


ORNL-11T71
This document contains _L7

pages. This is copy _QL.of

_149. Series A.

Contract No. W-T405, eng. 26
Subcontract No. 257

DECLASS!FIFD
CLASSIFICATION CHANGED To: £k i '

T A - G" . o e M - - ——— -
-~ ———

By Avrhonrry OF:--..th..’.Z/;fZ{.Z/...... ——
N/ M WA Y ok g

THE MOTION OF GAS BUBBLES IN THE HRE REACTOR CORE

by

F. N. Peebles
The University of Tennessee
Department of Chemical Engineering

'JAN 4 101:?

Date Issued:

OAK RIDGE NATIONAL IABORATORY
Operated by
CARBIDE AND CARBON CHEMICALS COMPANY
A DIVISION OF UNION CARBIDE AND CARBON CORPORATION
Oak Ridge, Tennessee

GY SYSTEMS LIBRARIES

AT

3 4456 0360931 L




CRNL 1171
Reactors-iesearch and Powex

~ T. Pelbeck (C&CCC) 20, 4. D. Shipley 35 Ce S flarrill
. 2-3, yistry Library 21-22, 0. 4. winters 36, D, W, Cardwell
Le £hY s Library 23, ¥, C. VonderlLage 37. 2. H, King
5, Library 24, He C, Briant 38, . N. Lyon
6, HealtN@ysics Library 25, J. A. Swartout 39-40, J. 4. Lane
7. Library 26, &, C. Lind 41-42, T. A, Welton
8-9., ool Library 27. ¥, L. Steahly L3, k., B, DBriggs
10~13. S 28, A, He Snell L. d. . Bradfute
14, C. L. 29, 4, liollaender 45, L, Cooper
15. C. -u. A 30. G. u. ululdett 1.5,6. P. R. KaS‘ben
16, W. B, Humes (i.\\g 31l. M., T. Eelley 47. 1. Spiewak
17. W. D. Lavers (Y 32, K. Z. Morgan 48. H. H, Wilson
18, 4. . Weinberg 33, J. 5. Felton 49, De T, Cowen
19, #. He Taylor 3he 4. B. Householder 50, F. ¥, Heyling

51-57, Central Files (OP)

B EATERNAL
58-60., aircraft hf? Propulsion rroject
61=70, srgonne Nat Laboratory

71, Armed Forces
72=79. Atoudic nergy o
. 80. Battelle Memorid
81-33, Brookhaven HNatio
8. Sureau of Ships
* 85-90, Carbide and Carbon
91. Chicago Patent Group §
92, Chief of Naval Hesearch
93-97. du Pont Company
98, i, h.*erguama‘ﬁupaay
99-102, General Ilectric Company,
103, Hanford Cperations Office
104-107. Idaho Operations Office
108, lowa 5State College
109-112, Knolls Atomic Power Laboratory
113=-115, Los Alamos '
116, Massachusetts Institute of Technol
117-118, Mound Laboratory
119, National idvisory Committee for Aerondy
120-121. New York Operations COffice
122-123, North American Aviation, Inc.
124, Fatent Branch, wWashington
125, Savannah River Operations Cffice
126=-127, University of California Radiation Laboratory
. 128-131, Westinghouse Electric Corporation
132-134. Wright Air Development Center
135-149, Technical Information Service, Oak Ridge

@ cizl weapons Project (Sandia)
nission (Wwashington)

stitute

Laboratory

icals Company (Y=-12 Area)




| — _3-

TABLE OF CONTENTS

Page

SUMMARY L
INTRODUCTION 5
DATA ON GAS BURBLE MOTION AND VELOCITIES 8
Theory 8

A Review of the Literature 12
Studies at the University of Tennessee 19
Recommended Relations 23

GAS BUBBLE VELOCITY IN A ROTATING LIQUID 23
Development of Basic Equations 23
Computation of Maximum Gas Bubble Residence Time 25
TOTAL GAS HOLD-UP IN THE HRE REACTOR CORE 31
DISCUSSION OF THE RESULTS 37
LIST OF REFERENCES CITED 39
APPENDIX 4O

Table of Nomenclature 11
Computation Procedure Ll




THE MOTION OF GAS BUBBLES IN THE HRE REACTOR CORE

SUMMARY

A theoretical study of the motion of gas bubbles in a rotating liquid
is presented to meke comparison with experimental data from an investigation
concerning the removal of gas bubbles from rotating liquids as described in
ORNL-630. 1In particular; the following information is presented:

(1) The literature on the motion of gas bubbles in liquids

is reviewed and a summary of extensive experimental
studies at the University of Tennessee on this topic

is presented. These results are presented in the form
of quantitative expressions for the drag coefficients
of gas bubbles in terms of the bubble size and physical
properties of the system.

(2) An expression for the radial velocity of = gas bubble

in a rotating liquid based on principles of mechanics

is presented. This expression includes the effects of
liquid velocity, drag coefficient of the gas bubble

and the physical properties of the system. Computations
of the maximum gas bubble residence time for the HRE
mock-up studies were made based on this relation. The
results of these computatlions are presented and are

found to agree favorably with experimental data described

in ORNL-630.
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(3) A method for computing the steady state state gas hold-up
in the HRE reactor core under power producing conditions is
presented. The results of computations based on this method
are presented. Such results indicate that 0.10 to 0.55
volume percent gas hold-up will be reelized in the HRE
reactor core., These values reflect thq influence of gas
bubble size over the range of 0.001 to 0.6 inch diameter
and the influence of liquid velocities in the reactor core
corresponding to a 2 inch and a 1 1/2 inch nominel diameter
inlet pipe.
It is concluded that the relations and methods presented are
general in scope, and could be applied to eny size reactor core providing
basic data on liquid velocity distribution, gas bubble size and physical

properties are known.

INTRODUCTION

The removal of gas bubbles from the fuel solution by centripetal
action resulting from rotary motion of the liquid within the spherical
HRE reactor core was described in ORNL-630. As described in the report
cited, it was found that a stable liquid flow pattern could be maintained
with liquid being introduced on a chord of the sphere. Under such con-
ditions the liquid moved in an approximately spiral path toward the center

of the sphere with the formation of a cylindrical gas void aligned with



the vertical axis of the sphere. The liquid effluent was from an annular
opening around the gas void at the top of the vertical axis.

It was also found upon introdﬁction of gas bubbles into the liquid
within the sphere that the gas bubbles could be separated from the liquid
very effectively, the gas bubbles moving rapidly toward the central ges
void in an almost plane, spiral path. Results were given of extensive
experimental work involving the flow characteristics of air bubbles in
water moving within a plastic sphere 1.5 feet in diameter. For a water
flow rate of 100 GPM at approximately 25°C it was found that the gas
bubbles moved with radial velocities of 1.5 to 3.0 feet per second. Under
these conditions the radial and tangential components of the liquid velocity

were found to be given by

v, = 4.8 R7O-TT , 0.12 2R £ 0.75 ft (1)

Vy = 204 R s 0.0OLZR £0.12 ft

Vyp = 0.0177 s 0.,124R<20.65 (2)
R(0.5625-R2)1/2

vhere,
Vi = tangential component of the liquid velocity at
radius R relative to a fixed coordinate system, ft/sec
V, = radial component of the liquid velocity at radius R
relative to a fixed coordinate system, ft/sec
R = position radius measured from the vertical axis of

the sphere, ft
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The velocity distribution data were determined from pitot tube traverses
at the equatorial plane of the sphere. The status of the experimental
work was such thet no information was available as to the effect of liquid
properties on the observed bubble velocities or liquid velocity distribution.
Further, the a?plicability of the velocity distribution as given by
equations (1) and (2) to planes other than the equatorial was not known.

It is the purpose of this present work to examine the literature and

summarize the data on the velocity of gas bubbles in liquids. Further, it
is desired to consider the application of such deta to these problems:

a. Development of relations to allow the quantitative
prediction of the motion of gas bubbles in a rotating
mass of liquid in terms of the physical properties of the
system.

b. Computation of the mean bubble velocities in a sphere 1.5
feet in diameter for water at 25°C and at 250°C et a
flow rate of 100 GPM showing the effect of bubble size on
the velocities.

c. Computation of the anticipated total gas hold-up to be
encountered in the HRE reactor core under power producing
conditions; i.e. pressure-1000 psia, average tempersture-
250°C, power-1000 KW, fuel solution flow rate - 100 GPM.

The scope of this work is limited by the extent of existing

knowledge on liquid velocity distribution in a sphere and the size of gas

bubbles to be generated in the fuel solution. For the lack of other data

I
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at the present time, the liquid velocity distribution data as expressed by
equations (1) and (2) will be used for all points in the sphere. As
further information on this topic becomes avallable the considerations can
ée revised,

Wilson<®

presented information showing that the size of gas bubbles

to be generated under power producing conditions is conjecturel, and it is
possible that gas bubbles 6.6 x 1072 £t to 2 x 1072 £t radius may be released
from the fuel solution. Again, for lack of specific information at the

present time, this range of gas bubbles will be considered in the present

work.

DATA ON GAS BUBBLE MOTION AND VELOCITIES

Theory
The problem of predicting the velocity of gas bubbles in a liquid is

hydrodynamical in nature, and falls within the more general problem of the
flow of fluids past bodies in a fluild stream, a question which has intrigued
investigators in that field since the time of Newton. The earlier specu-
lations were based on the hypothesis of an "ideal" fluid having zero viscosity.
Reference may be maede to texts on classical hydrodynamics such as Laﬂb7,
Milne-ThompsonlO, Green5, and Ramsey13 for the results of such considerations.
The conclusions are of little importance since for steady flow the 'ideal"
fluid offers no resistance to flow past a body immersed in the fluid stream.

This is contrary to experience with all real fluids.
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An analysis of the forces involved in the motion of a real fluid
leads to the general differential equations of fluid motion known as the

Navier-Stokes equations.

U 4 oy AU 4 v QU 4 23U Xygc - 8C 2P + E_qeu
2t * ax a2y 2z o1 2% oy

2
M+u£v_+v@l+wu Xegc-5£22+ -E—Vv (3)
2t 2x 3y Az pL 3y Pl

2
31+u'é.‘l+vé.‘l+wQE=ch—Ea.B+.P_ g v
2% ?x oy oz 3 pp 0z M

where,

u,v,¥ = X,y,z components respectively of the fluid velocity, ft/sec

Xl,Xg,X3 = X,¥,% components respectively of any extranecus forces
acting on a fluid element, pounds force/pound mass

p = pressure at a point (x,y,z), pounds force/(sq ft)

gc = conversion factor between force and mass
32.17 (pounds mass)(ft)/(sec)Q(pound force)
<72 = Laplacian operator
p = liquid viscosity, pounds mass/(ft)(sec)
t = time, sec |
p, = liquid density, pounds mess/ cu ft

This system of equations must be solved subject to the boundary conditions
appropriate to the fluid motion situation involved. Attempts to obtain

solutions by such an approach are usually hampered by unsurmountable



mathematical difficulties, and successful solutions have been achieved

for only a few simple cases. In the main these simple cases have involved
only unidirectional flow. However, for the case of symmetrical three
dimensional fluld flow around a body immersed in the fluid stream, a solution
may be obtained after certain simpiifying approximations sre made.

Stoke816 considered the flow of a liquid past a solid sphere at very
small velocities. For such small velocities fhe inertia terms u%l; s v g-l-yl ’
+ o » » become small compared with the frictional terms _E_,<72u,_iL_<fv,

+ o « + , and are neglected. With these approximations,p%tokes sog%ed
system (3) for the boundary conditions of zero velocity at the surface of
the sphere with the added assumptions of an infinite extent of liquid end

gravity as the only extraneous force. The important result of the solution

is that the total liquid resistance is given by

D = 3 U (%)
gc
where,
D = total liquid resisting force acting on the spherical
solid, pounds force
d = diameter of the spherical particle, ft
U = velocity of the spherical particle relative to the

liquid, ft/sec
This result can be applied to the rising of a gas bubble in a Jliquid
under conditions for which equation (L4) is valid. The equation of gravi-

tational motion upon application of Newton's second law is

P



3 ’a
4/3 x Ry (py - pp)E _ 6 xRy U_4/3 xR0, ay (5)
ge gc gc dt
where
Rb = equivalent spherical radius of the bubble, ft

density of the gas bubble, pounds mass/(ft)3

P2
When the bubble attains the steady state, or terminal velocity,

U _ 0 end

at

2
9u

where

Uee = steady state velocity, £t/sec
This result is commonly known as Stokes' law. The restrictions imposed
by the assumptions used in the development limit the spplication of this law
to extremely small gas bubbles or very viscous liquids.

The inability to solve the Navier-Stokes equations for systems where
Stokes' law does not apply has led to the practice of employing an arbi-

trarily defined drag coefficient. The drag coefficient is defined by

D =Cp P U° A n
2 gc
where
Cp = drag coefficient, dimensionless
A = cross section of particle perpendicular to the

direction of flow, sq ft
The drag coefficient as defined is somewhat analogous to the Fanning

friction factor used to correlate the data for the pressure drop accompanying

)
SECR——
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the flow of fluids through pipes. Using this analogy, dimensional analysis
has been employed to gain some insight concerning the relation between Cp

and the variables influencing it. Such treatment gives the result

cp =¥ (Be) (8)

where
J = arbitrary function, dimensionless
Re = Reynolds number, ELEE_E_EE ; dimensionless
v

The form of this unknown functicn,fE » can be computed for the case
where Stokes' law applies by equating the two expressions for the total
liquid drag resistance from equations (4) and (7) and assuming a spherical
gas bubble. Thus,

6anuU___ CDplUEane
gc 2 ge

Solving for Cp,

R, Up; Re

For cases where Stokes' law does not apply the function, , must be determined

from experimental data.

A Review of the Literature

A brief summary of the literature dealing with the drag coefficients
for solid spheres moving in liquids is given here to serve as a basis for
comparing drag coefficients of these with the corresponding values for gas
bubbles. Lapple and Shepard8 examined the dats for solid spheres of 19

investigators. These data covered a variety of particle sizes and liquid

I —
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properties over a Reynolds number range of lO"l to 3 x 10°. The averaged

data of all the investigators were correlated by the following relations:

Cp = %— Re & 2 (10)

cp = 18:5 2 £ Re% 500 (11)
ReOe6

Cp = O.hk4 500 £ Re£2x 10° (12)

The result expressed by equation (10) is identical to Stokes law which has
been shown to be synonymous with viscous flow. Equation (11) seems to
represent the transition region between viscous and turbulent flow, while
equation (12) applies to the turbulent flow condition.

AlI!.en:L was one of the first investigators toc attempt verification of
Stokes law for gas bubbles moving in liquids. Studies were made of the rate
of rise of single air bubbles (R, £ 0.001 feet) in water and eniline, and
the data indicated excellent agreement with Stokes law for Re £1. For
1 £ Re £ 200, Allen found that the bubbles had a spherical shape, rose
vertically in almost a straight path, and the velocity was very nearly
proportional to the radius. Furthermore, when the data were expressed in
terms of the dimensionless drag coefficient and Reynolds number they were
found to agree favorably with the results for solid spheres. The conclusions
from this work are that for aniline and water the results for solid spheres
expressed by equations (10) and (11) are also valid for gas bubbles with

the Reynolds number range modified to Re £ 1 and 1 & Re £ 200 respectively.

SWN,M_
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Miyagill studied the rate of rise of single air bubbles in water over
a size range, 0.003 & Rp € 0.013 feet, and found that the linear relationship
between velocity and radius extended to Ry & 0.005 feet. Also, for Rb> 0.005
feet the velocity decreased up to Ry = 0.009 feet, and then tended to remain
constant 1ndependen§ of radius. Empirical expressions were presented to fit
the experimental data, but no general relations in terms of physical properties
of the flulds were given by Miyagi. It was pointed out that in the size
ranges where the linear relation between velocity and radius does not apply,
the bubbles tend to flatten in the horizontal direction and that the path of
ascent 1s spiraling in nature.

Bryn2 studied the motion of air bubbles through agqueous solution of
alcohol and glycerine over a wide range of sizes. The movements of the
bubbles were classified into three distinct types:

1. "Small Bubbles," approximately spherical, rising in

straight lines; for water at room temperature, Ry < 0.005 feet.

2. "Medium-sized bubbles," flattened horizontally, rising with

rocking, pendulum-like spiral movements; for water at room
temperature, 0.005 & Ry, < 0.013 feet.

3. "Large bubbles," greatly deformed, assuming a mushroom-like

sﬁape, rising reiatively straight, very unstable tending to
break easily into numerous smaller bubbles; for water at
room temperature, Ry, » 0.013 feet.
Bryn confirmed the definite maxima reported by Miyagi in the velocity-radius

curve and was able to express the relation between velocity and bubble radius

AW ey



quantitatively for the "large bubble" region by

u=gVa + & (13)

a

where

-
]

arbitrary constant

d = arbitrary constant
1/2
a = [é%glgg] Laplace's capillarity constant, ft
1
& = liquid surface tension, pounds force/ft

O'Brien and Gosline12 surveyed the literature on the velocity of gas
bubbles and conducted experiments in which the rise of air bubbles through
water, mineral oil and livestock oil were studied in 1.18 inch, 2.24 inch
and 6.00 inch glass tubes. They made a dimensional analysis of the variables
that could affect the drag coefficient, and found that the drag coefficient
should be some function of the Reynolds number, the Weber number and
possibly other dimensionless groups. Having done this, they abandoned this
analysis and did not determine the functional relationships between the
dimensionless groups mentioned. Instead, their results for all experiments
were plotted as curves showing the variation of the drag coefficient with
Reynolds number. Their results indicate that for the three liquids studied
the relation between Cp and Re for solids is valid for gas bubbles up to
some critical value of the gas bubble radius peculiar to the liquid involved.
Above this critical radius the drag coefficients are much larger than those
for solid spheres at the same Reynolds number, and the Cp versus Re curve

loses its generality. Classifications of three types of bubble movement
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were described which were similar to those of Bryn. Limited experiments
were conducted on the mean velocity of a stream of gas bubbles. No generel
correlations of these data were presented.
Robinsonlh made measurements of bubble velocities in lubricating oils
for Re £1. The results confirmed those of previous investigators in that
Stokes law is applicaeble to the movement of gas bubbles in this region.
Kaissling6 made a dimensional study of the factors affécting the velocity
of steam bubbles in vertical boiler tubes. It was claimed that the following

dimensionless group functional relationship should apply

U _ofute , PRy € (14)

where

f = arbitrary function.
Attempts to determine the functional relation were made without success
using data given by Schmidtl5o

Wignerl9

made some speculations regarding the velocity of gas bubbles
in liquids based on a dimensional analysis of the variables bubble velocity,
liquid density and liquid viscosity. It was intended that such an analysis
should give an expression for the terminal velocity of a bubble that was

growing by transfer of material into it, hence the bubble radius was not

considered in the analysis. Such en analysis led to

Ue b _ ooy p? g0

¥ &c uﬁ“g”“‘

(15)
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where

f

arbitrary function

steady state rising velocity, ft/sec

Uoe
From data on alr bubbles rising in water the arbitrary function was
evaluated end expressed by

-1/4

£f=2 E}.&3 ge3 (16)

e o

wog

Substituting equation (16) into equation (15) gives

1/k
U = o| LE8 8 (17)
51

No attempt was made to verify this deduction experimentally nor was an
explanation of the mechenism that brings about this result put forth.

Levich9 discussed the boundary layer theory with reference to liquid-
gas interfaces and applied it to the computation of the total resisting
‘force that acts upon a gas bubble rising in a liquid. The analysis of the
boundary layer behavior applied to a spherical gas bubble led to the
following expression for the steady state rising velocity,

2
Rp g (pl - ep) (18)
9p

This result was claimed to be valid over the range 1 &£ Re £ 1500. However,

Uce

Levich pointed out that experimental verification of equation (18) would

be difficult because of bubble deformation.



Gorodetskayah

conducted experiments on the rate of rise of single air
bubbles in water and a number of normal alcohols with the express purpose
of attempting verification of the conclusions of Levich. In the main the
experimental bubble velocities were approximately 30 percent lower than
those predicted by equation (18), but were somewhat higher than bubble
velocities measured by other investigators under corresponding conditionms.
Gorodetskaya argued these discrepancies exist because the bubble velocities
are very sensitive to the presence of the slightest trace of impurities in
the liquids used, that all the ligquids he used in the work were carefully
purified whereas previous investigators had ignored this precaution. Data
were presented to show that concentrations of surface-active substances as
low as 10'6 molar are sufficient to affect the velocity of bubbles in liquids,
these effects being attributed to changes in "interfacial viscosity.”

Datta, Nepier and Newitt3 made measurements of the velocity of single
air bubbles in water. Their data agree with those of Allen and Miyagi
under corresponding conditions. In the range of gas bubble sizes described
by Bryn as "large bubbles" (Ry,>0.013 feet), the velocities as measured by
these investigators was almost independent of size.

18 studied the motion of a stream of air bubbles in a column

Verschoor
of liquid. Measurements of mean bubble velocity were made for different
rates of air passing through the column without measuring the bubble size.

Attempts were made to correlate the data using the dimensionless groups

suggested by Kaissling. No general relationships were presented.
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Va; Krevelen and Hoftijzerl7 made measurements of the velocity of a
stream of air bubbles rising in water, cyclohexane, mineral oil and aqueous
solutions of glycerine and saponine. When the results were expressed in
terms of the drag coefficient and Reynolds number, deviations from the
correlations for solid spheres were obtained similar to the results of
O'Brien and Gosline. No general relationships in terms of the physical
properties of the systém were given.,

Studies at the University of Tennessee

As a phase of a long range project at the University of Tennessee
involving mass transfer in liquid-gas bubble systems, the motion of air
bubbles in 22 different liquids was studied. The express purpose of the
work was to discover general correlations of the velocity and the drag
coefficients of gas bubbles in terms of the bubble size and physical properties
of the systenm.

The experimental work consisted of determining the steady state
veloclity of single bubbles of known size rising in liquids of predetermined
physical properties. The range of bubble sizes and physical properties used
in the studies were such that a Reynolds number range of 0.5 to 2500 was
covered.

Typical results of the steady state velocity of air bubbles rising
in water and a ethyl acetate-cottonseed oil solution as a function of the
bubble radius are given in Figure 1. Data for some of the other systems
studied are shown in Figure 2 as a plot of the drag coefficient versus the

Reynolds number. The data as given agree favorably with those of previous

i,
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investigators. As observed by 0'Brien and Gosline the plot of the drag
coefficient versus the Reynolds number is not a gseneral correlation for the
behavior of gas bubbles and other parameters are involved.

As may be noted in Figures 1 and 2, four distinct regions of behavior
are exhibited by the motion of gas bubbles in a given liquid. The first two
regions correspond to the motion of solid spheres in liquids. The third and

fourth regions indicate the departure from similarity to the motion of solid

spheres. Without discussing the empirical and theoretical methods used in the

analysis of the experimental data, the drag deta from all the experiments

could be expressed by the relations given in Table I.

TABLE I

SUMMARY OF RELATIONS FOR THE DRAG COEFFICIENTS OF GAS BUBBLES
MCOVING IN LIQUIDS

Region Drag Coefficient Limits
I Cp = 24 Re™t Re £ 2.0
» -0.214
II Cp = 18.7 Re~0-68 2,0% Re € 4.02 Gy 0.2
.1hk
111 Cp = 0.441 Gp 16.32 GlO 1 <6, £6.45
0.250
v Cp = 1.783 65 > 6.45 £ Gy
b L 4 3 :
G, = ._g_;‘__ (23); G = 8% 3” b1 (2h)
P ¥ gc3 y gc3

(29)

(20)
(21)

(22)

-
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Recommended Relations

It is proposed to use the correlations expressed in Table I for the
drag characteristics of gas bubbles moving in liquids in this present work.
This proposal is based primarily on these factors:

a. No other general correlations for the drag coefficients
of gas bubbles moving in liquids are known.
b. Even though the correlations are based on data from the
motion of single gas bubbles, the corresponding data for
masses of gas bubbles probably are not seriously different.
c. Intimate relation of the author with the work at the University

of Tennessee.

GAS BUBBLE VELOCITY IN A ROTATING LIQUID

Development of Basic Equations

The accelerating motion of a gas bubble in the rotating liquid of the
HRE core is approximated closely by a single equation for the radial

component of the total motion, thus

2 2
L b4 R'b3 02 d UI' _ b x Rb3 Vte (pl - p2) _ k14 CD pl R‘b U (25)

3 gc dt 3 gcR 2 gc

where,
R = position radius measured from the vertical axis
of the sphere, ft
t = time, sec
po = gas density, pounds mass/cu ft

Up = radial velocity of the bubble relative to a fixed

coordinate system, ft/sec
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Such an expression is based on negligible motion of the gas bubble with

respect tc the liquid in the tangentlisl and verticsl directions., Hence,
U,=V,.+U (26)

The combination of equation (26) and the relations for the drag coefficient
as given by equations (18) through (24) would theoretically permit an
analytical solution to equation (25). Such a procedure is extremely im-
practical and numerical integration is indicated. However, upon attempting
such numerical integration, it is found thet for a fixed value of bubble
position radius, R, the acceleration to a terminsl velocity is almost

instantaneous. As a result, little accuracy is sacrificed by assuming

a U
“a‘%l: 0 (27)
R = constant
Incorporating this approximation into equation (25) leads to the
simplification
2
cp U2 - 8 Ry Vg (pl - 02\ (28).

3R py
Substituting the relations for the drag coefficient as given by equation (19)

through (24) gives these expressions for the radial velocity,

2
U = NGlgl o, vge b (29a)
i
pl Ry
0.758 0.515 1.272
U = 0.155 N 5 PL 015 R, T ,
il
" ey & 2,01 p 1-0.2114- 2o
P1 Ry P1 Ry (29p)




0.167 .0.500
U = 1.146 [3’_@] ﬁLes ,
g ble
. - . 0.
2.01 ¢ 0.036 | &gc 0- 10 1 2ygg 1594 [ Xrac 70 1
: 0.083 0.250
L
U = 0.825 | No Lee ,
g P1
0.750
1.505 | &ac 1 £y (294)
gO.25O Py Rb
2
where N, = 8 Ve (py - 0p)
3R Py

This system of equations permits the computation of the gas bubble velocity

at a specified point in the rotating liquid in terms of the bubble size,
physical properties of the system and the velocity of the liquid.

Computation of Maximum Gas Bubble Residence Time

Some of the experimental work on gas hold-up in the HRE core described
in ORNL-630 involved the injection of measured volumes of gas bubbles into
the mock-up spheres at the liquid inlet. From both motion picture studies
and gas hold-up measurements, it was found that 0.25-0.40 seconds were
required for gas bubbles to move from the liquid inlet to the central gas
void (i.e. R= 0.65 ft to R= 0.01 ft). The sizes of bubbles involved in
these studies were not known precisely but it was estimated that the sizes

were from 0.10 - 0.30 inch in diameter.

In order to show the applicability of the previous equations for the gas

bubble velocity in a rotating liquid, the maximum gas bubble residence

time (the time required for a bubble to move from the liquid inlet to the

(29¢)
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central gas void in the equatorial plane of the sphere) has been computed
for a number of gas bubble sizes. Computations were made using physical

properties of the fluids to correspond to the room temperature flow studies at

approximately T7OCF and to the actual operating conditions of 482°F and 1000 psia.

The liquid properties were assumed to be those of water. The ligquid velocities
in the sphere were assumed to be those as computed from equations (1) and (2)
which were the result of velocity traverses made in a sphere 1.5 ft inside
diameter with a 2 inch nominal dismeter inlet pipe. Computations were also
made to correspond to the use of a 1 1/2 inch nominal diameter inlet pipe.
In these computations it was assumed that the liquid velocities in the sphere
would have the same type of distribution as given by equations (1) and (2)
with only a change in the constant of equation (1) byvthe ratio of increase
of inlet momentum.

Since the radial velocity of the gas bubbles varies with position in
the sphere, 1t was necessary to compute the bubble velacity at a number of

positions and then evaluate the residence time by integration over the

distance traversed. The computational procedure was as follows for a particular

gas bubble size, Ry:
a. For a specified value of the position radius, R,
compute the radial and tangential components, Vr and
Vi, of the liquid velocity using equations (1) and (2).
b. Using the value of V., from computatioﬁ (a) and the values of
the physical properties evaluated at the operating temperature
and pressﬁre, compute the radial velocity of the gas bubble

relative to the moving liquid, U, by the appropriate equation

sm

from system (29a-dL
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c. Compute the absolute radial velocity of the gas bubble, U,

by equation (26) using the result of computation (b) and the
value of V, from computation (a)
d. Repeat the above computations for a number of values of the
position radius in the range 0.02 €R< 0.65 ft.
e. Compute the maximum gas bubble residence time , t, by
evaluating the integral,
.02
t = & (30)
U.
0.65  ©
this may be done graphically by a plot of this type
kﬁ Area = T
|
{
N
0.02 0. 65
AR —
As an alternate procedure this integral may be evaluated numerically.
The results of computations using this procedure are shown in Figure 3
. and Figure 4 giving the maximum gas bubble residence time as a function of

the gas bubble size. Figure 5 gives the radial bubble velocity for a bubble
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0.25 inch diameter as a function of position radius at 482°F to show the
range of velocities predicted in the HRE core. It is gratifying to note
that the maximum bubble residence times for bubbles 0.10 - 0.30 inch in
diameter as calculated agree favorably with the experimental values given

in ORNL-630.

TOTAL GAS HOLD-UP IN THE HRE REACTOR CORE

In the previous section computations of the maximum gas bubble
residence time were made for the case where the gas was introduced at a
single point in order to make a comparison with the HRE mock-up experiments.
However, under actual operating conditions gas is to be generated throughout
the liquid volume. Furthermore, the important information desired is the
total gas hold-up volume within the sphere, not the time that a single bubble
remains in the liquid mass. In this section the problem of predicting the
extent of this total gas hold-up to be encountered in the HRE reactor core
under power producing conditions will be considered.

For clarification the problem may be divided into these three steps:

(1) Considering any liquid volume increment, compute the number of gas

bubbles contained in it; teking account of the number of gas
bubbles generated in that volume of liquid, the number of gas
bubbles moving into that volume from other parts of thé liquid
and the number of gas bubbles moving out of that volume into

other parts of the liquid.
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(2) Compute the gas hold-up within the entire liquid mass by
summing the number of gas bubbles contained in all liquid
volume increments within the sphere.

(3) Compute the volume of gas contained in the central gas void.

Again, an exact solution to the problem as outlined above will be

difficult to obtain and certaln simplifying assumptions will be made;
namely: ‘

(a) gas generation rate per unit volume of liquid to be
constant throughout the liquid mass and is to be computed
from the total power generated (1000 KW) using 50 - 100 e.v. per
water molecule decomposed

(v) gas bubbles move in horizontal planes from the point of
generation to the central gas void

(¢) for a given horizontal plane, the gas bubbles move at s
constant, mean radial velocity which is to be evaluated
in terms of liquid velocities, physical properties of the
fluids and the bubble size by the methods presented in the
previous section (such a mean value is used to expedite
thé computations, otherwise a laborious double graphical or
numerical integration is required)

(d) +the gas bubbles are of a constant size and are small enough

to permit the use of the calculus to describe the events.
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Based on the assumptions, the problem as outlined may now be con-
sidered. A schematic diagram of & representative volume increment of

liquid within the sphere and a short list of symbols is given below.
-— Ry > R —=

ra— — — — — — ——-—0.

= =l

= N

/ %
|

ht— .

Nomenclature:
h = height of a horizontal plane above the equatorial
plane of the sphere, ft
Ah = height of a horizontal layer of liquid, ft

number of gas bubbles per unit volume of liquid, ft-3

=]
]

R_ = radius of the sphere, ft

R(h) = position radius at a point in a horizontal layer of
liquid at a height, h, ft
AR(h) = Increment of position radius, R( n)’ £t
Y l

R (n) = radius of a circle cut by the chordal plane at a
height, h, ft
Rv = radius of central gas void, ft

t = time, sec
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U(h) = mean radial velocity of all gas bubbles moving
in a layer of liquid at a height, h, ft/sec
Vb = volume of a gas bubble, cu ft
Vg = volume of ges generated per unit time per unit

volume of liquid, sec™l

Now considering the annular element of liquid volume as formed by the
increment of position radius, ASR(h), at a point R(h) with a height, A h,
it may be shown that the rate of change of the number of bubbles is given

by

2t - ') 3R | —w * = (31)

Since for steady state conditions, 2n - O, then n becomes a function

3t
of R(h) only and equation (31) is reduced to the ordinary differential

equation
2 R o (32)
(h) (h) (h)'®

this equation is integrated to

+C (33)

- Vg 2
nR(h) ZU(h)Vb R (h)

vhere C is a constent of integration. This constant may be evaluated

from the boundary condition

1

(34)

h)
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Substituting this condition in equation (33), the gas bubble concentration

distribution for steady state conditions is given by

1 2
n- V6| Bm "R (n) (35)
20(n)Vy R(n)
Equation (35) gives the gas bubble concentration as a function of
R(h) within the horizontal layer of height, Ah, and then the number of

gas bubbles in the annular element of liquid volume becomes
AN = 2xAh Ryn DRy, (36)

where A N represents the number of gas bubbles contained in this volume
element. Now assuming the use of the calculus and pessing to the limit as

AR(h) —> 0 and Ah =0,

N = 2x n R(yy 4 B( dh (37)

h)

Now integrating over the entire liquid volume, the total number of gas

bubbles contained in the sphere becomes

‘ 1
Rg (h)
< N = hx g n R(h) dR(h) dh (38)
(o] Rv

where £ N represents this total number of gas bubbles. Letting Vg represent

® the volume of gas bubbles contained in the sphere and substituting the value

of n from equation (35)

1
i (h) 2 12

Vg = 2n Vg Wlh) By " Bw) R(pydn  (39)
o) Rv

"



The integration over R(h) may be performed analytically since U(h) is

a constant for this integration, thus

1 3 13
V., =217 1 R(n)Rv - Fv> - 2R(p)” | dh (ko)

U(n) 3 3

This final integration is best performed graphically as the relation between
U(h) and (h) is not simple. However for a given value of h, U(h) may be
evaluated by the method given in the previous section. Then Vg may be

evaluated graphically using a plot of the type shown below.

]_:,_

Area x ATl =V,

>

Var}

| FnR, - B - 2

|
Urm
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The total gas hold-up in the sphere may be computed by

% Hold-Up = 3[VH + 2n By° Bs]' x 100 (41)
Ly Rs3

Using these results, the per centage total gas hold-up has been
computed for the HRE reactor core under power producing conditions for a
range of bubble sizes. These results are shown graphically in Figure 6. No
experimental date asre available for comparison. These computations are based

on a value of Rv = 0.02 £t (approximately 0.5 inch diameter gas void).

DISCUSSION OF THE RESULTS

A number of assumptions and approximations to the actual HRE conditions
have been made in this work. It is desirable to evaluate the effects of such
approximations and to indicate the type of data that are needed to eliminate
the approximations.

The basic approximation with regard to the motion of gas bubbles in the
HRE reactor core is in the description of the liquid velocity given by
equations (1) and (2). As has been pointed out these relations result from
limited experimental data, and are known to be contradictory to qualitative
information obtained in flow pattern studies now in progress at Oak Ridge
Nationael Laboratory. As quantitative information is made available from
these studies and from similar studies now in progress at other laboratories,
the computations can be revised to account for the more complete information
on the liquid flow within the spherical core. It is felt that these revisions

will be such that the vertical motion of the gas bubbles is accounted for
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in the form of snother equation of gas bubble motion in this direction
similar to equation (25). A revision of this type will add greatly to the
computational requirements but will permit a definitely more accurate
description ¢f the gas bubble motion within the reactor core.

It was necessary to use drag ccefficient and velocity data for single
gas bubbles in this present work since quantitative information on the motion
of a stream of gas bubbles is not known. However, the limited data that are
available indicate that this is accurate to approximetely 25 percent. A
project on the determination of such dsta on gas bubble streams is in progress
at the University of Tennessee, Depariment of Chemical Engineering. Some
results from this project should be availavle by August, 1952 and revisions
to this work can be made in light of the new data.

It is to be noted that the procedure of assuming a size of gas bubble
has led to positive results regarding the bubble motion and gas hold-up in
the reactor core. Since little is known regarding the size of gas bubbles
to be encountered in the reactor core, it was necessary to mske computations
for a range of bubble sizes that included all the probable sizes. Such a
range of gas bubble sizes was taken to be 0.001" to 0.6" equivalent spherical
diameter.

The other approximations and assumptions were for the most part computational
in nature, i.e. "short cuts" to expedite the numerical work. In all such

cases these approximations did not affect the results by more than 5 percent.

iy
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APPENDIX A

TABLE OF NOMENCLATURE

cross section of a particle perpendiculer to the
direction of flow, sq. ft.

Laplace's capillarity constant, ft.
drag coefficient, dimensionless

total liquid resisting force acting on a particle,
pounds force

diameter of a particle, ft.

arbitrary function, dimensionless

g i
dimensionless parameter, ____.%;_7§__
Py 8C
L 3
dimensionless parameter, © Ry U 0y
3 g3

gravitational acceleration, ft/sec’

gravitational conversion factor,
32.17(pounds mass)(ft)/(pound force)(sec)

height of a horizontal plane above the equatorial plane
of the spherical core, ft.

height of a horizontal layer of liquid, ft.

2
defined variable, O Vt (P1 ~ P2) | py/sec”
3R pp

number of gas bubbles, dimensionless
number of gas bubbles per unit volume of liquid, (cu 1’1:)"l
total pressure, pounds force/sq ft

position radius measured from the vertical axis

of the sphere, £t
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Ry =
Bg =

Rn) =
1
Rm =

SR =
Rv =

Re =

equivalent spherical radius of a gas bubble, ft
radius of the spherical core, ft

rosition radius at & point in a horizontal layer of
liquid at a height, h, ft

radius of a circle cut by the chordal plane at s
height, h, f%

increment of position radius, ft
radius of the central gas void, ft

Reynolds number, Rp U py , dimensionless
7]

time, sec
velocity of a moving particle relative to the liquid, ft/sec
steady state velocity, ft/sec

mean radial velocity of all gas bubbles moving in a layer
of liquid at a height, h, ft/sec

radial velocity of the gas bubble relative to a fixed
coordinate system, ft/sec

X,y,z components respectively of the fluid velocity, ft/sec
radial component of the liquid velocity, ft/sec

tengential component of the liquid velocity, ft/sec

gas bubble volume, cu ft

volume of gas ginerated per unit time per unit volume
of liquid, sec”

total volume of gas bubbles contained in the spherical core,
cu ft

= X,¥,2 components respectively of any extraneous forces
acting on a fluid element, pounds force/pound mass

space coordinates, ft

- ..
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arbitrary constant, dimensionless
arbitrary constant, dimensionless
Laplacien operator, dimensionless
liguid surface tension, pounds force/ft
liquid viscosity, pounds mass/(ft)(sec)
iiquid density, pounds mass/(cu i)

gas density, pounds mass/(cu ft)

arbitrary function, dimensionless
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AFPPENDIX B

COMPUTATION PROCEDURE

1. Radial Velocity of A Gas Bubble in the HRE Core at 482°F (See Figure 5)
For these conditions:

51.0 pounds mass/(cu ft)

i

f1
po = 1.8 pounds mass/{cu £1)

0.75 x 1074 pounds mass/(ft)(sec)

o
R4

2.33 x 1073 pounds force/(ft)

For this perticuler computation, assume:

Ry

R

0.25 in=0.0208 ft

0.48 ft

Inlet Pipe Diameter = 2 in.
Using equation (1) and (2),
5.8 (0.48) 70T _ 8,13 £t/sec

. 00177
0.148(0.5625-0.482)1/2

Vs

Vy = = 0,06 ft/sec

From the definition of Ng»

Ng = 8.X8.43%(51.0-1.8) - 381.1 £t/(sec)?
3 x 0.48 x 51.0

By a trial and error procedure, it is found that equation (29d) applies to

the computation of the bubble velocity under these conditions. Thus

0.083 0.250

L -
U = 0.825 | 38L.1° 2.33 x 107 x 32.17 = 0.88 #t/sec

32.17 51.0

S
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Then using equation (26),

U, = 0.88 + 0.06 = 0.94 ft/sec

These computations are then repeated for other wvalues of the position
radius, R. The results of such a series of calculations of this one size

of gas bubble is shown in Figure 5.

2. Maximum Gas Bubble Residence Time {See Figure I)
The maximum gas bubble residence time is given bv equaticn (30) in the
form of sn integral to be evaluated. This integral may be evaluated

graphically bv using the results of computation (1) in a plot of the form

shown below: /////#/
. |

0.65

The area under this curve is equal to the maximum ges bubble residence

time. The results of such a procedure are shown in Figure b,

3. Total Gas Hold-Up in the HRE Core (See Figure 6)
From equation (40), the volume of gas comntained in the core is given

by
R
8 1 1 3 1 3
Vg = 2x Vg 1 | R (pBRY -RXYV - Eﬁggm,ﬂ_m dh (40)
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Vg can be computed from the total reactor power and the number of electron-
volts required to decompose the water molecule. Using 100C KW and 100 ev

per water molecule decomposed -

Vg = 0.00306 cu ft/(sec){cu £t of reactor volume)

Further, Rl(h) can be calculated by the relation

2 .21/2

By = (B - 1) (42)

Using Rv = 0,02 ft and equation (42), the term in the dbracket cam be
computed for & particular value of h.
For a particular gas bubble size the compuiations of the gas bubble

radiel velocity as a function of R can be used to compute U(h) Thus by

definition
1
=R (n)
U = U dR

By such a procedure, values of U(h) a8 a function of h can be evaluasted and
then the integral indicated in equation (40) can be calculated. Finally
the volume percent gas hold-up can be calculated by equation (41).

This procedure was followed for a number of gas bubble sizes and the

results are shown in Figure 6.




