we shall keep the two terms separate, distinguishing them by the

- 22 -



and

Ad<Je</ fey *Gfcc ,^fj^

23, At top of page attach the following note:

In the range error calculation due to collision angle starting with

Eq. 47, the coordinates Kand ^should be interchanged to agree with
Fig. 4. Because of symmetry, interchanging these coordinates does not

affect the outcome of the calculations.

sin' > • r (1 + 6) * -i (47)

sin2 7p = ^2 + (5^ _ n) (48)

Therefore

and

Ac - "S/2< f+ [(1 +5) A-if]

Ao ='^[f* ^ A- ^|)2J •

(49)

(50)

Since ^r =y£c +J£Q , the two contributions are determined separately.

This makes the calculation somewhat more concise, and it is interesting to be

able to compare the two terms. This calculation is carried out in Appendix 5,

and the results are stated below.

f -
-/ac

Jbjo

X-

8 a£"IT a b.
+ i

_1_
2 W
a

T"
2g

b^ blb2

+ /i (51)

(52)

+ gg + 2 (55)

It is interesting to note that y^Q is independent of the separation distance

bi- In a later calculation it is shown that it is profitable to make bi about

half the value of b2, in which casey£c » 5g /fQ >and since 6— 3Vac ^15_y^0'

23



Unfortunately, the separate contributions ofyjc andy^ cannot be identified

in the expression for AP since the latter contains cross products ofy£c

and /ao.

The

stated below

calculation of Ap is carried out in Appendix 4. The result is

*/?-$♦ &♦*)&)* ♦(#♦&) ®8fc-^y a

The optimum relation between bx and b2 is that which provides a maximum

counting rate for aconstant error Ay^ . It is convenient to calculate first
the corresponding relations for constant errors yfandy^ max. Using the familiar

method of Lagrangian multipliers one obtains

for constanty~
a max

and b2 = 12 + | b

for constant P

On the basis of (55) and (56), ^- is now replaced in (54) by ^ +^

where A is considered to be small. The optimum relation between bi and b2 for

AD2 = constant is calculated in Appendix 5- All terms in A2 and of higher

order are neglected. The following relation is obtained.

- 24 -



b2 .2qx + 6qg + 270q3 -2qi<. ^
bl 6q2 +108q3 + q^

where

*l = ife" + "24~ + ~6~"

% • -£- ♦' -ir (59)

% - 4- (60)

* • -i- (61)
b2

Since g varies slowly with proton energy, the ratio —^— is somewhat energy

dependent in (57). If this is neglected and g is replaced by 3 as an approximation,

then 1 = _ii2£ ,which justifies our having replaced JL by JL (1 + -A-)
bx b2 * 2 2

in (54). AsA~- 0.04, the higher order terms are small compared to A.

Setting gequal to 3, the value of A^2 for the optimum relation between
b, and b2 (taken as b2 = 2bi) is

*? - «-1 (V) • (62)
Substituting (62) into (28) yields the counting rate, optimized with re

spect to b, and b2-

2 +-fc- +4- (58)

v.L • w -f Aj>t *i*2 -r- "(li^) ^ • (63)

The next range error to be considered is that due to the radiator and de

tection widths, which was introduced as J°t in (37). On the basis of (l4) and

25



(55) it follows that

jv*> - f - k^r- • m
to +

Thus

*1 + *2

AA « 2At ? fi2 t(r) dr , (65)

The value of the above integral is calculated in Appendix 6. The result

is given below.

+2 + t2 +2 a. +2. *l +tg - *! +*2 (66)
t .-,2 / ti + toN212(8)* 12(tQ + -1 0 2)

A/

The optimum relation between ti and tg is ti = tg, as may be easily veri-
2~~fied by maximizing the counting rate (65) subject to constant A^.

Since background depends upon particular experimental conditions external

to the equipment, it cannot be treated in general. By neglecting background we

have implicitly assumed that our instrument discriminates perfectly against back

ground. Thus the optimum relation t-^ = t2 holds only for an ideal instrument.

It should be recognized that background intensity may necessitate making the de

tection width less than the radiator width, a practical limitation making it

impossible to utilize the benefit of the relation tx = t2- Then, for an ideal

instrument only

-A-
tf 1 f tx y (67)

6(R)2 * (*o+tl

26 -



which provides a counting rate

I.65 it
g

A a2 f&AP = q

S Aj>\ AyO2 En N(En, JX^ a(En) . R

.2 f \2a \ /a a \

bi + b2

(68)

The error in the range due to the instrument is now obtained by inserting

(54) and (66) into (40)

J -1 lb2 + *2 b + q3 Ibi + bT

+ <lk
'a_ + aj
bl b2,

2 2

*1 + *2

12 (tQ + *!+*? )

> (69)

The total error in the range must contain a term which accounts for energy

straggling. This error is caused by the mechanism by which the proton energy

is attenuated in traversing a substance. The proton suffers many small decre

ments of energy to electrons in the stopping substance. There are statistical

fluctuations in the number of interactions and the amount of energy transfer per

interaction. Thus, there are statistical fluctuations in the ranges of protons

emitted from a monochromatic source, and this is consequently an error which is

independent of the instrument. The total mean square deviation in the range may

be expressed as the sum of (69) and the mean square deviation in the range due

to energy straggling Af . By employing equations (791a), (792b), (795) and

(795a) of ref. 8, one can obtain

>/,
2 Lex. - Ro (R - Ro)

2"

Rr
(70)

Rr
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The ratio R<5X - R° has been recently tabulated by Bethe^, and earlier in

ref. 8. The total range error is thus given by the sum of (69) and (70). Let

this sum be denoted by

Ro

2 2 2 2A P = AO + Ao + An , (71)P = Ap + Ap + Ap
(tot 7S (a ft

By Geiger's Law the corresponding energy error is

,2.2 _ f*\ Ap2
Itote - i-rj AP.-. • (72)

The optimum relation between bx and b2 and the corresponding relation be

tween tx and t2 have been determined, but not the optimum relation between bx and

ty That may be obtained by optimizing the counting rate (68) subject to (71)

being constant. Of course (71) in this case represents the error when bx =—3-
and tx =t2. Since Ap has nothing to do with the counting rate, it drops out

of the calculation. The result is that Ap2 should equal AC2 ,giving the
relation

\2

\h2j = *o + *l
13.3 /—\ - -1

Therefore the maximum counting rate may be written as

>
1.65 g S

(73)

w - gs [Aft *. »<*»Ai> <**>> R w>
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where

—jr i / ^ y (67)
AA = T~ [ t0 +tx

13.5 f-M - — , (75)
a_f = ti

b - b2bl" —

*1" *2

Thus, for a given source intensity N(En, -H-1), the maximum counting rate

Ljuax cannot be increased except by increasing either the range error or the

hydrogen density in the radiator S. Typical values of S are:

S = 7.65 x 1022 (paraffin)

S = 6.4 x 10 (glycerol tristearate)

S = 4.92 x 1022 (polystyrene)

According to (74), L^g^ can be increased without sacrificing accuracy if

N(En,-TL-j^) can be increased by a constant factor, e.g., by increasing the beam

current of an accelerator. Then for a perfect instrument the counting rate is

limited only by the existing limitations of source strength. However, as the

background rate increases with increasing source intensity, the maximum counting

rate is limited in practice by the resolving time of the electronic circuitry

associated with the spectrometer.
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Calculation of the Minimum Counting Time

The number of counts C taken for one point on a spectrum curve is given

by the product of L in (24) and the counting time t. The curve is normally

aplot of the experimentally determined values of N(In, Ax) against En or

j^, as abscissa. In the following discussion only En is considered as the
abscissa. The coordinate of the point in the ordinate N(En, J\) is obtained

directly from (28) because all terms except N(En, -O^) are specified by the
AH

conditions of the experiment. The fractional error in intensity j- is

determined from the standard deviation as

_*N_ = _J^_ (75)

The fractional error in the ordinate is hereafter denoted by /\| u

The fractional error of a point on the spectrum curve then has two components

Pf* along the abscissa, and ^"? along the ordinate. In order to take
cognizance of this fact, let

51 =. "J? + -p «6)

define the total error of a point on the curve.

Since a spectrum curve consists of information about both intensity and

energy, it does not appear consistent to measure intensity quite accurately

and leave the energy relatively uncertain, or vice versa. For example, it is

certainly unsound to provide excellent collimation, but count so few protons

as to be unable to make a reasonable estimate of the average rate at which,

protons traverse the collimator. On the other hand, it appears inefficient to
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spend a lot of time taking counts if the collimation is poor. We feel justi

fied therefore in saying that there is an optimum relation between i_2

and £2 which permits the equipment the least time to drift while collecting
2~

data for a point with an error b1 • This relation is determined by mini

mizing the counting time subject to (76) being constant, and is the only

general consideration we have been able to make which allows for the fact

that the equipment is not perfect.

The counting time t, the number of counts C, and the fractional error

in the ordinate a \£ are related by the following equation.

C = tL = —i— (77)
~7~

Employing optimum dimensions, (71) becomes

A/tot = AfQ + 2A^2 (78)

Hence

2 . n2
IS" A/tot " *fAO\ = -^-^ J-S- . (79)

Substituting (79) into (74) yields

or

L=^(a/tot " A/s) ^n^A) c{\) ft (80)

L = it^T (£2-d>2 EnK(En.^-i) cJ(En) R (81)
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in terms of the corresponding errors in energy.

The counting time for one point on a spectrum curve is obtained now by

inserting (8l) into (77).

t =
12-5

g5s7(£? -^)2 En Nd^A^ a(jg * (82)

Minimizing t^subject to 61 = constant, yields the relation

e2 -e.

which on the basis of (79) means that u2 should equal £2

timum number of counts is given by

C =•C+J
*r*

2s
'tQ + ti

tl

-(-'•*$ -J--2 J 29-1
M*
a

Substituting (85) into (82) yields

*ta
24.6

in g5 s(e2. £2}^ En H(Eni_n_1) a(In) /?

(85)

Thus the op-

-\

\ (84)

(85)

for the minimum time required to obtain one experimental point subject to

5? = |i2 + £2 = constant. Equation (85) provides a useful feasibility

criterion. Suppose there is a need to take measurements in a given range of
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intensity values Ndn,^) and the available time per point is tmln. Inserting
these values in (85) one can immediately solve for £2 _ince g, £?, ^ ^
are fixed by the choice of En. The value of ^ obtained may be regarded as the
practical lower limit of error.

The following equation gives tmin in terms of the width at half maximum,
which is 2.36 times as great as the r.m.s. error.

t _ 4232.2 ___
min 7Z^ ;f\3- ~ & (86)

Since resolution is normally stated in terms of width at half maximum,
(86) may be of more practical interest than (85). Equation (86) is plotted in
Figs. 6, 7, and 8for 1.5, 3, and 9Mev with H^,^) -3•10* as representative
of aplentiful (a,n) source, and H(^,J^) -10fi tor afairly copious yield from

an accelerator. For isotropic sources the first rate corresponds to atotal emission

of 3.78 •105 neutrons/sec/Mev, and the second rate corresponds to 1.26 •107
neutrons/sec/Mev. Paraffin was selected as atypical radiator, having ahydrogen
density of s-7.65 •1022 atoms/cm3. The tables of ref. 7were used for the range
data, and values of gwere taken from Fig. 2which is based on the same reference.

Adair's compilation was used for the n-p scattering cross sections.

That the data collection time increases with increasing accuracy is to be

expected, but the absolute magnitudes here may be surprising to those who have not

worked with these instruments. In using the curves it must be kept in mind that

they assume perfect discrimination against background. Tbus, although acomparison
(of the curves in Fig. 6) shows that the data collection time for apoint at high energy

- 33 -



UNCLASSIFIED

DWG. 15158A

10

(

i YEAR

:ba—a—*-Energy straggling error: a, 1.5 Mev
1i \ \ b, 3.0 Mev

ii\\\ io ri_
; \ \ ^ x iu neuTrons/scc/wiev/oicruuian

UV\\ \ —3xl04 neutrons/sec/Mev/Steradian
; i \\ \ \ \

-i A- V X-V- \_ n^~

* • \ \ \\ ^ ^^
i \ \ ^\ X

1 DAY

1 HR.

—1 MIN.

\1 ^^^ ^""^b

1! ^^^ c

1 ! ! 1 1 1 1 ! ! 1 1 1 1 1 1 1 1 1

o

to

E

9 —

8 —

_? 6

c
-i

o
o

£

o

-2 3

0 1 2 3 4 5 6 7 8 9 10 I! 12 13 14 15 16 17 18

ENERGY WIDTH AT HALF MAXIMUM (%)

Fig, 6. Graph of Minimum Counting Time vs. Energy Width at
Ca mMj\ Half Maximum,

34



is less than for a point at low energy, this is not necessarily so in practice

because high energy neutrons are capable of producing more background than low

energy neutrons. With poor discrimination against background, it takes longer

to establish statistical accuracy.

Infinitely Thick Radiator

The thickness of an infinitely thick radiator is greater than the penetra

tion depth of the most energetic recoil protons. Hence it is infinitely thick for

protons. At the same time, fast neutrons are so penetrating that the radiator may

be regarded as thin in connection with neutron transmission. Thus multiple scattering

may be neglected. In treating the thick radiator, we imagine it to be split up in

to many laminations of equal thickness. The protons of minimum energy, whose range

terminates in the detection width, come from the lamination of t^ next to tQ, the

thickness of absorbing material between the radiator face and the detection width.

The contribution of this lamination to the counting rate may be obtained by re

placing ti by t, -, in (28).
""1

,2 , v2

-i " -*?-(-$_) ("%) * f*x "<VAi> «W I1' +
M*nl N(Enl,_a ) tfflS^) ~U

x . xll + *2
t_. +

t2

'o T 2

The second lamination faces an absorber of thickness t0 + tu and provides recoils

from a radiator of thickness t^. Thus its contribution to the counting rate is

dLg =mfn2 n(I ,-a )a(\2) *ll _— (88)
. *11 + t2to + tu + 2

where E 2 is given by
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hO_) - t0 +t„ ♦ *±L*- . (89)

Similarly, the third and rth contributions are

*11dL3 = MEn5 N(En5, SlJ 0(^3) tll +t2
tQ + 2tu +

Hl
dLr = ME^ NtE^, SLJ (T(Enr) tn + *2

*o+ ('-^ *!!+ —:—

(90)

(91)

Therefore the counting rate for an infinitely thick radiator with absorber t0

is given by the sum

where

Since

*>ax Enr N(Er^\M_mO_=U
L = M 2_ • —— —•

t0 + (r-1) tu +

rmax ~ t-, 1
radiator thickness

(92)

R(Enr) = t0 + (r-1) tu +
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the fraction l1 • in (92) may be replaced by

tQ +(r-1) tu +I11 +t2
AR

or ^£-\ invoking Geiger's Law. Substituting the lattermR(Enr) V A *nr

into (92) yields the following expression for the counting rate

\2 /_ \2 rmax

.*)&) 5-x

Since there is nothing to prevent us from allowing the number of laminations to

increase while A En correspondingly decreases, we may replace (94) by the

limit of the sum.

/ \2 / 2 TL(Eno) -*Stg /-y U^\ J NfeA,) o(fn) clln (95)

L - «St2 /li.) /-|-] £ _ Nd^A^^A^ • (94)

where En0 is given by

R(Enn) - t0 +
t,
I- . (96)

no

Consider now that we have a set of experimental values of L(Eno) taken with

different absorber thicknesses t0, and that these values have been plotted against

En0. By taking graphical derivatives of this curve, we obtain values of the

function

_ dL(Eno) = flSt2 /a_\2 M2 »(VAl) cr(fno) , (97)
d E™ \hl/ \2'mo
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which may be solved immediately to obtain N(Eno, ^^i).

Except when tQ approaches the range of the most energetic recoils pro

duced by the neutron source, the counting rate is large because it is the sum

of the contributions of many laminations in the radiator. Since the counting

rate is large, the values of the points L(l"no) are relatively precise. However,

the values along the ordinate of the spectrum curve are calculated from the

derivative "MEno) £_<_ __ence it is the precision of the derivative which is
^no

important. The errors must be indicated on a spectrum curve to provide complete

information. If one agrees on this point, he can no longer differentiate the

experimental plot of the function L(Eno) in calculating H(En ,-H.^). Rather, he

is forced to take the differences between the experimental points. Otherwise

the error given before as ^ ^i2 cannot be evaluated. In taking the difference

between two adjacent points where absorber thicknesses are t0 and t0 + A t0 ,

one obtains the contribution to the counting rate from a radiator of A tQ

thickness, and this contribution may be written by (28) as

_____ AtD
AL0 - M EnN(En,JT.1) <J(EJ (98)

Ato + ^2.
t0 + -

from which the point N(En,-A-i) may be immediately obtained. This is the same

as would have been obtained directly with a thin radiator of thickness A tQ

and an absorbing length t0, except for the error * \ir . Consider now the

same energy point taken by the two methods where the same number of recoils

are observed in each case. Let C and Ci - C2 denote the number of counts with

the thin radiator and the differential number of counts with the thick radiator

respectively where C = Ci - C2. The error with the thin radiator is

- 38 -



*N He

*[c~ 4ci -c2
(99)

while the error with the thick radiator is

=~ N Cl + C2
<\|^

Ci + C«

Thus the error with the thick radiator is greater because it is ^ Ci -C2

times as great. Then the only difference between the thin and thick radiator

is that the latter provides poorer statistics in spite of a higher apparent

counting rate.

In case the spectrum consists of several widely spaced lines, a thick

radiator may be used conveniently to locate the lines. With one line, the in

tensity may be represented by K(En, JLj) 6(In0 -En), where &(Eno -En) is the

delta function. Here

L(Eno) -*St2 f-^\ f-^\ H(En,vl1)(x(En) for

= 0

- 39
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For two lines

L(I„J -, Ŝ & fi?no- N(Enl,/l1)0(Enl) +N(En2,Jai)a(En2) for Eno ZE^ZE^

= Jt S tr (3 ("%] [N(^^l^(En-) for Eni_l.Eno>_lEn2S(ioi

= 0 for E-^Eno

The extension to n lines is clear from the above.
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Appendix 1

The x', y1, z1 coordinates (Fig. 4) are transformed into the x^, yll, z1!

coordinates by the equation

0

1

0

0

iJ

7

\z 1,
which with good geometry may be approximated by

(al.l)

(a2.l)

In turn, the x1*, y1*, z1'coordinates may be transformed into PR,<p,(P
coordinates by the equation

sin U_/ cos <2?

PB I siny^> sin (p

;os ^p

(a3.1)

are

The coordinates of the point at the terminus of PR in the x' y' z' system

|_x -bj X> V> b2J/ . Placing these in (al.l) obtains the coordinates

of the same point in the x1*, y1', z1* system, namely the point

[x - (b-L +b2)>, y, xA -b!^2 +b2J .

43
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Thus, we may write

sin *p =
1

[x -(bx +b2)>J +y:

PR

cos ^ *A - loi?r + *i

PR

By (a3.l), (a4.l) and(a_3.l) it follows that

cos <p = *--• fol +^a)^
J |x -(!>_ +b^/j]* +yX

in (f> =sin

N

a X,[x - (bx +b2)x) +y

(a5.l)

(a6.l)

(a7-l)

(a8.l)

Making the substitutions indicated by (17), (l8), (19), and (20) of

the main text and by differentiating (a4.l) through (a8.l), the following

may be obtained:

If

£- (l + S )*

[£- (±+£)i]%+f

1 -A_$-<i*<n;»_r +?

44
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97 J [f- (1+ rfJAp+y* [(? - <_T5\J* +?* +l] (all.l)

Osu = (g - .Q) - (»»+DA

aJ[J- (1 +<*)*]*+^ [(5 - <tt)* +?* +l] (al2.l)

By forming the Jacobian with (a9-l) through (al2.l) and applying the

factor sin Of cost//, the following is obtained:

sin i/jcosi/^[J | =

((S- srf +f +i}* (&- (i+ *)*]* +?*j (^^
Neglecting terms of order £ ,which is permissable with "good

geometry," (al3.l) equals unity.

45



Appendix 2

§/bl 4^a/bi a Ajor>>rl ^ \

0 "° r2~2

= 2

i/bi a

r 4 A^-f aidA

J^KT^ -1 •
jtor

a/b

i-.^r a.a-jf-(-%)

4^ -

(A1.2)

(A2.2)

(A3-2)

(A4.2)



_/ac
JL

2

Appendix 3

aA»l cc '\pTn2~~f
^ / <h «____^2 +[(1 +6)A-r)]2l A^d ^dA(Ai.5)

— x a/bi a -\ja2- m2 r _.
Jio = — Aa { <£ JK \$2 + (8 A" I])2 Ad^d hdA (A2.5)

Let

Ji =

and

ji =

Let

Then

and

a/bi a ^a2 -n2

-FY

r

_2_
3

a

/
-a

f1

Ja2-^
^ / l A(k A- n )2 d$ d « d A

_/ A(a2 _n2)5/ dn dA .rr) dq

(aa -n2)l/2 -, a sine!
1

n = a COS ©i

If) = - a sin ©i d©n
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(A5-3)

(A6.3)

(A7-5)

(A8.5)



f (a2 _ 2)>/* fl __ - / (a sin ©i)b+1 d©i.2 2x3/2 ,S+1 (A9-3)

n

= c?+1 / (8in9i)b+i d©i (A10.5)

S a'S+l $ S-l

S+l
J (sin ©i) " d©i (All.5)

Furthermore

/ (sin 9X) d©i = _®1_
2

sin 2 ©l | - _____
2

(A12.5)

Thus

rl - 4~ T1 AdAc/ (sinei)2d©i (A15-5)

* o>
TT ft)' (A14.5)

=2J31 / A(*A- r()2 (a2 -r\2)l/2 dr\ dA (A15.5)

- 2fhl J [k2 A3 -2knA+Ar|2 (a2 -n2)l/2 dr|d*(Ai6.5)

= J21 + J22 + J25 (A17-5)
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By (A3.2)

a/bi
j2i = 2k2/ a dA

o

rt k2 o /a N1*

Since it is an odd function in

1
J22 = 0

a2

J25 " 2
i/bi a 2 ^2 _.2x1/2/X / 'Arf (a2-^ d^dA

(A18.3)

(A19-5)

(A20.5)

(A21.5)

^ ^2(a2 _ 2}l/2 d a^ y> (cos 6i)2 (s.n Qi)2 ^ (A22>3)

- aV (sin ©i)2 - (sin ©i)^ d©-, (A25-5)

As f (sin ©1)^ d©i = -|- jT (sin ©i)2 d©x (A24.5)

/ n2 (a2 -r|2)l/2 drj =^ ^ (sin ©i)2 d*_ - -J- a<* ..4 (A25.5)

* ..4 0>1
J25 " "TT c* ^ AdA =-§-_> (-^ (A26.5)

J2 = J21 + J25 * ft)' °2 k2 ft/♦ 2
(A27-5)
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J&C + * [Jl + J2 I for k = (1 + 6) (A28.5)

ao
- -i- Aa Ji + J2 \ for k = 6 (A29-3)

Thus all terms in J^ have been evaluated.
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Appendix 4

fl f ♦ . - - • -•
ac /ao / ac /ao

/ac - ~f ^ +2[(l^)A-r,]2 f ♦ [(!♦/,*-■,;

/ao yac
2 r

/a r|]2 +[(1+<J) A-r|]2V

+ (=TA - r|)2 (i. +J) A-^ r

/&- -4-|f^ +2(orA- kj )2 _f2 +(J A- rj )M
Let

T,
•A>1 a ^a2 _ 2
f f f ' ^ A d^ d1 dA '

Ha2 -|-a

a W1^

(A1.4)

4l (A2.4)

(A3.4)

(A4.4)

(A5.4)

TV

a/bx

J J i- ^a2 - r;2"

FT

(*&< i2 ^2,A- ^r _pA d£ dr) d^ ,(A6-^

T4

a/bx

a/bi

J

-«

a

r

-a

a

-a

$J f

(*2^-r|)uA d£ d^ dA , (A7.4)

W7^
- 4^r

r

(kx A - n )2 (kg A - n )2A d£ dn dA (a8.4)
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2 a/bi a c/p
Ti - ~ J J («2 -n2)5/2 A dn dA (A9.4)

o -a ' '

1 /a \2- T" ("^j | (-2-n2)5/2 dfj . (Aio.4)

By Eq. (All.3)

Tl =("^l") "^~ I (6ln ^ dei *f\) "V J (sin %)2 d0l (A11-^)

= "To" [~£jj ^ > (A12.4)

T2 =~^~ ^ I (k2A"rl)2^2-f)3/2A arj dA (A13.4)
a/fc^ a

=T" J J (k2 A3 -2kg A2 r| +if A)(a2 -n2)3/2 dvn dA. (A14.4)

2 23/2
Since n(a -n ) is an odd function in n , the second term drops out.

t2 - -f- ajbl j (k2 A3 +r|2 A)(a2-n2)3/2 drj dA (Ai5.4)

= T21 + T22 • (A16.4)
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L2l

0>i a 2 _3 ,„2 _ 9.3/23" T J ^^(^-f'dndA
o -a ' '

^ftt 1 ^-f372 vx
By Eqs. (All.3) and (A12.3),

T,21

T,22

if" < fa) ^

f f J f ^ -f3/2
O _q;

\2 a
3/2f ft) 1 rrw-f*-.!,

dn dA

By Eqs. (A6.3), (A7-3), and (A8.3),

T.22 ~ ("%) a J (cos ®l)2 (sin *_)U d»i

f Hrf ^ * r1 (sin ©3^) - (sin ©x)6 d©-,

By Eqs. (All.3) and (A12.3), the definite integral above equals -£_

v2

T,22 " "TB" or
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(A17.4)

(A18.4)

(A19.4)

(A20.4)

(A21.4)

(A22.4)

(A23.4)

(A24.4)



it .2 /a 4 . __*__ /_«_\ a6ir ^ ("b^y a + -*bt (tjJ (A25-4)

To evaluate T3 we first expand (kg A-K7 ) and omit odd terms in K| ,since they
contribute nothing to the integral. In this manner T-, becomes

i/bi o {a2 -r|
T.

-^
(*_ X5 +6k_ *Y +*'i''>d? dr| dA (A26' V)

-a

- T31 + T32 + T33

T31 = 2k.

4
kg

By Eq. (A3.2)

t1 5*^F:f al dA
o -a

(tf [FT<\

* i> «2 /ap3l " T- k2 a "b7

a/bi a N^rH232 - ^k2 J J . i_A3^2 d? d^ d^
o -on -H

i/b-L a
= 12k ] J A3rj2^-f «r| a*

o -a
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(A27.4)

(A28.4)

(A29.4)

(A30.4)

(A31.4)

(A32.4)



a

= 3k. ft) I 1 *\

By Eq. (A25-3)

T
_ 3* .2 fa. V ^32 " "8— k2 /-^-j a4 ,

a/b-, a

a2 _(^2 _,q dA

T33 = 2 a2 -r|2 din dA
l!

-a

ftTif^T-i

(A33-4)

(A34.4)

(A35-4)

(A36.4)

By the transformation indicated in Eq. (A6.3), the equation for T33 may be written

as

T<33

«

T^J a6 j (sin ©i)2 (cos ©i)U d©x

-a\2 6
-b! «

Jt r-

(sin ©i)2 -2(sin ©1) + (sin ©1)( d©i

By Eqs. (All.3) and (A12.3)

L33 te °6 2

3* 5*
"16"
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* /* \ „6
= "IS" b a

(A37-4)

(A38.4)

(A39-4)



* ^a\6 _ja . ^ .2 - ^T- * I ^ +"^ ^ '' a^ + *
15" I bi

a ^ a6

In order to treat T_^, we expand the product (ki ^ -rj) (kg ^ "^'

odd terms in H .

a/^ a '\|orVl2 _„2

(A40.4)

and omit

T4 = | (k3A5 +\ A3n2 +An1*) d^ dn dA , (a4i.4)
a2 - n2

where

-a

k3 = (kxk2) ,

2 2
fy = (\ + 4^1^ + kg)

By Eq. (A26.4)

TT T3i + *4

6k|2 T32 + T33

+ ^& %

+ w ^
k,. /abx I a +15" ( bx a

(A42.4)

(A43.4)

(A44.4)

(A45.4)

-r (ki^)2 (^ +if (k?+ ^ +k2} fe) aU +if fef °6 •(^6-
By Eq. (A2.4)

9 = "V Aa (Ti +2T2 +T3)
^ ac

for kg = (_f+ 1) (A47.4)
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By Eq. (A3.4)

/ao fie ""I- Aa (Tl +T2 +Tg +-^
k2 =_T kg = (J+ 1) __!-«?•

2/L/<_- = -I- AjT! + T0 + To +Tt I (AU8A)

By Eq. (A4.4)

"2 1

ao

kg = (J"+ 1)

/? - -jp Aa (T_ +2Tg +T3) for kg =J . (A49.4)

2 — _

/_? is the sum of Eqs. (A47.4), (A48.4), and (A49.4). P was evaluated in Appen-

dix 3. Then AP ~ 9 "(( 1 has teen evaluated, except for the elementary

process of squaring P and collecting terms which have been omitted to save space.

The result is given as Eq. (54) of the main test. Equation (54) may also be written

in the form:

,2 , „ \4 2 , _ N3 , _, N _,,/._, _ , x , _, N2 , _ N22 _ g^ /ay ^ g /ay /_a_\ ^ g(6g + l) f a \ / a >
a

Ara = "fe" pi + ^ —, ~2) ♦ —24— -bi t2

g(g +1) / a \ /a \3 (g +l)2 / a ^
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Appendix 5

Let

"b7 = pi >

\ mP2

e$i - p2(2 + a)

Making the substitutions indicated above in Eq. (54) of the main text, and
g

neglecting all terms in A and of higher order, one obtains

f. - P-
2A 4Aq+9(1 + -^- )qg +81(1 +-f- )q3 +3% +4q^

where the q's are given by Eqs. (58) through (6l) of the main text.

A/°2 - (KA+KBA)^2 '
( a

d Af = P2 *B ** +^2 (KA +h A)dp2

By Eqs. (28), (Al.5), and (A2.5) the counting rate may be written here as

L. = K-, p2 B2 = Kc pg 4(1 + -|-)2 .

dL = ^ (1 +4-)4 3dA +4(1 +-§-)_£,
2 '°P2
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(A1.5)

(A2.5)

(A3-5)

(A4.5)

(A5-5)

(A6.5)

(A7-5)

(A8.5)



We now maximize Eq. (A7«5) subject to Eq. (A5.5) being constant. Let a be

a Lagrangian multiplier.

4Kc(l +-|-)p^ + a' 62 KB = 0 (A9.5)

161^(1 +_!_)2 ^ +4a'(KA +% A) = 0 (A10.5)

By Eq. (A9-5) ')

-4Kc(l +-f-)p3
a' - (All.5)

h

Substituting Eq. (All.5) into Eq. (A10.5) and collecting terms, yields

K

A - 2(1 -t£-) , (A12.5)

K*

2+A = 2(2 - -^— ). (A13.5)
AB

Then by Eq. (A3.5)

or

KAPi - 2(2 - tj )32 (A14.5)

bp K.
- 2(2 - -=£—) . (A15.5)

\ V %
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By Eqs. (A4.5) and (A5.5)

KA = ql + 9q2 + ®1(13 + $% *

Kg » 4qg + 108q3 + qj,.

60

(AI6.5)

(A17.5)



Appendix 6

By Eq. (36)

00

Aft =^ I ^ t(r)dr '
-00

(A1.6)

t(r) = tM

ftW

= t for 0^-\r|-^ tg _ ti

= - r +
*1 + *2

for
*2 -tl J /_• tl +— 2 l*!^ 2-

R

*1 + *2
5=0 for xI- ^- Z.^r /,

t2
y 05)

J

(64)

By Eqs. (35) and (64) it may be seen that P

Hence,

t(r) is an even function in r.

00

A P = 2A_ f P2 t(r)dr (A2.6)

o t

2At

(R)2 < *1

tg _ tx tx + tg

2 r2dr + r 2

^ t to T>2 _ ti

*1 + *2 -.2 _ -.3
2

dr

V
(A3.6)
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Integrating and collecting terms yields

Af H
p\26(R)

12(f)2

t2 +2tl + *P
12(f)2

ti + tg tg . ti

.3
'1

(t2t^ + t^)

- 62

(A4.6)

(A5.6)

(A6.6)
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