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ORNL llO5 i s  Pa r t  I of a report  describing a low cos t  neutron chain re- 
This par t  contains a descr ipt ion of t he  reac tor  and controls  and ac tor .  

appendices discussing heal th  physics aspects,  abnormal behavior, and corrosion 
problems, 
curves, flux and heat t r ans fe r  calculat ions,  discussion of the  results of a 
year's operating experience, and other matters germane t o  t h i s  r eac to r ' s  con- 
s t ruc t ion  and operation. 

It i s  planned t h a t  Par t  I1 will contain neutron f l u x  d i s t r i b u t i o n  

ORNL 1105 was or ig ina l ly  wr i t ten  i n  t h e  spring of 1951 f o r  dec lass i f i -  
cat ion purposes. 
by the  Atomic Ehergy Commission i n  March, 1952, 

The design of t he  reactor  described herein was declass i f ied  

. 
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A LOW COST EXPERIMENTAL NEUTRON CHAIN REACTOR 

W i l l i a m  M, Breazeale 

Recently, the Oak Ridge National Laboratory put i n t o  operaLon a low 
power reac tor  which, with minor changes t o  make it subject t o  dec lass i f ica t ion ,  
should be su i tab le  f o r  i n s t a l l a t i o n  i n  schools o r  other research i n s t i t u t i o n s  
as a t o o l  f o r  experiments requiring a source of neutrons and as a laboratory 
device f o r  educational purposes, 

A chain reactor  of the  type described here is r e l a t i v e l y  so inexpensive 
t h a t  i t s  construction i s  hardly a major en terpr i se ,  Since a low cost  reactor  
wfiich produces an experimentally s ign i f icant  neutron flux ought t o  be of wide 
i n t e r e s t ,  the  following report  describing such a fac i l i ty  has been prepared. 

General Description 

The r eac to r  i s  a water cooled and moderated thermal neutron system using 
enriched uranium (greater  than 9% U235) f o r  f u e l ,  The f u e l  investment i s  3 
kilograms of U235 and i s  contained i n  p a r a l l e l  aluminum-uranium a l l o y  p la tes ,  
The e n t i r e  reactor  i s  suspended i n  a pool of water s u f f i c i e n t l y  deep f o r  t he  
water t o  serve as a shield,  The act ive l a t t i c e *  measures 12 i n ,  by 12  in .  by 
24 i n ,  high, Convection c i r cu la t ion  of t h e  pool water throught and around 
the  reactor  supplies ample cooling f o r  operation a t  a noxninal power l e v e l  of 
100 kilowatts.  A t  t h i s  power leve l ,  the avai lable  neutron f l u x  i s  about 1012 
neutrons/c&/sec 

E;xact cost  f igures  as of t he  summer of 1950, as w e l l  as operating data,  
are avai lable .  
equipment another $36,100, f o r  a t o t a l  of $94,5000 
su i tab le  building and pool  can be constructed f o r  $l25,OOOO 
the  reactor  i s  p a r t l y  the r e s u l t  of using the  pool of water f o r  moderating, 
shielding, and cooling. 

The reac tor  and controls  cost  $58,400 and des i rab le  auxiliary 
It i s  estimated t h a t  a 

The low cos t  of 

As b u i l t  a t  ORWL, t h i s  type of reac tor  i s  inexpensive, safe t o  operate, 
and easy t o  maintain, The f u e l  t o  moderator r a t i o  i s  very near ly  optimum and 
hence f iss ionable  material i s  conserved. 
f o r  i n s t ruc t iona l  purposes it permits a student t o  perform a c r i t i c a l  experf- 
ment, inves t iga te  neutron d is t r ibu t ions ,  and (within l i m i t s )  observe the  
e f f e c t s  of d i f f e ren t  loading geometries, If operated a t  full powerg the  f l u x  
i s  suf f ic ien t ly  high s o  t h a t  long i r r a d i a t i o n  times are not necessary f o r  
most experiments, 

I t s  design i s  such t h a t  when used 

W i t h  water r e f l ec to r ,  Better r e f l ec to r s  reduce the s i ze  of t h e  act ive l a t t i c e  
and f u e l  investment . 
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The maximum power l e v e l  a t  which the reactor  i s  t o  be operated w i l l  de- 
pend i n  par t  on i t s  intended use, 
reac tor  will be about 10% neutrons/sec/cm2 when the  t o t a l  reac tor  power i s  1 
w a t t  and, perhaps, twfce t h i s  much a t  the  center ,  
somewhat with the  loading. If the  reac tor  i s  t o  be used primarily f o r  edu- 
ca t iona l  purposes, then the  l e v e l  over long peP%ods of time should not  exceed 
a few hundred watts t o  prevent build-up of any subs tan t ia l  amount of radio- 
ac t ive  f i s s i o n  products. Actually, 1 watt i s  su f f i c i en t  t o  ac t iva te  indium 
f o i l s  i n  the l a t t i c e ,  and 100 watts w i l l  permit considerable exploration i n  
the  water around the reac tor ,  It is p e d s s i b l e  t o  operate at  10 kw, o r  so, 
f o r  shor t  periods t o  observe the  b h e  glow i n  the  water around the  reacto 
This i s  a s t r ik ing  manifestation of what i s  known as Cerenkov r ad ia t ion ( l fo  
Should it be desirable  t o  use the  reac tor  as a source of neutrons f o r  experi- 
mental works then a power l e v e l  i n  the  neighborhood of 100 kw i s  f eas ib l e ,  
The corresponding flux dens i ty  of 1s2 neutrons/cm2/sec compares favorably 
with t h a t  obtained i n  t h e  la rge  graphite reac tors  used f o r  experimental 
purposes in t h i s  coundary, 

I n  general, t h e  f lux at  the  surface of the  

This r e l a t ion  w i l l  vary 

Research i n  many unclassif ied f i e l d s  can be carried on with t h e  aid of 
this equipment. 
experimental programs, However, a few general  subjects  can be mentioned. 
Collimation of the neutron beam is  accomplished easily with an empty pipe 
leading through the water t o  the surface of the  reactor ,  and t h i s  beam w i l l  
serve as a source of su f f i c i en t  i n t e n s i t y  f o r  neutron d i f f r ac t ion  equipmentj 
o r  the  beam can be used i n  conjunction with ve loc i ty  se lec tors  f o r  re levant  
invest igat ions.  ea1 analysis  by means of radioact ivat ion i s  a rap id ly  
expanding a c t i v i t y  t2y This reactor  will supply a neutron flux ample f o r  
s a t i s f ac to ry  bombardment, There have been r e l a t i v e l y  f e w  systematic rad ia t ion  
damage programs i n  t h e  past ,  and much remains t o  be done. 
with f a i r ly  intense,  spec i f ic  a c t i v i t i e s  can be produced; t he  short-lived ones 
should be of especial  i n t e r e s t ,  
r e su l t i ng  from slow neutron bombardment dll continue t o  be a f r u i t f u l  
f i e l d  f o r  a considerable time, 
of radiat ions on biological  processes can be planned, 

It is  not the  purpose of t h i s  report  t o  discuss  i n  de t a i l  any 

C e 

Radioactive isotopes 

Invest igat ion of shor t  life,/ and d' a c t i v i t i e s  

Many in t e re s t ing  programs covering the  e f f e c t  

On the  more p rac t i ca l  side, t h e  reac tor  can be used as an aid i n  t r a c e r  
work. This type of program can be i l l u s t r a t e d  by t h e  scheme of determining the  
t r a n s f e r  of material from one gear $0 another wi th  which it i s  meshed. The 
first gear i s  act ivated by neutron bombardment, run against  the second one, and 
the material t ransferred determined by measuring the a c t i v i t y  of the surface of 
the seco d gear, The AEC i s  in te res ted  i n  f ind ing  uses f o r  radioactive f i s s i o n  

exposing a solut ion of a uranium sal t  t o  neutron bombardment i n  e i t h e r  a loop 
products ? I  3 These f i s s i o n  products can be obkained i n  sui table  quan t i t i e s  by 

(1) 

(2) 

(3) 

Jordon, W, H,, %adfation from a Reactorre, SCIENTIFIC AI'JU~RICAN, Vol, 185, 
No. ks  October, 1951. 
Leddicotte, G, id,, and Reynolds, So A , ,  tlAetivation Analysis with the  Oak 
Ridge Reactor", NUCLEONICS, Vol, 8, No, 3 ,  b r e h ,  1951, 
"Problems i n  the  Use of Fission Products'*, NUCLEONICS, Vol, 10, No, 1, 
January, 1952 , 
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o r  a closed container, 
benefi t  from the a v a i l a b i l i t y  of the reactor ,  
i s  t o  say t h a t  the work which i s  done with the  reactor  w i l l  be determined by 
the  i n t e r e s t s  of the staff members of the  establishment owning the  reactor ,  

IlIany, many other rad ia t ion  chemistry programs w i l l  
Perhaps, t he  best  summation 

The Reactor 

Figure l i s  an artist,fs conception of one arrangement of the  reactor ,  

Besides cooling and moderating the  
pool, and control  panel, The scheme of suspending the reactor  i n  a pool of 
water provides a number of advantages, 
p i l e ,  the  water supplies a foolproof shield f o r  personnel. 
should the  shield (water) become contaminated, it can be replaced by simply 
draining and r e f i l l i n g  the  pool. 

Furthermore, 

The reac tor  i s  an assembly of removable f u e l  elements placed on end i n  a 
2s aluminum grid.  
i n  Figure 3 ,  The elements are 3 i n ,  by 3 i n ,  square and about 30 i n ,  long, 
The ac t ive  sec t ion  i s  made up of 4 o r  5 f l a t  aluminum flsandwicheslt 3 i n ,  by 
24 i n ,  by 0.100 i n ,  thick.  These consis t  of a sheet of aluminum-uranium a l l o y  
sandwiched between two 2s aluminum pla tes ,  This assembly i s  hot  rol led i n t o  a 
so l id  p l a t e  of t he  proper dimensions and i s  su f f i c i en t ly  t i g h t  s o  t h a t  f i s s i o n  
products cannot escape, The p l a t e s  are clad with a th in  l aye r  of 72s aluminum; 
the l a t t e r  c o r r d e s  preferen t ia l ly ,  A conical  end box which f i t s  i n t o  matching 
holes i n  the  bottom gr id  i s  welded t o  the  bottom of the act ive sect ion,  
elements can be made a t  ORNL a t  a present cos t  of about $lZO each including 
overhead, but exclusive of the cos t  of enriched material, 

A photograph of one element i s  shown i n  Figure 2 and details  

These 

Figure 4 i s  a picture  of one design of the  bottom grid,  
holes f o r  f u e l  elements i n  an array 9 holes by 6 holes,  
t h i s  gr id  was made had a beryllium o-xide r e f l ec to r  on fou r  s ides .  The photo- 
graph shows one port ion of  the  r e f l ec to r ,  which i s  a f l a t  aluminum can con- 
t a in ing  cold-pressed Be0 blocks, i n  i t s  normal pos i t ion  covering the  back POW 
of 9 holes,  
appear i n  the foreground and above the  r e f l ec to r  are  the  aluminum cans which 
contain the ion  chambers. The grid has many more holes than are required t o  
hold the  number of f u e l  elements necessary f o r  c r i t ? i ca l i t y ,  but t he  design 
permits a var ie ty  of loading geornetrles, The holes through the  gr id  f o r  t he  
f u e l  elements a re  5 i n ,  deep and hold the elements d i h  su f f i c i en t  r i g i d i t y  so 
t h a t  no support a t  the top i s  required, The spacing between the  f u e l  elements 
i s  su f f i c i en t  t o  permit i n se r t ion  of t h i n  f o i l s  f o r  determining neutron f l u x  
d i s t r ibu t ions  

There are 54 
The r eac to r  f o r  which 

The electromagnets which support t he  cont ro l  and safety rods 

The reac tor  i s  provided with two boron-lead shim-safety rods made by 
properly combining a mixture of lead and bora1 i n  an oval aluminum can 1 i n ,  
by 2-112 i n ,  by 26 i n .  long, 
have longi tudinal  holes 1-142 i n ,  by 3 i n ,  (Fig, 51, 
the dens i ty  of lead, f a l l  with near ly  the accelerat ion of grav i ty ,  
armature i s  fastened t o  the  top  of each rod, and t h i s  i n  tu rn  i s  suspended 
from an electromagnet which can be raised OP lowered with %he aid of a smaU 
e l e c t r i c  motor, 
between 4 and 5 percent 8 kdk, depending on the loading, 

These rods t r a v e l  i n  spec ia l  f u e l  elements which 
The rods, having almost 

An i ron  

Figure 6 is a picture  of one r ~ d ,  Each rod i s  equivalent to 
One cont ro l  o r  
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FIGURE 4. GRID AND Be0 REFLECTOR Photo  7290 

W 
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FIGURE 6. SAF'ETY ROD PHOTO 7753 



FIGURE 7. REACTOR REACTOR CONTFtOL PANEL PHOTO 7W5 



regulating rod of the  same dimensions and construction as the shim-safety rcds, 
but containing only 8 &ms of boron, i s  provided, 
0,8 percent 8 k/k, 

It i s  equivalent t o  about 

Figure 7 shows the  cy l indr ica l  tubes mounted on top  of the spec ia l  f u e l  
elements which serve t o  guide the  electromagnets and armatures. A hydraulic 
buffer and spring decelerate  the rods a t  the  end of t h e i r  f a l l .  The safe ty  
c i r c u i t s  are described i n  another section; it i s  su f f i c i en t  t o  say here t h a t  
"scrammingtt* the  p i l e  i s  accomplished by reducing the current through the  
magnets s o  t h a t  the  rods f a l l  by gravity.  

The design of the  f u e l  elements i s  based on the  requirement t h a t  the 
act ive l a t t i c e  d i s s ipa t e  some 100 kw by convection cooling wi th  an ample margin 
of safety.  
element and result i n  an aluminum t o  water r a t i o  of about 0.25" 
r e f l e c t o r  on a l l  sides and the f u e l  elements arranged i n  a 4 by 4 square 
l a t t i c e ,  calculat ions ind ica te  tha t  2750 gms of U235 o r  170 gms per f u e l  ele- 
ment are required. 
f o r  a reac tor  of t h i s  type, 

Th i s  and nuclear considerations d i c t a t e  4 o r  5 aluminum p la t e s  per  
With water 

Such an amount i s  not far from t h e  minimum c r i t i c a l  mass 

Three of the c e n t r a l  elements, as shown i n  Figure 8 3  are of t h e  spec ia l  
design i l l u s t r a t e d  i n  Figure 4 and contain t h e  safe ty  and control  rods, 
addition, it i s  suggested t h a t  four  f r a c t i o n a l  f u e l  assemblies of 20, 40, 60, 
and 80 percent, respectively,  of the  normal U235 content be provided. 
enables one t o  load t he  reac tor  so t h a t  possible excess k i s  held t o  a small 
value. 

I n  

This 

The t o t a l  U235 requirement f o r  the f a c i l i t y  i s  then about 3 kilograms, 

A good r e f l e c t o r  placed around the ac t ive  l a t t i c e  will reduce the f u e l  
requirement and improve the flux d i s t r ibu t ion  i n  t h e  core, It w i l l  a l so  re- 
duce the avai lable  flux at  the surface of the reac tor ,  
used on the  reactor  here i s  t o  provide a number of aluminum cans of the  same 
out l ine a s  a f u e l  element f i l l e d  with cold-pressed beryllium oxide br icks ,  It 
i s  calculated t h a t  3 i n ,  of Be0 on the fou r  v e r t i c a l  s ides  w i l l  reduce the 
s i ze  of t he  act ive l a t t i c e  t o  an array 3 elements by 4 elements and the  c r i t i -  
c a l  mass t o  about 2 kilograms, 
round t h i s  l a t t i c e ,  
types of reactors,  i o e c g  water ref lected and (pa r t i a l ly )  Be0 ref lected,  be 
avai lable .  The student can then examine the  e f f e c t  of the  r e f l ec to r  on the 
flux pa t te rns ,  
of course, be less than a t  the  surface of t he  ac t ive  l a t t i c e  when the  pool 
water serves as the r e f l ec to r ,  

A s a t i s f ac to ry  scheme 

Thirty cans of Be0 w i l l  be su f f i c i en t  t o  sur- 
From an educational viewpoint, it i s  desirable  that both 

The flux a t  the  outer  surface of t h e  r e f l ec to r  ( the BeO) w i l l $  

The problem of canning samples and instruments and placing them under 
water near the reac tor  may seem formidable a t  f irstg but experience i n  t h e  
f a c i l i t y  a t  ORNL shows that no real  d i f f i c u l t i e s  are encounteredo 
chambers and, when necessary, t h e i r  associated preamplifiers are sealed i n  
aluminum cans and the  n e c e s s a q  conductors brought t o  the surface through 
r i g i d  conduit o r  a flexible Tygon sheath, 

The various 

The instruments can be positioned 

>, . #r i eeo9  shut t ing the p i l e  down as quickly as possible ,  

- 14 - 
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by a support which i s  fastened e i t h e r  t o  the reactor  bridge o r  t o  another 
bridge across the pool, 
i n  Figure 4 and an ionizat ion chamber with preamplifier and f l e x i b l e  cable i n  
Figure qa 
problems such as i r r a d i a t i o n  and examination of short- l i fe  isotopes demand it, 

Reactor control  chambers with r ig id  conduit are shown 

If necessary, more elaborate equipment can h? designed should 

Ehpty, closed-end pipes, with the closed end placed against  the surface 
of the  reactor,  w i l l .  provide the conventional beam holes,  
v e r t i c a l  with the  upper ends extending above the  water o r  horizontal  with the 
ends extending through the pool w a l l .  
gamma rays will emerge from these pipes, they must be plugged carefu l ly  when 
the  reac tor  i s  operating. 
from the  reactor.  
number of t h e m 1  neutrons, but more is  required t o  afford complete thermaliz- 
a t i  on e 

The pipes can be 

Since a strong beam of neutrons and 

A stack of dry graphite will thermalize t h e  neutrons 
Two and one-half f e e t  of graphite provides the m a x i m u m  

The pool s ize  again Will depend on the pa r t i cu la r  use contemplated f o r  
The top  of the  reactor .  A suggested s ize  i s  UC f L  by 18 f t  by 22 f t  deep. 

the  ac t ive  l a t t i c e  should be 16-112 f t  below the surface of the water t o  af- 
ford protection t o  operating personnel f o r  long-time operation a t  100 kw. 
depth of water a t tenuates  the  gammas s u f f i c i e n t l y  so  t h a t  a person standing 
next t o  the  pool will receive l e s s  than 60 m i n  8 hours, 
tenuates the  neutron flux su f f i c i en t ly  t o  keep the concrete pool walls from 
becoming ser iously act ivated,  and i s  more than deep enough 

This 

The water a l s o  at- 

t o  protect  personnel, 

If the pool i s  b u i l t  above ground, then su f f i c i en t  thickness of poured 
concrete, o r  concrete blocks, must be supplied on the  s ides  s o  t h a t  any gama 
ray from the reac tor  passes through a mass of water plus concrete equal t o  
16-112 f t  of water. If the pooh i s  approdmately the dbnensions given above, 
then the water plus concrete w i l l  provide ample neutron shielding. 

The heat capacity of t he  pool is s u f f i c i e n t l y  great  so  t h a t  in te rmi t ten t  
operation a t  100 kw or  less i s  permissible without external  cooling. The s i ze  
suggested above contains about 459000 gallons and t h e  average rise i n  tempera- 
t u re  of the  water, with the reactor  m n i n g  a t  100 kw, i s  1°F per  hour, If 
continuous operation a t  100 kw is desired,  then arrangements must be made t o  
remove 6,000 BTU per  minute, e i t h e r  by adding cold water (with corrosion fn- 
h ib i to r )  o r  c i rcu la t ing  the pool water through a heat exchanger, Assuming a 
change i n  temperature of the cooling stream of 20°F, a r a t e  of flow of ,!+O 
gallons per  minute i s  required. 

The building housing the reactor  and poal should be subs t an t i a l ly  con- 
s t ructed.  
frame supporting the reactor ,  and an adequate number of exits a t  ground level 
should be provided. 
building housing the f a c i l i t y  a t  OKWL has a bay 70 f t  by 35 f t  by 38 f t  high, 
containing a pool 40 f t  by 28 f t  by 20 f t  deep, plus 3000 sq f t  of of f ice  and 
shop space. It i s  of s t e e l  frame construction covered with H ,  H, Robertson 
I1QIt siding, The building, pool, l igh t ing ,  plumbing, e t c ,  (but without t he  
reac tor  and equipment) cost  $l37,000 i n  the summer of 1950, A more modest 
building should suff ice  f o r  the  uses contemplated f o r  the  l o w  cost  reac tor  
under discussion i n  this ~ e p o r t ~  

There should be su f f i c i en t  head-room over the  pool t o  l i f t  the 

Sui table  of f ice  space should a l s o  be supplied, The 



I n  the  present design, t h e  reac tor  i s  suspended by an aluminum framework 
The I- 
The 

Experience 

from a p a i r  of 12 i n .  I-beams l a i d  across  the  pool parapets (Fig, 1 ) ;  
beams have transverse bracing and are covered with a wooden platform. 
racks containing the control  equipment are placed beside the  pool, 
a t  ORML shows no need f o r  a separate cont ro l  room, 
work are cantilevered out from one of t h e  I-beams and the  framework made com- 
p l e t e l y  open on one side,  
t o  remove or replace fue l  elements i n  the  reactor  with the aid of an e spec ia l ly  
designed long handled t o o l  without draining the  water from t h e  tank, A l i g h t -  
weight (b-l/2 ton) overhead hois t  and bridge crane i s  very desirable  as an a id  
i n  assembling the  reactor ,  removing f u e l  elements, e t c ,  

The supports f o r  the frame- 

This enables an operator standing on the  platform 

After the  f u e l  elements have been i n  operation f o r  a long time a t  high 
power, the  long-life f i s s i o n  products w i l l  have acciimulated t o  the  point  where 
the elements w i l l  not  licooltt down i n  a reasonable time, The elements can be 
removed from the  pool only ins ide  a protect ive shield,  A lead tlcoffinll with 
walls 4 i n ,  th ick  w i l l  su f f i ce  as protect ion f o r  one element a f e w  days after 
shutdown from long time reactor  operation a t 1 0 0  kw, Such a shield weighs a 
l i t t l e  l e s s  than a ton. 

The AEC has f a c i l i t i e s  f o r  reprocessing these aluminum a l l o y  f u e l  elements 
Recovery of t he  uranium need not be a problem t o  the  without any pretreatment, 

i n s t i t u t i o n  owning the reactor .  

Control and Safety Ci rcu i t s  

The control  and safety c i r c u i t s  f o r  the low cos t  reactor  can be the  same 
as those now i n  use at  ORNL, 
and t h e i r  performance has been per fec t ly  reliable, 
follows, and a l i s t  of drawings describing instrument and c i r c u i t  d e t a i l s  can 
be found i n  Appendix 111, 

These c i r c u i t s  have been extensively t e s t ed  here, 
A discussion of t he  c i r c u i t s  

Over the  operating range t h i s  i s  e s s e n t i a l l y  a constant temperature re- 
ac tor ,  Hence, the temperature coeff ic ient ,  while negative, does not vary 
s u f f i c i e n t l y  t o  s t a b i l i z e  the reactor,  and it i s  recommended t h a t  a servo 
control  be supplied t o  hold the  power l e v e l  constant, Details of a servo 
system incorporating the usual  amplifier,  a 2-phase AC servo motor geared t o  
the regulat ing rod dr ive,  e t c , ,  a re  avai lable  from the  Control Group a t  O W .  

A block diagram of the  c i r c u i t s  f o r  cont ro l l ing  ard observing the  oper- 
a t i o n  of t h e  reac tor  i s  shown i n  Figure 10, The first instrument i s  a 4 i n ,  
d i f f e r e n t i a l  chambe* which supplies a Leeds and Norbhmp Model 243QD galva- 
nometer, Them are no e lec t ron  tubes i n  t h i s  c i r c u i t ,  and t h e  galvanometer 
reading i s  always d i r e c t l y  proportional t o  the  chamber current.  The range i s  

~~ - 

-%This instrument contains two chambers9 one of which i s  boron coated, Both re- 
spond t o  gammas, but only the  boron coated one t o  neutrons, 
connected i n  opposition and thus, when the compensation i s  properly adjusted, 
the  ne t  output i s  a function only of the neutron f b u ,  
this chamber i s  forthcoming, 

The outputs are 

A report  covering 
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about 2 x lo& and the  r e l a t ion  between t h e  galvanometer indicat ion and the re- 
a c t o r  flux depends on the loca t ion  of t h e  chamber. Another d i f f e r e n t i a l  chamber 
i s  connected t o  a Leeds and Northrvp Model 9836A e lec t ronic  micro-micro ammeter, 
With t h e  aid of shunts, the range i s  extended t o  2 x 105, 
meter controls  a Brown Recorder which i n  turn  dr ives  t h e  servo amplif ier ,  An 
extra slidewire has been added t o  this recorder, and the  posi t ion of t he  con- 
t a c t  on the  sl idewire determines the  power l e v e l  which the servo will seek i n  
control l ing the  p i l e .  
amplifier.  
period indicat ion,  
continuous record (without changing shunts) of the  power l e v e l  over a range of 
106 is avai lable  

To provide indicat ion during start-up, a U235 f i s s i o n  chamber, amplifier,  
scaler and reg is te r ,  and log count rate meter and recorder are provided, 
neutron source of su f f i c i en t  s t rength t o  supply about 3 counts per second with 
the  rods down i s  

and t h e  Log N c i r c u i t s  are responding before this l e v e l  i s  reached, 
e l e c t r i c  motor dr ive  raises the  f i s s i o n  chamber t o  keep i t  from being act ivated 
a t  high reac tor  powers. 

The micro-micro am- 

A third d i f f e r e n t i a l  chamber supplies a logarithmic 

The output also controls  a Brown Recorder from which a 
The output of t h i s  amplif ier  i s  d i f f e r e n t i a t e d  t o  give a p i l e  

This is  the  so-called Log N ind ica tor ,  

A 

laced i n  the  reactor  t o  f a c i l i t a t e  start-up. This c i r c u i t  

An 
has a range of 10 E (10,000 counts maximum), and both the  micro-micro ammeter 

Should the  experimental program require an accurate knowledge of the  p i l e  

A 10 cc graphite chamber placed against  one face 
gamma leve l ,  then a small gamma chamber, shielded from the  capture gammas i n  
the water, must be provided. 
of the  reac tor  and shielded from the capture gammas i n  t he  water by a lead 
half cylinder w i l l  supply a current very near ly  proportional t o  the  gamma ray 
l e v e l  i n  the  reactor .  

The philosophy of the  safety system i s  that it should 'Ifail safe!!, i , e , ,  
t he  safe ty  rods must f a l l  i f  t he  power i s  cut off o r  i f  major c i r c u i t  trouble 
develops, 
preference t o  gas tubes o r  relays. 
points,  and l i g h t s  warn the  operator of an abnormal condition, 
gram of the system i s  shown i n  Figure 11, 
p a r a l l e l  plate ,  boron coated, ion iza t ion  chambers which supply a current  pro- 
por t iona l  t o  t he  neutron plus  gamma leve l .  This current  flows through a high 
resis tance which i s  across  the  input of a preamplifier consis t ing of a s ingle  
s tage cathode follower. 
( the Itsignat! amplif ier)  which i s  the  source of the  s igna l  f o r  operating the  
safety c i r c u i t s ,  
connected t o  a common point cal led t h e  "sigma bus1!* 

I n  furtherance of this idea,  vacuum tubes are used throughout i n  
The amplif iers  are monitored a t  several 

A block dia-  
The "safety" chambers are 3 i n ,  

The output of the  preamplifier feeds a DC amplif ier  

A s  shown in the  block diagram, both of these amplif iers  am 

The electromagnets which support t h e  safety and cont ro l  rods draw exc i t ing  
current  from separate magnet amplif iers ,  The inputs  t o  these amplif iers  are 
controlled by the  voltage on t h e  Itsigma bust8. A s  this voltage i s  increased, 
the  current  through the magnets decreases,  Thus, the  result of an increase i n  
neutron flux i s  t o  reduce the  magnet current ,  and t h e  c i r e d t  i s  adjusted t o  
release the  rods when t h e  f lux reaches a p r e d e t e d n e d  l eve l .  Grounding t h e  
tdsigma bust1 w i l l  a l s o  cause the  rods t o  drop, 
ing t h e  preamplifier input  res is tance o r  by moving the safety chambers i n  t h e  

Adjustment i s  obtained by chang- 
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water away from the  reactor ,  
the  c i r c u i t  i s  determined by the  t i m e  constant of the chamber, cable,  and in- 
put r e s i s t o r ,  
inductance of t h e  electromagnets, 

The speed of operation of t h e  e lec t ronic  pa r t  of 

Actually, most of the  delay i n  operation i s  associated with the  

The safety rods are raised by three-phase AC motors which have a d e f i n i t e  
speed and insure against  too  rapid withdrawal, It requires  about 3 minutes t o  
raise t h e  rods completely, which rate corresponds t o  an average change i n  k of 
0,02 percent per  second. The safe ty  rods cannot be raised unless the control  
rod is  a l l  t he  way i n ,  and t h e  control  rod cannot be operated u n t i l  t h e  sa fe ty  
rods are a t  least  three-fouPths dthdrawn. This las t  6 i n ,  of travel i s  t h e  
Ilshim range" and indicated by l i g h t s  on the  control  panel. Ins t ruc t ions  t o  the  
operator require t h a t  t h e  reactor  be operated only when the  shim rods are with- 
drawn a t  least  three-fourths of t he  way, 
t o  8 percent i s  always obtainable by dropping the  rods. 
assemblies are avai lable ,  t he  reac tor  can be loaded t o  conform with t h i s  re- 
quirement, 
s t ruc t ions  de l ibe ra t e ly  and operate the r eac to r  with a l a r g e r  amount of possible 
e x c e s s d  k, but the  inter locking described will prevent him from doing so  in-  
advertently,  An inter lock,  operated by the poin te r  of the  Brown recorder i n  t h e  
count rate c i r c u i t ,  keeps the  operator from ra i s ing  the safe ty  rods unless the  
count rate i s  more than two  pe r  second. 
source and t h e  f i s s i o n  chamber are i n  place,, 
will be i n t e m p t e d  i f  the gate t o  the  reac tor  bridge i s  opened, i f  a monitron 
f ixed on the bridge shows more than a few m / h r  of gamma rays emerging from t h e  
water, or  i f  one of the tlscramll buttons located on the  cont ro l  panel and on t h e  
walls near t h e  four  corners of the pool i s  operated. When the  magnet current  
c i r c u i t  i s  completed, Weactor On'! s igns located near t he  pool and above a l l  the  
entrances are l igh ted  automatically, 

This insures  t h a t  a nega t ivebk  of 6 
If f r a c t i o n a l  f u e l  

It is, of course, possible f o r  the operator t o  disregard in- 

This prevents start-up unless the  
I n  addition, the  magnet current 

A l l  the  e lec t ronic  equipment f o r  operating and monitoring t h e  reactor  i s  
Three contained i n  f i v e  r e l ay  racks which can be located next t o  the  bridge, 

of these (Fig, 12) form the  control  panel, and the  other  two  contain power 
suppl ies  and the amplif iers  f o r  the control  sod servoo 
(the sect ion with sloping f r o n t )  has two switches f o r  r a i s ing  or  lowering the  
safety rods, selsyn ind ica tors  t o  show theia. locat ions,  a switch %Q raise o r  
lower the  f i s s i o n  chamber, a tsmanual'f o r  'sservoBP switch t o  ac t iva t e  t h e  auto- 
matic control  system, and a s d % c h  t o  sperate  the cont ro l  rod when the circui t ,  
i s  i n  the tlmanualH posf-t;ion. The slscram's button, i n  addi t ion t o  dropping the 
rods, r e s e t s  the safety c i r c u i t  after it has been tripped by opening the  gate  
on the bridge o r  operating one of the other  scram buttons. The control c i r c u i t s  
are interlocked t o  prevent the  person i n  charge from inadvertent ly  operating the  
p i l e  i n  a dangerous manner. 

The operating panel 

The electromagnets which support the safety and control  rods are made from 
one piece of Amm s o f t  i r o n  i n  an iron-clad design, 
4800 tu rns  of' #3O copper e r e  and is impregnated under vacuum after assembly i n  
the  magnet with Irvington Varnish and Insu la tor  Companyus Hamel gtOiP Stop'g, 
This forms a waterproof and shock absorbing bulk insulatop around the  coil., 
Tests i n  the ORNL graphite p i l e  indicate t h a t  this material i s  s tab le  under 

The exci t ing c o i l  has 



PHOTO 7750 FIGURE 12 

. 

REACTOR CONTROL PANEL 

- 23 - 



neutron and gamma ray radiations.  
j o in t s  are  painted with Glyptal, 

As an added precaution against  moisture, a l l  

The magnets Were designed t o  support the  rods with an a i r  gap of 0.005 i n ,  
when 30 milliamperes exci t ing current flows i n  the  windings. 
obtained by crowning the face of the armature. 
alignment between magnet and armature faces  unnecessary, and hence no universal  
j o in t  i s  supplied with magnet or  armature. 
time, with 50 percent more current than i s  required t o  hold the control  rod, i s  
of the older of 4Q milliseconds, 
function of the  reactor  power leve l ,  the  ac tua l  release time a f t e r  the reactor  
passes the scram l e v e l  i s  much l e s s  than this, The release time can be sharply 
reduced by laminating the magnetic c i r c u i t ,  This e n t a i l s  applyjciable ex t ra  ex- 
pense and, i f  f rac t iona l  f u e l  elements a re  available so that the reactor  can be 
loaded i n  such a way t h a t  it cannot reach a fast period, is not jus t i f ied .  

The air gap i s  
This crowning a l so  makes perfect 

Tests indicate  t h a t  the release 

Since the exci t ing current is an inverse 

Provision i s  made f o r  supplying i n e r t  gas (argon, nitrogen, and carbon d i -  
oxide) t o  the control chambers, 
a t o r  can be assured t h a t  t h e  gas supply i s  not interrupted, This i s  accomplished 
by connecting two gas l i n e s  t o  each chamber and in se r t ing  a flowmeter i n  the  out- 
going l i ne .  

The flow must be monitored s o  t h a t  the oper- 

Abnormal Operation 

The k ine t ic  behavior of this reactor  a f t e r  an arbitrary stepwise increase 
i n  k of 2 percent above prompt c r i t i c a l  has been studied by H. C,  Claiborne, 
H, F, Poppendiek, and M, C ,  Fdlur@. 
these calculations i n  l i n e  w%th calculat ions of abnormal behavior of other re- 
actors ;  we cannot imagine how t h i s  would occur i n  actual  practice.  

The value of 2 percent was chosen t o  bring 

The calculations were based on the  following conditions: 

1, 

2. 

3. 

I n i t i a l  water temperature 68°F and steady s t a t e  reactor  power of 
l kiaowatt. 
Rate of r i s e  of power a f t e r  supe rc r i t i ca l  condition i s  reached 
i s  proportional t o  eloo 
When some 3-0 percent of the moderator has been expelled by steam, 
the =ac tor  becomes subc r i t i ca l  and remains s o  unt i l  the steam 
condenses, 

where 0 i s  time i n  seconds, 

They f ind  tha t ,  i f  a l l  heat transferred t o  the  water a f t e r  the f u e l  p l a t e  
surface reaches boiling temperature converts water i n t o  steam, the c r i t i c a l  
conditions w i l l  p e r s i s t  f o r  0,127 second. 
will be expelled t o  make the reactor  subcr i t ica l ,  
temperature ( a t  the center of the p la te )  i s  39OoF. 
mation on t rans ien t  boi l ing heat t ransfer  and r a t e  of formation of steam 
bubbles, one cannot be sure t h a t  t he  reactor  will follow t h i s  prediction, 

A t  that time, suf f ic ien t  moderator 

Because of lack of infor-  
The m a x i m u m  f u e l  p la te  

%See Appendix 11, ORNL memo Central F i l e s  No. 514-176, 
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Delay i n  the  production of steam bubbles w i l l  a l l o w  t h e  p l a t e s  t o  rise t o  a 
higher temperature 
M. Untermepfl  a t  Argonne National Laboratory, Heavy e l e c t r f e a l  pulses were 
sen t  through thin-walled aluminum tubing immersed i n  a tank of wa%er a t  room 
temperature, Ten, twenty and t h i r t y  millisecond pulses resu l t ing  fn heat 

e jected the  water from t h e  in te r ior -  of the tube, It appeared t h a t  the delay i n  
formation of the steam bubbles might be as l i t t l e  as 30 d l l f s e c o n d s  f r o m t h e  
time the  power was applied,  Our calculat ions ind ica te  heat fluxes during '@pun- 
away" of t he  same order as those measured by D r ,  Un temyer ,  but h i s  conditions 
are not i den t i ca l  with ours and r e s u l t s  of his experiment should not be taken 
as posi t ive ind ica t ion  t h a t  the f u e l  p l a t e s  dll not m e l t  when the  reac tor  is  
suddenly made 2 percent prompt e r i t f eab ,  

A relevant experiment, has been performed recent ly  by 

fluxes of about 5Q caljcm 5 -see f a i l e d  $8 melt the  a k d n u m ,  but vaporized and 

Further analysis  based on the  assumption t h a t  boiling makes $he reac tor  
subc r i t i ca l  before the  p l a t e s  are damaged indica tes  t h a t  the reac tor  dll osc i l -  
l a te  with an average power Bevel somewhat l e s s  than 200 kilowatts,  

If the  stepwise increase i n  pFompt r e a c t i v i t y  is subs tan t ia l ly  more than 
2 p e r c a t ,  t he  fue l  p l a t e s  probably w i l l  m e l t  during the f irst  cyche, T h i s  is 
because of t h e  extremely rapid rise in the  r a t e  of heat generation in %he fuel  
p la tes ,  Most of the  f i s s i o n  produets thus released d1l be dissolved i n  t h e  water, 

It is d i f f i c u l t  f o r  us t o  envisage how an instantaneous increase in re- 
act ivi ty  can be obtained, 
t he  safe ty  rods have been ( intent ional ly?)  jammd vdth the reac tor  On a r i s i n g  
period, but less than prompt cr i t ical . ,  
t o  p e d t  the  water between the p l a t e s  %a be warmed m i f o m l y ,  t h e  negative 
temperature coef f ic ien t  may s t a b i l i z e  the reactor  before the boi l ing  point is 
reached, This  coef f ic ien t  is approximately 0,OOS;"g percent pep OF, so  a P5OOF 
rise i n  the  exit  water temperature, re la t ive  t o  the  i n l e t  temperature, w i l l  
take care of 1/22 percent of excess r eac t iv i ty ,  1% t h e  excess r e a c t i v i t y  is 
grea te r  than t h i s ,  o r  t he  r a t e  of rise %OD fast, the  water dll b o i l  before the  
reactor  reaches 5OQ kl%awatts  and the eeaetor %U.l probably o s c i l l a t e  as de- 
scribed before. If the  calculat ions Endleating .dscEUatioan i s  a t  an average 
power l e v e l  of 2Kl kilawa,%ts  are Correct, personnel standing near Lhe pool will 
not receive an ~ves9dlo;se, No measnremen'ta hxre been mads of" +,he oxygen a c t i v i t y ,  
016 (n,p)kJ169 but calcu3ations of %he FYW at wMch the act ivated wat+er d i f fuses  
t o  the surface dc not  v i t i a t e  the above e o n c l u s i ~ n a ,  

It is possible, however, t o  th ink  of a condition where 

If the  rate of r i s e  i s  suf f ic ien%ly  slow 



by weight of sodium chromate t o  the process (drinking) water used i n  the pool 
i n h i b i t s  this p i t t i n e ,  
alodieed by a hot d i p  process patented by the  American Chemical Paint Company, 
I n  essence, this treatment deposi ts  a t h i n  aluminum oxide-chromate coating on 
the  surface of t h e  f u e l  element. 
f u e l  elements i s  t o  provide a supply of demineralized water. 

An an added precaution, a l l  the  f u e l  elements are 

The a l te rna t ive  t o  t r ea t ing  the water and the  

cos ts  - 
&et cos ts  as of t he  summer of 1950 were determined from ORNL records, 

Breakdown of costs  per t inent  t o  the reac tor  are as follows: 

20 Fuel Elements a t  $120 each (exclusive of cost  of enriched 
uranium) 

Reactor Assembly; Labor, Overhead, and Materials (Motors , 
magnets, g r id  superstructure,  e tc . )  

Electronic Circui ts ;  Labor, Overhead, and Materials (Chambers, 
c i r cu i t s ,  recording instruments, etc,)* 

Total: Reactor and Controls 

I n  addition, t he  following equipment i s  very desirable:  

Be0 Reflector (30 elements) 

Servo Automatic Control 

Spares (Chambers and Electronic Equipment) 

Health Physics Instruments (See Appendix I )  

Total. 

Grad Total  

The cost  
d i f f i c u l t y  of 

of the bui ld i rg  and pool will depend on the  design, materials, 
excavating, e t c ,  Possibly, t h e  most convenient locat ion f o r  t h i s  

f a c i l i t y  i s  on the  side-of a hill or  a bank. Our estimate of the  cos t  of a 

*See Appendix IV 
=Thi s  complete equipment i s  now available commercially a t  approximately t h i s  

cos ta  
operaticn, e t c  e i s  desired 

However, the  eost  w i l l  be grea te r  i f  switchboard mounting, eonssPe 
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building with a pool 11, f t  by18 f t  by 22 f t  deep, a bay 28 f t  by 40 f t  and 
30 f t  high containing the  pool and reactor,  and 2500 sq f t  of laboratory space 
i s  $U5,OOO. 
penses of addi t ional  f a c i l i t i e s  necessary f o r  whatever experimental program is 
desired.  

This i s  the  bare minimum. To these cos ts  mst be added the ex- 

The r e l a t ive  inexpensiveness of the  reac tor  described i n  this report  i s  
Among these are t h e  f a c t s  t h a t  the  r e s u l t  of several  design considerations. 

we are able  t o  employ convection cooling, t h a t  t h e  same water i s  used f o r  
shielding as w e l l  as cooling, and t h a t  the  gaseous f i s s i o n  products are confined 
t o  the  f u e l  assemblies, removing the need f o r  a stack. 
negl igible  rrpoisoningrr t o  deal with, the  cont ro l  and safe ty  c i r c u i t s  can be 
r e l a t i v e l y  simple. 

Also, because there  i s  

Were t h i s  type reactor  t o  be designed f o r  operation in t he  wgawatt  region, 
the cos ts  would go up by, perhaps, a f a c t o r  of ten.  
coolant must be supplied, more shielding i s  necessary, control  and safety 
c i r c u i t s  must be expanded t o  take care of the excess r eac t iv i ty  necessary t o  
overcome poisoning, e t c  . 

Foked c i rcu la t ion  of 

The i n s t a l l a t i o n  then becomes a major engineering task.  
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C r i t i c a l  experiments t o  confirm the  design 

. . . . . . e * . .  
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APPENDIX I 

Health Physics Instruments f o r  the  Low Cost Reactor I n s t a l l a t i o n  

bY 

T. H. J, Burnett - Health Physics Division, ORNL 

Purpose 

The primary objective f o r  heal th  physics rad ia t ion  instrumentation i s  t o  
f a c i l i t a t e ,  and insure as fa r  as possible,  safe operation and experimental 
usage of the  reactor.  
adequate protect ion of personnel against  over-exposure t o  radiat ion.  
necessary t o  be able  t o  determine accurately the i n t e n s i t i e s  of several. d i f -  
f e r en t  hazardous types of rad ia t ion  a t  d i f f e r e n t  sect ions of the a rea  of 
t r a in ing  p i l e  operations. 

The pa r t i cu la r  aspect of Health Physics concern i s  
It i s  

The usage of hea l th  physics instruments f o r  making experimental measure- 
ments o r  t h a t  of experimental instruments f o r  heal th  physics measurements i s  
not improper i n  pr inciple ,  but has ce r t a in  disadvantages which tend t o  be off- 
s e t  by p rac t i ca l  considerations of economy, of ten paramount t o  schools. These 
disadvantages are  considered la te r  under t tResponsibil i t iestl .  

Herein are discussed both permanently mounted instruments and t h e  portable 
The usage of instruments used by t h e  personnel responsible f o r  heal th  physics. 

these should be pa r t  of a routine f o r  standardized surveys, a prac t ice  which 
w i l l  insure  (1) frequent check of the  proper operations of t h e  instruments 
(2) prac t ice  and familiarity i n  the usage of these instruments (3)  recognition 
of any contamination o r  radiat ion hazard otherwise overlooked o r  unknown. 

Requirements 

The rad ia t ion  detect ion system may include some or  a l l  of t h e  following 
as components: 
and recorders. 
no& conditions, made up so as t o  thwart the tampering impulses of students, 
al7d designed t o  " fa i l  safett* 
t h e  instrument i s  not i n  proper operating condition. 

primary detect ing elements, amplifiers,  indicators ,  alarms, 
These must be designed s o  t h a t  they w i l l  operate under a l l  

A l a r m  o r  scram c i r c u i t s  should be act ivated i f  

The indicat ions of rad ia t ion  i n t e n s i t y  must be posi t ive,  unambiguous, 
and d i r e c t l y  i n t e l l i g i b l e  i n  terms of permissible dosage rate o r  exposure, 
cons is ten t ly  reproducible, and r e l i ab le ,  
rad ia t ion  i n t e n s i t y  with time f o r  a l l  t he  loca t ions  of concern i s  required, 
and f o r  t he  f ixed instruments can be prepared automatically. 

A record of the var ia t ion  of 
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The operating area and environs should be monitored by instruments eqdpped 
with alarms which w i l l  operate whenever the rad ia t ion  exceeds the  safe maximum, 

Economy of construction, s implici ty  of operation , and ease of maintenance 
a re  a l l  even more important f o r  school use instruments than ordinary commercial 
requirements , 

Location 

While one cannot specify precise  sites, t h e  following will i n  general  
apply. 
and tank i t se l f ,  hence one monitron with boron l ined  chamber should be i n s t a l l e d  
so  t h a t  the  chamber i s  between t h e  p i l e  operator and the  p i l e .  
both t o  gamma and t o  slow neutrons, i t  should alarm when the  rad ia t ion  exceeds 
tolerance and be interlocked t o  scram the p i l e  a t  some small multiple of 
tolerance determined by operating time expected, A second such monitron should 
be positioned a t  the  next c loses t  populated area of observers, workers, l a b  or 
of f ice  personnel, e tc .  
o r  proper operation by the  first. 

Neutron i n t e n s i t i e s  w i l l  be present so l e ly  i n  the  v i c i n i t y  of t h e  p i l e  

Being sens i t ive  

This provides an added safeguard i n  event of f a i lu rn  

Contamination by leakage and/or induced a c t i v i t y  i n  impuri t ies  of t h e  tank 
water can most economically be monitored by routine sampling and counting, 

For surveying f o r  fast  neutrons during ce r t a in  experiments, one of t he  
hydrogen r e c o i l  proportional counters as developed by G, S. Hwst (ORML-930) 
i s  recommended. 

For slow neutron surveys duping operations a p d r  of electroscopes are 
probably both simplest and cheapest, 
o ther  can be used f o r  quant i ta t ive  gamma measurements also, 

One has a boron coated chamber, and the  

A beta-gamma ion  chamber survey meter (cu t ie  p ie )  will be very convenient 
f o r  quick gamma measurements during operations and f o r  evaluating t h e  hazards 
from i r rad ia ted  samples. 

A beta-gamma probe type instrument using a G. M. tube w i l l  be highly 
worthwhile f o r  scanning and t h e  de tec t ion  of contamination of hards, body, 
clothing, f loors ,  equipment, eix., ch ie f ly  from s p i l l s  of i r r ad ia t ed  material 
and contaminated tank water. 

To insure againstb d e t e c t e d  leakage of alpha emitting materials, a stable 
alpha poppy (as  i n  ORNL-602) is recommended and should be used f o r  part ~f t h e  
routine surveys necessary. 

Sui table  fflm badges and pocket meters must be worn a t  a l l  times. 
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Most of these instruments may be obtained from comerc ia l  suppliers. 
Some of them can be constructed eas i ly  i n  a'school laboratory. 
Health Physics Division and the Instrument Division will be glad t o  advise 
on spec i f ic  problems . 

The ORNL 

Responsibil i t ies 

While everyone connected i n  anyway with reactor  experiments must have a 
strong sense of j o in t  and individual respons ib i l i ty  f o r  h i s  own and othersf  
safety,  it i s  mandatory t h a t  one person e x p l i c i t l y  have the chief health 
physics respons ib i l i ty  and proper associated authority,  
a l s o  have his prime job that of elrperimentation. 

Such a one cannot 

Hence a r i s e s  one d i f f i c u l t y  from having a s ingle  s e t  of instruments f o r  
the  dual usage of radiat ion safety personnel axxi experimenters, the portable 
instruments are  prone t o  be i n  simultaneous demand. Further d i f f i c u l t i e s  ap- 
pear when the responsibi l i ty  f o r  breakage, repair ,  and misuse is t o  be fixed, 
and again when the chore of ca l ibra t ion  i s  t o  be performed. 

A duplication of a t  l e a s t  the beta-gamma ion chamber and probe instrument 
i s  necessary, and may be desirable  as well i n  the case of other  portable 
instruments so that experiments need not be delayed or  cu t  short  by instrument 
f a i lu re .  Similar reasoning w i l l  Jus t i fy  a spare monitron f o r  standby. 
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APPrnIX I1 

Transient Thermal Behavior of Low Cost Reactor When Prompt C r i t i c a l  

H. C, Claiborne and H e  F. Poppendiek 
Oak Ridge National Laboratory 

Sumglarg 

This memorandum i s  concerned with a numerical heat t ransfer  analysis  of 
a water cooled aluminum a l loy  reactor ,  The boundary conditions imposed are 
t h a t  the f u e l  p l a t e  heat source suddenly increases exponentially with the. 
After about 10 percent steam voids a re  generated in the moderator, the reactor 
becomes subcr i t ica l .  
peats i t s e l f  with some modification because of the higher in i t ia l  temperatures. 

Upon the collapse of the steam bubbles, the process re- 

The d i f f e r e n t i a l  heat t r ans fe r  equations f o r  the system were transformed 
t o  f i n i t e  difference equations and the temperature solutions were evaluated 
numericall$. 

Two spec i f ic  analyses were undertaken, Analysis No, 1 was characterized 
by the i n i t i a t i o n  of boi l ing as soon as  the wall-coolant in te r face  temperature 
reached the boiling temperature. 
produced steam bubbles which did not collapse. I n  analysis No. 2, boiling 
heat t r ans fe r  occurred i n  the presence of su f f i c i en t  subcooling so t h a t  10 
percent steam voids were never formed before the melting temperature of the  
f u e l  p la te  was reached. 

Also, a l l  heat subsequently t ransferred 

Introduction 

T h i s  group was requested t o  predict  the t rans ien t  temperature behavior of 
a f u e l  element of t h e  low cost  reactor  under the abnormal condition t h a t  the 
reactor  i s  suddenly made supercr i t ica l  by two percent i n  excess of prompt 
c r i t i c a l .  T h i s  value has been used i n  s imilar  calculations of the abnormal 
behavior of other types of reactors.  
r i s e s  a t  an exponential r a t e  given by e100 8, where Q i s  time i n  seconds, 
When about 10 percent of the moderator has been replaced by the  generated 
steam, the reactor becomes subc r i t i ca l ,  

It i s  postulated t h a t  the power densi ty  

The heat generation term then falls t o  a l o w  value, r i s ing  again a f t e r  
the steam has condensed. 
within the  reactor  under such conditions was desired, 

The semi-periodic o r  t rans ien t  temperature h is tory  
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I 

The cooling heat  t r a n s f e r  mechanisms a t  t h e  f u e l  plate-water in te r face  
control  the thermal s t ruc ture  within the reactor .  
achieved by non boiling convection circulat ion.  
temperature has a t ta ined the boi l ing  temperature, cooling may be achieved 
by boi l ing heat  t r ans fe r  i f  no superheating occurs and i f  bubbles can be 
formed under the  rapid t r ans i en t  conditions t h a t  characterize the  problem 
under consideration, 
appendix) have indicated t h a t  it i s  possible t o  obtain superheats of the  order 
of lOOOF f o r  subcooled boi l ing systems. 
grow under t r ans i en t  heating conditions i s  not  known. 
studies  relative t o  bubble behavior under steady state heat  t r ans fe r  conditions 
(reference 2) indicated that a bubble will grow and collapse i n  about 0,001 
seconds; bubble growths under t r ans i en t  conditions could possibly be much 
slower, 
vapor volume exists i n  a boi l ing  system characterized by ce r t a in  surface and 
bulk f l u i d  temperatures. 
t o  the  heat t r ans fe r  rate i n  a subcooled system because of the continuous 
steam condensation i n  the  r e l a t i v e l y  cool coolant, Although s igni f icant  vapor 
formation w i l l  probably accampany the  boiling-cooling mechanism, the  question 
is ,  might there  be a su f f i c i en t  delay i n  bubble formation such t h a t  the  melting 
temperature of t h e  f u e l  p l a t e  i s  reached before cooling becomes e f fec t ive?  

Cooling i s  in i t ia l ly  
After the  wall surface 

Boiling research s tudies  (reference 1 a t  end of t h i s  

The time required f o r  a bubble t o  
High speed photography 

Except i n  same spec i f i c  cases, it i s  generally not known how much 

The amount of vapor present i s  not simply re la ted  

I n  view of these unknowns the problem under consideration can really be 
bounded on ly  by l imi t ing  cases. 
begins as soon as the  wall-coolant temperature reaches the  boi l ing  temperature 
and all heat subsequently t ransfer red  produces steam bubbles which do not col- 
lapse. The pessimist ic  l imi t ing  case i s  t h a t  bo i l ing  never occurs (before the 
fuel  p l a t e s  melt) because of t h e  high degree of superheat, 

The optimistic l imi t ing  case i s  that boiling 

Two heat t r a n s f e r  analyses are presented here. Analysis No, 1 was made 
f o r  t h e  opt imist ic  case described above. 
mediate case of bo i l ing  after the boi l ing temperature i s  obtained but without 
the  formation of 10 percent vapor because of subcooling. 

Analysis No, 2 was made f o r  the in te r -  

Fuel Assembly Description 

A t yp ica l  f u e l  assembly uni t  cons is t s  of fou r  p a r a l l e l  aluminum-uranium 

It i s  composed of a sandwich 
f u e l  p l a t e s  spaced three-fourths of an inch from center t o  center,  
p la te  i s  24 inches long and three inches wide. 
of an 80 percent aluminum - 20 percent uranium a l l o y  (0,060 inches thick) 
between two 0.020 inch plates of aluminum, 
convective water flow. 

Each f u e l  

The f u e l  elements are cooled by 

Heat Transfer Equations 

In  v i e w  of t h e  la rge  length t o  thickness r a t i o  of t he  f u e l  p la te ,  the 
heat f low i s  e s sen t i a l ly  unid i rec t iona l  (mdfally from x i t h i n  the source region 
out through the aluminum laye r s  t o  t h e  coolant) ,  
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I 
1 .  

The d i f f e r e n t i a l  equation describing t rans ien t  conduction can be repm- 
sented by the  following f i n i t e  difference equation (reference 3 ) *  
t h a t  t i m e  i s  measured i n  hours ra ther  than seconds. 

It assumes 

where, 
2aA8 --1 
A 2  

t 

t = temper , t l  re a t  any point, O F  

a = thermal d i f fus iv i ty ,  ft2/hr 

A 8 time, increment, h r  

A 4 distance increment, f t  

x l a t e r a l  dis tance from f u e l  center l ine,  f t  

G(8,x) = heat generation function, Btu/hr f t 3  

= heat capacity, Btu/lb OF cP 
'7/ = density,  lb/f t3  

n r e fe r s  t o  the nth distance increment 

k r e fe r s  t o  the  kth time increment 

The heat teneration t e r n  f o r  a standard i n i t i a l  power l e v e l  of one k i l s -  
w a t t  i n  a reactor  of I2 f u e l  elements and a two percent excess r e a c t i d b y  above 
prompt c r i t i c a l  is, 

1 x 3 u 3  e 360,000 Q G(Q,x) = 
4 x 12 x 3 x 24 x 0.06 x 5.787 x lo-' 

= 28,430 e 360,000 Q 

It i s  postulated t h a t  G(8,x) = 0 i n  the  aluminum layers  on e i t h e r  side af the 
fuel .  

The heat t ransferred across the The boundary conditions a re  as follows: 
f u e l  layer  center l ine i s  zero. 
ence form as follows: 

T h i s  f a c t  can be represented i n  f i n i t e  d i f fe r -  
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The heat flow from the uranium a l loy  i n t o  the  aluminum layers may be ex- 
pressed i n  terms of the corresponding thermal conductivit ies and the  tempera- 
tu re  gradients a t  the  two s ides  of the  interface.  This equation expressed i n  
f i n i t e  difference form is 

where, u r e fe r s  t o  the uranium alloy, 

a refers  t o  the aluminum, 

k = the& conductivity, Btu/hr ft2 ( q / f t > ,  

x = distance incremnt ,  f t .  

Similarly, the equation f o r  the  temperature a t  the aluminum-water in te r -  
face i s  - 

h A x ,  
a 

ka tf,k + tn - 1, k 

h b x a  
I+- 

ka 

tn,k = 

where, h, heat t r ans fe r  coeff ic ient ,  Btulhr f t 2  OF 

tf, mixed mean water temperature, ?l? 

The value of the heat t r ans fe r  coefficient., h, depends upon the cooling 
mechanism. 
previous t o  the i n i t i a t i o n  of bo i l ing( l ) ,  
t r ans fe r  coeff ic ient  f o r  such a system under uniform wall flux conditions f a  
(see Appendix 1) 

It was postulated tha t  laminar flow existed between the f u e l  p la tes  
It can be shown that the heat 

2 somewhat more complex than the parabola, 
However, since the  major temperature changes occur during the period when 
boi l ing i s  t h e  t r ans fe r  mechanism, this s implif icat ion i s  Just i f fed,  
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where kf = thermal conductivity of water, Btu/hr f t 2  ( O F / f t >  

r0 = half t h e  dis tance between f u e l  p la tes ,  f t .  

When subcooled boi l ing takes place, the  heat t r ans fe r  coef f ic ien t  can be 
expressed as (reference 4) 

where ti i s  the  aluminum-water in te r face  temperature and t at is the  satu- 
r a t ion  temperature . This equation represents experimentaf heat t r ans fe r  da t a  
f o r  steady state subcooled boi l ing i n  annuli  f o r  water f l o w s  i n  t h e  range of' 
1 t o  10 f t / sec ,  

Numerical Solution Procedure 

The numerical method of so lu t ion  of the equations presented above can be 
found i n  reference 3. 
considered t o  be 680F. 
233OF. 
Appendix 2. 

The i n i t i a l  temperature d i s t r ibu t ion  i n  t h e  reactor  was 
The boiling temperature f o r  the  specif ied system was 

The physical p roper t ies  of uranium and the  uranium a l loy  are given i n  

Results and Discussion 

Analysis No. 1 (boil ing begins as soon as t h e  wall-coolant temperature 
reaches the  boi l ing temperature and a l l  heat subsequently t ransferred produces 
steam bubbles which do not collapse) indicated t h a t  after 0.127 seconds, 10 
percent steam was produced i n  the  coolant passage, 
temperature ( a t  the  uranium a l l a y  center)  a t  that time was 39loF, 

The maximum fuel p l a t e  

Analysis No, 2 (boi l ing occurs but subeooling prevents the formation of 
the  10 percent vapor befom melting temperatures are at ta ined)  indicated t h a t  
after approximately 0014 seconds the uranium a l l o y  center  temperature w i l l  
a t t a i n  the  melting temperature. 
0.139 seconds i s  shown i n  Figure 1; the  t h e  temperature h i s to r i e s  of t he  
f u e l  p l a t e  a t  the center l ine,  the aUoy-aluminum in te r face ,  and the  abdnum-  
water i n t e r f ace  are shown i n  Figure 2, 

The la teral  temperature d i s t r ibu t ion  af ter  

I n  order t h a t  a more sa t i s fac tory  heat tpansfer  analysis  be conducted, it 
will be necessary t o  obtain fundamental i n fomat ion  on the  t r a n s i e n t  boil ing 
heat t r ans fe r  out l ines  i n  previous paragraphs, 
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Some t rans ien t  boil ing experiments have been conducted by S. Untermyer 
A tube which was f i l l ed  with water was heated exponentially (reference 5)0 

with time; high speed photographs of water e ject ion upon the i n i t i a t i o n  of 
boiling were obtained. 
on bubble densi ty  and l a g  i n  bubble formation was obtained. 

Apparently, however, insuf f ic ien t  general information 

The exponent of the  heat generation function i s  not a constant, as used 
i n  the  calculations,  but i s  ac tua l ly  a function of density. 
cation i s  on the  pessimistic side because the r eac t iv i ty  decreases a s  the 
temperature of the moderator increases. 
water temperature will reduce the exponent from 360,000 Q t o  349,000 8. 
was considered unnecessary t o  complicate the  analysis by including this ef fec t .  

T h i s  simpliff- 

An increase of lOOF i n  the average 
It 

The numerical analyses which have been conducted have revealed the ex- 
is tence of high temperature gradients within the  th in  f u e l  plates .  
suggested that thermal s t r e s s  calculations be made t o  determine the magnitude 
of the s t r e s ses  within the f u e l  elements. 

It i s  

O O . 0 0 0 . 0 . 0  
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Heat Transfer Coefficient f o r  Laminar Flow Between 

Pa ra l l e l  P la tes  wi th  Uniform Heat F l u  

The case of laminar flow between pa ra l l e l  p la tes  with uniform heat flm 

The r ad ia l  heat t ransferred,  dq, t o  an elemental s t r i p  of water, a 

from the walls i s  a good approximation t o  the  ac tua l  system. 

distance r from the center l ine,  is  

d2q = u w d r  C 

The t o t a l  heat t ransferred is 

where ds, = heat t ransferred a t  the wall, Btu/hr. 

U = average velocity,  ft/hr, 

u = veloci ty  a t  any point, ftbJbo 

w = f u e l  p la te  width, f t .  

ro = one-half the distance between plates ,  f t ,  

z = distance along length of f u e l  p la te ,  ft. 

For uniform flux beyond the entrance region, 

For laminar flow between pa ra l l e l  plates ,  

Combining equations ( e ) ,  
limits of q and rs 

($I>, and (%a>, and integrat ing between the 
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a t  any point, 

where dA = wdz = constant 

Combining equations (12 and 13) and integrat ing between the limits of t and rp 

t - t w = - -  1 %  [dA) 

kf 

where = surface temperature, OF 

The mixed mean temperature, tf, i s  defined by 

Combining equations (15) and (16) and integrat ing,  

The heat t r ans fe r  coeff ic ient ,  h, i s  defined by 

Subst i tut ing f o r  tf, 
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APPENDIX I11 

The following ORNL drawings (some classif ied as tlOfficial Use Onlytt and 
some unclassified) describe the main features of the reactor and control 
c i r cu i t s  

1. Reactor and Reactor Bridge 

E-7201 Reactor Bridge Assembly 

D-7202 Grid Plate 

D-7208 Control Rod and Safety Rod 

D-7209 Lif t ing Magnet-Assembly and Details 

D-7211 Reactor Suspension Frame 

D-7212 

D-7213 Safety Rod Shock Absorber 

D-7214 Reactor Bridge Frame 

Waterproof Containers f o r  Counter Chambers 

D-7215 Reactor Bridge Superstructure 

D-7216 Motor Drive f o r  Reactor Controls - Assembly 

D-7217 Motor Drive f o r  Reactor Controls - Detail Sheet #l 

D-7218 Motor Drive f o r  Reactor Controls - Detail Sheet #2 

D-7221 

D-7222 

A-7223 Molded Block (BeO) 

1-7224 

D-8238 

D-8239 

Reactor Assembly Tool - Assembly 

Reactor Assembly To01 - Details 

Section of Drawn Tubing f o r  Cans 

Power Plan - Reactor Bridge 

Power Details - Reactor Bridge Sheet 1 

D-8240 Power D e t d l s  - Reactor Bridge Sheet 2 

D-8170 Fuel Assembly Storage Rack 
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2. Reactor Control Circui ts  and Instruments 

Q-1045 -1 

Q-975-1B 

Q-1092-1 

8-1058-1 

Q-5 43.-A-E 

Q-834-1 

6-751 A 

Q-826-1 

8-995-1 

9-915-1 

Q-947-1 

Q-889-1 

Q-lo54 

3. Instruments 

4-369 

Q-804 

Q-846-4 

Q-846-5 

Q-1059 

Q-961 

8-1058 

Q-1057 

Q-954 

4 i n ,  Compensated Ion Chamber 

Neutron Chamber 3 i n .  PCP Nodel 2 

Fission Chamber 

Gamma Ion Chamber 

A1 Amplifier and AlA Preamplifier 

1024 Scaler (modified) 

Log Count Rate Meter 

Low D r i f t  Electrometer 

Power Supply f o r  Compensated Ion Chamber 

Log N Amplifier (P i le  Period Meter) 

Sigma Amplifier and Safety P rempl i f  i e r  (modified) 

Magnet Amplifier 

Control System Circu i t s  

Neutron Counter 1" O.D. - 8" Long 

Neutron Chamber 2" O.D, - 12-1/211 Long 

Fiss ion Chamber 1/2" Dia, 

Fission Chamber 1/2" Dia. 

Fission Chamber 3" Dia, 

Proportional Counter (Brass Case 1" O.D. x 13-5/8") 

50 cc,  Ion Chamber 

900 cc. Ion Chamber 

Watertight Housings 
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APPENDIX IV 

Corrosion Studies on Aluminum Clad Reactor Fuel Dement 

Arnold R, Olsen 
Oak Ridge National Laboratory 

Abstract 

The invest igat ion of corrosion on a l d n u m  clad reactor  f u e l  elements 
i n  f i l t e r e d  water i s  repopted, 

The study included two basic types of protection: Element pretreatment, 
by e i t h e r  anodizing o r  alodizing; and solut ion control,  using n i t r i c  acid t o  
maintain a pH of 5 0 5  t o  6.5 o r  the  addi t ion of 60 ppm sodium chromate as an 
i n h i b i t  o r  

No pretreatment was e f f ec t ive  i n  stopping p i t t i n g  a t tack  f o r  more than 
fou r  months as a maximum. 
but did not s top  it, 
stop a l l  p i t t i n g  a t t ack  and a t  t h e  same time reduce t h e  overa l l  corrosion r a t e  
t o  e s sen t i a l ly  zero, 

Control of the pH tended t o  reduce p i t t i n g  a t tack  
However the  addi t ion of sodium chromate was found t o  

Introduction 

I n  August of 1950 the  Corrosion Group wds asked t o  inves t iga te  the e f f e c t  

consequently t h e  inves t iga t ion  of f i l t e r e d  water was 

of f i l t e r e d  water as a corrosive media on aluminum clad f u e l  elements. Plans 
had or ig ina l ly  cal led f o r  demineralized water but the  addi t ional  cos t  in- 
volved seemed excessive. 
begun. The need f o r  some passivation treatment o r  protect ive measuiw was 
known before the  tests were s t a r t ed  and various a l t e rna t ives  were included i n  
the o r ig ina l  group, 

The construction and start-up schedule of t h e  subject  reac tor  was so far 
advanced a t  the  time af the  decision t o  use f i l t e r e d  water t h a t  only t w o  week 
corrosion tests were avai lable  when it was decided t o  use alodizing as the  
pretreatment f o r  added protection, The inherent r i s k  involved i n  using shor t  
term t e s t s  as a bas is  f o r  long term exposures was real ized and consequently 
the t e s t s  were continued f o r  a period of some months, 
t he  longer term t e s t s  are reported here, 

Both the short  term and 
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Test Procedure 

Corrosion Media 

Fi l tered water a s  supplied t o  the Laboratory was used i n  these t e s t s .  
Table I contains an average analysis  together with the  maximum and minimum 
values obtained from analysis of this water over a f i v e  month period, 

I n  addition t o  these analyses cer ta in  components were a l so  checked i n  the 
Results of water a t  the end of one month exposure when the water was changed. 

these analyses a re  l i s t e d  i n  Table 11. 
these data  a r e  the marked r i s e  i n  aluminum content i n  the f i n a l  solutions i n  
which unprotected 2s aluminum and 25-72s aluminum were exposed, The reason 
f o r  the s imilar  pick up i n  aluminum during the first two months of exposure 
i n  the Na C r O  t rea ted  water i s  probably due t o  a s l i g h t  a t tack involved i n  
es tabl ish& b e  passive surface. 

The only s ignif icant  f igures  from 

I n  only three t e s t s  were additions made t o  the water; these were - 60 ppm, K 2 C r 0  
;2 'g4 in  the 5.5 t o  60$ range. 

- 60 p p ,  and HN03 suff ic ient  t o  lower and maintain 

Test Materials - Types of Aluminum 

Three classes  of aluminum are  involved i n  the make up of the f u e l  
assemblies. These c lasses  together with typ ica l  composition are: 

?lytse Composition % 

Al - S i  - cu A l l  Others Zn - - 
0.05 2s 99 + Oe10 max 0.25 0,20  me^ 

Brazing a l loy  Bal 0.10 max 11,5 0.20 max 0.05 
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TABLE I 

Filtered Water Analysis From Five Samples Taken a t  One Month 
Intervals  From August Through December 1950 

Concentration of A l l  Constituents 
i n  Sample - Units - Ave . - W O  

PH 
ppm. Alkalinity as  CaC03 
M.O. Alkalinity as CaC03 
Specific Resistance, 25OC 
Soap Hardness as  CaC03 detn. 
Soap Hardness as CaC03 calc. 
Dissolved C02 
Dissolved Solids 
Non-Volatile Solids 
Si02 
Fe 
AI. 
cu 
N i  
C r  
Ca 
Mg 
Na 

c1 
co 
HC83 

F 

so4 

NO3 
p04 

PH 
PPm 
PPm 

PPm 
PPm 
PPm 
PPm 
P P  
P P  
P P  
P P  
PPm 
PPm 
PPm 
P P  
P P  
PPm 
PPm 
PPm 
P P  
PPm 
PPm 
PPm 
P P  

ohm-cm x 103 

8.0 
5 00 

98,O 
6.92 

112 e o  

101 0 0 
3 00 

138.0 
80.0 
5 .3 
0002 
0 e08 
0.02 
0.02 
0.02 

30.0 
7.2 
9.6 

4.2 
58.2 

118.8 
1.1 
0.8 
0 002 

25.1 

8.3 
10 .o 

106 . 0 
8.26 

120 .o 

6.0 
164.0 

9.2 

117 .o 

131 . 0 

0,08 
0.14 

34.0 
8.6 

U.0 
39.6 

43.6 
329.3 
2 03 
1. 7 

5 00 
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TABLE I1 

Sample 

I n i t i a l  
a* - IF 
b -lF 
c -bF 
d - U ?  
e -3 -F  

I n i t i a l  
a - 2F 
b - 2F 
c - 2F 
d - 2F 
e - 2F 
I n i t i a l  
a - 38' 
b - 3F 
e - 3F 
d - 3F 
e - 3F 
I n i t i a l  
a - 4 F  
b - @ '  
0 - 4 F  
d -4 .F  

- 6 r F  

Ini t ia l .  
Q - 5F 
b - 5F 
c - 5F 
d - 5F 
8 - 5F 

Comparative Analysis Before and After 30-Day 
Intervals of Corrosion Testin6 



Pretreatments 

I n  a l l ,  three classes  of pretreatment f o r  enhanced corrosion resis tance 
These were Anodizing, Standard Alodin&, and Hot-Dry Alodine*. were tested. 

Anodizing was the s t r a igh t  anodic treatment of 2s aluminum sheet,  
sheared edges of the coupons Were protected with a high temperature wax, 
protection i s  from the  ex t ra  th ick  oxide coat t h a t  i s  formed by the anoctic 
treatment. 

The 
The 

The alodized samples were of two  d i f f e ren t  var ie t ies ;  simple c i r cu la r  
samples of 25 aluminum were given both the Hot-Dry and Standard Alodizing 
procedures, while a mock assembly involving two sheets  of '72s clad 2s aluminum 
brazed together with l l o 5 f k  s i l i c o n  a l loy  were only hot-dry alodized. 
samples were alodized by Mr, B, P, Spmance of the American Chemical Paint 
Company. 
type of f i lm.  

These 

The protect ive coating is  a mixed aluminum oxide-chromate-phosphate 

Samples marked 72S-2S r e f e r  t o  roll bonded sheets of 72s aluminum on one 
side and 25 alumintun on the other  s ide,  
water during these t e s t s ,  

Thus both types were exposed t o  the  

Test Owrat ion 

The ac tua l  t e s t i n g  consisted of suspending a dried and weighed specimen 
of known area  on a g lass  hook s o  tha t  it was t o t a l l y  immersed i n  fou r  l i ters 
of f i l t e r e d  water i n  a covered three-meek, f i v e - l i t e r  d i s t i l l i n g  f l a s k ,  

Samples were removed monthly, dried,  weighed and photographed before 
being returned t o  test.. The water was changed a t  the  inspection period, 

The defilmed sample weights were obtained only a t  the end of the test 
period, 
acid - 4$ by weight chromic acid solution a t  50°C f o r  20 minutes, 
p r inc ipa l  purpose of the  d e f i M n g  process was t o  aake possible an accurate 
count and invest igat ion of t he  pits. 

T h i s  d e f i M n g  process involves the use of a 5% by volume phosphoric 
The 

Results of Initial Two-Week Tests 

As the time schedule involved did not permit a thorough invest igat ion 
before some protective treatment was decided upon, the or ig ina l  t e s t s  were 
only two weeks i n  duration. 

The r e s u l t s  of these t e s t s  are given i n  Table 111, 

*Alodine - Patented process of t he  American Chemical Paint Company, 
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TABLE I11 

Two-Week Tests i n  F i l te red  Water a t  Room Temperature 

Weight Change P i t  Count 
Sample Inh ib i t  or (MDW) Per Sq, Cm, 

2s  A1 -9- - 1408 00x5 
2s  A l  --- - 9.2 Neg 

2s Al Na2CrO4 -+ 300 Net3 

2s Al Na2CrOr, -b 300 Neg 

60 PPm 

60 PPm 

9 306 Neg Std. Alcdized 2 s  A1 --- 
Neg Ne43 Std ,  Alodized 2 s  Al -- 

2s-72s AI --- - 4702 0 2  
2s-72s AI -- - 4306 025 

* Milligrams per square decimeter per month 

l.hximm fit 
Depth. mils 

100 
Neg 

The untreated 2 s  aluminum and the 2S-72S bonded aluminum were stained 
dark gray on a l l  surfaces. 
was i n  the  72s aluminum; however, one p i t  did occur on the  25 dtuminum s ide ,  

The major p i t t i n g  a t tack  on the  bonded mater ia l  

In  v i e w  of these results and from the reported improvement i n  protect ion 
provided by the  Hot-Dry Alodine process, it was decided t o  use this type of 
protection, but also,  t o  continue the t e s t s  t o  determine, i f  possible,  the 
l i f e  expectancy, 
continued f o r  camparison. 

I n  addition the  tests with the  remaining samples were 

Results of Tests of Longer Duration 

Table I V  gives the  results of the continuation of t e s t s  as previously re- 
ported (Results of I n i t i a l  Two-Week Tests) and a l l  new t e s t s  which were s t a r t ed  
and run f o r  various lengths  of time, 
enough t o  prove t h e i r  worth,, 

A l l  tests were t e s t ed  a t  l e a s t  long 

Since the prime c r i t e r i o n  f o r  t h i s  appl icat ion i s  p i t t i n g  which might 
penetrate t o  the  core and release the highly ac t ive  f i s s i o n  products, it can 
r ead i ly  be seen t h a t  no pretreatment offered sa t i s f ac to ry  protect ion f o r  long 
periods of time. 
obtained from the  accompanying photographs, Figures 1 through 6, 

A b e t t e r  idea of what t h i s  type 'of  corrosion means may be 
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. 

Sample 

2s A 1  
2s  A 1  

2s-72s 
2s-72s 

2s  Anodized 
2s Anodized 

I 
VI P 2s (NazCrQk) 
I 2s ( N ~ ~ c I Q ~ )  

2s (K2Cd4) 
2s (K2Cd4) 

25 Std. Alodized 
2s  Std. Alcdized 

Mock Assembly 
Mock Assembly 

2s Hot Dry 
Alcdized a t  X-10 

2s-725 (HNO3) 
2S-72S (wO3) 

TABLE IV 

Results of Corrosion Tests on Various Aluminum Samples 
Exposed to Fil tered Mater a t  Room Temperature 

Weight Change (MDM) 
1 month 2 months 3 months 4 months 5 months 6 months 

+ 12.4 t 31m2 i- 26.4 
+ 13.0 9 27.5 + 1 8 a 3  

- 7.7 - 5.6 - 4065 4.1 - U 0 6  - 9,e - 709 - 5.7 

- 1,1 t 009 t 209 - 6-6 
t 003 t 0 2  - !j02 - 7.1 

t 7 a O  
9 1 0 9  

Def flmed 

- 32.0 - 2708 

- 5407 - 5307 

4- 003 + 0 2  

- 105 - 2.5 



TABLE I V  (CONTINUED) 

2s  Al 
2s  A l  

Results of Corrosion Tests on Various Aluminum Samples 
Exposed t o  Fi l tered Water a t  Room Temperature 

Number of Pits Per Sample Max. P i t  Piax, Pit 
Sample 1 month 2 months 3 months 4 months 3 months 6 months Depth (nilsl Dia. (nils) 

2s-72s 
2s-72s 

1 8 12 12 12 
2 8 12 l2 3 2  

1 4 5 6 6 
1 1 2 r, 6 

116 40 
38 80 

19 120 
19 80 

2s Anodized 0 0 0 0 3 16 1 20 
25 Anodized 0 0 0 0 2 38 1 4 

I 

tu 
I 

VI 2s (Na2C1-0~) 0 0 0 0 0 0 Nil N i l  
2s  (Na2CrO4) 0 0 0 0 0 0 N i l  N i l  

N i l  Nil 
N i l  Nil 

25 Std. Alodized 0 0 0 8 8 9 40 20 
25 Std. Alodized 0 1 5 5 9 15  34 40 

Mock Assembly 
Mock Assembly 

2s Hot Dry 1 5 
Alcdized a t  X-10 1 k 

5 
0 

7 4.0 
18 20 



UNCLA SSlFlED 
PHOTO NO. 6-2SC 

I MONTH 

3 M O N T H S  

5 M O N T H S  

. FIGURE I. CORROSION 
ALUMINUM SAMPLES 

4 MONTHS 

THS 
UL F I L M E D  

OF UNPROTECTED 2 S 
EXPOSED TO F I L T E R E D  

WATER CONTAINING 6 0 p p m  N a 2 C r 0 4  AT ROOM 
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5 M O N T H S  6 

FIGURE 2. CORROSION O F  2 s  ALL 
ED B Y  THE STANDARD ALODINE 
E X P O S E D  TO F I L T E R E D  WATER 

T E M P E RATU RE 
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U N  C L  ASS1 F IED 
PHOTO NO. 6 - 2 5 0 2  

I MONTH 2 M O N T H S  

r 
3 MONTHS 

5 MONTHS 

FIGURE 3. CORROSION 
ALUMINUM SAMPLES 

4 MONTHS 

DEFILMED 

OF U N P R O T E C T E D  2 s  
EXPOSED TO F I L T E R E D  

WATER AT ROOM T E M P E R A T U R E  

- 55 - 

- - ___ 



I M O N T H  2 M O N T H S  

. 

UNCLASSIFIED 
PHOTO NO. 6-2504 

D E F l  LMED 

FIGURE 4. CORROSION OF 2 s  ALUMINUM 
PRETREATED BY THE HOT DRY ALODINE 
PROCESS AND EXPOSED TO FILTERED 

WATER AT ROOM TEMPERATURE 



. 

I MONTH 

~ *- 

3 MONTHS 

UNCLASS lFlED 
PHOTO NO. 6 - 2 5 0 5  

I 
1. 

I* 
A 

I 
2 MONTHS 

5 MONTHS 6 MONTHS 

FIGURE 5. CORROSION O F  ANODIZED 2 s  
A L U M I N U M  SAMPLES E X P O S E D  TO 
F ILTERED WATER AT ROOM TEMPER- 

ATURE (EDGES WAXED) 
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UNCLASSI F I E 0  
PHOTO NO. 6-2506  

I M O N T H  2 M O N T H S  

3 M O N T H S  4 M O N T H S  

5 MONTHS DE FIL M ED 
FIGURE 6. CORROSION OF ANODIZED 2 s  

ALUMINUM SAMPLES EXPOSED TO 
FILTERED WATER AT ROOM TEMPER- 

ATURE (EDGES WAXED) 
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Conclusions 

On the  basis of' the  results of these t e s t s ,  it was decided t o  add 60 ppm 
Na2Cr04 t o  the cooling water in. the reactor ,  

No pretmatrasnt tes ted  was found t o  be e f fec t ive  in preventing p i t  for-  
mation f o r  mope than four  months, The andifzed 25 aluminum samples showed no 
p i t s  a t  the end of fou r  months, but were p i t t ed  at  the f i v e  month inspection, 
Alodized samples which appeared sa t i s f ac to ry  a t  the  end of two weeks, f a i l e d  
by p i t  formation between 60 and $8 days, 

Although p i t  depth was shorn t o  stop a t  the  2s-725 a l d n u m  in te r face  
because of t he  s a c r i f i c i a l  e f f e c t  of the  72s aluminum, the accumulation of 
corrosion products was high, 
cooling channels, with subsequent formation of hot spots and consequent rapid 
c om0 s i  on 

Such a c c d a t i s n  could e f fec t ive ly  block the  

Time and space did not p e d t  inveatdgatisn of b o w e ~  concentrations of the 
Operation of the reactor  f o r  three months has shown sodium chromate inh ib i to r ,  

t h a t  there i s  negl igible  e f f ec t  of the Na2Cr04 on background a c t i d t y ,  making 
consideration of ' lower  concentrations m e c e s s a r y .  
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