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Introduction 

. 

. 

Predict ing the f l u i d  flow pa t t e rn  i n  a sphere, under the  combined in-  

f luences of f r i c t i o n  and d i s t r ibu ted  heat sources, is  a complicated problem. 

It i s  almost t r i t e  t o  say tha t  ne i ther  model experiments nor mathematical 

analysis ,  one without the other,  i s  very convincing; q u i t e  obviously, each 

must lean  heavily on the  o ther ,  

This repor t  ou t l i nes  the beginnings of some theo re t i ca l  work intended 

t o  supplement and extend the model experiments performed fo r  t h e  HRE. While 

the  experiments have helped us  remarkably i n  d i r ec t ing  the  l i n e s  along which 

the  ana lys i s  must go, and have also indicated the order of magnitude of cer-  

t a i n  influences which are not r ead i ly  predictable  by ana lys i s  but  which must 

be incorporated there in ,  a sa t i s f ac to ry  wedding of' the  experimental and ana- 

l y t i c a l  r e s u l t s  has not ye t  taken place.  However, we feel confident enough i n  

our method of attack t o  pred ic t  t ha t  such a meeting will eventually take place 

and t o  recommend that  t h i s  work be continued toward t h a t  goal. 

do make the ana lys i s  tractable at a l l ,  a number of i dea l i za t ions  must 

The f i rs t  i s  t h a t  t h e  flow i s  completely symmetrical with respec t  t o  be made. 

the ax i s  of ro t a t ion .  

a s ing le  pipe, as i n  the HRE, i s  an annulus running around t h e  sphere at  a 

constant l a t i t u d e .  

bad an idea l iza t ion ;  even with a s ingle  i n l e t ,  there have been observed no 

var ia t ions  with respect  t o  longitude (i.e.,  peripheral angle) .  

a t ions  do exist, but  are simply not detectable  by present measuring techniques, 

It can s t i l l  be s a i d  t ha t  the idea l i za t ion  w i l l  be c loser  t o  r e a l i t y  i n  the  case 

Th i s  implies that the  i n l e t ,  ins tead  of cons is t ing  of 

There i s  evidence from t h e  experiment t h a t  t h i s  i s  not too  

If' such var i -  



I *  

of l a rge r  reactors ,  f o r  which multiple inlets are planned. 

A second idea l iza t ion  is  t h a t  turbulence i s  not exp l i c i t l y  taken i n t o  

It is  accounted f o r  impl ic i t ly  i n  t ha t  where the  ana lys i s  requires  in -  account. 

formation as t o  the extent and magnitude of the retarded layer  near the w a l l  of 

the sphere, t h i s  information i s  t o  be taken la rge ly  from measurements made on 

the model sphere, which take in to  account the  ac t ion  of turbulence. 

other  hand, i n  ca lcu la t ing  temperature d is t r ibu t ion ,  the e f f ec t  of turbulent  

interchange has so far been neglected. 

r e s u l t s  of our analysis should then be viewed as conservative; tha t  is ,  t e m -  

perature  gradients w i l l  i n  ac tua l i t y  be l e s s  than the  analysis  w i l l  predic t .  

On t h e  

This i s  imperfect at best, but  t h e  

I n  addi t ion t o  these two pr inc ipa l  ideal izat ions,  a number of minor 

s implif icat ions are made and these are explained i n  the body of the  report .  

Outline of the  Reuort 

' ( i  

Section 1 

The equations of motion (momentum, continuity,  and energy equations) 

are stated i n  qui te  general form, i n  vector notation. 

immediately s implif ied fo r  the purposes of the present problem. 

The energy equation i s  

Section 2 

The momentum and cont inui ty  equations are manipulated by vector oper- 

a t ions.  

This is  done because it w i l l  be found convenient t o  use three d i f f e ren t  coordi- 

nate systems i n  d i f f e ren t  par t s  of t h e  analysis:  

The generalized curv i l inear  coord iwte  system is then introduced. 

cy l indr ica l  coordinates, 



spherical  coordinates, and a system in which the  streamlines and t h e i r  normals 

form the  coordinate d i rec t ions .  

describes the  effect of retarded l aye r  and temperature gradients  on t h e  meridional 

flow. 

immediately after equation (16). 

The r e s u l t  of a l l  t h i s  i s  equation (16),  which 

A physical i n t e rp re t a t ion  of each of t h e  terms of t h i s  equation follows 

Section 3 

The energy equation is  f u r t h e r  reduced t o  a form which permits i t s  

in tegra t ion  . 
Section 4 

The var iables  and parameters appearing i n  t h e  f i n a l  equations are 

normalized, o r  made dimensionless. 

makes t h e  r e s u l t s  of  any one ca lcu la t ion  appl icable  t o  an e n t i r e  class of 

dynamically similar systems. 

flow is  found t o  be expressible  by a s ing le  number; t h i s  r ad ica l ly  reduces t h e  

number of independent variables required t o  def ine  the  system. Only two other  

dimensionless numbers are required t o  def ine the  dynamics of a given geometrical 

configuration; one descr ibes  the  over-al l  temperature rise of the  f l u i d  through 

t h e  reac tor ,  the  other  (which probably has l i t t l e  e f f e c t  on t h e  r e s u l t s )  i s  

t h e  r a t i o  of g rav i t a t iona l  t o  cent r i fuga l  forces .  

This adds power t o  the  ana lys i s  because it 

For example, the r a t i o  of per ipheral  t o  meridional 

Section 5 

A t  t h i s  point  we have t o  solve th ree  simultaneous l i n e a r  p a r t i a l  d i f -  

f e r e n t i a l  equations i n  order t o  f i n d  the  e f f e c t s  of f r i c t i o n  and temperature 
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gradients  on the meridional flow. 

must be done by i t e r a t i o n ,  o r  successive approximations. 

t r ied has not worked, and it is explained why. 

order  of magnitude of the  r e su l t i ng  temperature gradients  i s  &e and t h i s  

furnishes  a good deal of i n s igh t  as t o  the  d i r ec t ion  i n  which one must proceed. 

A new method is  proposed fo r  fu tu re  tr ial ,  and i t s  expected advantages are 

discussed. 

The solut ion i s  not straightforward, but  

The first method 

However, a ca lcu la t ion  of the 

Sections 6 and 7 
4 

The details of numerical in tegra t ion  of t h e  three equations are dis- 

The d i f f e r e n t i a l  equations are  replaced by f in i te -d i f fe rence  equations cussed. 

and e lec t ronic  ca lcu la t ing  machines are employed i n  the  solut ion.  

Sect ion 8 

The area i n  which we had considerable success i s  i n  the so lu t ion  of 

the  f r i c t i o n l e s s  incompressible flow f o r  various i n l e t  configurations,  

requires  the solut ion of only one of the three d i f f e r e n t i a l  equations des- 

cr ibed above. Resul ts  of such ca lcu la t ions  f o r  several  configurations of 

i n t e r e s t  are presented. 

real flow pa t te rn ,  are a necessary starting point  f o r  the  understanding of 

the  general problem. 

This 

These r e s u l t s ,  while not presuming t o  describe the  

-ix- 



Nomenclature 

. 

C P  

d* 
G 
Tt 

DZ 
-c 
F 

spec i f i c  heat a t  constant pressure 

diameter of t he  i n l e t  pipe 

d i f f e r e n t i a t i o n  following the  f lu id ,  Stokes der iva t ive  

second-order p a r t i a l  d i f f e r e n t i a l  operator, defined i n  
Equation ( 11) 

body force  ac t ing  on the f l u i d  per u n i t  mass 

acce lera t ion  of grav i ty  

sca le  f ac to r s  i n  generalized coordinate systems 

enthalpy per u n i t  mass 

u n i t  vectors i n  generalized coordinate systems 

the  set of in tegers  1, 2, 3, ... 
thermal conductivity 

curv i l inear  dis tance measured normal t o  t he  streamline 
s t a t i c  pressure 
source function, heat generated i n  the  f lu id /un i t  volume, 
u n i t  time 

source funct ion averaged over the sphere 

rate of f lu id  flow through the sphere, volume/unit time 

rad ius  measured from the ax i s  of r o t a t i o n  

radius  measured from the center  of the sphere 

curv i l inear  dis tance measured along the  streamlines 

time 

temperature 

average temperature r ise of the f l u i d  from i n l e t  t o  o u t l e t  

orthogonal components of the  ve loc i ty  vector 

-X- 
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V 

it 
! *  

I 

i 

h 

e 
Q 
P 
3 

velocity vector 

distance, measured upward from the equator, along the axis 
of rotation 

generalized curvilinear coordinates 

volumetric coefficient of expansion 

angle between the axis of the inlet pipe and the radial 
direction? measured in the meridional plane 

finite difference 

vector operators: gradient, divergence and-curl 

Laplacian operator 

in spherical coordinates, angle measured from the N-pole 

absolute viscosity , mass/length, time 
lcinemat i c v i  s co sit y , ?/! ? length2/time 

orthogonal components of the vorticity vector ? (time) -' 
density 

viscous dissipation of energy/unit volume, time 

s tr eam function, volume /t ime 

vorticity vector, v x 3 
angular momentum per unit mass = C@/ , where VI/ is the peri- 
pheral component of velocity 

Primed quantities are normalized as described in Section 4. 

Subscript zero denotes conditions at the inlet. - -A- 
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1. The Equations of Motion 

The equations of motion f o r  a viscous compressible f l u i d  are: the  

momentum equation 

the  equation of cont inui ty  

* 

where 

. . 
I~ 

1 

I 

and the energy equation 

= enthalpy/unit mass 

= thermal conductivity 

& z energy d iss ipa t ion /uni t  volume, un i t  t i m e  

= i n t e r n a l  heat generated/unit volume, u n i t  t i m e .  

I n  equation ( 3 ) ,  the  four terms on the right s ide  describe the  en- 
9 

thalpy r i s e  of the  f l u i d  due, respect ively,  t o  compressive e f f ec t s ,  thermal 

conduction within t h e  f l u i d ,  viscous d iss ipa t ion ,  and heat generation. I n  

-1- - 
i 
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the present case, the first three are negligibly small compared with the fourth. 

Furthermore, replacing dfl 

state) equation (3 )  simplifies to 

by CpdT (presuming the fluid to remain in the liquid 

2. The Momentum and Continuity Equations 

Following Goldstein (Ref. 1) , except that density variations are here 
not neglected, equations (1) and (2) are reduced as follows: 

of (I) and dropping time-dependent terms: 

Taking the curl 

For steady-state axi-symmetric flow, equation (2) can be satisfied by the 

definition of a stream function # .  
coordinate system ( d, , 
by h,d& , h,df 9 b\, d7 

It is convenient to use a generalized 

,> ), where the elemental displacements are given t . With reference to Figure 1,s is the axis 
of rotation, 4 i s  the angle measured 

from the N-pole, R i s  the radius from the 

center of the sphere,r i s  the distance 

from the axis of rotation; and for a right- 
P 

handed 

fourth 

Because of axi-symmetry, = 0 
coordinates, ($, = 2 

53 9 

and P = 

S 
-2- 

system, the positive direction of 

into the plane in the first and 

quadrants of the meridional plane. 

h3= c = RsinO e In wqqjrical 

h,= 1 and hp I . In spherical 
d 



a coordinates, d = R  and ($2 8 , h,= \ and h,= 9 . The components 

of the veloci ty  vector w i l l  be denoted by U , d , W i n  t he  d i r ec t ions  
D L y  r 

respect ively;  t h e  components of t he  v o r t i c i t y  vector are - 2 5 1  

I n  def ining a stream function f t o  s a t i s f y  equation ( 2 ) ,  no s igni -  

f i c a n t  accuracy i s  l o s t  by neglecting the  var ia t ion  i n  density over t h e  f ield.  

Were the densi ty  var ia t ion  included here, terms would be introduced i n  later 

equations which would be qui te  negl ig ib le  compared with the o ther  terms i n  

those equations, and no gain would r e s u l t  from t h e  added complication. How- 

ever, it must be emphasized that the  first term on the r i g h t  of equation ( 5 )  

cannot be neglected; there it i s  found t h a t  i n  t h i s  problem the coe f f i c i en t  of 

the  densi ty  gradient is qui te  l a rge  and t h e  whole term becomes of t he  first 

magnitude. 

Returning t o  equation ( 2 ) ,  

which is satisfied by 

It i s  convenient t o  replace t h e  per ipheral  component d by the angular momentum 

per  u n i t  mass, fi , i . e . ,  

-3- 



1 

n_= h,N. 

from which the three vorticity components are, using equations (7) and ( 8 ) ,  

and 

c 1 

where 

2 
[Note that 9 is an operator which is adjoint to the Laplacian, which is 
\ 

In Cartesian coordinates, where h, = h2 = b3= I > pz and qz are identical. 

-4- 
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Equation ( 5 )  i s  the  equation for t he  vo r t i c i ty .  The t h i r d  component 

of vor t ic i ty ,  < , i s  the  one which produces secondary flow i n  t h e  meridional 

plane. Taking the  t h i r d  component of equation ( 5 ) ,  

where b (  1 i s  the  Jacobian operator.  
bC % )  

Another independent equation between $ and& i s  required and t h i s  i s  

obtained by taking the  t h i r d  component of  equation (1). Noting t h a t  (?Ij = 0 , 

h = O  , and using equations (7),  ( g ) ,  and (lo), 

The last two equations may be in te rpre ted  as follows: The f irst  term 

of (12) describes the  growth of v o r t i c i t y  i n  t h e  meridional plane; t h e  second 

term, production of t h i s  v o r t i c i t y  due t o  the  boundary layer  of t h e  per ipheral  

flow; t h e  t h i r d  term, production due t o  densi ty  gradients;  t he  l a s t  term, pro- 

duction due t o  v iscos i ty  ac t ing  on the meridional flow. The last  term must 

be qui te  small compared with t h e  others; it w i l l  be neglected i n  t h e  remainder 

of t h i s  discussion. 

Equation (13) describes the  effect of Viscosity ac t ing  on t h e  pe r i -  

pheral  flow and must be solved simultaneously with equation (12).  

not appear a t  present t o  be within reach. 

Th i s  does 

Instead, a simpler and more re- 

a l i s t i c  a t tack  i s  proposed, t h a t  of making an assumption as t o  t h e  magnitude 

of a peripheral  flow boundary layer ,  based la rge ly  upon d i r e c t  measurements 

made on t h e  p l a s t i c  model, and in se r t ing  t h i s  assumption i n t o  equation (12).  

-5- 



I 
This procedure has several  recognized d i f f i c u l t i e s :  ( a )  t h e  measurements them- 

selves are qui te  d i f f i c u l t  t o  make i n  t h a t  t he  support f o r  the probe inevi tably 

d is turbs  the  flow i n  t h e  sphere; (b)  t he  boundary layer  Will itself change 

under the  influence of densi ty  gradients i n  the  f lu id ,  and t h i s  cannot be 

duplicated i n  the  p l a s t i c  model; and (c )  invest igat ion of t h e  effects on bound- 

a ry  layer  of d i f f e ren t  i n l e t  arrangements requires  e i t h e r  a number of d i f f e ren t  

p l a s t i c  models o r  extrapolat ion from t h e  one set of data which itself i s  of 

ra ther  low accuracy. Nevertheless, t h i s  procedure appears at present t o  be 

more a t t r a c t i v e  than t h e  a l t e rna t ive  mentioned a t  t h e  beginning of t h i s  para- 
s 

Returning t o  equation (12), it can be shown tha t  each of t h e  terms is  

invariant  with respect t o  d i f f e ren t  sets of (6, r )  
i n  each term & and P are orthogonal and the  h ’ s  be defined according t o  the  

respective def in i t ions  of DL and . Thus i n  t h e  first term, it appears at  

present t o  be convenient t o  choose $ and p i n  t h e  d i rec t ions  normal t o  and 

provided, of course, t ha t  

e 
a \ a -  

h T a -  d? along the  streamlines, respectively,  so t h a t  and 
A -  2 

- x . In  t h e  second and th i rd  terms, it i s  more convenient t o  

choose o(- 2 and f =  Y , thus h,= hZ’- \ . I n  each case 1?, = v  
Neglecting t h e  viscosi ty  

Wt-, 

=R5h8 , t h e  dis tance from the  axis of ro ta t ion .  

term, and noting t h a t  5 = 0 , (12) becomes 

Note t h a t  t o  be consis tent  with t h e  def in i t ion  of )b i n  equation (7)  9 
always negative; 

pos i t ive  direct ion.  

i s  ’ d n  ’ 
The first term on the  r i g h t  may a l s o  be wr i t ten  

i s  the  veloci ty  along the streamline i n  the  -T s i  

-6- 
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To evaluate t h e  last  two terms i n  equation (14), a fur ther  l inear iza-  

t i o n  i s  necessary. 

der ivat ives  with respect  t o  the  per ipheral  angle and neglecting t h e  viscous 

terms , 

The t' and 3 components of equation (1) are, omitting 

and 

It appears reasonable t o  say t h a t  t h e  pressure f i e l d  i s  determined pr inc ipa l ly  

by t h e  cent r i fuga l  and gravi ta t iona l  f i e l d s  respectively,  and t h a t  t he  per tur -  

bat ions on the pressure f ie ld  due t o  t h e  meridional flow when multiplied by the  

density gradients give higher order terms which are negl igible  i n  equation (14).  

For the  purposes of equation (14), therefore ,  
2 9 2 P o ?  and 

& -rd , Y 
i s  a constant densi ty  evaluated, say, a t  the  i n l e t .  

where g. 
The density gradients may be t r ans l a t ed  i n t o  temperature gradients 

f o r  small densi ty  changes, 

t h o u g h  :he volumetric coef f ic ien t  of expansion, 

where subscr ipt  zero denotes i n l e t  conditions. From t h i s ,  

Equation (14) now becomes 

-7 - 



Equation (16) shows exp l i c i t l y  how the  po ten t i a l  ( f r i c t ion le s s ,  i n -  

compressible) flow is  d i s to r t ed  by t h e  e f f ec t s  .of f r i c t i o n  and temperature 

gradients.  

i 

I 

, except f o r  a f ac to r  of >+ z I n  t h e  term on the  l e f t ,  - 
(k/Y-\ i s  the  

‘bs b- , is proportional t o  the meridional velocity,  whereas 

rate of growth (along a streamline) of t h e  vo r t i c i ty  vector normal t o  t h e  

meridional plane. 

onal streamlines f r o m t h e  po ten t i a l  solution, and thus i s  a measure of t h e  second- 

This vo r t i c i ty  vector represents  t he  departure of t h e  meridi- 

ary flow. 

The physical mechanism of t h i s  effect i s  as follows: 

W 2  hT Considering first t h e  temperature gradients,  - - 
r ’bz is  t h e  

product of the ve r t i ca l  temperature gradient and the  cent r ipe ta l  acceleration. 

That such a fac tor  should produce a ro t a t iona l  flow i n  t h e  meridional plane i s  

seen by examining Figure 2 .  Imagine a crude temperature d i s t r ibu t ion  as shown. 

Then, with ro t a t ion  of the f l u i d  about the  

? axis ,  t h e  upper, cold f l u i d  portion, 

having a higher density,  w i l l  tend t o  move 

outwards t o  maintain radial equilibrium 

between cent r i fuga l  force and s t a t i c  pres- 

sure.  Just t h e  opposite i s  t r u e  f o r  t h e  

lower, w a r m  portion, and thus a clockwise 

c i rcu la t ing  motion (pos i t ive  vo r t i c i ty  f ) 

Obviously, a counterclockwise c i rcu la t ing  motion would r e s u l t  f o r  i s  created.  

t h e  reverse temperature d i s t r ibu t ion .  

-8- 
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i s  the  product of t h e  r a d i a l  temperature gradient 

For a temperature d i s t r ibu t ion  as shown i n  Figure 3 
d br 

The term 

and the  grav i ta t iona l  f i e l d .  

it i s  seen t h a t ,  due t o  the  la rger  density i n  

the  outer  region, a clockwise c i rcu la tory  

motion r e s u l t s .  Again, reversa l  of the warm 

and cold portions would reverse t h e  d i rec t ion  

of ro ta t ion .  

It i s  believed tha t ,  s ince the  centr i fugal  forces  grea t ly  exceed 

gravi ta t iona l  forces  i n  the  present application, t h e  term 

exceed . This w i l l  not be t rue ,  of course, if the  r a d i a l  temper- 

a tu re  gradient becomes somewhere i n  t h e  f i e l d  much la rger  than t h e  v e r t i c a l  

temperature gradient, but  t h i s  appears unlikely.  

N' >T w i l l  -FZ 

As w i l l  be seen later, t he  poten t ia l  solut ion f o r  a radial. i n l e t  i n  

the  upper hemisphere shows much higher ve loc i t ies  i n  the upper por t ion  of the 

reactor  than i n  the  lower. 

gradients,  and a r e su l t i ng  clockwise c i rcu la t ing  motion as roughly indicated 

This would ind ica te  negative v e r t i c a l  temperature 

i n  Figure 2. This would then reduce the  veloci ty  i n  t h e  upper portion, giving 

a higher temperature there .  I n  the  lower portion, t he  veloci ty  is  increased 

and t h e  temperature reduced by t h i s  secondary motion. 

Thus, l a rge  temperature gradients would tend t o  be reduced by t h e  

creat ion of a secondary motion generated by these gradients.  The magnitude 

of t h i s  effect  depends on t h e  magnitude of t he  cen t r i f igua l  forces,  as pre- 

viously indicated.  

-9 - 



. The term describing the  e f f ec t  of ve r t i ca l  gradients i n  the  per ipheral  

I 2 b - 4  veloci ty  component due t o  t h e  influence of f l u i d  f r i c t i o n  i s  - 
f 3  2 2  

Figure 4 shows a possible  f r i c t i o n  layer  near t he  w a l l s ,  indicat ing a region 

of reduced per ipheral  velocity,  w. I n  t he  upper and lower regions a reduction 

i n  per ipheral  veloci ty  W = -  n gives r ise  r 
t o  an inward motion of t he  f lu id ,  again i n  

order t o  maintain radial equilibrium. 

t h i s  case, however, two vort ices  are generated 

r a the r  than j u s t  one, t h e  upper one negative 

In 

and the  lower pos i t ive .  I 
It becomes apparent t h a t  i n  t h e  lower portions of t h e  reac tor  t h e  

act ions of f l u i d  f r i c t i o n  and varying density re inforce each other,  while at 

t h e  top these two influences a c t  i n  opposite d i rec t ions .  

3 .  The Energy Equation 

Equation (4)  may be wri t ten 

Taking d and i n  the d i rec t ions  normal t o  and along t h e  streamlines, respect-  P 
ively,  t h i s  reduces t o  

4. Normalization of t he  Dimensional Quantit ies 

We have l e f t  a set of th ree  simultaneous equations, (ll), (16), and 

f , f , and (18) f o r  t h e  th ree  unknowns . (Note t h a t  while  could be 3 
-10- 
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elfminat<ed by subs t i t u t ing  i t s  defining equation (11) i n t o  (16) , t h i s  would 

y i e ld  a t h i r d  order second degree equation i n  

f i c u l t  t o  solve d i r e c t l y , )  

, which would be r a the r  d i f -  0 
Before proceeding wi th  any computations, it i s  

convenient t o  normalize the  var iables  and reduce all t h e  terms t o  dimension- 

less groupings E 

A l l  of t he  l i n e a r  dimensions may be normalized w i t h  respecs t o  the  

5 ' s  s / R  n'= e R ' =  t2/~ Y ' =  r / ~ ~  , 0 '  0 
outside radius,  i - e - ,  

The temperature r i s e  from t h e  i n l e t  t o  my point  i n  t h e  sphere is normalized 
0' 

with respect  t o  t he  average temperature r i s e  from i n l e t  t o  ou t l e t ,  i .e . ,  

The stream funct ion i s  normalized with respect  t o  

%he t o t a l  through flow, i . e , ,  3' = 7 r J) /a , where 9 i s  the  t o t a l  

through flow i n  c f s ,  

at t h e  i n l e t ;  

The angular momentum i s  normalized with respect  t o  t h a t  

The source function i s  normalized. with respect  t o  t h e  average source 

taken over t he  sphere, i,e,, 

l a t i o n  

This i s  convenient because the re- 

permits t he  elimination of the terms Jaqe , 
power l e v e l  w i l l  be spec i f ied  ind i r ec t ly  through the  terms 9 and 

According t o  Reference ( 2 ) ,  the source d i s t r ibu t ion  as a function of R' may i n  

the  present case be approximated by a parabola with a zero slope at  

and a value of 26*5$ 7% t he  maximum at  

, and $, ; i n  other  words, t h e  

A"T,ge . 

k'= 0 

E''= Averaging t h i s  parabola 

over the  sphere and normalfzir-g, y i e lds  

-11- 



Summing up i n  dimensionless form, the three equations become . 
(a)  t he  energy equation 

. 
I 

(b)  t h e  vo r t i c i ty  equation 

and ( c )  t he  r e l a t i o n  between vo r t i c i ty  and stream function 

The dimensionless groupings, therefore,  which characterize t h e  flow 

are: AT& 
t a t i o n a l  forces  t o  cent r i fuga l  forces; and ( 2 l T f i 0 k / Q ) Z  , which characterizes 

; ~~~/~~ , which i s  proportional t o  the  r a t i o  of gravi- 

t h e  r a t i o  of t he  centr i fugal  forces  t o  the  i n e r t i a  forces  i n  the meridional 

plane. 

which i s  perhaps made more obvious by rewri t ing it as 4 ( z )  Efi Q Z  )' 
This la t ter  group i s  r e a l l y  the  reciprocal  of a kind of Froude's number, 

. vJe2 

TT R, 
F'roude's number i s  generally defined as "/La , t h e  r a t i o  of i n g r t i a  t o  

gravi ty  forces;  i n  t he  present instance,  

while 

replaces the gravi ty  f i e l d  

describes t h e  meridional veloci ty  (based on t h e  area of a 
q E a  

great  c i r c l e ) .  

y i e lds  a group which i s  The product 

frequently ca l led  Weber's expansion number; it describes the  r a t i o  of t h e  bouyant 

t o  the  i n e r t i a  forces .  

-12- 



Simultaneous Solution of the  Equations of Motion 

The procedure present ly  proposed f o r  t h e  simultaneous solut ion of‘ 

equations (21), (22), and ( 2 3 )  i s  as follows: 

(a)  Assume a s e t  of streamlines over t h e  f ield,  consistent with 

the prescribed boundary conditions. 

(b)  From equation (21),  perform the indicated integrat ion along 

successive streamlines t o  f ind  the  temperature Tis t r ibu t ion  corresponding 

t o  t he  assumed f i e l d  of flow, 

i s ,  of course, T’= 0 

The i n i t i a l  condition for t h i s  in tegra t ion  

a t  the  i n l e t  f o r  each of t h e  streamlines; T’ at 

t h e  o u t l e t  end of each streamline i s  a dependent variable,  bu t  i f  the work 

i s  done careful ly ,  / T I C / ? ’  

t o  be unity.  

( c )  

+’=I  

taken across the  o u t l e t  should come out 
+LO 

From t h e  r e su l t an t  teaperature  d i s t r ibu t ion  and the  measured 

( o r  assumed) d i s t r ibu t ion  of per ipheral  velocity,  in tegra te  along stream- 

l i n e s  t o  f ind  t h e  vo r t i c i ty ,  according t o  equation (22). 

d i t i o n  i s  again ($/) = 0 

flow i s  i r ro t a t iona l ,  or has negl igible  vo r t i c i ty  compared w i t h  that pro- 

The i n i t i a l  con- 

a t  the  i n l e t ,  which assumes t h a t  t h e  i n l e t  I 

duced i n  t he  sphere. 

(d) Having the  d i s t r ibu t ion  of vor t ic i ty ,  in tegra te  equation (23) ,  

a l i n e a r  second-order p a r t f a l  d i f f e r e n t i a l  equation, t o  f ind  the  stream- 

l ines ,  3 . .  
( e )  Having now a new set of streamlines, presumably better than the 

i n i t i a l  assumption, re turn  t o  (a)  and repeat  t h e  process u n t i l  convergence 

i s  obtained. 

-13- 
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The ac tua l  techniques of  performing the  individual integrat ions will 

be discussed i n  t h e  next section; f irst ,  t he  prccedure described above w i l l  be 

examined i n  more detail .  

A t  t h e  outse t  l e t  us say t h a t  at the  present writ ing we have not ye t  

found a numerical solut ion t o  the  complete s e t  of th ree  equations; t h a t  is, we 

have not made the  system converge. 

t he  i n i t i a l  assumption of t h e  d i s t r ibu t ion  of r(: must l i e  within a ce r t a in  

neighborhood of t h e  ul t imate  solut ion i n  order for t he  system of equations t o  

converge;. t h i s  region of convergence becomes smaller and smaller as the  values 

of t he  governing parameters AToJe and ( z r - k e ~ / ~ s  , get  

la rger .  With t h e  values of t h e  parameters as prescribed i n  the  €IRE, t he  region 

of convergence i s  apparently BO small t h a t  we have not ye t  found it. Unt i l  one 

From the  work we have done, it appears t h a t  

can make an assumption which prove6 t o  be ins ide  t h i s  region, t he  procedure 

described above is  a cut-and-try process, ra ther  than an i t e r a t i v e  one. 

To point t h i s  out more c lear ly ,  l e t  us assume t h a t  one might take the 

po ten t i a l  ( i .e., f r i c t i o n l e s s  and incompressible) solut ion f o r  as t h e  first 

assumption i n  (a), w i t h  t h e  hope t h a t  gradients i n  angular momentum and temper- 

a tu re  will produce only minor perturbations i n  t h e  po ten t i a l  solut ion.  

po ten t i a l  solut ion f o r  en t ry  a t  

no tangent ia l  component a t  t h e  i n l e t  (but  only radial and per ipheral  :omponents) 

The 

( i  .e., 30' north l a t i t u d e )  w i t h  0 = 6 0" 

i s  shown i n  Figure 6. Using this  so lu t ion  as a s t a r t i n g  point,  equation (21) 

gives tremendous temperature differences over t h e  f i e l d ,  due t o  the  grea t  

d i s p a r i t i e s  i n  residence time as revealed by t h e  streamlines. 

a t  Y ' =  0,s 

For example, 

, t h e  value of -6' along t h e  upper a rc  of t h e  meridian has 

S 



. 

reached only 0.10 ( i .e . ,  lo$ of the  ra ted  average temperature r i s e  through the  

reac tor ) ,  while at  t h e  same radius T This 
I 

along t h e  lower arc i s  about 8.4, 

corresponds t o  an ''average" temperature gradient i n  the  ve r t i ca l  d i rec t ion  of 

bT' = - 5 .  , roughly. (To t r a n s l a t e  t h i s  ifit0 degrees/unit length, A? 
multiply the  number by AT&/& 

then i n t o  (23), it  i s  revealed t h a t  t he  r e su l t i ng  vo r t i c i ty  i s  so la rge  t h a t  

.) When inser ted  in to  equation (22) and 
0 

t h e  through-flow i s  almost completely dominated by a large vortex, giving a 

closed region i n  the  center of t h e  sphere. This  is obviously no good f o r  the 

next i t e r a t i o n  s ince the  steady-state temperature i n  t h i s  closed reglon would 

be unbounded; i n  other  words, w e  are far outside the  range i n  which our l inear -  

d i za t ions  remain val id .  

A rough calculat ion shows t h a t  i n  order t o  avoid such closed regions 

with t h e  configuration described above, it i s  necessary t h a t  the  "average" 

ve r t i ca l  temperature gradient be i n  t h e  neighborhood of - 0.006 or  less ( i n  

absolute magnitude) as compared with the  - 5. mentioned i n  the  preceding para- 

graph. 

meters prescribed f o r  t h e  HRE.) 

(The f igure  of - 0.006 is based on the  magnitudes of the flow para- 

This rough calculat ion teaches two things: ( a )  With a strong per i -  

pheral  velocity/meridional veloci ty  r a t i o ,  as here prescribed, there i s  a 

strong influence which keeps ve r t i ca l  temperature gradients very small. 

i s  very favorable provided it can be shown t h a t  t h i s  influence i s  a stable 

one r a the r  than one which leads t o  o s c i l l a t i n g  temperatures. 

vergence of t h e  mathematical procedure described above i s  extremely sens i t ive  

t o  t h e  first assumption of streamlines.  

This 

(b)  The con- 
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T h i s  na tura l ly  begs t h e  question: Is t h e  order of solut ion given 

above t h e  bes t  order f o r  solving equations (21), (22), and (23),  or  would 

another order give a process with less s e n s i t i v i t y  t o  t h e  o r ig ina l  assumption? 

We feel at  present t h a t  t h e  proposed method i s  t h e  best f o r  t he  following 

reasons. The procedure described above (page 

( a )  Assumption of 

(b) 

obtain 7 - l  

( c )  

13 ) can be condensed to: 

P 
Differen t ia t ion  followed by in tegra t ion  i n  equation (21) t o  

Different ia t ion followed by integrat ion i n  equation (22) t o  

obtain ( e / +  )’ 

(a) Double in tegra t ion  i n  equation (23),  yielding new values of 

The inverse procedure t o  t h a t  proposed would be: 

( a )  Assumption of $‘ 
(b)  Di f fe ren t ia t ion  followed by integrat ion i n  equation (21) t o  

obtain TI 
I 

( c )  Double d i f f e ren t i a t ion  of $“ in  (23) t o  obtain [*/r) 
( a )  Differen t ia t ion  followed by in tegra t ion  i n  (22) t o  obtain 

The s ign i f i can t  difference between t h e  two procedures is t r i p l e  

in tegra t ion  vs. t r i p l e  d i f f e ren t i a t ion  of t h e  o r ig ina l  assumption. 

clear t h a t  t h e  former must be a “smoother” process than t h e  lat ter.  

It appears 

We me l e f t  with t h e  problem of making t h e  procedure described on 

page 13 less sens i t i ve  t o  i n i t i a l  assumption. We feel t h a t  t h e  method des- 

cribed below, although as ye t  untried,  has strong chances of  success. 

-16- 



The newly proposed method i s  t o  use the same procedure as be'fore, i n  

pr inc ip le  i f  not i n  detail ,  s t a r t i n g  perhaps with the  poten t ia l  solut ion as 

a f i r s t  guess f o r  3' , down t o  the  calculat ion of t he  new 

(23). 

[zltflo R./Q l2 
' s  from equation 3 

In  t h i s  s tep,  however, instead of using the  value o f  t he  parameter 

prescribed i n  the HRE, solve f o r  a value of t h i s  parameter 

which gives a secondary f l o w  which only per turbs  the  f i r s t  assumption instead 

of dominating it completely. 

can be used i n  t h e  next cycle of the  i t e r a t ion .  

each successive cycle, t he  value of [ z * f l o R . / ~ r  can be progressively 

increased, each small jump perturbing the  preceding solution, u n t i l  the  f u l l  

prescribed value is reached. This method consists,  i n  a sense, of s t a r t i n g  w i t h  

a l a rge  region of convergence and then l e t t i n g  that  region shrink i n  such a 

way t h a t  one always remains j u s t  inside t h e  boundary of t he  region as one ap- 

proaches t h e  f i n a l  solution. 

This w i l l  y i e ld  a new meridional flow which 

It i s  ant ic ipated t h a t  on 

The proposed method has another very important advantage. For each 

value of t h e  gradually increasing parameter, it should be no t r i c k  t o  solve 

f o r  t h e  appropriate streamline configuration which satisfied the  equations 

fo r  t h a t  value of t h e  flow parameter. This will give a family of solut ions 

for  a wide range of [zT.k, ee/~J2. This information i s  pa r t i cu la r ly  i m -  

por tant  f o r  the design of fu ture  reactors,  l a rge r  than the  HRE, where the  

r a t i o  of per ipheral  t o  meridional ve loc i t i e s  must be considerably less than 

i n  t he  HRE because of pressure drop considerations. 

c 6 .  Numerical Integrat ion of t h e  Equation 

Equation (23) , 

- 1'7- 
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i s  wr i t ten  i n  spherical  coordinates because it i s  eas i e s t  i n  t h i s  system t o  

f i t  t he  prescribed boundary conditions on +' . The method of in tegra t ion  

cons is t s  of replacing the  p a r t i a l  d i f f e r e n t i a l  equation by a la rge  f number of 

a lgebraic  f i n i t e  difference equations involving the  values of 9 a t  c e r t a i n  

i n t e r i o r  j o in t s .  Simultaneous solut ion of these equations y ie lds  the  dis- 

t r i b u t i o n  of )b'* The more i n t e r i o r  points  tha t  are used, t h e  more the  

r e su l t i ng  accuracy, and the  more labor.  

I Referring t o  Figure 5, consider t he  h a l f - c i r c l e  OL_RL_l 

divided i n t o  a l a t t i c e  of uniform 4 0 ' 6  and A R ' I s .  The coordinates of a 
given point  on the  l a t t i c e  a r e  ( R ;  , g j  ) . (Primes will be dropped tempo- 

r a r i l y  t o  avoid confusion with t h e  i,j notat ion.)  Neighboring points of 

> 

i n t e r e s t  are (R;-, ~ Q') , Mi+,, 4 ) p() d-1 1 J 

and ( R; ~ 8'") . Writing the Taylor series expansions for ti+, and 

$:, , each i n  terms of , and adding the  two expansions, one f inds  

Subs t i tu t ing  equations (24) and (25) i n t o  (23), 

5,n 0J 
sin \ ~ j -  "e) 

2 2 
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where E, = e r r o r  involved i n  t h e  f i n i t e  difference approximation 

t o  JZ+/$l , and i s  of order (AA)' , 
= e r ro r  involved i n  t h e  approximation t o  

and i s  of order (hQ)1 

These considerations show tha t  as the  la t t i ce  spacing i s  decreased, 

holding 

dimension. By t ry ing  a f e w  combinations, it w a s  found t h a t  a l a t t i c e  spacing 

of QR': Q.\ and A8 '/24 gives a good approximation t o  the wanted 

constant, t h e  e r r o r  decreases as t h e  square of t h e  l a t t i ce  

function. 

Rewriting equation (26) with the  omission of t h e  e r ro r  terms, 

an equation e x p l i c i t  i n  {: 
quan t i t i e s  are s t i l l  dimensionless. ) For the  l a t t i c e  spacing chosen, there 

are 207 such l i n e a r  a lgebraic  equations t o  be solved simultaneously f o r  each 

set of boundary conditions i n  $ '  and d i s t r ibu t ion  of 

. (The primes are suppressed, but  a l l  the  

($/r)f 

The solut ion of t h i s  la rge  set o f  equations i s  best accomplished on 

During t h i s  pas t  summer, three such problems automatic calculat ing machines. 

(po ten t i a l  solut ions with i n l e t s  at  4 = 60°, 120°, and 13'j0, respect ively)  

were solved i n  t h e  I B M  Card-programmed Electronic Calculator a t  K-25. 

method used, known as t h e  Gauss-Seidel method, starts from an i n i t i a l  
The 
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estimate of t h e  solut ion t o  t h e  set of equations, and by a series of i t e r a t ions ,  

cor rec ts  t h e  i n i t i a l  estimate‘ i n  t h e  d i rec t ion  of t h e  f i n a l  solution. The 

number of i t e r a t i o n s  required depends on the  excellence of t he  i n i t i a l  estimate, 

on the  r e l a t i v e  magnitudes of t h e  coef f ic ien ts  of f i n  t h e  equations, and on 

t h e  precis ion t o  which the  solut ion i s  required.  

I 

With t h e  present problem, the  t i m e  required per i t e r a t i o n  by t h e  

CPEC is  90 minutes. I n  order t o  obtain reasonable convergence within f i v e  

o r  s i x  i t e r a t ions ,  it was found t h a t  an i n i t i a l  estimate based on i n t u i t i o n  

was not usual ly  good enough. It w a s  found necessary t o  base the  i n i t i a l  

estimate on the  r e s u l t s  of a hand-calculation of equations (27) based on a 

course net  ( b R= 0.2 I A 8 = 5 ) with 44 i n t e r i o r  points .  Using t h e  

re laxa t ion  techniques described by Southwell (Ref. 3) ,  a reasonably experienced 

operator can prepare such an estimate i n  about e ight  hours, 

\Z 

I 
Following t h e  machine ca lcu la t ion  of t he  $ 5  at the  207 l a t t i c e  

points ,  it i s  necessary t o  p l o t  on the semi-circle the streamlines, o r  l i n e s  

of constant . To aid i n  t h i s ,  t h e  CPEC performs an in te rpola t ion  along 

l i n e s  of constant i and J’ respect ively t o  give values of  # a t  ( I  ~ j+ f ) 
and a t  ( i+2 , j ) 
r a t i c ,  o r  three-point,  in te rpola t ion  i s  used. This makes it qui te  simple t o  

select and p l o t  t h e  coordinates of po in ts  of constant 

, where n m  1, 2, 3, 4, for each value o f  CilJ’) . Quad- 

The CPEC, while qu i te  f l e x i b l e  i n  i t s  appl icat ions,  i s  apparently 

not t he  machine bes t  su i t ed  f o r  t h i s  problem. 

ava i lab le  t h i s  summer, i s  spec i f i ca l ly  designed t o  solve problems of t h i s  type. 

The NEPA Dig i t i a l  Computer, un- 

Instead of 90 minutes per i t e r a t i o n ,  t h e  mEPA Computer can make about 5 i t e r a t i o n s  



I ED 

per hour on a set of 207 equations and can reduce the  time required t o  make 

t h e  i n i t i a l  estimate t o  about one o r  two hours. It i s  urgently recommended 

t h a t  t he  NEPA Computer be made ava i lab le  t o  t h i s  problem i f  t h e  work i s  t o  be 

continued. 

7. In tegra t ion  of t h e  Energy and Momentum Equations 

Equations (21) and (22) a r e  wri t ten  t o  ind ica te  in tegra t ions  along 

t h e  streamlines.  While simple i n  pr inc ip le ,  t h i s ' c a n  become "messy" i n  execution, 

. 

par t i cu la r ly  if good precis ion i s  required.  An examination of t he  two equations 

shows t h a t  prec is ion  is  necessary; after in tegra t ion  along s t reamlines  t o  f i n d  

T'  , it i s  necessary t o  f i n d  t h e  v e r t i c a l  and horizontal  d i r ec t iona l  der ia -  

t i v e s  of T ' ,  and small e r r o r s  i n  the  in tegra t ion  are grea t ly  magnified i n  the 

d i f f e ren t i a t ion .  

Another disadvantage of in tegra t ion  along streamlines i s  t h a t  the 

values of ($/rf so found must then be interpolated t o  values on the  l a t t i c e -  

po in ts  f o r  use i n  equation (23)  (o r  equation (27)).  

be a nuisance, espec ia l ly  s ince t h e  v o r t i c i t y  gradients  are qui te  high i n  some 

regions of the  f ie ld .  

This in te rpola t ion  can 

While some of t he  details remain t o  be worked out, w e  feel t h a t  these 

d i f f i c u l t i e s  can be removed by rewri t ing equations (21) and (22) so as t o  r e -  

qu i re  in tegra t ion  along l i n e s  of constant R and 8 , respectively,  r a the r  

than along l i n e s  of constant 

replacing t h e  graphical p a r t  of t h e  work by numerical work, and of giving t h e  

values of ~t/..)' 

. This w i l l  have the  two-fold advantage of 21 . 
d i r e c t l y  on the  l a t t i c e  points  without in te rpola t ion .  
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8.  Fr ic t ion le s s  Incompressible Flow (with solut ions)  

Under the l imi t ing  assumption t h a t  t h e  f l u i d  has no viscosi ty ,  one 

sees from equation (13) t h a t  t he  angular momentum fi of t h e  r e r iphe ra l  flow 

i s  constant over the  field; t h a t  is, the per ipheral  flow i s  a free vortex. 

If one couples with t h i s  t he  assumption t h a t  t he  coef f ic ien t  of expansion 

i s  zero, one f inds  from equation (22) t h a t  t h e  value of gh i s  constant 

along each streamline and, i n  pa r t i cu la r ,  i f  the  v o r t i c i t y  i s  zero at  t h e  

i n l e t ,  it i s  zero everywhere. 

e 
Thus equation (23) reduces t o  

qJ'= 0 

Now, t he  same r e s u l t  would be ar r ived  a t  if  ins tead  of assuming a f r i c t i o n l e s s  

f l u i d ,  one were in te res ted  i n  t h e  case of zero per ipheral  component, i . e . ,  

[znn,R,/o.] = 0 . Thus, t h e  problem of the  f r i c t i o n l e s s  incom- 

p res s ib l e  f l u i d  i s  of more than mere academic i n t e r e s t  i n  t h a t  it a l s o  rep- 

resents  t he  l imi t ing  value f o r  decreasing r a t i o  of per iphera l  component t o  

through-flow. 

the study of r eac to r s  l a rge r  than t h e  HRE. 

As stated a t  the end of Section 5, t h i s  becomes important i n  

* . 

The solut ions of equation (28) fo r  three d i f fe ren t  pos i t ions  of 

t he  i n l e t  are given i n  Figures 6, 7, and 8. 

d i t i o n s  are t h a t  ?' i s  zero and unity,  respectively,  on t h e  appropriate 

region of the  surface of t he  sphere. The numbers on t h e  streamlines are 

normalized values of t he  stream function; e.g., le of t h e  f l u i d  flows through 

the  space of revolut ion marked out by streamlines 0.4 and 0.5. 

t h e  so lu t ion  i s  independent of  t h e  magnitude of t h e  per iphera l  component, 

provided t h e  per ipheral  flow i s  a free vortex. 

I n  each case, t he  boundary con- 

I n  each case, 
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FIG. 7 

SOLUTION OF POTENTIAL FLOW 
ENTRY AT 30' S.LATITUDE 
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The solut ions were found by a combination of hand and IBM calculat ing 

The number of i n t e r i o r  points  used i n  the  techniques as described i n  Section 6. 

f in i te -d i f fe rence  approximation was 207, corresponding t o  l a t t i c e  dimensions 

of A0 = 7 . 5 O  and AI?’= 0.1. Fine as t h i s  l a t t i c e  is ,  it i s  s t i l l  too 

coarse t o  give detailed information i n  t h e  immediate v i c i n i t i e s  of i n l e t  and 

ou t l e t .  This i s  not a major d i f f i cu l ty ,  however, inasmuch as the flow i n  these 

regions i s  r e l a t i v e l y  insens i t ive  t o  what is happending i n  the  remainder of 

t he  sphere and t h e  solut ions f o r  t h e  two s ingu la r i t i e s  ( i n l e t  and o u t l e t )  can 

be superposed on t h e  solut ion f o r  the bulk of the f i e l d  without any t rouble .  

The solut ions one chooses f o r  these s ingu la r i t i e s  depends on how one 

idea l izes  a s ingle  i n l e t  pipe i n t o  an axi-symmetric i n l e t .  

show the  i n l e t  represented by a r i n g  source, while  Figure 7 represents  t he  

i n l e t  by an annulus whose width equals the  ac tua l  diameter of t h e  s ing le  

i n l e t  pipe. In  Figure 6, t h e  ou t l e t  i s  represented by a pipe across which 

t h e  ax ia l  velocity is uniform; i n  Figure 8, it i s  represented by a point-sink. 

I n  any case, t h e  e f fec ts  of these assumptions are f e l t  only i n  the  immediate 

v i c i n i t i e s  of t he  s ingu la r i t i e s .  

Figures 6 and 8 

I n  Figures 6, 7, and 8, it i s  assumed t h a t  t he  incoming flow has 

radial and per ipheral  veloci ty  components only, but  no tangent ia l  component. 

To f ind the effect of adding a tangent ia l  component a t  t h e  i n l e t ,  one may add 

d i r e c t l y  t o  the  previous solut ion (due t o  the l i n e a r i t y  of t h e  d i f f e ren t i a l  

equation) the  solut ion t o  the  problem of #‘= 0 evermhere on the  surface of 

t h e  sphere, with an appropriate value of tangent ia l  veloci ty  a t  t h e  locat ion 

of t he  i n l e t .  Such a solut ion i s  given i n  closed form by H i l l ’ s  Spherical  

Vortex ( R e f s .  4 and 5 ) .  I n  our notation, it i s  

-27- 



where A is  a sca le  f ac to r  which determines t h e  s t rength of the  spherical  

vortex. From equation (29) the  maximum value of # i s  A,&. and it occurs a t  

8 = x/2 and R' * fi/2 

which the maximum value of 

. Figure 9 i s  a p l o t  of equation (29), i n  

has been set a t  unity.  

From equation (29),  

2 D2 4 = - 1 0  A R' $ma 0 
Comparing t h i s  with equation (23),  it is seen t h a t  f o r  t h i s  spherical  vortex, 

t h e  value of */r 
t h i s  spherical  vortex i s  not a po ten t i a l  flow ( t h a t  is, it has vor t ic i ty) ,  

it does s a t i s f y  the  condition f o r  f r i c t i o n l e s s  incompressible flow, t h a t  the  

v o r t i c i t y  be proportional t o  the  distance from t h e  axis of symmetry. 

i s  constant over t h e  f ie ld  (equal t o  X A ) .  Thus, while 

The value of the scale  f ac to r  A i n  equation (29) i s  found from the  

tangent ia l  component of veloci ty  one wishes t o  match a t  the  inlet .  

equation (29) i n t o  (7), 

Subst i tut ing 

\ v =  - 
R 5\n 8 3 R 

- \ - -  
A,P a' stno a R' 

- e -  Z A  5 ~ 0  (,- 
R ~ Z )  

R,Z 
KO = Z A   SI^ Q e / g :  

o r  

where vo i s  \r a t  t h e  i n l e t  ( i . e . ,  R ' = \  and 8= 8, ). Subst i tut ing 

from equation (30) i n t o  equation (29) and normalizing with respect t o  t h e  

-28- 
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t o t a l  through flow a s  Seztion h., the s t ~ ~ e e m  f w c l i o n  due t o  the  spherical 

vortex i s  

If one now idea l i zes  the i n l e t  pipe by an annulus of w i d t h  

diameter of the  actual inlet pipe) whose axis makes an  angle 

4, ( e q u a l  t c .  t13.-. 

6,  wi%n ;tic: 

radial. di rec t ion ,  the bracketed term i n  equation (31; re&.iees ta % .-, S W  6 ,  , 
t 2 A, SWZ.Qc 

and from t h i s  t h e  value of 4 i s  eas i ly  calcul.ated. 

r Figure 10 shows t h e  result of such a su>erpositio- ( f ~ % -  6, >aQ) 

when added t o  t h e  r e s u l t s  of Figure 6. The r ed i s t r ibu t i .m  .sP -*.i.sr:(: t L . c  ",io+s . 
is  qui te  evident; a quant i ta t ive  estimate of its cjffect is rrladc below. F i g r e  11 

shows t he  r e s u l t  of a2ding t he  spherical  vortcx (&gain 

Here the ef fec t  of the  vortex is so s t rong that b closed i*e&oii r e s u l t s .  In 

Figure 12, a value of A, is found which gives inc ip ien t  stegr,ation w i t h  the  

6,. 303) tc: Y1.'-~r.e 7 .  

same locat ion of t h e  i n l e t .  

These effects can be suinmarized by f inding the var ia t ion  i n  outlet; 

temperature l.n each of t h e  problems. 

following: 

Applying ecuation (211, one i'inds tllc 
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FRICTIONLESS INCOMPRESSIBLE FLOW 
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INLET PIPE AT 1l.S TO THE RADIAL 
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I .  

Summarizing t h i s  section, it must be emphasized that these ideal f l u i d  

solutions,  while i n t e re s t ing  and important i n  themselves, are not intended t o  

describe t h e  real flow pa t te rn .  These solutions are necessary as a s t a r t i n g  

point,  but  whether o r  not t h e  ana ly t ica l  approach represented by t h i s  report  

will bear f r u i t  will be determinable only after t h e  set of equations (21), 

(22), and (23) has been made t o  converge. 
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