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ABSTRACT

The methods of applying results of bulk shielding measurements
to the design of reactor shields is outlined. Geometrical transformations
for the more common shapes are derived, as are approximate means of
calculating leakage of radiation.

As an illustration of the methods, the ORNL Lid Tank and Bulk
Shielding Faéility dats are transformed to a standard geometry and compared.
Two direct calculations of water sttenuation, using cross sections described

in the previous article, are finally compared with the experimental data.
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THE SHIEIDING OF MOBILE REACTORS - II

E. P, Blizard and T. A. Welton¥*

INTRODUCTION

Up to the present time it has been impossible to design a reactor shield
solely on the basis of measured cross sections. The large attenuations which
are required make the multiply-scattered radiation dominant, so that a direct
calculation not only becomes excessively complicated, but also is dependent
upon & much more complete knowledge of differential cross sections than is
presently available.

As a consequence, shield design is based entirely on large-scale attenua-
tion experiments, the data from which can be used in either of two ways. In the
so-called "comparison method" the geometry of the experiment is transformed to
that of the reactor to be shielded, and source sirengths and dose rates are ap-
propriately adjusted. The phenomenoclogical approsch is adhered to as much as
poséible, using power and dose rates as the cbservables and relying on knowledge
of the attenuation processes only to a very limited extent.

In the direct calculation method, on the other hand, the shielding exper-~
iments are used to determine "effective removal cross sections"l for the elements
of the shield, and from these the attenuation is determined by simple calcula-

tion. As was pointed out in the previous article, the effective removal cross

*Note: Neither author is senior to the other.




sections are by definition those which make simple exponential attenuation apply.
This method has been limited for neutrons to shields which are mostly water with
a small volume percentsge of iron or lead. Since the constltuents of water have
not been measured separately, the whole cross section of hydrogen is used, and
the effect of the oxygen is inferred from the experiments.

Of the two, certainly the comparison method is more relisble and more
generally applicable. For shields which are primarily water, hewever, the direct
approach is often convenient for the calculation of neutron attenusastion.

Gamma attenuation in the absence of neutrons has been well treated in

2-5 Only very little theoretical

other papers and need not be repeated here.
work has been done, however , on gamme intensity at the outside of a reactor shield
in which the neutrons constitute a sizeable secondary source. Since this case is
a very important one in many mobile shields, it is fortunate that the comparison
method applies, although it must be ascertained whether the gamma rays which emerge
from the shield are produced within the shield or the reactive core.

The present article will first describe the Lid Tank Shielding Facility,
give the more common geometrical transformations, including a method for compari-
son of source strengths, and then demonstrate the comparison method of shield de-
sign by ccmputiné the water shielding for the Bulk Shielding Reactor (BSR). Next
neutron sttenustion in water will be calculated using the hydrogen cross section

derived in the previous article snd adjusting the oxygen cross section to fit the




Lid Tank data. From this analysis another prediction will be made of the fast-
neutron dose in the water surrounding the BSR. An additional caleulation includ-
ing ageing will estimate the thermal flux. These calculations will then be com-

pared with the measurements as taken at Oak Ridge.

THE LID TANK SHIELDING FACILITY6

The Oak Ridge graphite reactor was originally designed so that the central
core of graphite could be removed en masse through a "core removal hole"” in the
shield of the west, or discharge, face of the pile. A special well-reinforced
balcony was built to hold the core plus a lead shield. Although neither the
hole nor the balcony was ever used as originally intended, both served excellently
as the basis for a shield-testing facility. Over the shield hole, which is 28 by
32 in. at the outside, is placed a closely packed flat array of natural uranium
cylinders which is irradiated by thermal neutrons from the pile. Some of the
fast neutrons and gamma rays that result then enter a large water tank which is
mounted over the "source plate,” being attenuated by the water or whatever shield
is placed in the tank,

Figure 1 is & photograph taken from above the Lid Tank showing some of the
apparatus for radiation detection. Figure 2 shows the location of the source
with respect to the tank, and Figure 3 shows the structure of the source plate.

The source plate is made effectively a 28-in. diameter disc by a fixed




an

iris of Bh_C painted on thin aluminum which shields the uranium from thermal
neutrons except within this circle. A shutter, also of BhC on aluminum, can
be moved across the core hole mouth at the outside to cut off the beam of thermal
neutrons, thus permitting background messurements. An isolation curtain of BhC
on aluminum is permanently installed between source plate and water tank to in-
sure that back-scattering of neutrons from the tank or its contents will not
alter the fission rate unexpectedly.

The source power was measured by observing the temperature of the uranium
as a function of time after opening or closing the shutter. The value so ob-

tained was 6 watts for the total effective area of 3970 cm?.

GEOMETRICAL TRANSFORMATIONS

Type of Detector

For collimated radistion in free space the directional dependence of

the detector need not be known, provided of course that its sensitivity for the
prime direction is given. When, however, radiation arises from many directions,
this ambiguity is no longer tolerable. Accordingly the two types of most use
are now defined. It should be pointed out that the detectors to be described
are not those which might be used in an experiment, but rather hypothetical pure
types for which calculations can be made. Most actual detectors, including the
human body, resemble both types to some extent, but usually one more than the

other.




Directional Detector. This detector can be characterized by a small flat

black body which records the total number or intensity of arrivals on 1its surface
and is, unless otherwise specified, assumed to be perpendicular to the preferred
direction of propagation. Thus the response is proportional to the cosine of the
angle between actual arrival and the preferred direction. It is this type of
detector which is to be used in calculating the total leakage from a surface, or
the total arrivals at a surface, either of which could be used to specify a second
source, say due to neutron captures. It 1s approached experimentally by a foll so
thick that essentisally all incident neutrons record. The reading on this detector

will in general be indicated by J, implying a radiation current.

Isotropic Detector. The isotropic detector is characterized by a small

black.sphere, which of course presents the same target size to all directions.
This detector 1s sometimes referred to as a "milligoat” since a small meatball
would presumably serve as a useful detector if the dosage in it could be recorded.
It is obvious that this detector will always record an intensity of radiation at
least as high as that recorded on the directional detector, and hence the milli-
goat reading gives the maximum rate of radiation reception by, for example, the
humsn body. It should be used, therefore, whenever the radiation is not def-
initely collimated. It can always be used for an upper limit, which gives of
course a conservative shield design. The response of this detector will in gen-

eral be indicated by D, implying a dose rate. The area by which the rate of




arrivals must be divided to obtain flux is that of a great circle of the sphere

(redius = 1/Vx ).

General Transformations for Unspecified Attenuation Functions

In shielding theories, attenuation is usually expressed in terms of
either a point source or an infinite plane collimated source in an infinite
medium. Most shielding measurements have been made with a uniform disc source
in a "semi-infinite" medium. Most reactors, on the other hand, approximate
cubes, cylinders, or spheres. In order to convert from one shape to another

certain geometrical manipulations are used which will presently be demonstrated.

The Point-to-Point Attenuation Kernmel. For the purpose of calculating

the intensity in other geometries, & function G(R) is used, which is defined as

the response of a detector at @& distance R in the shield from a unit source.

G(R) is of course characteristic of the source, the detector, and the medium.

Thus the source might be a gamma emitter, the medium water, and the detector an
ionization chanber. The source must be isotropic, the detector non-directional,
and the medium must attenuate the same for all distances R regardless of posi-
tion or direction. Thus, for a point source of strength S & distance R from an

isotropic detector,

DPt.(R) = 8 ¢(R). (1)




Of course the conditions imposed on G(R) are never exactly satisfied in exper-
iment or installation, but usually, on the other hand, it is a good approxima-
tion to use the results derived with the aid of the ideal functions. Some of

the conditions which make G(R) not a unique function of R are the following:

a. The gource itself is not infinitely small or thin and consequently
ebsorbs some of its own radiation, leaving the remasinder not isotropic. This

ebsorption 1s not always comparable to that of the shield material displaced.

b. The "medium" seldom is present on both sides of a plane source, as

is required in the assumption.

¢. Not only does the medium terminate before infinite ~- it usually
cuts off Just at the measuring point so that the effect may in some cases be

appreéidble.

d. Many shields are laminasted so that the properties of the medium

are not isotroplc, that is, they do not attenuate at the same rate for all direc-

tions. This can be especially true for gemms rays.

e. Reactors are of considerable size, hence are often treated as if the

surface were a thin isotropic source and the volume is counted as shielding med-

ium. Both assumptions are cbviously incorrect, but the inaccuracies they intro-

duce are usually not excessive. Treatment of reactor materisl as if it were

v




shielding is not a bad approximstion, since after all the purpose of most of
the material is to "contain" the neutrons, i.e., to attenuate the fast neu-

trons.

Plane Iscotrople Source in Infinite Medium. In this case the source is

assumed infinitely thin, all in one plane, or of uniform strength o particles
emitted isotropically per unit ares of source per unit time, and imbedded in
an infinite uniform medium. The response of the isotroplc detector at a dis-

tance 2z away from the infinite source, DPj {z,00), 1s now calculated:

P//’ R
i /
]
z
Fig. %



[0 )
DPZ(z,oo) = /23:,0 dp o G(R)
F=0
R* = p*+ z
2R dR = 2)0 d.p

Dpéz,oo) = 2no‘fG(R) R 4R. (2)

Z

The relation between point and plane source geometries is obtalned by differ-

entiating Eq. (2),

d —
T Dm(z,oo) = - 2nd z G(z), (3)
(o]
sz—DPP. (z,0) = - 2x e ZDPt(z‘)‘ (3a)

Tn case the plane source is confined to a disc of radius "a" and the

detector is on the axis of the source,

£0=8,
Dsz (z,8) = feuo’/o dp G(R)
p=0
yFvar
= 2xd fG(R) R dR. (4)
s
z AR RN

-0 -



Since much of the experimental work on shielding has been carried out

with a disc source, it is important to investigate a method of obtaining more

fundamental information from the observed data. That is, it is desirable to
f£ind the point-to-point kernel from data taken at points on the axis of a disc

gource. For this purpose, Eq.(4) is differentiated with respect to z.

Thus : -
Dl",t (z,8) = 2x0 I;G (/z* +a*) /2% +a* %1/2’4 a* - G(z) 2z
Dl')z(z,a.)
_— = ——7._——7: -
P G (Vz*+a*) - G(z) (5)
D', (z,a)
Defining B(z) = - — 2 ,
2162

it 1s found, using the recursion formula (5), that

6(z) = B(z) + B (V/Z°+ &) + B (\/z*+ 28*)+ . . .

OB (/z2+va* ) . (©)

n M8

v

- 10 -



The last equation defines a method of determining the kernel from the
dats using straightforward operations. It is only applicable for "a" large
compared to the sttenuation length of the radiation, but for those cases in
which this condition i1s not met the disc will be a good approximation to a

point source and the data will indicate G(R) directly.

Plane to Sphere Transformation. It is often of interest to calculate

the intensity to be expected from a source spread uniformly over the surface
of a sphere. The usual isotropic medium is assumed, and this must extend in-

side as well as outside the sphere. The geometry 1s shown in Fig. 5.

Fig. 5

- 11 -



For this case

o

Ds(ro,r) = 2xdr* | G(R) siné de,
6=0

2
= + 2 -

2R dR = 2rr_ sind 6,
Tyt
Ds(ro’r) = 2n¢ fo— 5 ¢(R) R 4R
I'O-I'
o0 (s 9}

r 2xd | G(R)RGAR - 2n | G(R) R AR

"
o

o
oT rtr
r i
=;: Dp, (ro-r,oo)-DPI(ro+r,oo) . (7)

)

If 2r>> A, the relaxation length, then the second term in the bracket will be
negligible compared to the first, and the following approximate expression be-

comes useful:

r
Ds(ro,r) = 5 DPx(ro -r,00) (8)

-12 -
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Plane to Cylinder Transformation. There is no simple general transforma-

tion for this case, but it can be shown for most specific attenuation kernels
that the relation between cylindrical and plane geometry for large attenuations

(thick shields) should be approximately

Dc(ro,r) :EDPI(:'O -r,) , (9)

where
Dc(ro,r) 18 the dose to be expected from an infinitely long cylin-

drical source of surface strength ¢ imbedded in shielding material,

T, is the distance from the axis to the measuring point,
r is the cylinder radius,
Dp i(ro - r, @ )is the dose to be expected at a distance r, - r from
an infinite plane source of surface strength ¢ , imbedded in the same shield-
ing material.
This relation (9) is not unreasonsble, in that the cylinder is intermediate
between plane and sphere, and the factor of proportionality, ‘\/;/—1; s is inter-

mediate between unity and that for plane to sphere, Eq. (8).

- 13 -



Although it is possible to extend the treatment of transformations some-
what further without specifying the form of the attenuation kernel, neverthe-
less it is usually much easier to choose some simple form which will fit at
least over a limited range and to use this in the transformations. The next

sectlion demonstrates this method.

Geometry for Partially Specified Attenuation Functions

'~ In this section sdvantage will be taken of the fact that the attenuation
in shields is large, so that contributions from the nearest sources are dominant
and crude approximations are adequate to indicate the additional contributions
of more distant sources. This process is commonly used in shielding with con-
siderable success.

Consider an isotropic source spread uniformly over a curving surface so
that the strength of the soufce on an element of area dS is Just odS. Let the
nearest source point be located at the origin, the surface being tangent to the
Xy plane at the oiigin and then curving away so that the distance between the

surface and the xy plane is given approximately by

2 Z
z1=-]é‘——<-§- +-§~~>. (10)

Thus "a" and "b" are the normal curvatures of the surface, and use of Eq.(10)

is a direct consequence of the assumption regarding distant sources, since it

3 Hlietet AT
N o g

- 14 -



surely will not fit well except in the region near the origin.
The detector is at z, and the distance from this to the element of

surface 4S5 is R.

49 T
y R
Z
Fig. 6

The reading on a milligoat detector is then

D(z) = o’fG(R) as, (11)
Surface
s = dx dy }1 + 9z V- SN \32
\ ox oy
x 2
= dx dy (l + :a?" + eybl ) (12)

- 15 -



G(R) is now approximated by an unspecified (and therefore presumably exact)
function for the kernel for the distance z, times an exponential for the
extra distance (R - z).

-(R-z)/M

G(R) = a(z) e (13)

M is a relaxation length, presumably one which makes Eq. (13) correct. Actually,
since A will be slowly varying, it can be taken from almost any convenient data
for the proper material and source with attenuation over a distance of about z.
For example, A could be taken directly from Lid Tank data.

An approximate form is now required for R in order to make Eq. (11)

integrable,

R=(z + z)+ x* + y? (14)

On expanding and ignoring terms of the order of zf , in comparison with

x*and y%, it is found that

R—Z; _x_+l_+._.+._y__ (15)

If Eq. (15) is accepted as adequate,

- 16 -



T oMz 2\a 2)b ’

J 2a* 2b*
-00 =00
A cumbersome but not difficult integration yields
D(z) ¥ 210’ 6(z) - :
z) = 2n0 G(z : -+ e
1, 1 Va1, 1Vi (L, Ve(1,1
2 Aa Az | AD 2a%\xz "aal | az
i NEREAY (17)
Al 1 Ve/1l 1Ny
Mz A Qz T W)

The last two quantities in the braces are in general much smaller than the first

for a and b large compared to A.

D(z) % 226°G(z) | —— »—}---— : ~—»—«\ (18)
1,1 yg <;__ +_1__) %
Az Aa Az AD \

-

for a,bd > A .

For a sphere a =b =r,
Z=Try-T
r
Ds(ro’r) = 2r0" G(z) Az o (19)

v}

- 17 -



If at this point it is recognized that
4 p (z,0) = Dpylz, ®) (20)
dz “pf A ’

then it is possible at once to confirm that Eqs. (19) and (3) agree.

For a cylinder, a =@, b =r, and z =r, ~ T. By similar manipulation

it is seen that Eq. (18) then confirms Eq. (9).

Comparison of Source Strengths

"In order to compare the source which is used in & shielding experiment
with that of an actual reactor, it is necessary to make some sort of estimsate
of the self-sbsorption in the two cases. Fortunately most of the radiation
which leaks does so from ‘the region near 1ts periphery, so that it 1s quite
adequate 'vto calculate leakages using simple exponential attenuation. The core
relaxation length can be either the mean free path or some better estimate based
on comparison of cross sections and measured relaxatlon lengths. The section on
effective removal cross sections, (I), described the latter. For the present s
core relaxation length, A,, will be used for the attenuation in the reactive
volhue without specifying its origin.

Tt will be shown that to adequate accuracy the volume-distributed source
can be replaced by a surface-distributed socurce which will give the same attenuated

dose at the shield exterior. The relationship between the volume and surface

s Lt e g
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AR
source strengths will also be derived for two common power distributions.
Consider a small volume, dv, of the reactor, the rate of power
dissipation therein being p(x,y,z)dv. The total of contributions of elements
such as this to the dose at some cbservation point outside the shield is re-

quired.

-
R
dv I
' P
\ Fv Measuring
\ Poin7
\
Lascror Core \ Shiels
Sc
Fig. 7

- 19 -



According to the assumption of simple exponential attenuation in the

core, the dose read at P will be

Dp = -(Tv‘ro)/kc g(ro) P(rv) awv , (21)
lmrvg
core

where the function g(R) is defined in terms of the point-to-point kernel, G(R),
o(r) = BEL 5 (22)
kxR
and the normalization of G is so chosen ag to give the dosage rate at distance
R from a point source of unit power.

It is also seen from the figure that

dv = ds, cos @ drv( ) (23)

where 6 is the angle of r, with the normal to the surface and ds. is the element
of core surface., A simplification, that of replacing cos 6 by unity, is Justified
on the basis that for reglons of large 0 the distance T, is so increased that the

contribution to the dose will be sma.lle.

The foregoing simplifications result in the following:

g(ro)ds (rv-ro)/)k plry) ary (1)
/ hr 2
Se¢

(w]
mn

Ty=To



The upper limit for ry is taken as infinity for simplicity. If the core diameter
is larger than 2)\,, then this will int:_rodﬁce an error no greater than about 10%.
This condition is usually well fulfilled., If it is not, then a method derived in
connection with the "fast effect” is applicable.7'9

In reactors which are used for power production it is usually desirsble
to keep the heat release density, p, constant over the volume. For this case the

second integral is easily evaluated. For

P(rv) = Po = constant,
D = const. = AcPo / G(r,) ds, , (25)
e

In other words, for constant power density in the core the equivalent surface source

strength 1s simply AePo watts/ em® , and
Oequiv. = MPo (26)

Tt might be noted at this point that Eq. (26) is at variance with the familiar
result for leakage from the surface of a radioactive self-absorbing semi-infinite
volume source, to wit NOL/lL (particles per unit source area per unit time ) where No
is the activity per unit volume. The difference lies in two places. In the present
discussioﬁ e milligoat detector is used, which would read NOX/Q, which is not the
leaksge st all. The second difference arose from the neglect of the cosine factor
in Eq. (23). This means that Eq. (26) describes a source which is isotropic but
matched to the actual cosine source in the normal direction. This makes only

negligible error for thick shields.

-21 -



For the case in which the power can be represented as a constant plus a
cosine function the equivalence is again easily derived if the core dismeter is

large compared to A.:

plry) = pg + p; cos [ __L(l - Ty - ro):‘ (27)
2 a |
=D, *+p, sin (-g— ?_L;TIE), (272)

where a is the core half-width.
Equation (27) can be approximated near the core surface, using the argument

to replaece the sine,by the following expression:
28

For this case, Eq. (24) becomes
D = [ MDo + D ’“Cl) G(z, )as
cPo 1 v 0/%Be - | (29)
8¢

2 o
Cequiv, ~ (xcpo e '2'3"‘ p1) . (30)
a2

whence

The source strengths represented by Eqs. (26) and (30) are appropriate for

use with the transformations in the previous section.

= 22 =




Compsrison of Lid Tank and BSF Water Data

It is possible to determine the point-to-point attenuation kernel for water
from either Lid Tank or BSF data, using the methods which have just been described.
Alternately, it is possible to predict from the Lid Tank data what is to be expected
in the BSF. As an example of the method the latter will be carried out.

The first step is to transform the Lid Tank data for fast neutrons to the
point-to-point kernel. This can be done using Eq. (6) for the smaller values of
z, but it will be seen that kmowledge of G(z) requires observed values of dose for
distances greater than z. Thus , while the method of Eq. (6) can be used for z up
to sbout 80 cm, another method is required beyond this distance.

The attenuation in water is great enough so that the expression need be
accurate only for the nearest point of the source, an aspproximation being quite

adequate for the rest.

Detecror

Source, surface strength o-watts/cm®
Fig. 8. ILid Tank Geometry
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For the Lid Tank source, a circular disc, the dose is given by

a
D(z,a) = Eﬁﬁf G(B)ﬂ 3P . (31)
/o= o
Applying the approximstion given in Eq. (13) for G(R), and expanding R,
that is,
o(r) T o(z) e B

2

R"‘z+§. »
z

» = Mz), determined directly from the slope of D(z,a).

2 2
D(z,a) = 210~ G(z) e '2%f$0
/o= o0
= 2ng*az G(z) (1 - e ~ %iz') (32)

Equation (32) gives the relation between point-to-point kernel, c(z) s and
observed dose, D(z,a), for the Iid Tank, and agrees wi'l';hin less than two percent
with the more careful determinations by Eg. (6).

To enable comparison with calculations, hnz® G(z) 1s plotted in Fig. 9,

which represents the dose which would be observed with an infinite collimated source
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of wnit strength.* The source strength used in Eq. (32) was obtained by dividing
the power (6 watts) by the source area (3970 cm?) and dividing this quotient by
the attenuation to be ascribed to the several layers of material which are
permanently over the source. This latter division has been calculated many times
to be 1/0.6, i.e., of the neutrons which would have eéntered the water more or
less normally, only 0.6 of these actually do reach the water owing to collisions

10 was

in the source support and tank walls (Fig. 3). Thus the original data
maltiplied by 1.1 x 1072,

The BSF dats does not lend itself so easily to reduction to a simple form.
The shape of the reactor, its composition, and its power distribution must all be
considered. The general method, however, is the same as that used for the Lid
Tank.

The power distribution has been measured by means of gold :t‘oils,ll and a
simple fit to the power distribution on the north face of the pile was found. In the

=z direction, that is, into this face, the power level was taken as constant.

* Actually the transformation from point source read‘in% t0 plane collimated source,
here assumed to consist merely of multiplying by 4nz*, is not rigorous, but is
assumed adequate in a highly attenuating medium such as water, in which very
little contributing radiation has suffered large angle scattering.

- 26 =




The measurements seem to indicate this to be the case for the first 8 cm. In

the x and y directions simple parabolae were fitted to the power distribution.

Power density in the core was corrected by a factor of 200/165 to take account of
the fact that Meem and Johnson used 165 Mev/fission, whereas 200 is probsbly better
for the reactor, which self-sbsorbs most of the gammas and betas. The surface
strength was taken to be product of power density and a relaxation length for the
core. The latter was obtained from estimates of the removal cross section for

the metal of the reactor, and the water of the core was credited with an attenuation
length which was observed, as a function of z, in the Lid Tank,

Thus

L = 0.036 + 9:98 (33)
A(z)

Lcore(z)

The dose in the water around the BSF reactor, at a distance z from the

center of the north face, is

a b
D(z) = hc/ dx/ dy »p(x,y) G(R) , (34)
-8, ~b

p(x,5) = Bo(l -ax”) (1 - gy?) ,

Pos, the power at the center of the north face, is equal to 1.88 x 1077
watts/em?,

A = 1.5 x_lO"3 cm'e,

A=7x10%a?,

&, b are the half lengths of the north face.

- 27 -




After making the usual approximations, it is found that

a B .2 _Q:f
D(z) = », G(z) po/ dx/ dy e 2 22z (1 -ex?) (1 - By?) ,
-8, -b
D(z) = 2x G(z) por Az f(2Az), (35)

Erf [ —— |-23Az | £ Erf - e 2az) X
Vorz 2 Verz Vamz

—>2 ) . 2 [ L b
X Erf(\/_zv) 2px (2 Erf( —

This expression has been evaluated using the G(z) obtained from the analysis

where £(2)\z)

b b2
T == ¢ oz
21z *

of the Lid Tank data. Comparison with the actual BSF datal® shows the latter to be
higher by a factor varying from sbout 1.6 at 110 cm to 2.4 at 40 cm. It is not
surprising that the discrepancy is greater at 40 cm, since the approximations are
less accurate at smaller z. The average discrepancy, however, must be attributed
in large measure to inaccuracies of intercalibration of source strengths. The
detectors are probably in good agreement. The effective Lid Tank sourcé is not
easy to define since its strength varies over its surface because of two structure
effects, one attributable to the cylinders which make up the source, the other to
the long holes in the graphite reactor lattice which cause rather strong beams

of neutrons to emerge. These are not entirely smoothed out by the time the source
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plate is reached,
Residual discrepancies of the size here encountered are commonly found
in shielding calculations. It seems to be the case that the amount of experimental
and theoretical work necessary to resolve such discrepancies, even in a simple geometry,

is entirely disproportionate to any possible resulting practical gain.
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METHOD OF DIRECT CALCULATION

Although the method of direct comparison is very convenient and reliable
when the appropriate experiment is available, a second method of shield computation
is useful for quick estimates when no comparison experiment has been done, The
method to be described can in some ways be regarded as a theoretical prediction
of shield attenuation, It will be clear, however, that the present lack of detailed
cross-section information enforces such strong dependence of theory on attenuation
measurements that this second method of calculation is to be regarded as another
comparison method, albeit scomewhat more flexible than the first.

The pictorial basis for this second method has already been given in (I),
and need here be only briefly reviewed. The concept of removal cross-section was
introduced in (I) as being the cross-section for a collision which renders a neutron
incapable of contributing to the neutron dosage outside the shield, All shields
to be discussed have the property that the hydrogen content is sufficient to render
an inelastic collision equivalent to absorption. A neutron collision with hydrcgen
is nearly always equivalent ﬁo absorption, and the smell fraction of ineffective
hydrogen collisions will be taken into account by a slowly varying build-up factor,
Isotropic elastic scattering on elements other than hydrogen is nearly equivalent
to absorption, unless it occurs in an improbable location, Finally, anisctropic
elastic "shadowh scattering is only partially equivalent to absorption, the
fraction depending on neutroern energy, shield composition, and collision location
in a complicated way, so that recourse to experiment is here essential,

The simplest-heutren shield is a mass of pure hydrogen, in which the
attenuation could be calculated from first principles, Lacking this simplest case,

it is very convenient to use water as the prototype neutron shield. As is clear
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from an earlier section, the measurements in water are easy to perform, so that a
large body of reliable data exists. The oxygen, which is the chief difficulty in
calculation, does not play a dominant role; so that a simplified treatment is
possible,

The following procedure will be used, First the uncollided neutron flux
will be calculated, for a simple geometry and assuming zero cross-section
for oxygen., This calculation is an extension of the one which led to Eq. (17)
of (I). A removal cross-section will then be introduced for the oxygen in order
to make the uncollided flux equal the observed fast flux, Small corrections will
then be made to this removal cross-section by introducing a build-up factor for
fast flux (neutron dose) and another factor for thermal flux,
Calculation of Uncollided Flux

By means of the geometrical transformation described in an earlier section,
the 1id tank neutron measurements for water have been transformed to the collimated
plane source form, and this form will here be used. Imagine an infinite plane
fission source located in the x=y plane of a system of rectangular coordinates.
The source strength will be taken as one neutron per square centimeter per second.
The fissions are assumed to emit neutrons normally in the direction of the

positive z-axis. The macroscopic hydrogen cross-section for water is (Eq. (1L), I):

S - STV - S (E in MEV) (36)
H E -+ 1066 E + e

Several convenient expressions for the fission spectrum were given in (I), but for

present purposes still ancther form seems best to combine convenience and accuracy.

235 .

fissicn

From Eq. (2) of (I), the fraction of neutrons per MEV emitted from a
ise
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-(E~ Y ZE)

1 -(e-Y2E)

N(E) = s 022 e (37)

Y2 mre

A very good fit to the exporent of Eq. (37) is:

E-YE2ars LI -y (38)
E+€

a = 0,813 MEV T

J = 7.35 en

= 3,05

Using Eqs. (36) and (38), and proceeding as was dore for Eq. (15) of (I),
the uncollided flux of neutrons at distance z from the source (neglecting all

cross-sections save that of hydrogen) will be:

- éxz-#cr )
-0 E E + €&
S(E, z) = 5.12 e e (39)

Analogously to (I), the energy of the maximum cf this spectrum will be:

1

2
5, = [ ggz;d‘ 2], .y (Lo)

In order to find the total uncollided flux, an integral must be done over
all energies, The simplest procedure is the so-called saddle-point method, which
approximates the integrand by a Gaussian function around its maximum. For this

purpose, write:

#®) 2d ey £+ . (E,) +£1(E ) (E-E,) + } £0(E ) (E-E,)?
E+ €
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wheres | f(Eo)zi’/a—L'ﬁ(Z-'f'J)“OCé
I(E,) =0 (41)
R
fn(g:) =2 &

g Grd)

The integrated uncollided flux is nowe

- )
o€ -2 ;/dﬁ (z+J) f & -%fn(Eo)(E-EC)Z
(] e

¢ (=) =52 (12)
0
The integral can obviously be extended to - for not tco small values of E,,
and 4’0(7‘) then becomess”™
— s
bo(») = 17377 e L(tc)
© 3
a
3 L7 Yz d
= 3302 (Z +J)4 e Sh ()-I»B)

This result is basic for the further developments of this section.
For ease in obtaining results for actual shields, it will be convenient
to make use of the fac% that fast neutron flux is very nearly proportional to dose,

The standard source unit will further be taken as one watt/\.m of fission energy.

In connection with the Question of the accuracy to be expected from the procedure
here uspd the followirg may be of interest, If tha fission spectrum is taken %o
be E 2 d‘E and 2 is taken as /A /E, the integral of (ha) can be done exactly,

¥ielding y 2 o2 d‘ﬂz. Consistent application of the above approximat

method (with the additioral prescription that the glowly varyirg factor E

on

3
1o
-—
~Z

J

iz %o
be evaluated at E = E, and %aken outside the integral) yields exactly the same

ANSWEY o




Using:

1 watt = 3 x 1010 fission/sec.

v

2.5 = number of neutrons emitted per 235 frission

neutron
= 1.4} x 1072 2B

2--=sec. hour

cm
- . s mrep . 235 oss
and defining Do(z) as the uncollided dose in Tour from a collimated U fission

source of strength one watt/em?, EQ. (L43) then becores:

2 al.sh7 Ve +d mrep/watt

Do(z) = 3.6 x lOlo (z+d)* e hour on? (Lb)

This function is plotted in Fig. (9 ), where it is compared with the
function hfrze G(z) previously derived from the 1id tank dosimeter data., The
calculated function is too high by a factor of about 1.6 at L0 cm. This excess
steadily becomes worse, until a ratio of 4.2 is reached at 110 cm. This increasing
discrepancy arises from two partially compensating neglections in the derivation
of Eq. (Ll). The first neglection is the omission of dosage rate produced by
neutrons which have made a hydrogen collision but have not been stopped at the
point of observation. The second neglection is the inclusion of dosage rate
produced by neutrons which have been deflected by an oxygen collision and therefore
lost, because of the increased distance of travel to the point of observation.
Correction for Hydrogen Build-up and Oxygen Kemoval

In the phenomenological theory to be developed, the first difficulty will
be handled by the use of a simple build-up factor, while the second will be treated
by an experimental adjustment of the oxygen removal cross-section. A really
complete calculation of these effects must include their interaction, which leads

to mathematical work of rather complex type., A great simplification (of admittedly
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unknown validity) will here be made by separating the two effects, Since the
basic curve D, already agrees fairly well with experiment; it is very reasonable
to expect that the two neglected effects are separately small, and that their
interaction can therefore be ignored. This notion can be incorporated in the
following pair of assumptions,

1. The oxygen attenuation effect will be described.By an energy-independent
(for a first trial) removal cross-section, and the hydrogen build-up will accordingly
be calculated for a system containing only a constant absorption cross-section, in
addition to the hydrogen scattering cross=-section,

2. In discussion of the oxygen attenuation, the hydrogen scattering will
similarly be considered as simple absorption.

The existence of the hydrogen build-up implies that the integrand of Eq.
(42) is to be multiplied by a slowly varying function of z arnd E, which takes into
account the residual effectiveness of neutrons which have made a hydrogen collision.
It is actually convenient (and essentially rigorous) to evaluate this function at
E,(2), the energy of the peak of the uncollided spectrum. This brings a simple
function of % in as a multiplying factor, This function will be called B(z).

To take the oxygen attenuation into account, the uncollided dose is to be

Z

multiplied by a factor e ° s Where :Eo is a macroscopic oxygen removal cross=-

section., The true dose function which will replace D, is thens

Z
D(z) =e  ° B(2) D(2) (L5)
The product form is the essential expression of the assumption of no interaction

between the hydrogen build-up and oxygen attenuation,
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since B(z) depends (not very sensitively) on 5&0, & rough guess mrst be made
for this quantity in order to calculate B(z). The EQ. (L5) can then be compared
with experiment to cbtain a value for SEo‘ A rough calculation of B(z) is described
in an appendix and the curves are given in Fig. 10 for two values of :Eo’ corresponding
to microscopic cross-sections of 0.7 and 1,0 barn,

These curves exhibit some interesting features. The build-up starts at
unity for z equal to zero, as it must., It then rises rapidly to a value of about
four, with a slow further rise, This further rise continues indefinitely, but at
a continually falling rate, The initial rise can be thought of as due to the coming
of the degraded spectrum into approximate equilibrium with the uncollided spectrum,
If this equilibrium were rezlly achieved, a monoenergetic uncollided flux would be
multiplied by a constant to give the total flux., As is well known, such a true
equilibrium can never be reached, because of the presence of collided neutrons which
have been deflected by arbitrarily small angles and are essentially indistinguishable
from uncollided neutrons, This phenomenon is responsible for the sleow asymptotic
rise of the build-up for a moncenergetic source,

In Fig. 9 is also plotted the function D(z) with cr; = 0,6 and 0,7 barns,
For the calculation of the insensitive B(z), O.7 barns was assumed, It is seen that
both curves are higher than the corresponding curve derived from the lid tank data,
For CT; = 0,7 barns, however, agreement is essentially perfect with the BSF data,
up to z = 110 cm, A very slight increase of a”, (~ 0.01 barn), combined with a
small increase of the source strength would give excellent agreement over the whole
range plotted. It is felt, however, that such fine adjustments really are not in
the spirit of so rough a theory, and the approximate figure of 0.7 barns will be

taken as the effective removal cross=-section for oxygen.

Gatthee L oL T
S e il L
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It is interesting to compare this resu;t with a similar one obtained by
Blizard and Enlund13 using the thermel neutron data from the Lid Tank. This
calculation differs from the dose calculation principally in the method used for
handling the hydrogen build-up. The method already described will be completely
unreliable for the build-up of thermal flux (it is not highly reliable for the
build-up of neutrons above 1 MEV!). The thermal build-up is therefore calculated
using a modification of age theory for handling the slowing down problem.

The uncollided flux as a function of energy was represented essentially
as in the methods previously described. A constant oxygen removal cross-section
was included in this preliminary calculation. The oxygen-collided neutrons were
assumed to emerge isotropically, without energy loss. This source was then
convoluted with a Gaussian approximation to the water slowing down kernel, using
a calculated age,

Each hydrogen-collided neutron was assigned an age corresponding to its
collision-degraded energy, using the same data, The energy-angle correlation for
the hydrogen-collided neutrons was qualitatively taken into account by convoluting
the angle-integrated source of such neutrons with a Gaussian displacement kernel
which displaced only outwardly(in the positive z-direction), not radially from

the point of collision., The form of the kermel used was:

Y-
(a1 - Z)z e—(z z) /L

z'y 2

(46)
0 z2' ¢ 2

The displacement due to thermel diffusion was simply added to all values of z.
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Fig. 11 shows the therrmal flux data for a plane collimated source,
hfrzzGTh(z), The curves are shown for the transformed iid Tank15 and Bulk
Shielding Facilitle data, as well as the calculated curves for a~; = 0.8 and
1.0 barn, It is to be noted that ¢, = 0.8 yields a better fit to the shape.

The previously noticed discrepancy between the two sets of experimental data shows

up here also, although the ratio is closer to one for the thermal data,

The two best values of (T; obtained from the dose data and the thermal
data presumably differ because of the non-comparable treatments of hydrogen build-
up and probably also because of the somewhat slippery character of the removal
cross-section concept, For all practical purposes, either one (or a compromise

value will give excellent results for useful shield thicknesses,
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APPENDIX - NEUTRON BUILD-UP IN HYDROGEN

A simple, approximate treatment of the neutron build-up in hydrogen is

possible, along lines suggested by G. C. Wick ’fégThe fundamental Roltzmann equation

for the problem ise

0 25Ty

- 1 g’dE' . ’, , , _E__ 4
: ?v’r‘ﬁEETEH(E)fdf P e g0 dGE s
+ JE-E) J(=) J(9) ()

yu = flux of neutrons at distance z from the source, per unit range of energy, and

per unit solid angle,

angle between neutron velocity and the z direction,

the macroscopic hydrogen cross-section,

any other "removal® cross-section, to be taken as equivalent to absorption,

"

14
H
R

and as independent of energy,

g

vector specifying direction (including azimuth) of neutron velocity.
4 ¢’z element of solid angle,
$(0) = function having value only for & ( = | ¢ | ) = 0 and unit integral over

L

24 o ° s .
-ﬁ{/z deflection angle in a neutron collision,

AN

angle,
The last term in Eq. (1) describes a source which is plane (z = 0), mono-energetic

and mono-directional (fz = C),




Although this rather general equation can be solved with any energy dependence

3,l,5

of EH and Zﬁ, by methods now availablie s a modification of the approximate method

given by Wick for large z will be used here. The method originally given by Wick for
determining the asymptotic behavior of the neutron density actually goes through
more naturally for the case of 2/ -ray penetration. The neutron treatment given
here is accordingly modified so that it is much more closely parallel to the f—ray
calculation than is Wick's work. . The advantage gained is two-fold, First,
the energy dependence of the hydrogen cross-section turns out to be more realistic
than wick's. Second, the interaction of cross-section change with energy and the
change in penetration with increasing angle is here included. Several compromises
must be made on other points, but it is believed that the overall treatment is good

to lower energies than existing treatments of this general type. Define a variable

us

E 1
° g ZyE)

Bl 24(E)

u(g) =
E

(2)

and approximate z + Z by the first two terms in a series expansion in powers
H

of us

T H2 223200 [1+du] (3)
Choose a new length unit x = E (Eo)z and write:

> 4(Ey)
3 (E)

The flux will be calculated cnly for fairly small angles of travel so thats

-l =




2

cos ¢ =1 -2
2
Vg 1 2
cos ’g-g =1--—;—/a"ﬂ'/ (S)

Finally, the quantity yE— will be expanded in a double power series in u and ut,
El

and only the first order terms retained:

1
21— -u) (6)
E! 2
The fundamental Eq. (1) then becomes:

2
AN 2L s [as o rdamglt  uw
a-LH 2t iarany=L [ o Jeg o, gn e )

2

+ J I J2) (7)

o

With the approximations made to obtain EQ. (7), & can be thought of as a two=
dimensional vector with magnitude ¢, Tt is convenient to make a Fourier transform

on x, a Laplace transform on u, and a two-dimensional Fourier transform on &:

o [o+4
-1 -ig @ -
CP(R’Y:S)'W- dk:e:u‘cx \[diel””fdue )?u)//(x,u,g) (8)
- D (]
The transform of Eq. (7) then is:
2
2 S
(1-K- ac—-—-—)cio 92‘ g g, L (9)
2 7 E

o~

K = ~-1ik
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Transform from the variables (7 5 S) to (7’, t), where:

s2 2 42
27
and write:
_dt’
Ze=e T ¢
Eq. (9) then becones:
92 1 t2 h
(=—+-= =2 +2d - dt + LAge ) Ly (1 -K - = -
b2 % ot e "W -y 7>x

(10)

(11)

_ﬁ
2

Wick's procedure at this point is to expand;z in a series of orthogonal

functions of t:

X075 % K) = D X7, K) U (1)
n

where:

L - v/2 A
(—-—+-——+2ot a’tP+ Lge W, =AU
a2t dt al nooona

so thats )
® —-0_6.;_
ax, Y .JUne t dt
hd)?'g‘%"‘[/ln-h)z(l-x)]}fn-- E f” 2 g at
o] Un
(o]
L
= - 7 Qn
E
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(15)
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This equation has the soclutiong
[ ]

G - 1-K =A5\‘ - 1=K An

Yoo T 7&7’@ O (16)

For large 5 2nd u, it can be shown that only the behavior of ;Zﬁ for small
)z is important, It is alsc then brue *ha% ornly the tem n = C, corresponding to
the highest possible value of ;ln’ contributes, Under these conditions, and

omitting the subscripts

n+l

= Q.T:,‘Pl)(%)
F a B, . 1-%

n =

=1

1-K

ha
A good value foar ;l , as well as a reasonable approximation far U, can be

cbtained by assuming U te have a Jaussian shape and then utilizing the Ritz method.

Writes
gt
uvze 2 (18)
j $ dt [(20( -’ i+ LA e Ty p? - (5:)]
o]
2 = ) (19)
(o]

where Jﬁ'is so chosen as to maximize /1 .

This procedure yields:




where X is given by

2
&
R T Y (21)

[4

Y (@y+1)°

The multiple transform (# is then given bys

1 1k~ X=X 2
¢(k37,,§)= 20 [(n+ 1) %\ eT'?qneE*? ° (22)
A(d+8YE, | 1-x

For purposes of calculating dosage, the integral over angle of ZfJ will be found and
called 2// » It is given bys

n ®© ikx i®

T o d 1 e 1 qu -n
(xyu) = D(n+rl) & —|dk dy e (23)
¥ +J E, 277“'00 Q+ik) T o [m)z t

d

The integrals in Eq. (23) are easily done, yielding:

- n=1
Y (x, u) = 20 (zuo) ocze'l (24)
A+ E [ (n)

Eq. (24) is strictly valid only for adu x>>1l. A simple trick will
be used to obtain a reasonable expression which will be used for all %, and u
small enough so that the cross-section assumptions are valid. Eq. (2L4) is very
similar to the expression for the flux according to the straight-ahead approximatién,
for large ux. Eq. (24) appears then as the first term in the asymptotic
expansion of the confluent hypergeometric function. As a plausible guess s the

following expression will then be used:

?(Z:u) = = 2y

B,

(LX) F(L-n, 2, ~clux)e™” (25)
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Eq. (25) has the property that for large u 2 it has the correct form (2)4), and
for large & (straight-ahead case) it is gocd everywhere,

The assumption will be made that nsutron dose is proportional to flux for
E > 1 MEV and is zero for E 4 1 MEV, EqQ. (25) does not include the ancollided
contribution, which is easily added. wWhen Eq. (25) is written as a function of
energy and appropriate values of 7 3 /f s Y » and n are introduced, energies
well below E, seem to be unimpcrtant for the dosage rate; so that the rather shaky
approximations made for large u may not be serious,

The curves of Fiz. 11 were obtained by calculatings

Eo @&
3 = 1+ 3
B(z, E) 'g du - "f/ (X5 w

The energy'E0 was then set equal to the dominant energy in the uncollided flux at

17
distance z, to obtain Blz). .
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