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Introduction

Predicting the fluid flow pattern in a sphere, under the combined in-
fluences of friction and distributed heat sources, is a complicated problem.
It is almost trite to say that neither model experiments nor mathematical
analysis, one without the other, is very convincing; quite obviously, each

must lean heavily on the other.

This report outlines the beginnings of some theoretical work intended
to supplement and extend the model experiments performed for the HRE. While
the experiments have helped us remarkebly in directing the lines along which
the analysis must go, and have also indicated the order of magnitude of cer-
tain influences which are not readily predictable by analysis but which must
be incorporated therein, a satisfactory wedding of the experimental and ana-
lytical results has not yet teken place. However, we feel confident enough in
our method of attack to predict that such a meeting will eventually take place

and to recommend that this work be continued toward that goal.

Lo make the analysis tractable at all, a number of idealizations must
be made. The first is that the flow is completely symmetrical with respect to
the axis of rotation. This implies that the inlet, instead of consisting of
a single pipe, as in the HRE, is an annulus running around the sphere at a
constant latitude. There is evidence from the experiment that this is not too
bad en idealization; even with & single inlet, there have been observed no
variations with respect to longitude (i.e., peripheral angle). If such vari-
ations do exist, but are simply not detectable by present measuring techniques,

1t can still be said that the idealization will be closer to reality in the case

-Vi-
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of larger reactors, for which multiple inlets are planned.

A second idealization is that turbulence is not explicitly taken into
account. It is accounted for implicitly in that where the analysis requires in-
formation as to the extent and magnitude of the retarded layer near the wall of
the sphere, this information is to be taken largely from measurements made on
the model sphere, which take into account the action of turbulence. On the
other hand, in calculating temperature distribution, the effect of tﬁrbulent
interchenge has so far been neglected. This is imperfect at best, but the
results of our analysis should then be viewed as conservative; that is, tem-

perature gradients will in actuality be less than the analysis will predict.

In addition to these two principal idealizations, a number of minor

simplifications are made and these are explained in the body of the report.

Qutline of the Report

— i

Section 1

The equations of motion (momentum, continuity, and energy equations)
are stated in quite general form, in vector notation. The energy equation is

immediately simplified for the purposes of the present problem.

Section 2

The momentum and continulty equations are manipulated by vector oper-
ations. The generalized curvilinear coordinate system is then introduced.
This is done because it will be found convenient to use three different coordi-

nate systems in different parts of the analysis: cylindrical coordinates,




spherical coordinates, and a system in which the streamlines and their normals
form the coordinate directions. The result of all this is equation (16), which
describes the effect of retarded layer and tempersture gradients on the meridional
flow. A physical interpretation of each of the terms of this equation follows

immediastely after equation (16).

Section 3

The energy equation is further reduced to a form which permits its

integration.
Section 4

The variables and parameters appearing in the final equations are
normalized, or made dimensionless. This adds power to the analysis because it
makes the results of any one calculation applicable to an entire class of
dynamically similar systems. For example, the ratio of peripheral to meridional
flow is found to be expressible by a single number; this radically reduces the
number of independent variables required to define the system. Only two other
dimensionless numbers are required to define the dynamics of & given geometrical
configuration; one describes the over-all tempersature rise of the fluid through
the reactor, the other (which probably has little effect on the results) is

the ratio of gravitational to centrifugal forces.

Section 5

At this point we have to solve three simultaneous linear partial dif-

ferential equations in order to find the effects of friction and temperature

. —viii-
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gradients on the meridional flow. The solution is not straightforward, but
must be done by iteration, or successive approximations. The first method
tried has not worked, and it is explained why. However, a calculation of the
order of magnitude of the resulting temperature gradients is made and this
furnishes a good deal of insight as to the direction in which one must proceed.

A new method is proposed for future trial, and its expected advantages are

discussed.

Sections 6 and 7

The details of numerical integration of the three equations are dis-
cussed. The differential equations are replaced by finite-difference equations

and electronic celculating machines are employed in the solution.

Section 8

The area in which we had considersble success is in the solution of
the frictionless incompressible flow for various inlet configurations. This
requires the solution of onlj one of the three differential equations des-
cribed above. Results of such calculations for several configurations of
interest are presented. These results, while not presuming to describe the
real flow pattern, are a necessary starting point for the understanding of

the general problem.
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specific heat at constant pressure
diameter of the inlet pipe
differentiation following the fluid, Stokes derivative

second-order partial differential operator, defined in
Equation (11)

body force acting on the fluid per unit mess
acceleration of gravity

scale factors in generalized coordinate systems
enthalpy per unit mass

unit vectors in generalized coordinate systems
the set of integers 1, 2, 3,...

thermal conductivity

curvilinear distance measured normal to the streamline
static pressure

source function, heat generated in the fluid/unit volume,
unit time

source function averaged over the sphere

rate of fluid flow through the sphere, volume/unit time
radius measured from the axis of rotation

radius measured from the center of the sphere

curvilinear distance measured along the streamlines

time

temperature

average temperature rise of the fluid from inlet to outlet

orthogonal components of the velocity vector
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velocity vector

distance, measured upward from the equator, along the axis
of rotation

generalized curvilinear coordinates
volumetric coefficient of expansion

angle between the axis of the inlet pipe and the radial
direction, measured in the meridional plane

finite difference

vector operators: gradient, divergence and .curl
Laplacian operator

in spherical coordinates, angle measured from the N-pole
absolute viscosity, mass/length, time

kinematic viscosity,/uq/Q , length®/time

orthogonal components of the vorticity vector;(time)'l
density

viscous dissipation of energy/unit volume, time
stream function, volume/time

vorticity vector, V x 7

angular momentum per unit mass = ¢ W , where W 1is the peri-
Pheral component of velocity

Primed quantities are normalized as described in Section k.

Subscript zero denotes conditions at the inlet.
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1. The Equations of Motion

The equations of motion for a viscous compressible fluid are: the

momentum equation

= 555 v(V) - (7xR) = F- -‘ch - vxd) +é__5_t) v[v.V) (1)

the equation of continuity

d
+ . =
Fe SR Al CX AR BRI (2)
eand the energy equation
DH ELE 2
— = S kv -+ ot (3)
? Dt D+t T é§ ?3 )
where
H = enthalpy/unit mass
k = thermal conductivity
<§ = energy dissipation/unit volume, unit time

" [@F e 2w (@97] - 27 v(o7) ~2(e.0) |

internal heat generated/unit volume, unit time.

=)
1

I

[=]

equation (3), the four terms on the right side describe the en-
thalpy rise of the fluid due, respectively, to compressive effects, thermal

conduction within the fluild, viscous dissipation, and heat generation. 1In

A— 1-
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the present case, the first three are negligibly small compared with the fourth.
Furthermore, replacing dH by CPAT (presuming the fluid to remain in the liquid

state) equation (3) simplifies to

% f/ﬁ‘:r (4)

Dt

2. The Momentum and Continuity Equations

Following Goldstein (Ref. 1), except that de_nsity variations are here
not neglected, equations (1) and (2) are reduced as follows: Taking the curl

of (1) and dropping time-dependent terms:

Ux (VaB) = v-‘—E-va » Jox(exd) (5)

For steady-state axi-symmetric flow, equation (2) can be satisfied by the
definition of a stream function }& . It is convenient to use a generalized
coordinate system ( & , , 7 ), where the elemental displacements are given
by h,dx , \n,_dls , hy dY . With reference to Figure 1,2 is the axis
2 ' of rotation, & is the angle measured

y, from the N-pole, R is the radius from the

center of the sphere, ¥ is the distance

4
(: from the axis of rotation; and for a right-

handed system, the positive direction of

»ifYG 1 ' ¥ is into the plane in the first and
fourth quadrants of the meridional plane.
Because of axi-symmetry, o = 0 3 hyz (= RsnB . In cyangrical
coordinates, oL = Z and (;: 'y = 1 and \nle . In spherical )

UNCLASSIFIED



coordinates, = K_ and (S: e , \ﬂ‘-—\ and ,=® . The components
of the velocity vector will be denoted by W , V , W in the directions ,(5

¥ , respectively; the components of the vorticity vector are %) s V} , § .

In defining a stream function }lf to satisfy equation (2), no signi-
ficant accuracy is lost by neglecting the variation in density over the field.
Were the density variation included here, terms would be introduced in later
equations which would be quite negligible compared with the other terms in
those equations, and no gain would result from the added complication. How-
ever, it must be emphasized that the first term on the right of equation (5)
cannot be neglected; there it is found that in this problem the coefficient of

the density gradient is quite large and the whole term becomes of the first

magnitude.

Returning to equation (2),

QV'V _?;_h{ \n\nw)*g‘;wgv\} “

which is satisfied by

IT Lo é#
u“~\'\.,_\f\z ST and V= Ah, Sx. N

¥

It is convenient to replace the peripheral component W by the angular momentum

per unit mass, ER ; i.e.,

=
_—
(- .
= w
T=
-
™~
[



rmm, ,wnw-.,-_,,.[
| > i

JNCRITE T T

L= -\f\3 w (8)
The vorticity vector
Wt e h
- - l d P P
= \/ = byt ~ =
w = v hon,hy | 2% > >3 ,
h, w h,v W, W

from which the three vorticity components are, using equations (7) and (8),

v on
%’"F;T\BS'C_}' ) (9)
N ¥
- Wy 20 (10)
and
o 2 D (h, 20y o
S h.hz[b‘* . 701\ +3(?(Thba_') '_F‘\;D}Z, (11)
where

CH 2 h, ]
b= h,i\z[?&(\r\?z\n aaoc) + 3%(“3\5 %(3” .

{Note that D’L is an operator which is adjoint to the Laplacian, which is

V1= V| 2 [l 2_\ é_(h,\m, 5)
WIS [P T T 3\ T 3P
In Cartesian coordinates, where " z=h,= b= R D*  and ¢’ are identical.i
Mess—— "
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Equation (5) is the equatlion for the vorticity. The third component
of vorticity, 6‘ , is the one which produces secondary flow in the meridional

plane. Taking the third component of equation (5),

13l A 2 (W] d(Ep oy
hhal 3 (%, p) MY 3 EY | T a(&‘t)+_\,§;o(o/),(l2)

where 5( ) ) is the Jacobian operator.

e —————————

>l )
Another independent equation between ¢ and __Q_ is required and this is

obtained by taking the third component of equation (1). Noting that (E?)3= o ,
-g:l = 0 , and using equations (7), (9), and (10),
h\hlhl b (DL') (5)

The lsst two equations may be interpreted as follows: The first term

of (12) describes the growth of vorticity in the meridional plane; the second
term, production of this vorticity due to the boundary layer of the peripheral
flow; the third term, production due to density gradients; the last term, pro-
duction due to viscosity acting on the meridional flow. The last term must

be quite small compared with the others; it will be neglected in the remainder

of this discussion.

Equation (13) describes the effect of viscosity acting on the peri-
pheral flow and must be solved simultaneously with equation (12). This does
not appear at present to be within reach. Instead, a simpler and more re-
elilstic attack is broposed, that of meking an assumption as to the magnitude
of a peripheral flow boundary layer, based largely upon direct measurements

made on the plastic model, and inserting this assumption into equation (12).

S -5-
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This procedure has several recognized difficulties: (a) the measurements them-
selves are quite difficult to make in that the support for the probe inevitably
disturbs the flow in the sphere; (b) the boundary layer will itself change
under the influence of density gradients in the fluid, and this cannof be
duplicated in the plastic model; and (c) investigation of the effects on bound-
ary layer of different inlet arrangements requires either a number of different
plastic models or extrapolation from the one set of data which itself is of
rather low accuracy. Nevertheless, this procedure appears at present to be

more attractive than the alternative mentioned at the beginning of this para-

graph.

Returning to equation (12), it can be shown that each of the terms is
invariant with respect to different sets of (04, (5) provided, of course, that
in each term ¢ and (‘3 are orthogonal and the W's be defined according to the
respective definitions of & and F . Thus in the first term, it appears at

present to be convenient to choose W and (5 in the directions normal to and

" . o_ .
along the streamlines, respectively, so that vy = 3 and
3 9 . In the second and third terms, it is more convenient to

hop ~ 2S :
choose &= Z and (’>= ¥ , thus \r\\ =¥h,= 1 . 1In each case \/\3 =Y
=lZs'm9 ; the distance from the axis of rotation. Neglecting the viscosity
term, and noting that 54—’/55 = 0 , (12) becomes

ae/ K2 L (i
(gh) o) - -5 20, Ao ey

X3 Y 2%

Note that to be consistent with the definition of }L in equation (7) gf is

n
always negative; -—-.": é‘i’ is the velocity along the streamline in the
positive direction. The first term on the right may also be written

[’ 5(%1)/5%]
e 4 ‘

6-
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To evaluate the last two terms in equation (14), a further lineariza-
tion is necessary. The ¥ and 2 components of equation (1) are, omitting

derivatives with respect to the peripheral angle and neglecting the viscous

terms,
oV t -
Ué—}-r*‘*—g‘g'% = "?3‘; (158)
and
AU- au. = ___\_'_ B —
U 52t U'W = Q s—E (15b)

It appears reasonable to say that the pressure'field is determined principally
by the centrifugal and gravitational fields respectively, and that the pertur-
bations on the pressure field due to the meridional flow when multiplied by the
density gradients give higher order terms which are negligible in equation (14).
For the purposes of equation (14), therefore, g-g = Yo %’: and g ; = —\Yod s

where ﬁo is a constant density evaluated, say, at the inlet.

The density gradients may be translated into temperature gradients
through “he volumetric coefficient of expansion, ()5 ;

(‘; = - -%—(%)P = %{T—?‘F:\ for small density changes,

where subscript zero denotes inlet conditions. From this,

‘E = b an b(./ = B'l'
ab(-'t‘/\) ) %o ():) ) 0 ‘(‘S\)l - %o (5‘( \

Equation (14) now becomes

3} o20%4) - ol
2 DS X> 0%

)

+(>=[l‘r—lg+€-§%] (16)

-1-
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Equation (16) shows explicitly how the potential (frictionless, in-
compressible) flow is distorted by the effects .of friction and temperature

gradients.

In the term on the left, -EEP » except for a factor of
¥~ , 1s proportional to the meridional velocity, whereas /Q' is the
X
rate of growth (along & streamline) of the vorticity vector normal to the
meridional plane. This vorticity vector represents the departure of the meridi-
onal streamlines from the potential solution, and thus is a measure of the second-

ary flow.
The physical mechanism of this effect is as follows:
2
WT 2T is the

r 3%
product of the vertical temperature gradient and the centripetal acceleration.

Considering first the temperature gradients,

That such a factor should produce a rotational flow in the meridional plane is
seen by examining Figure 2. Imegine a crude temperature distribution as shown.
‘2_ Then, with rotation of the fluid about the
# axis, the upper, cold fluid portion,
having a higher density, will tend to move
‘outwards to maintain radial equilibrium 7
between centrifugal force and static pres-

sure. Just the opposite is true for the

B hﬁ[‘G 7 Z lower, warm portion, and thus a clockwise

circulating motion (positive vorticity § )
is created. Obviously, a counterclockwise circulating motion would result for
the reverse temperature distribution.

8-
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The term Zr é;; is the product of the radial temperature gradient
and the gravitational field. PFor a temperature distribution as shown in Figure 3
| . it is seen that, due to the larger density in
the outer region, a clockwise circulatory
motion results. Agein, reversal éf the warm

and cold portions would reverse the direction

of rotation.

It is believed that, since the centrifugal forces greatly exceed

(A
gravitational forces in the present application, the term Jgr g%g will
exceed a é;; . This will not be true, of course, if the radial temper-

ature gradient becomes somewhere in the field much larger than the vertical

temperature gradient, but this appears unlikely.

As will be seen later, the potential solution for a radial inlet in
the upper hemisphere shows much higher velocities in the upper portion of the
reactor than in the lower. This would indicate negative vertical temperature
gradients, and a resulting clockwise circulating motion as rougﬁly indicated
in Figure 2. This would then reduce the velocity in the upper portion, giving
a higher temperature there. 1In the lower portion, the velocity is increased

and the temperature reduced by this secondary motion.

Thus, large temperature gradients would tend to be reduced by the
creation of a secondary motion generated by these gradients. The magnitude
of this effect depends on the magnitude of the centrifigual forces, as pre-

viously indicated.

C—— o
UNCLASSIFIED
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The term describing the effect of vertical gradients in the peripheral

* %
velocity component due to the influence of fluid friction is -%;% jié{ng
) Figure 4 shows a possible friction layer near the walls, indicating a region

of reduced peripheral velocity, w. 1In the upper and lower regions a reduction

| in peripheral velocity VV:{% gives rise

to an inward motion of the fluid, again in
order to maintain radial equilibrium. In

this case, however, two vortices are generated

—flG : 4 rather than just one, the upper one negative

and the lower positive.

It becomes apparent that in the lower portions of the reactor the
actions of fluid friction and varying density reinforce each other, while at

the top these two influences act in opposite directions.

3. The Energy Equation

Equation (4) may be written
DT _ dT L | PT ¢ afg_*\),
Dt ~ 2t +h,ht\n3 Py 3(5 3P 3 5/?%.(17)
Taking K, and F in the directions normal to and along the streamlines, respect-

ively, this reduces to

- 4 ooT g"/ﬁcF . (19)

i 4, Normalization of the Dimensional Quantities

We have left a set of three simultaneous equations, (11), (16), and

(18) for the three unknowns % , (Q , end T . (Note that while CS could be

-10-
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eliminated by substituting its defining equation (11) into (16), this would
yield a third order second degree equation in y», which would be rather dif-
ficult to solve directly.) Before proceeding with any computations, it is

convenient to normalize the varisbles and reduce all the terms to dimension-

less groupings.

All of the linear dimensions may be normelized with respect to the
: ry I.— I_. I- ’.—
outside radius, i.e., R = K/go , (= Y/Ro y 5= S/R° , n-F V\/Qo
The temperature rise from the inlet to any point in the sphere is normalized
with respect to the average temperature rise from inlet to outlet, i.e.,
[}
T = (T”-TB)//AT;VC . The stream function is normalized with respect to
. ! . ,
the total through flow, i.e., % = 2W(/J/Q , where () is the total

through flow in cfs. The angular momentum is normalized with respect to that

/
at the inlet; (L = _ﬂ_/
ets (L,

The source function 8 is normalized with respect to the average source
taken over the sphere, i.e., Z'= 5/%wm° This is convenient because the re-
lation

3
4wk, zm " P Q alave (19)

permits the elimination of the terms oNe » R , and CP ; in other words, the
power level will be specified indirectly through the terms Cl and Afrgve
According to Reference (2), the source distribution as a function of R! may in
the present case be approximated by a parabola with a zero slope at FL'=(3

1.

and a value of 26.5% »f the maximum at =1 . Averaging this parabola

over the sphere and normalizing, yields
[ ’2.
5 = 1.190 - 1317 (&) (20)

-11-
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Summing up in dimensionless form, the three equations become

(a) the energy egquation

' . L5 - ds'
T ‘ Yy ) (21)

(v) the vorticity equation

b) '5 {
(%) - ekt '(K““"[ 237 e f 4 | d
‘ ) -N)én’

and (c) the relation between vorticity and stream function

7& ,z 6229 5%(5"\ 9%£ ) = —(?—F—é\l—"&)z(é/r\/ R/'zsng - (23)

The dimensionless groupings, therefore, which characterize the flow

s’
, (22)

(, ATLNe R / _0, , which is proportional to the ratio of gravi-
tational forces to centrlfugal forces; and (? 7R, / Q) , which characterizes
the ratio of the centrifugal forces to the inertia forces in the meridional
plane. This latter group is really the reciprocal of a kind of Froude's number,

Na'z.
which is perhaps made more obvious by rewriting it as 4(‘,2'; ) Ko ( %z \z .
K,

Froude's number is generally defined as VL/ L , the ratio of ingrtiha to

gravity forces; in the present insta.nce) wg' /K replaces the gravity field
: £-]

while Q. /T\' 2_3 describes the meridional velocity (based on the area of a

great circle).

2
The product ( (5 NP )(Z“'Qo '2%{) yields a group which is

frequently called Weber's expansion number; it describes the ratio of the bouyant

to the inertia forces.

-12-
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5. Simultaneous Solution of the Equations of Motion

The procedure presently proposed for the simultaneous solution of

equations (21), (22), and (23) is as follows:

(a) Assume a set of streamlines over the field, consistent with
the prescribed boundary conditions.

(b) From equation (21), perform the indicated integration along
successive streamlines to find the temperature iistribu£ion corresppnding
to the assumed field of flow. The initial condition for this integration

. is, of course, 1-I= 0 at the inlet for each of the streamlines; ’r’ at

. the outlet end of each streamline is a dependent variable, but if the work

w'=1

is done carefully, /T'd%, taken across the outlet should come out
to be unity. #eo

(c) From the resultant temperature distribution and the measured
(or assumed) distribution of peripheral velocity, integrate along stream-
lines to find the vorticity, according to equation (22). The initial con-
dition is again G§/4r>l= 0 at the inlet, which assumes that the inlet
flow is irrotationai, or has negligible vorticity compared with that pro-
duced in the sphere.

(d) Having the distribution of vorticity, integrate equation (23),
a linear second-order parttal differential equation, to find the stream-

- lines, 7L

a | (e) Having now a new set of streamlines, presumably better than the

initial assumption, return to (a) and repeat the process until convergence

is obtained.

-13-
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.

The actual techniques of performing the individusl integrations will

be discussed in the next section; first, the procedure described above will be

examined in more detail.

At the outset let us say that at the present writing we have not yet
found a numerical solution to the complete set of three equations; that is, we
have not made the system converge. From the work we have done, it appears that
the initial assumption of the distribution of )/ must lie within a certain
neighborhood of the ultimate soiution in order for the system of equations to
converge; this region of convergence becomes smeller and smaller as the values
of the governing parameters C> AT, and (Z v, R, / Q )z , get
larger. With the values of the parameters as prescribgd in the HRE, the region
of convergence is apparently so small that we have not yet found it. Until one

can make an assumption which proves to be inside this region, the procedure

described above is a cut-and-try process, rather than an iterative one.

To point this out more clearly, let us assume that one might take the
potential (i.e., frictionless and incompressible) sélution for % as the first
assumption in (a), Wifh the hope that gradients iﬁ angular momentum and temper-
ature will produce only minor perturbations in the potential solution. The
potential solution for entry at é = 600 (i.e., 30° north latitude) with
no tangential component at the inlet (but only radial and peripheral :omponents)
is shown in Figure 6. Using this solution as a starting point, eqpatién (21)
gives tremendous temperature differences over the field, due to the great
disparities in residence time as revealed by the streamlines. For example,

at v'= 0.5 , the value of T along the upper arc of the meridian has

=1k
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reached only 0.10 (i.e., 10% of the rated average temperafure rise through the
reactor), while at the same radius T’ along the lower arc is ebout 8.4, This
corresponds to an "average" temperature gradient in the vertical direction of
bj%é?, : -5, , roughly. (To translate this into degrees/unit length,

multiply the number by AT;Vﬂ/ilo .} When inserted into equation (22) and
then into (23), it is revealed that the resulting vorticity is so large that
the through-flow is almost completely dominaﬁed by a large vortex, giving a
closed region in the center of the sphere. This is obviously no good for the
next iteration since the steady-state temperature in this closed region would
be unbounded; in other words, we are far outside the range in which our linear-

izations remain valid.

A rough calculation shows that in order to avoild such closed regions
with the configuration described asbove, it is necessary that the "average"
vertical temperature gradient be in the neighborhood of - 0.006 or less (in
abgolute magnitude) as compared with the - 5. mentioned in the preceding para-
graph. (The figure of - 0.006 is based on the megnitudes of the flow para-

meters prescribed for the HRE,)

This rough calculation teaches two things: (a) With a strong peri-
pheral velocity/meridional velocity ratio, as here prescribed, there is a
strong influence which keeps vertical temperature gradients very small. This
is very favorable provided it cen be shown that this influence is a stable
one rather than one which leads to oscillating temperatures. (b) The con-
vergence of the mathematical procedure described above 1s extremely sensitive

to the first assumption of streamlines.

-15-
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This naturally begs the guestion: Is the order of soiution given
above the best order for solving equations (21), (22), and (23), or would
another order give a process with less sensitivify to the original assumption?
We feel at present that the proposed method is the best for the following
reasons. The procedure described above (page 13 ) can be condensed to:

(a) Assumption of }L/

(b) Differentiation followed by integration in equation (21) to

obtain T

(¢) Dpifferentiation followed by integration in equation (22) to

obtain L€/4~Y

(d4) Double integration in equation (23), yielding new values of )A'.
The inverse procedure to that proposed would be:

(a) Assumption of ¢/

(b) Differentiation followed by integration in equation (21) to

obtain T/
(c) Double differentiation of ¢,'in (23) to obtain L%/Y\),

(d) Differentiation followed by integration in (22) to obtain

new 7/'8.

The significant difference between the two procedures is triple
integration vs. triple differentiation of the original assumption. It appears

clear that the former must be a "smoother"” process than the latter.

We are left with the problem of making the procedure described on
page 13 1less sensitive to initial assumption. We feel that the method des-

cribed below, although as yet untried, has strong chances of success.

-16-
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The newly proposed method 1s to use the same progedure as before, in
principle if not in detail, starting perhaps with the potential solution as
a first guess for (,b' ; down to the calculation of the new % 's from equation
(23). 1In this step, however, instead of using the value of the parameter
{Zﬂ .ﬂ.., R-n/Q lz prescribed 1n the HRE, solve for a value of this parameter
which gives a secondary flow which only perturbs the first assumption instead
of dominating it completely. This will yleld a new meridional flow which
can be used in the next cycle of the iteration. It is anticipated that on
each successive cycle, the wvalue of [ZfﬂoQo/Q]z can be progressively
increased, each small jump perturbing the preceding solution, until the full
prescribed value is reached. This method consists, ?n a sense, of starting with
a large region of convergence and then letting that region shrink in such a
way that one always remains just inside the boundary of the region as one ap-

proaches the final solution.

The proposed method has another very important advantage. For each
value of the gradually increasing parameter, it should be no trick to solve
for the appropriate streamline confi@ration which satisfied the equations
for that value of the flow parameter. This will give a family of solutions
for a wide range of [Z'ﬂ' ﬂo ZQ/Q]Z . This information is particularly im-
portant for the design of future reactors, larger than the HRE, where the
ratio of peripheral to meridional velocities must be considerably less than

in the HRE because of pressure drop considerations.

1
6. Numerical Integration of the Equation D ‘)L : - % A

Equation (23),

. % s ' Y eate
L B ) (e
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1s written in spherical coordinates because it is easiest in this systen to
fit the prescribed boundary conditions on ./lb' . The method of integration

- consists of replacing the partial differential equation by & large number of
algebraic finite difference equations involving the values of 5//, at certain
interior joints. Simultaneous solution of these equations yields the dis-
tribution of }5' « The more interior points that are used, the more the

resulting accuracy, and the more labor.

Referring to Figure 5, consider the half-circle ( 0= AR y O0<rlen )
divided into a lattice of uniform A8 's and AR/’S, The coordinates of a
given point on the lattice are (Qé 79']) . (Primes will be dropped tempo-
rarily to avoid confus:%on with the ¢ R j ' notation.) Neighb.oring points of
interest are (’Z[,, )QJ) s (:Q.L'.,_,,g'l) N (Z;) QJ—') o
and (RL ) QJH ) . Writing the Teylor series expansions for }LEI*, and

J J
}Z‘Z-, , each in terms of }L[ , and adding the two expansions, one finds

J J ’
ﬂ) = ¢(’+/ * %i-l A %Z _ (A 2)2( a4’b ) + - (2)"')
= (ar)? 7 \oer

In a similar manner, it can be shown that

(e e [ty + 5] @
(. W, -+ 5 -4

Substituting equations (2k4) and (25) into (23),

Rz(——) [)bmﬂ[’.,-.‘Z}b ] + s‘(g:eae‘)(ﬁb L’, ) 5m 9 LA L})

AR 5N At

Q

00 (Eq vEo) = - (_z;v_fl_f__@f)z(gr_;{' @o)z a‘: a6l

(26)
A -18-
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Fig. 5

LATTICE FOR NUMERICAL INTEGRATION
OF Dy=¢r
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where EK = error involved in the finite difference approximation
z z
to 2 4’/% e* , and is of order (AR) s

= error involved in the approximation to 58 (sm 9 T_) )

™

h-g-

and is of order (AQ)Z

These considerations show that as the lattice spacing is decreased,
holding AQ/AR constant, the error decreases as the square of thé lattice
dimension. By trying a few combinations » 1t was found that a lattice spacing
of AR'= Ol "gna AB = H/M gives a good approximation to the wanted

function.

Rewriting equation (26) w1th the omission of the error terms,

1 9 ,,\Q 1=
(Z.g [ m“!’c-] "ff\z‘ﬂ’-hAe\ ‘Jr’ * —‘w L,)L

"o w J
[Z ﬁ( ) 5;‘29. 89) *+ = o Ae)] ¥

3 J
= - A8 R sintd (22LeRe’ (i\

|

(27)
an equetion explicit in ;L‘J . (The primes are suppressed, but all the
quantities are still dimensionless.) For the lattice spacing chosen, there
are 207 such linear algebraic equations to be solved simultaneously for each

set of boundary conditions in SL' and distribution of (ﬁ /Y‘>'

The solution of this large set of equations is best accomplished on
automatic calculating machines. During this past sutmﬁer, three such problems
(potential solutions with inlets at £ = 60°, 120°, and 135°, respectively)
were solved in the IBM Card-programmed Electronic Calculator at K-25. The

method used, known as the Gauss-Seidel method, starts from an initial

- -
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estimate of the solution to the set of equations, and by a series of iterations,
corrects the initial 'estimate in the direction of the final solution. The
number of iterations required depends on the excellence of the initial estimate,
on the relative magnitudes of the coefficients of W in the equations, and on

the precision to which the solution is required.

With the present problem, the time required per iteration by the
CPEC is 90 minutes. In order to obtain reasonablé convergence within five
or six iterations, it' was found that an initiael estimate based on intuition
was not usually good enough. It was found necessary to base the initial
estimate on tﬁe results of a hand-calculation of equations (27) based on a
course net (AR= 0.2 ) XE ?7-— \ with 4l interior points. Using the
relexation techniques described by Southwell (Ref. 3), a reasonably experienced

operator can prepare such an estimate in about eight hours.

Following the machine calculation of the ¢’$ at the 207 lattice
points, it is necessary to plot on the semi-circle the streamlines, or lines
of constant 7L . To ald in this, the CPEC performs an interpolation along
lines of constant ( and j respectively to give values of 1/4 at (‘:;j"" .2.)
and at (l+% ,J\ , where nw= 1, 2, 3, 4, for each value of (C-,J') . Quad-
ratic, or three-point, 'interpolation is used. This mekes it quite simple to

select and plot the coordinates of points of constant )L .

The CPEC, while quite flexible in its epplications, is apparently
not the machine best suited for this problem. The NEPA Digitial Computer, un-
avallable this summer, is specifically designed to solve problems of this type.

Instead of 90 minutes per iteration, the NEPA Computer cen make about 5 iterations

Apn—. -21-
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per hour on a set of 207 equations and can reduce the time required to make
the initial estimate to about one or two hours. It is urgently recommended

; that the NEPA Computer be made available to this problem if the work is to be

continued.

7. Integration of the Energy and Momentum Equations

Equations (21) and (22) are written to indicate integrations along
the streamlines. While simple in principle, this’'can become "messy" in execution,
pérticularly if good precision is required. An examination of the two equations
shows that precision is necessary; after integration along sﬁreamlines to find
- 1-' , it is neceséary to find the vertical and horizontal directional deria-
tives of 'T', and small errors in the integration are greatly magnified in the

differentiation.

Another disadvantage of integration along streamlines is that the
values of (Q/ry so found must then be interpolated to values on the lattice-
points for use in equation (23) (or equation (27)). This interpolation can
be a.nuisance, especially since the vorticity gradients are quite high in some

regions of the field.

While some of the details remain to be worked out, we feel that these
difficulties can be removed by rewriting equations (21) and (22) so as to re-
quire integration along lines of constant R and 6 , respectively, rather
than along lines of constant % . This will have the two-fold advantage of
v replacing the graphical part of the work by numerical work, and of giving the

values of (?/@)' directly on the lattice points without interpolation.

_p2-
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8. Frictionless Incompressible Flow (with solutions)

Under the limiting assumption that the fluid has no viscosity, one
sees from equation (13) that the angular momentum Ll of the reripheral flow
is constant over the field; that is, the peripheral flow is a free vortex.
If one couples with this the assumption that the coefficient of expansion G
is zero, one finds from equation (22) that the value of €§Q is constant
along each streamline and, in particular, if the vorticity is zero at the

inlet, it is zero everywhere. Thus equation (23) reduces to
2 f
DY =0 (28)

Now, the same result would be arrived at if instead of assuming a frictionless
fluid, one were interested in the case of zero peripheral component, i.e.,
[2“’ -Q—o QO/Q ] = O . Thus, the problem of the frictionless incom-
pressible fluid is of more than mere academic interest in that it also rep-
resents the limiting value for decreasing ratio of peripheral component to
through-flow. As stated at the end of Section 5, this becomes important in

the study of reactors larger than the HRE.

The solutions of eguation (28) for three different positions of
the inlet are given in Figures 6, 7, and 8. In each case, the boundary con-
ditions are that %l is zero and unity, respectively, on the appropriate
region of the surface of the sphere. The numbers on the streamlinés are
normalized values of the stream function; e.g., 10% of the fluid flows through
the space of revolution markéd out by streamlines 0.4 and 0.5. In each case,
the solution is independent of the magnitude of the peripheral component,

provided the peripheral flow 1s a free vortex.

-23-
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FIG. 6
SOLUTION OF POTENTIAL FLOW
ENTRY AT 30" N. LATITUDE
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_FIG.7

SOLUTION OF POTENTIAL FLOW
ENTRY AT 30" S.LATITUDE
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FIG. 8

POTENTIAL FLOW
ENTRY AT 45° S.LATITUDE

-26-

UNCLASSIFIED



UNCLASSIFIED
ol

The solutions were found by a combination of hand and IBM calculating
techniques as described in Section 6. The number of interior points used in the
finite-difference approximation was 207, corresponding to lattice dimensions
of 20 . 7.5° and AR'- 0.1. Fine as this lattice is, it is still too
coarse to give detailed information in the immediate vicinities of inlet and
outlet. This is not a major difficulty, however, inasmuch as the flow in these
regions is relatively insensitive to what is happending in the remainder of
the sphere and the solutions for the two singularities (inlet and outlet) can

be superposed on the solution for the bulk of the field without any trouble.

The solutions one chooses for these singularities depends on how one
idealizes a single inlet pipe into an axi~symmetric inlet. Figures 6 and 8
show the inlet represented by & ring source, while Figure T represents the
inlet by an annulus whose width equals the actual diameter of the single
inlet pipe. In Figure 6, the outlet is represented By a pipe across which
the axial velocity is uniform; in Figure 8, it is represented by a point-sink.
In any case, the effects of these assumptions are felt only in the immediate

vicinities of the singularities.

In Figures 6, 7, and 8, it is assumed that the incoming flow has
radial and peripheral velocity components only, but no tangential component.
To find the effect of adding a tangential component at the inlet, one may add
directly to the previous solution (due to the linearity of the differential
equation) the solution to the problem of ¢f=<3 everywhere on the surface of
the sphere, with an appropriate vaelue of tangential velopity at the location
of the inlet. Such a solution is given in closed form by Hill's Spherical

Vortex (Refs. 4 and 5). In our notation, it is

1
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A (-r*) R b (29)

e

where A is a scale factor which determines the strength of the spherical
vortex. From equation (29) the maximum value of ¢ is A/4 and it occurs at
6= “/2 and R+ Jé/z . TFigure 9 is a plot of equation (29), in

which the maximum value of }1' has been set at unity.

From equation (29),
A
'D-Lq/ = -10 A R s B

Comparing this with equation (23), it is seen that for this spherical vortex,
the value of Q/Y‘ is constant over the field (equal to 1CA). Thus, while
this spherical vortex is not a potentiel flow (that is, it has vorticity),
it doés satisfy the condition for frictionless incompressible flow, that the

vorticity be proportional to the distance from the axis of symmetry.

The value of the scale factor A in equation (29) is found from the
tangential component of velocity one wishes to match at the inlet. §Substituting

equation (29) into (T),

_ \ ‘Bk\)
U= T RanD DR
- \ o¢
- Rz 2_’5\1\9 O R

= - ZA sw»n (3] ( | — )
R‘L
or U—o = 2A 4w Q°/R-% (30)
where V, is U at the inlet (i.e., R'=1 and B=0, ). Substituting

from equation (30) into equation (29) and normalizing with respect to the

=208
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FIG. 9

SPHERICAL VORTEX
IDEAL FLUID
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total through flow as .- Section %, the streem function due to the spherical
vortex 1is
' T REw 2y T et

‘/J = o e (l"&' ) K sn 0 L 31)

: Q s 8, R
If one now idealizes the inlet pipe by an aspnvlus of width do (equal tec ths
diameter of the actual inlet pipe) whose axis makes an sngle 30 with Lhe
radial direction, the bracketed term in equation (31, reduces to 152 ELM 80

ng .szgo

’ !
and from this the value of ¢ is easily calculated.

309)

Figure 10 shows the result of such a superpeslition {for AO.

when added to the results of Figure 6. The redistribution of resid. e times

is quite evident; a quantitative estimate of its effect is made below. Figure 11
shows the result of adding the spherical vortex (again 3°= 30°) te Figure 7.
Here the effect of the vortex is so strong that a closed region results. In
Figure 12, a value of éo is found which glves incipient stegnation with the

same locetion of the inlet.

These effects can be summarized by finding the variation in outlet
temparature in each of the problems. Applying equaticn (21}, one finds the

following:

Temperatvrs Rise Along a Glven Streamline /Avevage Temp. itige

g7 = 0.10 g7 - .90
Figure © m1.95 N
Figure 10 .34 .23
Figure I 0.66
Figure 12 1.11 1.23
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FIG. 10

FRICTIONLESS INCOMPRESSIBLE FLOW
ENTRY AT 30'N. LATITUDE
INLET PIPE AT 30 TO THE RADIAL DIRECTION
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FIG. 11

FRICTIONLESS INCOMPRESSIBLE FLOW
ENTRY AT 30° S.LATITUDE
INLET PIPE AT 30" TO THE RADIAL
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FIG.12

FRICTIONLESS INCOMPRESSIBLE FLOW
ENTRY AT 30 S. LATITUDE
INLET PIPE AT 1.5 TO THE RADIAL
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Summarizing this section, it must be emphasized that these ideal fluid
solutions, while interesting and important in themselves, are not intended to
describe the real flow pattern. These solutions are necessary as a starting
point, but whether or not the analytical approach representéd by this report

will bear fruit will be determinable only after the set of equations (21),

(22), end (23) has been made to converge.
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