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CHAPTER 1.

1.1. BACKGROUND

Considerable i1nterest has been
focused 1n recent years on the sta-
tistical (Monte Carlo) estimation of
the solutions of integral equations of
the type

(1.1)  H(x) = g(x)
+}\_/;K(x,y)<f>(y) dy , =z inR,
R being a Euclidean space, and on

related estimation problems. Some
research on these problems has been
published, ¢'*?:3+*) and much more of
the research has been done via intra-
and i1nterlaboratory communications,
either oral or written. The present
report leans heavily upon such re-
search, with little or no indication
of such dependence.

Fundamentally, the aim of this
report 1s to present (1) the appli-
cation of rigorous stochastic process
theory to the generation of a unified
theory of estimation processes for the
solution ¢(x) of Eq. 1.1 at a single
point x = x,, (2) the application of
elaborate sampling schemes based upon
simple distribution functions 1in an
attempt torealize anover-all computing
efficiency by appropriate balance
between statistical efficiency and
machine efficiency, and (3) the esti-
mation of the entire function ¢(x) by
a weighted 1nterpolation of many
single-point estimates of ¢. Related
estimation problems will be mentioned

only briefly.

1.2.

Define the sequence of functions

NOTATIONS AND ASSUMPTIONS

(1.2) Gy(x, u,,u,, suy) = AN K(x,u,)
The Neumann series for Eq 1.1 has
the form
(2]
(1.3) olx) = glx) + Z IN(x) ,
N=1
1n which

(1.4) I, (x) = L ....& Gy (x,

INTRODUCT ION

It will be assumed throughout the
report that series 1.3 for Eq. 1.1
converges for x in R. In much of the
report the main interest will be
centered about Egqs. 1.1 for which the
source term g(x) 1s nonnegative and
bounded onR andA K(x,y) 1s nonnegative
and bounded for both variables in R.
These assumptions will not be mentioned
explicitly except 1n the sections 1n
which the stochastic processes that
depend critically upon them are first
introduced.

1.3. RELATED PROBLEMS

The Basic Estimation Idea. Let 4
be an r X r nonsingular matrix of real
numbers and let Y and h denote column
vectors of length r, where h 1s known
and Y 1s unknown. The linear system
of algebraic equations A * ¢y + h = 0
may be written as

(1.5) Yy =h+ A+1I)- -y,

A formal similarity between Egs.
and 1 1 1s evident.
Eq. 1 5,
obtained

1.5
By 1teration of
an analogue to Eq. 1.3 1s

o]
(1.6) Y =h+ Y 4A+D¥ - h.
N1
If series 1.6 1s convergent, stochastic
methods for estimating series 1.3 may
be adapted to series 1.6 by replacing
the continuous distribution functions
by discrete distributions
The similarity between Egs.
1.5 1s important
solutions of certain equations of type
1.1 Most of the estimation methods to

be discussed forEq 1.1 are inapplicable

1.1 and
1in estimating the

Ku ,u,).o. K(uy_;,uy) gluy) ,

N=1,2,3, ... .

1f the kernel, K(x,y), 1s unbounded 1n
R?. Nevertheless, 1f the integral

_/; K(x,y) dy

Uy Uy, eee,uy) duyp oo duy



1s a bounded function of x in R, Egq.
1.1 may be approximated by Eq. 1.5
and the solution estimated by a
stochastic process for series l.6. To
see this, partition R 1into nonover-
lapping sets, A, A,, ..., &,, and
choose points x , 1t =1, 2, ..., r, 1n
A . Let ¢ denote the column vector
whose elements are the values ¢(xl) of
the solution to Eq. 1.1, and let h be
the vector whose elements are g(x‘).
Define the matrix A of elements a.g
so that

ayp * Bag = N Klxyxg) miBy)
where

Saﬁ = the Kronecker delta,
m(Aﬁ) = the measure fA dy of Aﬁ .

If #(x) and g(x) do not vary much over
each of the sets A, , the solution ¢ of
system 1.5 approximates the set of
values ¢(x ), v =1, 2, ..., r, and a
stochastic estimate of Yy gives a
stochastic estimate of &(x ).

The general methods to be discussed
in these pages estimate series 1.3 or
1.6. The basic 1dea of the methods 1s
to define a class of stochastac
processes and random variables thereon
whose expectation 1s the series 1n

question. Computational efficiency
would then be achieved by choosing the
process and the random variable that
give the best balance between statisti-
cal efficiency (minimum dispersion)
and speed of computing. This optimal
choice may be difficult and has not
been found, 1n general. It 1s hoped
that sufficient variety has been in-
cluded here to allow good choices in
many problems.

Physical problems that give rise to
Eqs. 1.1 and 1.5 are sometimes called
steady-state problems.(!) The dis-
cerning reader will easily see that,
in general, the estimation processes
to be discussed 1n chapter 3 of thas
report are not limited in their appla-
cability to only Eqs. 1.1 and 1.5. The
same processes could be used to esti-
mate series like 1.3 orl.6 in which the
integrands, GN' or matrices, (A + I)N,
are of more general form. For example,
the functions Gy need not have the
explicit form given in Eq. 1.2. The
factors K might vary in functional form
with the indices on their arguments.
Similarly, the matrices (A + I)" in the
series 1.6 might be replaced by the

N
more general forms I B‘
1=1

CHAPTER 2.

2.1. SUMMARY AND REMARKS

This chapter presents the formal de-
scription of certain stochastic proc-
esses that will be applied i1n Chap. 3 to
the statistical estimation of solutions
of equations of types 1,1 andl.5. The
uninitiated reader might studysections
2.2, 3.2, and 3.3 before attempting to
follow the elaborate descriptions given
in sections 2 3 through 2.3.3,

Any statistical theory should began
with a description of a sampling space
and a probability measure defined
thereon. Doob¢®) has glven a rigorous
theory for the type of stochastic proc-
esses needed here. The definitions to
be given below conform with his defi-

nitions and theorems., Section 2.2

STOCHASTIC PROCESSES

contains a description of aprocess that
w1ll be used 1n Sections 3.2 and 3.3 to
define the basic estimation procedure to
be used 1n this report. Most of the esta-
mation methods described inrefs. 1, 2,
3, and 4 are special cases of that
basic procedure. Sections 2.3 through
2.3.3 define more complicated sto-
chastic processes for use 1n the
elaborate sampling schemes involving
stratified and multiple samplaing
described i1n section 3.4.

2.2 THE BASIC PROCESS

For convenience and simplicity, the
space R of the integral in Eq. 1.1
w1l]l be assumed henceforth to be an
interval a < x < b of the real number



axis. Generalization to multidi-
mensional intervals R offers no diffi-
culty 1n theory, For unity in notation,
in dealing with the system of Egs. 1 5,
the set of integers (1, 2, 3,
w1ll be denoted also by R.

veey, T

The following abbreviated notations

will simplify the formulas and will be
used freely without comment

y” = (11,12;13,...,1:”)
= point 1in R¥,
7; = (xo,xl,xz,. ,xN) =
(xg,7y) = point 1n RN¥*L |
d’)lN = dxl dxz “ee de N
(2.1) _
dyN = dx, dx, ... dxy
= dx, J% ,
f(yN) = f(xlple-r-;xN) ’
f(?ﬁ) = f(xo,xl,.. ,xN) .

Deflnltlon 1. Define a sequence
Fy (7 ), N=20,1, 2, ..., of cumulative
dlstrlbutlon functlons on the spaces
R¥*! with the consistency properties
F (xo,x . ,0,...,0) = F (7 ) for
each N > 1 anJ’p < N.* Also, deflne a
sequence of functions p, (yN), = 0,
1, 2, ..., on R”+l such that for each
N and each 7 , 0 P, (7 ) < 1. Let
qN(yy) =1 - PN(7N)

Assumption 1. (a) If the solution
d(x) of Egq 11 1s to be estimated,
1t will be assumed that a pirecewise
continuous-density function fN(y&)
exists such that

Fy(vy) =./:° _/:x”f,.,(y,}’) dyy'
(=1 f yg=15b,b, ..., b)

(b) If the vector Yy of Eqs. 1.5 1s to
be estimated, 1t will be assumed that
FN(yi) ts a discontinuous distribution
with all the probability concentrated
at points 7;, for which each component
x, 0 <1 <N, 1s one of the integers

*See reference 6, p 19, for further properties.

1, 2, ..., r. For uniformity 1in
notation, f (y ) will denote the
probability concentrated at y

It follows from Assumpt1on 1 that
FW(yN) vanishes 1f one or more of the
components x of 7 1s less than a and
1s unity 1f all the x, of 7; exceed b.

The following notations will be
useful

(2 2) = py(7y) a0,

=0

Py(yy)

(2.3) fN(ley:)
= fn(miens Ziageees xN|7:)
fary)

E_,l

f,00)

<N ,

(2.4)  Hyyy iy loy)

= fN+1(7N+1|'yp;) ﬁ q,(’)’:) .

=
The function 2.3 denotes the conditional
probability (dens1ty) of x .., %, 44,
1f y 1s given,

The sampllng space {I to be envisaged
may be thought of as a space of
infinitely many dimensions, provided
“dimension’’ 1s not interpreted strigtly.
The definition of the sampling space
follows Assign two distinct states,
S and T, for which intuitive meanings
will be given later. Let X denote the

collection of all elements a that are
pairs of the forms (x,8) and (x,T),

where x 1s 1n R. For any fixed x in R,
the two pairs (x,S) and (x,T) are to be
regarded as distinct elements a of X,
as are (xl,S) and (xz,S) or (xl,T) and
(x,,T) for distinct x,, x, 1n R.
Subsets of X will be denoted by A and
B, with, possibly, subscraipts or
superscripts or both. The symbols
ACS) and BS) wi1ll denote subsets of X
that are composed entirely of elements
of the form (x,S8). Similarly, A(T)
and B‘T) contain only (x,T) for various
x. The symbols [A(S)]-1 [4¢(T)]-1,
etc. will denote the complete subsets
of R for which (x,S) 1s 1n A(S), A(T),
etc., respectively, Let @w denote an

oo, X,



arbitrary, denumerably-infinite
sequence {a"}: of elements a,, a,, a,,
vee @y w.. from X. The sampling space
() wi1ll be composed of the collection
of all such sequences w.

The class F, of Borel subsets of R
induces a Borel field F, of subsets of
X 1n the following way. Any A 1n X
may be decomposed 1nto a sum A = ACS)
+ A(T) of disjoint sets of the charac-
ters described above. The set A will
belong to F, 1f the complete 1inverse
sets [A(S)]°1 and [A(T’]"! both belong
to F .

< < <
Let n, n, n

The symbol Anl

be k i1ntegers,

n,...n, wi1ll be generac

for a Borel cylinder subset of () over

value of that measure for any B-
cylinder set over a finite number of
a’s. His results will be specialized
suitably 1n the following for later
applications,

Let A, denote any B-cylinder set
over a  as speci1fied by a, 1s 1n
Ags) + AST). Define

(2.5) Py (A = I fo(eg) pola) dx,
[4¢s)-1
e S fe) ateg) dr .t

(M]-1
(4]

Let A ,, be any B-cylinder set overa ,,,

Qp 'y Gp s ves, Q. Such sets are n = d: 1, 2,3, .... Clearly, A ,, 1sde-
1 2 "k S T 4
fined by a ., 1n Aﬁ& + A;i. Define
(2.6)  Quuy (Ayylyi) = \i f oy Oa 7)) Py ) dxyg
-1
(4]
-1

o S

-1
T
(4T

In terms of Eq. 2.6, define

Qﬂl(Anﬂly;) y 1fa, =

(=)
=
o)
Q
]

H,, (7n+1|7; ) Gy Vs d"nﬂ:\ [fn H oy iy |')’,:) d"n+1] .

v

[

Q
it

composed 1n the following way. Let 4 ,
1 =1, 2, ..., k, be k elements of F,
(not necessarily distinct). The set
of all w 1n Q for which a, 1s in 4,

1
v =1, 2, ..., k, 1s a Borel cylinder
set over anl, anz, “oey ank, briefly,
a R-cylinder set over a , a

a Doob*

n

o o8y

n2’
has shown how to de-
fine a probabi1lity measure on a
Borel field of subsets of . In
particular, he has given a for-
mula for the calculation of the

.See reference 5, p. 102-3,

(x,,T) ,
-1
(x ,8) and x_ 1s 1n [AS‘E{} ,
n n
-1
(x_,S) and x_ 1s not 1n [Aﬁfﬂ .

Theorem 1 Let B denote a Borel
fireld of subsets of €l that includes
all the B-cylinder sets defined above
A probability measure P(A) exists on
the elements A of B. The functions
2 7 are the conditional probabilities
P(Alag,a,, ,a_ ), 1f A=A, 15 a
cylinder set over a"+land Aoy Qyy o
a are given If A= A"1"2---"kls any
B-cylinder set over ap,, Qn,, -+ , Qp,
and 8(A) denotes 1ts characteristic
function, the probability P(A) i1s given
by the formula

LX)
Integrals are to be replaced by sums for case
b of Assumption 1



(2.8)  P(N) = J Poldey) f P(de,lag) ... [ 8(A) P(de

Theorem 1 1s a special case of one
given by Doob i1n the last citation.
The interpretation of the symbolic
1terated i1ntegral of Eq. 2.8 should be
made clear by the calculations that
follow.

The stochastic process given by
Theorem 1 will be denoted by [Q,P(A)].
The process 1s a generalization of the
Markoff chain process, withabsorption,
that 1s familiar in particle physics.

Indeed, [Q,P(A)] reduces to such a
process 1f the conditional proba-
bilities 2.7 reduce to the form
P(A Ia ) for each n > 0, Note that

ntl
the 1ndex n+ 1 on P has been dropped.

Intuitively, the general process may
be thought of 1n terms of the follow-
ing random walk. A particle moving
through a space R i1n a random manner
suffers collisions at successive
points x4, X;, X,, in R. It may
be absorbed at any one of these points
x,, with probability p_ (7 ), or go on
to x_,,, with probab1l1ty 9, (7 ). The
distribution (density) of x, 1s f,(x,)
and, for any n > 0, 1f the particle 1s
not absorbed at x the distribution
of x,,, 1s fn+1(7n+1]7 ). The choice
a = (x,S) indicates that the particle
1s absorbed at x, and a = (x,T) indi-~
cates that the particle 1s not absorbed

at x. Note that the notations allow
k
T A, .
1=0

(2.9) A, ={set of all w such that a,

A, ={set of all w such that a

The definitions 2.5 and 2.7 apply to

(
PyAy) ffo(x)qo(x)dxo,

lag,ayseee,a )
nk 01 '"kl

the absorption and transition proba-
bilities at any x, to depend upon all
previous collision positions, as does
the distribution of the position of
any collision., Moreover, the proba-
bility functions may change from one
collision to the next.

The special values 1 and0 stipulated
in probabilities 2.7 for the case

a, = (x,,S), guarantee that absorption
(state S) at x, will be followed by
= (x,, S), with probabilaty 1.

The definition may seem artificial in
that no attention 1s paid to the forms
of a,, a,, a  ,+ The (1,0) cases
for smaller index take care of thais
omission in such a way that Eq. 2.8
assigns zero probability to any set A
of sequences w 1n which a state S 1s
followed by a state T or even by a
state S at a different point of R.

The following definition continues
the description of a stochastic process
for estimating the series 1 3 or 1.6.

pefinition 2. Let n(w) be defined,
for each w i1n the space 1, as equal
to the smallest integer k such that
the element a, of w has the form (x,S).
Let Zk denote the set of all @ wn Q on
which n(w) =

The set Zk has the following form

= (x,T), x anR},21f v+ = 0,1, ..., k-1,
(x,S), x 1n R} .
the A1 in set 2 9 so that

fH(?’I?’ ) oa, o) dx,

Pl(Al|a0 al,...,al_l) , 1<1<k-1,
(2 10) < f H (|70 de,
f B, lve_ ) pprh) dxg
Pk(AkIao,al,...,ah_l) =
\_ ~/‘H(ykhfk ) dx,



The integration elements needed 1n holds forall v' wn RI*Y uniformly inj.

Eq. 2 8 to compute P(2,) are obtained Theorem 2. “Under Assumption 2, the
from Eqs. 2.10 by replacing the inte- limit 2 13 holds. Moreover, there s
gration ranges (a,b) of the numerators a positive t, such that the moment
by the ranges (x , x +dx ), v+ = 0, generating function
1, 2, ..., k, 1n the respective cases, k
Then P(Z,) 1s given by the 1terated kzap(zk) et
integral
k-1 b . .
b f Hl(yllyl-l) ql(yl) dxl
a
=[ fo(xo) qO(xo) de fb . X
1 =1 a Hl(yl‘yl—l) dxl
b
(2.11) f Ho O lve ) pp(r)) dx,
a
S o
i Hk(yk ka-l) dxk
b b [ ] [ ] »
= A -uc[ {k(’)’k) Pk(’)’k) d’)’k y k = 0, 1, 2, " e .

The symbol Pp(y,) 1n the 1ntegrand of the distribution of the duration
here refers to Eq. 2.2 (see also Eq. n(w) exists for all t < t,. ALl the
2.1 for notations). moments of this distribution exist
It will be important that the Proof. Consider the sum (for
random variable n(«) be finite with

arbitrary j)
probability 1. That 1s, 1t 1s re-

quired that Vu,](y;) = p](Y;)
N a
(2.12) 1 P2)=1. .
N Eo b +NZ LPo S fytnly))
=, 41 L a
Since !
bt [ ] [ ]
Q = Z zk q](')’]) s e qN_l(’)’N_l)
k=0
and P(Q2) = 1, to establish the limait pN(y&) dx .y . . dx, .

2.12 1t 1s sufficient to show that

© * *
Since pN(YN) =1 -~ qN(yN), this sum
(2.13) }i& ;Z P(2,) =0, telescopes 1nto

=N

which will be established as a conse- (2.15) Vm,](yl) N
quence of the following assumption. R
Assumption 2. There is a constant 1 - R A N OV E RPN OO
c, 0 < c <1, and an integer M_ such '4 'L nooRtnI I
that for an arbitrary integer ) and *
all integers m > M_ + j, the inequality cor 4a7a) dx]+1 .. dxg

b [ ] .
.1 f ...j;bfm(ymhj) G er) cen aul) dryyy i dr, <c



Assumption 2 guarantees that, for any
integer k, 1f m > kM_ t j, the integral
on the left in Eq. 2 14 or on the
right in Eq. 2.15 wi1ll be dominated by
ck. Thus

l—ckam’](’y;)f_l, 1fm > kM, + 5,

Thas

1s satisfied uniformly 1n y°.
J
establishes

1 *) =
ll—l'z V"':J (yj ) 1

uniformly 1n7; over R7*! for arbitrary
J Then

(xo,xl,...,x ) over R**! under the

condition n(as = k Since a process
defined by Theorem 1 1gnores sequences
w for which a # @ (wy When m > n(w),
function 2 17 may also be regarded as
the conditional distribution ofw under
the condition n(w) = k

It 1s possible now to envisage a
different intuitive concept of experai-

(2.16) X P(5,) = ff fa" Frrg) a0(re) vov gy (ry_y)
k=N

1f N>rM_, as before. This establishes
limt 2.13.
Consider the sum
© 0 Gt -1
k = k
L PE)ett = L L PE) e
k=M, J=1 k=M,

From Eq. 2.16, 1t 1s seen that jM,6 < k
< (3+1)M, - 1 implies that P(Z,) < ¢’

so that
®

M
JM_t

@®

L P(E,) ettt <

k—Mc J

N o K:

-
1 k=0
The 1nfinite sum on the right 1s con-
vergent 1f ce¥ct < 1, that 1s, 1f

1 1

=— In—.

t <t
° M c
[

This* completes the proof of Theorem 2,

The sequence of numbers P(X,), k =
0, 1, 2, 3, forms a probability
distribution on the nonnegative
integers, 1t 1s the distribution of
the duration n(w) of the random walk.
For any fixed nonnegative integer k,
the function

« 80y

) Py(yy)
- P(E)

(2 17) g, (rpln(@) = k)

represents the conditional probabllfty
(density) of the finite chain 7y, =

1

mental sampling for chains w from the
process [Q,P(A)] that 1s perhaps
simpler than the random walk concept.
First, draw a value n(w) = k' at
random from the population whose

* [_l,_l.g Ve (71»')] dyy L e,
distribution 1s given by Eq. 2.11, and

then draw a finite chain

L4 ? ?
V! l""'xk')

- 1
= |xg,x

from the population with distribution function
2.17 for k = k', The sequence w 1s then
defined by a; = (x,,T) for 0 <1 < k' and

W -1 © .
t
ekt£<z ekt> )X (Ce‘:)J
k=0 =1
a, = (x,+,8) for 1 > k‘. Considerable

attention will be given 1n the sequel
to special processes [(1,P(A)] for which
this sampling concept 1s practicable.

Remark In most of the applications

of processes [(1,P(A)] to the stochastic
estimation of the solutions of Egs. 1.1
or 1.5, the first chain point a, will
be preassigned as (xo,T), where x, 1s
a fixed point in R Thus the entare
process must be conditioned for the
choice a;, = (x,,T). To effect this
conditioning, replace fk(7;) in Egs.
2.11 and 2.17 by fk(7k|xo), choose
po(xo) £ (0, and drop integration with

respect to x,. The notations P[n(w) =
klxo] for the modified form of Eq.



2.11 and g, (y,|n(w) = k,x,) for the
modified form of Eq. 2.17 will place
this conditioning in evidence.

2.2 1. Important Special Cases.
(a) Most of the existing literature
on stochastic processes of the type
studied i1n Theorems 1 and 2 has been
further specialized to Markoff chains,
that 1s, the transition probabilaties
2.4 actually quend only upon x,, not
upon all of ,. Some attention will
be given to ngs type of process 1in
sections 3.3 and 4,2, (b) The follow-
ing specialization 1s 1n some ways
simpler than aMarkoff chain and should
be very useful for high-speed samplang
on an automatic-sequence computer.

Suppose that for each k& = 0, 1, 2,
3, ..., the functions pk(7;) defined
in Definition 1 depend at most upon k
and x,. In this case PN(Y;) of Lq.
2.2 reduces to a form P,(x,) and Eq.
2.11, conditioned by x,, reduces to

(2.18) Pln(w) = kfxy] = P (x;) ,
k=0,1,2, ....

In this case the nonsequential (non-
random walk) type of sampling described
at the end of section 2.2 becomes
practicable. Indeed, such samplang
would be practicable i1n any process for
which the i1ntegrals of Eq. 2.11 are
amenable to explicit computation.

A further simplification of the
process [Q,P(A)] occurs 1f the proba-
bility (density) functions fk(yklxo)
are chosen so that they are independent
of x, and the x,, x,, ..., x, of ¥,
are stochastically independent, that
1s, let f(x) be a probability (density)
function over R and let

k
fk(7k|x0) = I

1=1

flx)

for
k=1, 2, 3,

If f(x) 1s such that machine samplaing
1s easy for values x randomly drawn
from the population whose probability
distribution 1s specified by f(x),
high-speed sampling for the chains

I PP should be achievable.

2.3. MORE ELABORATE PROCESSES

The three parts of this section
w1ll be given to the formal description
of fairly elaborate processes derived
from the basic process defined by
Theorem 1. They will be used later
in various rather complicated samplaing
schemes. The processes will be
described i1n considerable generalaty,
but the author wishes to emphasize
that the general descriptions are
likely to be of theoretical 1nterest
only. Practicable special cases
are given by using a simple basac
process of the type described 1in
example b of section 2.2.1. In
such cases the elaborate formal
descriptions given below simplafy to
such an extent that the wresultang
processes should be very easy to
construct and use for experimental
samplaing on high-speed computing
machinery.

2.3.1. Stratification of a Process
[,P(A)]. Let the collection {1 be
partitioned i1nto a finite number S of
disjoint Borel sets Al, Az' ey As
and let [0, P(A)] and [Q,PU1)(A)],
j =1, 2, ., S, be S+ 1 stochastac
processes, say of the kind specafied
by Theorem 1 and of the same type,
ei1ther all continuous or all discrete.*
Assume that P(A]) > 0 for each j
1, 2, ..., S.

Definition 3. The process [Q,P(A)]
will be said to be stratified i1nto
the S strata [Q,P(J)(A)], J =1,

2, ..., S, 1vf for each j and for
each Borel set A

P(J)(AJ) =1,
(2.19)

P(A) = P(A)) Pl (A)

that 1s, the probability measure
PYY(A) 1s the conditional probability
of A wn [Q,P(A)], subject to the
condition w in A .,

Suppose [Q,PQA)] conditioned for
fixed x, and py(x,) = 0. The sets

S, =t 8, k=0,1,2 ., 5=,

*
More general processes than those specified by
Theorem 1 could be stratified



2, ..., S, are those subsets of A, on
which n(w) = k, and

[~}
AJ=ZZU'
k=0

Define
@ *
(2.20) v, = P(AJ) = ZIP(ZU)’
k=
;=12 ..., 8.
From Eqs. 2.19, the probabilaty

measure P{7)(A) of the jth stratum 1s
given 1n terms of the original measure

P(A) by

]

(2.21) PUI(A) = v:t K P(AS, )
k=1

In particular, 1f A = le, Eq. 2.21

gives the probability that n(w) = 1

under the conditions x;, and w 1n A,'
For each j =1, 2, oy S,

The analogue of distribution 2,17 1s
obtained 1n the following manner.
For any @ in which the x’s of ag s
a

a, are specified by y; =
,xl), let

e,
(%, %, .-

A

. { set of all w for which a,

= (x:,T), x: in (x, x * dxl)}

for v =1, 2, ..., 1l -1,

A = { set of all w for which a,

= (x{,S), x; in (x,, x; + dxl)}.

0, 2£1=20

(2.22) PO [n(w) = l|xo] =

v;l P[ZIAJ], 1ifl =1,

.The assumption po(zo) = 0 has the effect

P(ZOJ) = 0 for each

2, 3,

From the law of the mean for integrals
and the formulas above, 1t 1s found
that the probability element

pts) [A, Il Al]

1=1

gy In() = 1,2,) dy, =

PO [n(w) =

=1
v-'P|A A
J PR |

1=1

|| Y

l|xo]

} :.gl P[z“Al e A‘]

1=1

21 .
V] P[AJ Zl]

1=1
P[ZUAI I A‘}

1=1

P(Z”)

-~

P(3,,)

0, 1f w not 1n AJ R

i lze) Pi(yp) dy,
PE,))

,1fw1nAJ



From thas,

0, 1f w not 1n A, s

(2.23) gy, In(w) = 1,2,) =

Each of the strata [Q,P'7)(A)] 1s
specifiable 1n terms of Definition 1
and the developments leading up to
Theorem 1. This will not be shown
in complete detail for the general
case. It 1s important for sampling
purposes to know the functions

f(’)(7,|xo) Pf’)(y;) .
From Eq. 2.11,
(2.11qa)

1t 1s seen that

PU) [n(w) = llxo] = fb

On comparing this with Eq. 2.22,

(2.24) £y, lxg) P&} =

w1ll serve for each ! > 1 and each j = 1,

g, (71 In(w) = 1, xo)

Pln(w) = llxo]

V]P(J)[n(w) = llxo]

1f w 1n A]

subject only to the conditions x,
fixed and p,(x,) = 0. For practical
sampling purposes, the results are of
little value unless [Q,P(A)] 1s simple
enough for easy computation of the
integrals of Eq. 2.11, say as 1n the
quoted example. The derivations for
the general case will serve as further
1llustrations of the use of Theorem 1.

: fb £ lxg) PP ) ayg

1t 1s evident that the definitions

1f w not 1n A

firylz) POyp)

, 1f w 1n A] ,

14
J

2, ..., S. Itisnow evident that Eg.

2.23 may be written i1n the alternative form

FO (o 12g) PEIY ()

F (v x) PO ()

(2.17a) g (y,|n(w) = 1,%,) =
and that this 1s the analogue of
Eq. 2.17.

Example a. The following particu-
larly simple stratification may be
of considerable value 1n estimataing
series 1.3 and 1.6, especially when
1t 1s based upon a process [Q,P(A)]
of the simple character of example b
of section 2.2.1. The discussion will
be given for a general process (Q,P(AN)],

10

P(Z,))

PLYI(E, )

Assign S integers, 0 = N, N,,
N,, ..., Ng, 1n 1ncreasing order, and
denote @ by No,, for convenience.
The partition i J =1, 2, ..., S,
of @ will be def1ned by w 1n A 1f
N < n(w) <N ,;. In this case 2, . =3,
2N < k < +1 and 1s empty 1f thls
condition on k 1s not met. The
formulas 2.20, 2.21, and 2.22 special-
1ze to



( Nye1-t
v = Y Pln(w) = klxo] ,
N,e1-1
;) = -1
(2.25) JPUA) =vt B P(AZ)
k=N
]
0, 1f l <NJ or l—>—N)+l H
PO [n(w) = lle] =
\_ v>1 Pla(w) = Uz ], 21f N S L <N, .
In connection with Egs. 2 25, 1t and
should be recalled that P[Zo] = 0, N, Ny-1
The third of Egs. 2.25 reduces Eq. (2.26) A= J[ A(T) + A;S) || AR
2.23 to =1 J =1
0, 26 L<N, orl >N, ,
(2.176) g8y, In(w) = 1,x,) = ! Al

Formula 2.24 needs no specialization
other than the interpretation of A as
S n(w) <N 4.

As wall be proposed later, actual
experimental sampling would be done by
using the distributions specified in
Eqs. 2 25 and 2.17b. However, 1n
this example of stratification, 1t 1s
possible to exhibit specific functions
f(’)(yllx ) and p(’)(y ) for the con-
struction of the processes [(, P (A)]
from Theorem 1. This will be done
next for 1ts mathematical interest.

Careful consideration of the
construction leading to Theorem 1
shows that 1f the index [l 1s equal
to one of the partitioning 1ntegers
N,’ f(j)(yn Ix ) 1s the marginal
probabilaty (den51ty) of YN, com-
puted from the conditional d1str1-
bution of w, subject to the condition
N, < n(w) < N Define the B-
cyllnder sets

pt1°

g, (v, In(@) = L), 2f N, S L<N .

Then
(2.27) £y, |x) dyy
J J J
N}+1-1
=V;1 L P&
k=N

J

Since the second set product on the

right 1n Eq. 2 26 1s a subset of
EN , 1ts contribution to Eq 2.27 1s
J
-1
v, P(AZ, )

]
= V;l fr O lxg) Py Gy ) dy
TR 1 ]

The contribution of the first term
on the right in Eq. 2.26 1s

AiT) = { all @ such that a = (x:,T), x: in (x, x, + dx) },
for 1+ =1, 2, ..., NJ,
A;f) = { all w such that a”, = (x&J,S), x&l in (xNJ, x", + dxy )]

11



N -1
Jt1

- b b ,

le Z fa e Ia fk(yk|x0) Pk(')’k) de +1 *°° dxk d’)’N
k=NJ+l J

On defining the functions

NJ+1-1

Po) v B Lo [ A0 PO dxyy . dx,,
k=1t1

(2.28) M{)(y3)

for LS N, -2,

PNJ‘*I-I(’YNJ"‘I-I) , for l = NJ+1 -1,

1t 1s seen that Eqs. 2.25 and 2.27 gave
b .
VJ =Ia « e !b fN (’)’N lxo) M;,J)(’)’N ) d')’N ’
a J J J J J
(2.29)

Wy xg) = vst fy Gy lxe) #§7) (yy )
J J J J J J

Similarly, for NJ TN,
ff”(’)’l.,.ll’y;) are the marginal (density) functions of x;,; under the condition
that I + 1 £ n(w) < NJ+1 and that a,, a,, ..., a; 1s of form (x,T), with the
position vector 'y; in R'*!, that 1s, let Ag:} and Agf} be defined as above and
write A for their sum. Then, usinga,, a,, ..., a, as specified,

~ 2, the conditional (density) functions

N oyp-1

k_lz“ P(Azklao,al,...,al)

() * =
fl!rl('yull'yz) dx 41 =

NJ+1-1

z P(2k|ao,a1,...,a,)
k=1+1
A calculation much like that leading to Egs. 2.29, but using the conditional form

P(Alao,al,...,al) =f P(deullao""'az)

J o) P(deN,+1“1 ao,...,a,,a,+1....,aN1+l-2)

of Eq. 2.8, leads to

foaialyd) ML o4,
(2.30) iy, ly) = , N ST <N, -2.

[
L fia 0y 3600, dx, 4

12



For 1l < N,v the distributions
fg’)(yllxo) are defined from Egqs. 2 29
by i1ntegrating with respect to the
variables x,,,, ., Xy over (a,b).

Definitions for [ >NJ+l
necessarys1nceP(1)[n(w) <N,
1 1n the process [Q, P(’)(A)]
Define p(’)(y ) =0 for I < N_,
The functions pl’)(yl) N <1<N 11
are now easily defined 1n success1on
by using the form of Egs. 2.2 and 2.24
and the results of Egs. 2.29 and 2.30.

are un-

- 1]

draw x;, x,, <y X, (p) from Eq. 2.17b
to obtain ¥, (). For such an order
of procedure tobe practicable, explicat
calculation of Eq. 2.25 1s required.
For a general process [Q,P(A)] this
might be very difficult but, 1f the
basic process [Q,P(A)] used 1n the
construction described above 1s of
the simple type described i1n example b
of 2.2.1, the necessary calculations
could be performed easily. Moreover,
sampling from Eq. 2.17b would be

It 1s convenient, first, to note the simple. Indeed, 1n this case, the
recurrence relation
(2.31) MU (yy) = Po(y;) + I FrarOrpetly)) MU (i) dxyyg
for the function defined in Eq. 2.28.
This leads to . probability functions 2.25, 2.17b,
P (v*) 2.29, and 2.30 simplify to such an
) - 171 extent that sampling from the i1ndai-
(2.32) pl’ (v}) = —,
M“)(y') vidual strata could be performed
t l ei1ther as i1ndicated above or in the
sequential manner of a random walk.
N, <ls N,+1 = 1. To see this last remark, first recall
that P, (y}) has the simple form P (x,).
Evidently, Then Eq. 2.28 reduces to
(]) . =
Py “-1(7101]“-1) 1, N 4p-l
() = P
in agreement with My (x,) kgl ¢ (%o)
(;) =
P' 0 [n(w) < N]+1]_ 1. On using this, Egqs 2.29, 2,30, and

2.32 reduce to

ff&J)(’yN Ixo) = fN (’yN |xo) ’
J J J J

FRlonaly) = oy 0 1fE N S LSN -2,
(2.33) ﬁ Pln(w) = l|xo]

pi1)(xy) = , N S USN, -1,

¥, 4=l
Z Pln(w) = k|xo]
. k=1

sampling
A)] will
2,25 and

As already ment1oned$
from the process [Q,P¢77¢(
be performed by using Egs.

2.17b. First, draw a value of n(w)
by usingthe third formula i1n Egs. 2.25
for the distribution of n(w), and then

In the last of these three formulas,
the terms Pln(w) klxo] are given by
Eq. 2.18.

Example b This example 1s quite
complicated, perhaps too much so to
be practicable. It 1s constructed from

13



example a above, that 1s, the simple
case given in Eqs 2.33

Select a sequence of integers r,,
ry, .- , rg and, for each ; =1, 2,
.e., S of example a, partition the set
A; of all w for whach N < n(w) <N ,,
into r, Borel subsets A . A,z cie,
AJ'; that are nonoverlapplng in pa1rs

First, partition the space RY) of

N, = (11,12,...,1N ) into r, disjoint
r ,B'r ., T

Borel sets 10 720 s ij'

Second, define v =12, ..., T
as the set of all sequences w contained

in A] for which YN, 1s 1n F;; This
N
0 1s partitioned ainto the Z r,

1
subsets A;:' j =1 2, S, 1 =1
(A)

2, ..., r,. Next, stratlfy [Q p

A)]
; strataby as many processes
[Q,P("‘)(A)] for whach

P(J.:)(A“) =1,

(2.34) P(AA,.)

P(J")(A) -,
P(AJ )

~
t
—
-
N
-

Since, for each 1 =1, 2, ..., r , the
A are 1in AJ the second of Egs. 2.34

fR]
may be written 1in terms of the proba-

bilaty functions PYJ7(A) of the strati-

fications over the A,‘ Thus, sance
. P(AA“AJ) P(AA“)
P" AA = =
¢ J‘) P(AJ) P(AJ)
and
P(A A) P(A )
P(J)(A )= P ) - ]33
1t P(A)) P(A )
J ]
Eqs. 2.34 become
P("‘)(AJI) =1,
(2 34a)
PLI (AL )
P(]t‘)(A) =—_Jl .
PN )
Thus Eqs. 2.34 amount to substrati-

fication of the a1ndividual strata

[Q,PYI)(A)] over the sets A, j = 1,
J

2, .. , S.

It should be evident to the reader
that 1f [Q,PU)(A)] 1s specified by
Theorem 1 in terms of functions 2.33,
then [Q,P{7:*)(A)] 1s specified by
Theorem 1 and the functions

( fN (')’N Ixo)
’ ’ for Y in l_‘
f&]tl)(’yN lxo) = f- .fl_‘ fN ('yN lxo) d,yN NJ 0
d ] n J J J
(2.35) { 0, otherwise,
f;iit’(71+1|7;) = f1+1(71+117;), for N, < 1 <N,y -2,

Kpl"‘)(x ) = p{1 ) (xy)

14

for N S LN, -1.



2.3.2. Processes for Repeated
Independent Sampling of Chains of a
Given Length n(w). It has been
remarked, i1n connection with example b
of 2.2.1 and the stratifications of 1t
defined by Eqs. 2.33 or 2.35 and
Theorem 1, that experimental sampling
could proceed as follows. For some
integer M, let n (), 1 = 1, 2, , M,
be M stochastically independent val-
ues drawn from the distribution of
n(w). These having been obtained, the
associ1ated position vectors yn‘(w)
would be drawn independently from the
appropriate form of Eq. 2.17. Such
a procedure would probably not utilize
the computing efficiency possible 1n
high-speed automatic equipment. Once
a value of n(w) had been chosen and
the sampling process for ¥ (., set up
in a machine, many independent chains

Ya(w) M1ght be run i1n a very short
time. A process design 1s needed that
wi1ill allow repeated sampling of

Y (@) for each n(w) that 1s obtained.

A new sample space must be defined.
The explanation will be given ain
terms of a general process [Q,P(N)],
supposed already defined, but any
practical case would likely be based
upon a simple [Q,P(A)] of the type
described 1n example b of section 2 2.1,

(2.36)  J,(z,,2,,...2,)

(W

1=1

I S Jo £ 01000 PO ax() L

It will be assumed, without further
mention, that the given process

[Q,P(A)] 1s conditioned for some
specific choice a, = (x,,T), all
finite chains Y will begin at x, and
Po(xy) = 0 1s assumed. Let M be an
ass1%ned integer and denote M-tuples
(x (1) 202 o M)y of points x (1)

in R by the single letter 2. Let Z
denote the collection of all elements
of the forms (2,S) and (2,7) That
1s, Z 1s a collection similar to X of
section 2.2, except that the single
point x i1n the elements (x,S) and
(x,T) of X 1s replaced by an M-tuple
z of such poants Denote elements of
Z by B. Let (, denote the collection
of all denumerably infinite sequences
& = (By,By1Byy-..) of elements S,
chosen from Z Clearly, Ql 1s the
original collection . A finite
chain (zo,zl, .,zn) denotes the
position components of the elements
Bos By , B, of £, Such a chain
consists of n chains 7'(’) = (xg‘),
xg' , ,xi‘)), 1 =1, 2, ..., M, of
the type already used, and thais
notation will be useful on occasion.

Let land k be any pair of integers,
with [ < k. By using the probabilaity
functions 2.2, 2 3, and Pln(w) = klxo]
of the given process [Q,P(A)], define
the collection of functions

dxi')

ﬁ Pk<y;“)>

1=1

(Pl = klz, )%

1if l =k .

, 1af 1 <k,

{Pln(w) = klxo]}”

Probability functions for the z’s that are analogous to Egs. 2.2 and 2.3 are de-

fined by

15



N ®
fiulzylzg) E‘{ Il fl(xg‘)lxo)} L Pln(w) = klx,) J,(24,2,) ,
1=1 k=1

(2.37)
Fuu2glzgrzyseeszy )
¥ Y Pln(w) = k|xo] Jh(zo,zl,...,zN)
. k=N
Rl | EASUCHASY ,
1=1 L Pln(w) = klzg) Ju(zg,20,000,2y_y)
k=N
and
(" Pou(2z0) = 0, Pyulzg,2), y2y)
Pln(w) = leo] JN(zo,zl,...,ZN)
= ’ N = 1’ 2’ 3’ ’
(2.38)< z Pln(w) = klxo] Jo(zg 210000, 2y)
k=N
Oyw = 1 - Pyy »

k\PNu(zo,zl,...,zN) =

Theorem 1 may be revamped by using
Eqs. 2.37 and 2.38 in place of their
analogues to generate a stochastic
process on {,, to be denoted by
[Q”,P'(A)], which wi1ll be conditioned
for B, = (z4,T), where z;,= (x5,29,...,
x,) to M components. The random
variable n(£) on the elements £ of

(2.39) fN,(zl,...,z~|zo) Pyulzg,s-..

q1uzgr27) ..

:ZN)

fx,(zllzo) fzu(zzlzo'zl) . fNu(z~|zo,...

qN_l.”(zo,..-,ZN_l) PNM(ZO,...,ZN) .

Q, 1s defined as the smallest integer
for which the component ﬁn(f) of £
has the form (zn(g),S). It 1s not
difficult to see that the process
[Q,,P,(A)] 1s such that the proba-
bility (density) of z,, z,, ..., 2z,(¢
and n(£€) 1s given by (for N = 1, 5,
3, ...)

vZy_1) Pyy(zg,eeyzy)

fn(yﬁl)lxo) PN(7&(‘))

Pln(w)

N
leo] I]

1=1

= Pln(w)
1=1

16
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Thi1s shows that sampling may be
conceived entirely 1n terms of {1 and
1ts probability functions. The
probabilaty Pln(¢) = N|xo] will be
obtained by integrating Eq. 2.39 with
respect to all of the x's involved
except x,. Clearly, the result 1s

(2.40) Pln(£)=Nlx,] = Pln(w) = N|x,]

Experimental sampling for the relevant
part of elements & 1s performed 1in
the following manner. Farst, draw
n(¢) = n(w) at random from the distrai-
bution of n(w) 1n [Q,P(A)]. Second,
draw M 1ndependent chains 7izw)’
v =1, 2, ., M, at random by using
the conditional distribution g, ),
[7n(w)|xo,n(w)]. Then form S, bl,

< Bh(gy 1n the manner indicated
above 1n the description of the
sampling space {},. The elements
By, k> n(§), of £ are 1rrelevant.

As a consequence of the reduction
obtained 1n Egs. 2 39 and 2 40, 1t
wi1ll be possible to combine multiple
sampling and stratification. This
w1ll be done 1n section 3.4, and a
discussion of the process will be
given,

2.3.3. Product Spaces and Measures.
Let [Q,P(A)] be a stochastic process
given by Theorem 1. For some positive
integer M, let QW) = Q x Q x x Q
be the familiar product space of M
factors {0 That 1s, QM) 15 the
collection of all M-tuples (w,,w,,...,
w”) with @ in Q for + =1, 2, .. , M
A probability measure may be defined
on a Borel field of subsets of Q)
as follows. Let A be such a set and
let A,,, v =1, 2, . ., M, k=1, 2

., L, be Borel subsets of {1 such
1
that Z ﬁ: A, , covers A. Define
k=1 =1
the probability of the set A as

l ¥
P(4) = g.1.b. ¥ I P(4,,) ,
1=1

k=1

(2.41)

where the greatest lower bound 1s
taken relative toall possible coverings
of A of the type described. The
measure defined by Eq. 2.41 1s termed
a product measure, and the combination
[Q™) P(4)] 1s a stochastic process
on the space Q(¥) If A 1s a Borel

L
product set, A = [[ A, , where A,

|
—

1s a Borel subset of Q for each 1,
from Eq. 2.41 1t 1s seen that P(4) =

M
H P(Al). The sets A, are called

=1

stochastically i1ndependent. If M
chains w,, w,, ..., w, are subject
to w,  1n A for each 1, the chains

are said to be stochastically inde-
pendent,

A modification of the product
measure given by Eq. 2.41 will be used
in section 3.4 1n connection with a
stratified process such as 1s given
by Definition 3. Let M, M,, ..., Mg
be positive i1ntegers and let Qlu)’

S
M = Z M,r again be a product space
=1

of factors fl. In place of the defi-
nition 2.41, a probability measure

wi1ll be defined by
(2 42) P(4)

1 s ¥

=g l.b. Y I ﬁ

k=1 )=1 =4 _y*1

POY @),

where M, = 1 and the symbol pts)
denotes the measure for the jth
stratum. The essential difference
between definitions 2.41 and 2. 42 1s
that different probability measures
have been used on the right in def1-
nition 2.42 on groups of factors M of
QU¥)  Again, M chains are said to be
stochastically independent 1f A 1s a
product set. The intuitive concept
of M independent chains 1s the follow-
ing. The M,

wy, are drawn
[Q¥1 ,PC1)(A)] by using a measure

defined by Eq. 2.41, the M, chains
w , @ y see, @ are drawn
¥it1 ¥ t+2 ’ M1+M2

M
independently from [Q 2 p¢?)(4)] and
so on. Note that, apart from sets of

chains w,;, w,, ...,
independently from

probability zero, 1n considering

Eq. 2.42, the product space Q) may
W)

(
be replaced by the product set &, X

(M (M)
A 2) cee X As S”, where A;”l) =

2
X ves X AJ, to M, factors.

A, X AJ

17



CHAPTER 3. ESTIMATION AT A FIXED POINT

3.1. SUMMARY AND REMARKS

Stochastic estimation of the so-
lution ¢{(x) of Eq. 1.1 at a single
point x = x;, (or of a single component
of the vector solution Y of Eq. 1 5
1s based upon the definition of a
random variable @(w, x ) over Q, which
has some standard estimation character
for ¢(x,) 1n a statistical sense, x,
1s a parameter. In this report 1t
will be required that the expectation
E{¢(w,x°)|xo} in the conditioned

process [Q,P(A)] be equal to &(x,).
That 1s, g(w,xo) 1s an unbiased esti-

mate of #(x,). The average of, say M,
stochastically independent values of
¢(w,x°) 1s also an unbilased estimate
of ¢(x,). Variations of this simple
1dea are used i1n connection with the
stochastic processes already defined
for purposes of constructing estimation
procedures that may balance statistaical
efficiency and computing efficiency in
some sensible manner.

Section 3.2 contains a discussion
of the i1mportant sampling charac-
teristics of the particular random
variable that has been most discussed
in the literature for this estimation
problem and which 1s the basic variable
to be used 1n this report. Section 3.3
contains a discussion of a special
Markoff chain process for which 3(w,x,)
has zero variance., It 1s definable

glz,) + L Pln(w)

k=1

E$(w,x°) klxo]

"
]

glxy) + Z: Pln(w)

k=1

k|xo]

glx,) + pX I,(x)
k=1
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only 1f g(x) and A K(x,y) of Eq. 1.1
are nonnegative and bounded., There
has been much speculation as to the
possibilities for approximation of
such zero variance processes. The
author, being skeptical of the feasi-
bility of such approximations, proposes
to use, as asubstitute, representative
samplaing from stratified simple
processes 1n conjunction with high-
speed sampling. Indeed, 1t will be
pointed out that such a substitution
actually amounts to a new method for
approximating zero varlance processes,

3.2. THE BASIC ESTIMATING VARIABLE

Suppose that a particular equation
of the type of Eq. 1.1 1s to be
solved at x = x_, and that a process
[Q,P(A)] of the type described in
section 2.2 (conditioned for a, 6 =
(xy,T)) has been selected for the
purpose., Define the random variable

(3.1)  Plw,z,) = glx,)

G, (o) (Xgr Vn(wy)

+
Ixo) Pn

)

fn(w)(yn(w) (w)(xo’yn(w)

for each w i1n Q by using Egs. 1.2, 2.2,
and 2.3 on the raght.
The expectation of the random

variable 3.1 1in [Q,P(A)] 1s

Gk(xo) 7k)
fk(yklxo) Py (x4,7,)

x5, n(w) =k

f f G‘(xo, 7h)
R o A fk(7k|xo) P, (x4,7,)

gk[yklxop n(w) = k] dy.




A
Since this 1s the series 1.3, 1t 1s seen that &(w, x,) 1s unbiased. Its variance

1s given by

(3.2) var a(w,xo) =
Now
(3.3)  E{[Pw,xy) - glxy)]?]x,)

var [$(w,xo) - glx,)]

E{[B(w,x,) - glx)12|x,} = [Blxy) - glxg)]? .

2
© G(x ,')’)
= Z Pln(w) = klxo]f..f 70 k
k=1 h Jy [ Fa 0 lxg) Pulxg,7,)

gk[yklxo: n(w) = k] dy,

=§ :ff G:(xo, 7
n A f,(7h|xo) P, (x4,7,)
k=1

In general, the variance formulas
3.2 and 3.3 are likely tobecompletely
intractable. However, 1n a practical
experiment that 1s to make use of, say
M, stochastically independent values
of g(w,xo) from the process [Q¥),P(4)]
of Eq. 2.41, the variance of the
average may be estimated by familiar
statistical methods.

The following comment may aid the
reader 1n an i1ntuitive manner. The

random. variable
(3.4) Pln(w) =k|x,][3,(wx,) ~giz,)] ,
k fixed ,

1s a conditional unbiased estimate of
the term Ik(xo) of series 1.3 under
the condition that n(w) = k, that 1is,
variable 3.4 1s an unbiased estimate
of I,(x,) relative to the distrabution
g‘[yhlxo, n(w) = k] of Y,+ Thus 1t
appears that the method for estimating
¢(xo) consists of three steps: (a)
choose a term I, of series 1.3 at
random by using the distribution of
n(w), (b) estimate I, by the random
variable 3.4, (c) adjust the estimate
of I,(x,) bydivision by Pln(w) = k|x,]
to obtain an estimate of the entaire
series.

dy, -

Evidently,
being estimated need not have the
particular form of the Neumann series
1.3. Any series of integrals of
steadily increasing multiplicities
could be estimated 1n this manner.

Modification of the estimating
process described above for the esti-
mation of a component of the vector i
given by Eq. 1.6 should be evident.
The space R 1s discrete (the i1ntegers
1, 2, r), and the functions
fk(yhlxo) P (x,,7,) arecorrespondingly
defined. To estimate the 1th component
of Y, the analogue of variable 3.1
will be obtained by replacing g(x,)
by the tth component of h and re-
placing the numerator Gn(w)(xo,n(w))

by the tth component of the vector
(A + I)n(@) p,

the series of integrals

3.3. ZERO VARIANCE PROCESSES

Suppose that g(x) and A K(x,y) of
Eq. 1.1 are nonnegative and bounded on
the ranges of their variables. It
wi1ll be shown that there exists a
process [Q,P(A)} for which the variance
3.2 of 3.1 1s zero. This process is of
no practical value because ¢(x)
must be known for its construction.
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Approximation methods that may be
practical will be evident from the
discussion.

Let a(x) be any nonnegative,
function on R and define

(3.5) pB(x)=gx) +>\fR K(x,y)a(y)dy .

In terms of these functions,
process [Q,P(A)] from

bounded

define a

4 N K(x,y) aly)
h =
(vl B(x) - g(x)
k
frrlzg) = I_l R
(3.6) < e
polxy) = 0
Gy = B2
') =—, E>1.,
\fk Vi ﬁ(xk) -

By using Egqs. 3.6, 3.1 reduces to

(3.7) $a(w,xo) = glx,)
n(w) IB(I )
+ [Blxy) - glx, )]H ek
x
Since, 1n this case,
G (x,,7,)
=l [Bx,) - glx,

fk(yklxo) Pk(xo,yk)
the variance 3.3 reduces to

(3.8)  E{[B, (w,xy) - g(x,)]%]x,)

(B(x,) -g(xo)]E f...fg(xk
A R
k=1

The summation on the right in Eq. 3.8
1s the formal Neumann series for the
quantity Y(x,) ~ g(x,) defined by the
integral equation

(3 9) yYlx) = g(x)

+ X‘/~ K(x,y)

2w dy

20

Thus,

1n this special case,

[B(x,)

~gx )1 () - glxy)]
[p(xy) - glxy)]?

It 1s evident that a(x) = ¢(x) implies
BL(x) = a{x) = Yy(x) = ¢#(x) and variance
3.10 has the value zero.

Approximation to the zero variance
case seems evident by choosing as a{x)
some approximation to ¢(x). However,
such an approximation may be very hard
to find. Indeed, the purpose of a
Monte Carlo experiment 1s to obtain an
approximation to ¢{(x).
s1tuation 1s

(3.10)

A
var ¢a(w,xo) =

The circular
self-evident, One
immediately questions the value of a
Monte Carlo experiment 1f, in order to
design 1t, a good approximation to
@#(x) 1s already necessary. Certainly
one would 1nsist 1n such a procedure
that the stochastic process provide a
useful method foraimproving the accuracy
of the approximation used i1n the con-
struction of that process. Such a
demand m1ght place exceedinglystringent
requirements on the statistical
accuracy of the stochastic estimation

A K(x , X, ) ﬁ(x )
)] g(x)H = ,

a(x )

H AK(x _,,x) B(x))

alx,)

dy, .
1=1

method. Moreover, practicabilaty of
such a composite approximation method
would 1mply that the stochastic
process furnishes a better method (in
some sense) of improving the approxi-
mation already at hand than would some
other available method. Explicatly,
let 0 < K < 1, and suppose 1t 1s



desired that the average of M values of
variable 3.7 be a more accurate estimate
of ¢#(x,) than 1s B(x,) with large
probabilaty,* This requirement might
be expressed by requiring that three
standard deviations of the stochastic
estimate be no larger than

K|B(xy) - olx)]

That 1s
9 var $a(w,xo)
y <K B(x)) - dlx) |2 .

This leads to the requirement that the
sample si1ze M satisfy

and 1t 1s not difficult to see the:
implication of this reduction. Very

large M would be required to achieve

an i1mprovement of the estimate B(x,)

already obtained.

3.4. REPRESENTATIVE SAMPLING FROM A

STRATIFIED PROCESS

Suppose that a process [(2,P(A)] and
a stratification of 1t into [,PUV)(A)]
over A , 3 =1, 2, ..., S, are given.
It w1li be shown i1n this section that
a reduction 1n the variance of the

average of M independent values of the
variable 3.1, taken over [Q,P(A)], may

9{[Blxy) - glxg)] [Wlxy) = glxy)) = [dlxy) - glxy)]?}

(3.11) M >
2
K2[B(xy) - ¢plxy)]
The following remarks are now be achieved by an appropriate division
pertinent, In general, there would be of the sampling over the S strata.

little point to the use of a Monte
Carlo method for estimating ¢(x,) 1f
the operator of the i1ntegral equations
were such that i1teration was rapidly
convergent, that 1s, 1f the Neumann
series 1.3 converged rapidly. 1In the

(3.12)

J=1

opposite case, series 1.3 1sessentially
useless for computational purposes.
Moreover, 1f a(x) i1n Eq. 3.5 1s a faair
approximation to®(x), slow convergence
of series 1.3 very likely 1mplies that
B(x)/a(x) differs little from unity
and the solution Y(x) of Eq. 3.9 1s
very close to ¢(x). However, the
right member of 3.11 1s then ot the
order of

9[(xy) - glx,)]

K2 (B(x,) - d(xy)]

*The construction implies that B(x) 1a known,

Before proceeding, 1t will be con-
venient to derive a new formula for
the variance 3.2,

Referring to the notations of
section 2.3.1, the variance 3.2 may be
written as

S * %
var Blw,x,) = Y v, E{[Blw,x)) - d(x)]? |w A} .

Define ¢,(xo) for 3 = 1, 2,
(3.13)

ese, S by

v, qb)(:v:(,)'E v, glxg)

@
+ ) .f ....é G, (x,,7,) dy, .
k=1 kj

The notation Zk; for the range of
integration 1s symbolic for the set of
all v, for which the w fall in Zk

= 2,0 . The random variable 3.1has
the conditional expectation

**A process conditioned for fixed a, = (x4, T)
18 to te used Indication of this conditioning
willbe omitted except where confusion might arise
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E{$(w,xo)|w 1n A,} = glx,)

~ f / G(xo)’yk )
+ E e
s fk(7k|xo) P (xy,7,)
k=1 &y

{0, |x0) P((x4,7,) dy, = ¢, (x4)

for each j =1, 2, ..., S. It follows that the variance of the average Plw, ER )
of M stochastically independent values of variable 3.1 (from [Q(¥) P(A)], Eq.

2.41) 1s given by

(3.14) var¢(wx)=—{z VE{[$(J)x)—¢‘(x )]2|w 1nA}

)=

S
+ B v, 9, (x,) —¢‘(xo)]2}.

J=1

In this formula,

(3.15)  E{[$lw,x,) - ¢, (x, 02w 1n A}

- G:(xo,yk) fij)(yklxo) Pﬁj)(xo'yk)
EE dy,
k=1 k) [fy, O lxg) Py(aguy,)]2

- (o, (x4) - g(xg)]?

Suppose now that for each j =1, 2, ..., S, the quantity @ (x,) defined in
Eq. 3.13 1s estimated by using an analogue of variable 3.1 on” the ;th stratum
[Q,PC1)(A)] of [Q,P(A)]. The random variable used to estimate ¢,(xo) 1s

Gocwy (X0: Y0 cwy)
(3.16) & (0,2,) = glx,) + () e ,

v, %y, (w)lx ) P{tdy X017 a ()

and the sampling distributions i1nvolved are Egs. 2.22 and 2.17a. By methods
exactly like those used to obtain formulas 3.2 and 3.3, the mean and variance

of the random variable 3.16 are given by

EQ (0,xy) = ¢ (z,)

A N G:(xo:yk) dy,
var ¢ (w,xy) = v - [p (x,) - gl(x,)]?
J p) 2 £(;) () 1m0 0
ky v Sy (7h|xo) Pyl 2 (xg,7g)
k=1

22




Note that the variance here 1s given
by the series 3.15.

Let the i1nteger M be decomposed
into a sum

of integers M 1n some manner, and
suppose that, 1ndependently for each
7 =1, 2, ..., S, M stochastically

independent values}$\(w yXg), 1=

i, 2, oo, M,, of varlable 3 16 are
drawn from [Q PGIY(A)]. Let Klj, T =
1, 2, «oe, M,, 7 = 1,2, ..., S, be M

constants, and form the combination

).

] (wl] 'xo

h
(3.17)  ¢ylx,) = 2_:

W M‘

The combination 3.17 1s a random
variable on the process [Q(¥) P(4)]
with measure defined by Eq. 2.42,
Moreover, the specification that the

S ']
(3.19) var ¢p(x4) = z 2 <}\” -
7=1 1=1
chains W o= 1, 2, ..., M}, ] =1,
2, +v., S, be stochastically ain-

dependent i1mplies that they be drawn
from a product set

i,

w, 1n A, where A,, 1s a Borel subset
of A for =1, 2, ..., M and each
] = ﬁ, 2, «o., S. If a2t 1s desared
that the combination 3.17 always

u=o,

2
(3.21)

furnish an unbiased estimate of the

solution ¢(x ) of Eq. 1.1, then
s 4
E ¢pz,) =X L A, ¢ (x))
=1 1=1

implies the condition

(3.18)

N
Zf At) =Y,
1=1

7 =1, 2, ..., § .

Consider the variance of the com-
bination 3.17 subject tocondition 3,18,
and write

1

AN o=—

v ) M )
J

i D
>

for each j. Then
P 2 o 2 2
L >\U = (A'J - A J) * M}K J
=1 1=1
¥, v, 2 v, 2
- z_; S LA
t=1 J J
and, for the combination 3.17, the
variance 1s
v \3 2
v
T> + MJ<F’> var 331 (w,24) ,
J J
because, for a given j, all the

x9) have the same variance.
Cieariy, for a fixed choice of the

stratification and the M , var ¢ (x4)
J
1s minimized by the choice
v
J
(3.20) >\11 =>\2} = ... =>\'J.) =7”f )

which 1s consistent with the condition
3.18. Under the conditions 3.20,
the variance 3.19 becomes

S 1%
var ¢, (xg) = ) = E{[B(w,x)) - ¢ (x)]%]w 8},
:Ez M J J

where Eq. 3.15 1s used on the right.

An i1mportant specilal case arises
when the stratification of [Q,P(A)] 1s
such that the S products, Mv , are all
integers. In this case, the choices

(3.22)

reduce variance 3.21 to

M =M, , 1 =12, ..., 8,
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1
(3.21a) —
M

var ¢R(x =

In other words, the sampling method
glves an estimate ¢R(x°) whose variance
1s less than the variance 3.14 of

&(w,xo) by the term

s
L v, (¢ (z,)

J=1

- ¢(x°)]2

Sampling subject to 3.22 1s known
as representative sampling from the S

processes [,PUXA)], ;7 =1, 2, ...,S.

Note that 3.16 1s formally the same
as 3.1. There 1s a sampling difference
between the two estimates, however.
In using 3.16, @ 1s forced into A ,
Also, the conditions 3,20 and 3.52
reduce the combination 3.17 to the
average of M values of variable 3.16.
Thus, 1n this case, ¢ (x,) and the
average

A

Plw,x,)
are formally the same. Only the
sampling methods differ between the
two estimates.

If the products My are not all
1ntegers, one could approximate the
choice 3.22. The choice 3.20 makes
¢ (xy) an unbiased estimate of P(x,),
but the precise reduction of variance
discussed above would not be achieved.
Nevertheless, the discussion above
would be expected to apply 1n some
approxlimate sense,

If the conditions 3.22 hold, the
formula 3.21, or 3.2la, lends 1tself
to easy estimation from an experimental
sample, as follows In the combination
3.17, for each y =1, 2, ..., S, the
terms $ (w, J,xo) with + =1, 2, ...,
M are 1ndependent estimates of¢ (x5).
They may be averaged to obtain

-~ 4
@, @ %) = M L d, %)

and their sample variance

24

g ; E{[g(w,xo) - ¢J(x°)]2|w in AJ}

2=——_
7o B e,
J ———————————————————
- ¢J(w J,xo)]’
may be computed for each j. This 1s

an estimate of the variance

E{[g(w,xo - ¢J(x°)]2|w in AJ}

that occurs in 3.21. An estimate of
var ¢p(x,) 1s obtained by inserting
the estimate sf in place of the true
variance i1n formula 3.21, or 3.21le.
If the processes used are such that
each of the conditional variances 3.15
1s zero, variance 3.2la 1s zero. Let
[AJ,PONA)] denote a process for which
3.16 1s a zero varilance estimator
of ¢ (xy). Assign S nonnegative
numbers V Vayr esey Vg and construct
a process [Q P(A)] for which PA)) =v,
and the [A ,P(J)(A)] are the strata
over the A . Under the conditions 3.20
and 3.22, ¢ (x, ) will be an unbiased
estimate of ¢(x ) with zero variance.
This new way of descr1b1ng zero varlance
processes might lend 1tself to approxi-
mation according to the followaing

scheme. Suppose that for some pre-
assigned small positive number €, the
partial sum

Ne

glx,) + )X I,(x,)

=1
of Eq. 1.3 1s within € of ¢(x;). As
in example b of section 2,3.1, let the
partitioning integers N,, N, ..., N

be the consecutive integers from 1 to
N,., and choose the partitioning of
each R*, k =1, 2, ..., N_, and the
individual processes on the elements
of the partitions 1n such a way that
approximate zero variance 1s achieved
for each estimator used (cf., Appendix
B for stratified sampling in the
estimation of multiple i1ntegrals).
Approximations over coarser stratifi-
cations should suggest themselves to
the reader, Undoubtedly, quite a bat
of ingenuity might be required in the

S,




design of a sampling experiment for
which the variance of ¢,(x,) 1s small
and the experimental sampling 1s
adaptable for high-speed machine work.

It should be evident that repre-
sentative sampling could be combined
with repeated sampling for single
integrals. Given the process [Q,P(A)]
and a stratification i1nto [Q,P(J)(A)],
j =1, 2, ..., S, assign an 1nteger r,
to each stratum and estimate ¢(x_), as

As 1n forming ¢,(x,), 1nde-
ooy, S,

follows.
pendently for each j; =1, 2,

draw M independent chain lengths
n(wlj), t =1, 2, ..., M , from the
distribution of n(w) for the jth
stratum. For each pair (1,3), draw r
chains @k k=1, 2, ..., r , o
length n(w,,), independently, from the
dlstrlbutlon 2.23 wat = n(w, ).
Average the r, values g(w k%o ) of

the randonlvarlable 3.16 on those chains
to obtain the unbiased estimate

oo, M,

J
ees, S, Define the estimate

of ¢](xo) for each 1+ = 1, 2,
J =1, 2,

(3.24)

i
N el

Pplxy) =

y Xg)

of ¢(x,) by using 3.23 on the raight
and coefficients K‘] subject to
conditions 3.18 and 3.20 and, 1f
possible, 3.22, 1In other words, ain
3.17 replace the $1(w‘],xo) by the
averages 3.23. A discussion of the over-
all stochastic process on which
¢R(xo) 1s defined wi1ll be found at the
end of this section,

Since the terms on the right in 3.23
all have the same determination (random)
of chain length n(wl]), they are
correlated. Thus, to compute the
variance of 3.24, 1t 1s not sufficaient
merely to divide the expectations on
the right in Eq. 3.21 by the integers
r, Instead, for each @ = 1, 2,

M

e o,

7 ?

(3 23) &, , x,)
_1 )
TR e
(3.25) E{[&l (@,,, %) =& (,)1]w, n A]}

Y PO [n(w) = l|xo] E{[&l (@, ,, x4) -¢](xo)]2|n(wl]) = l} .

i=1

The expectations on the right in Eq. 3 25 are relatave to the conditional process

(Q,P¢77(A)]. Under the condition n(a) )—-l the terms on the right in 3.23
do not have ¢](x0) as their mean, Instead
EB (@, . z)nw, ) = 1]

= glxy) + v, P {n(w) =

If the multiple integral on the right 1s symbolized by I,

l|x0}]—l f ces fZ

Gl (xo ,')’l) d’y[ .
1

J(xo), then
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E{[$J @, %) -9 (x))2|n(w, ) = 1} E [&J N R

2
I, (x)
+ - ¢3(x°) |n(ah ) =1
v, PU Hn(w) = llxo} !

+ r;l E [‘%,(w»"o) - glxy) -

1n which all expectations are relative to [Q,P¢7)(A)].

I, (xo)

+ g(x,)
v, PO n(w) = llxo}

2

I, (xy)
= ¢3(x°) - glxy) -
v, PONn@) = U]z}

I (x) 2
b e @) = 1}
v, P {n(w) = llxo}

By using this result an

Eq. 3.25 and recalling Eq. 2.25, 1t 1s seen that

2

+rVE [&J @,xy) - g(xo)

S VvV
(3.26) var qb;(xo) = Z —

M=

) ]
For r, =1r, =. =r 1, Eq. 3.26
constitutes a breakdown of Eq. 3.21.

The effect of the averaging in 3.23 on
the variance 1s easily seen,

It should be clear to the reader
that the sampling procedure described
above requires that the stochastic
processes i1nvolved be simple enough to
make practicable the order of sampling

first, chain lengths, second, chain
points. This 1s not necessaraily
required 1f r, = r, = =rg = 1.

Some 1nsight may be gained from
Eq. 3 26 into the problem of choosing
a good stratification for the repre-
sentative sampling. The terms in-
volving the r-! as factors may be made
small by making the r, large. Thas
involves repeated sampling. Repetitive
calculations can be made very rapidly
on high-speed calculators. It appears
then that i1n choosing the stratifi-
cation, attention should be paid to
making the terms

v, PO {n(w) = llxo} ¢,(xo) - g(x)) -

26

Z PO {n(w) = llxo} [qb} (xo) - g(xo) —

2
I,,(x,)
P{nw) = 1]xy}

Ilj(xo) 2

- - 1% .
Pinte) = llxo}} In(w)

small.

Estimation of the variance 3.26
from an experimental sample appears to
be complicated. The difficulty 1s 1in
finding an estimate of the variance of
3.23 for any fixed index j. The r
terms on the right in 3.23 all have
the same
chain length and so are correlated in
pairs, each pair having the same
correlation. Thus a method 1s needed
for estimating the mean of several
random variables 1n the presence of
intraclass correlation. As far as the
author knows, no such estimate 1s
availlable 1n the statistical literature.
It would be desirable to have an
estimate of the variance 3.26 to use
1n connection with approximate normality
of the estimate 3 24, The author
conjectures that the estimate 3.24
should be more nearly normally dis-
tributed than any of the other estimates

random determination of

2

I, (x4)
P{n(w) = llxo}




of the seri1es 1.3 that have been
suggested.

Consider the definition of a
stochastic process for the estimate
3.24. The notation there was used for

ease 1n describing the samplang, but
1t 1s misleading for the present
purpose. On recalling section 2.3.2,
1t 1s seen that the sampling space 1is
actually the product space

Q(ul))< Q(uz) x ... x Q(us) .

rl r2 rs
On the component Qr], the probabilaty
measure P;’) 1s to be derived from
J
[Q,PCI)(A)], as was P, from [Q,P(A)]

in section 2.3.2, that 1s, 1in place of

the functions 2.2 and 2.3 for [Q,P(A)]
used 1n section 2.3.2, the functions
of the type 2.2 and 2.3 appropriate to
[Q,PC7)(A)] 1n the construction 2.36
through 2.39 are used. This w1ll
generate the probability density

functions fN',](lezo,zl, «+,2Zy_y) and
the stoppingprobabilities p, (zo 2z,,

+..,2y) for N > 1. Theorem 1,
vamped for er, then gives the process

re-

r

[ ,Pﬁ’)(A)]. The measure on the
J J
product space

S )
m e
7= ]

1s then defined as a product measure
by using M factors P{J)(A) for each
; =1,2, 1., s. ]

It should be remarked that the
probability functions of the type 2.2
and 2.3 that are needed 1n the con-
struction indicated above have been
described only for the special cases
of examples a and b of section 2,3.1.
The general proé¢es$ description 1is
then dependent on the possibility of
defining the needed functions. On
the other hand, the sampling description
for 3.23 and 3.24 1s given 1in terms of
the generally defined sampling func-
tions 2.1la and 2.17a. The author’s
opinion 1s that a structure theorem
for stochastic processes of the type
needed for this work, based dairectly
upon the sampling functions of the
types 2.11 and 2.17, might be more
convenient than the structure theorem
by Doob upon which Theorem 1 1s based.

CHAPTER 4. WEIGHTED AVERAGES OF o(x):

4.1. ESTIMATION OF A WEIGHTED AVERAGE

The discussion in chapter 3 was
devoted entirely to the problem of
estimating the solution ¢(x) of
Eq. 1.1 at a single point x = x, or
a single component of the vector
Yy of Eq. 1.5. This chapter will
present stochastic estimates of
integrals of the form fﬂ w(x) ¢(x) dx,
where w(x) 1s a specified function,
and the estimation of the entire
function ¢(x) over R

Consider first the integral
(4.1) I={f w(x) ¢(x) dx ,
R
where w(x) 1s a known function and
¢(x) 1s the solution of Eq. 1l.1. A
well-known stochastic technique for
estimating I proceeds as follows

SOLUTION IN THE LARGE

(cf., Appendix B). Let f (x) be an
arbitrary probabilaty density function
defined and positive on R. For some
integer r, draw r stochastically
(1) (2)
independent values x , X ) ey
x'") at random from the population
whose distraibution 1s f,(x). An

unbi1ased estimate of I 1s given by

1 r
(4.2) (est I) = _r_z

w(x)) ()
fo(x(l)) ’

which 1nvolves a knowledge of the
values ¢(x(‘)), 1 =1, 2, ..., r, of
the solution of Eq. 1.1 at the points
AR Estimates of these values
could be obtained by any one of the
processes described 1n chapter 3,
with ther values x‘*) used successively
as the fixed point x,. Let the
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A
estimate of I so obtained be denoted by I, that 1is,

(1) (1)
(4.3) =_E w(x )((}5()1 )’
)

where the x(*) are randomly drawn from f,(x) and t%(x(‘)) denotes an estimate of
¢(x) at the (fixed) point x¢*), Thus

(1)
EIr —1-2 fw—(x-—-)—E{$(xo)lxo = (1)} fo(x(‘)) dx(t)

"
wl»—'
| e B

j;w(x(')) ¢(x(l)) dx(') =1,

A
according to the unbiased character of each $(x(1)), The variance of I, 1s given

by the formula

A 2
(4.4) I* + r var }\ = E{-———W(I) ¢(x)}
r fo(x)

2
w(x) A
=j; [_fo(x) J E{ [¢(xo)]2|xo =z} f,(x) dx

wi(x) A 2

It 1s clear at once that, even though zero variance processes are used to obtain
the »(x¢*?), thevariance of 4.3 will not be zero. Does a zero variance esti-
mator of I exist?

The answer 1n the affirmative seems to have been given first by Goertzel,(”)
His result and an alternative one will be given 1n the next section. First, the
integral I of Eq. 4.1 will be put into adifferent form and an alternative esti-
mate to 4.3 will be introduced.

Assuming uniform convergence of the Neumann series 1.3 over R, one has from

Eqs. 4.1 and 1 3
I = fn w(x) g(x) dx + Z f w(x) Iy(x) dx
= R

By using 1.4 and the change of variables x = v
for N> 1, 1t 1s seen that

f w(x) I,(x) dx =
R

N Ug T Uyl eeey Uy SV, u =Yy

NS ey dy [ [KGy) KGug,wy) e Kooy ) wlvy) dvy o doy

Thus
(4.5) I = fn egly) { w(y)

+ A j; fn K(vy,y) K(v,,v,) ... K(vy,vy ) wlv,) dv, ... va} dy .
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Consider the 1ntegral equation

(4.6) Q(y) = w(y)
+ A [ K(x,y) Qx) dx .
R

The series in the bracket in Eq. 4.5
1s the Neumann series for Eq. 4.6,
Thus I may be written as

(4.7) I =.L gly) Q(y) dy .

Upon applying the method of Eq. 4.2
to Eq. 4.7, an estimate of I 1s
obtained that 1s an alternate to
estimate 4,3, 1t 1s,

(48) I, =iz
.

1=1

g(x(1) Q(x))
fo(x(l))

where a denotes a point estimate of
the function Q.

This reformulation of the estimation
procedure leads to two very 1important
1tems (1) a generalization of a much
used method for estimating ¢(x) over
a fixed net of points x,, x,, ..., x,,
(2) a stochastac methqd for estimation
of the entire function ¢(x) over R.
These problems will be discussed 1n

sections 4.3 and 4. 4. N

4.2. ZERO VARIANCE ESTIMATES OF I

Consider the variance formula
4.4, Suppose
equation 1.1 satisfies the conditions
(cf., section 3 3) for the existence
of a zero variance estimate of @(x,)
for each x, 1n R. Then ¢(x) 1s
nonnegative on R. If, in additaion,
w(x) 1s nonnegative on R, the choice

w(x) ¢(x)
I

may be used. Suppose that the zero
variance process for ¢(x,) 1s used 1n
obtaining each of the 2(*)) 1n 4.3.

The right member of Eq. 4.4 easily

fo(x) =

reduces to I? from which var , = 0
follows.
Clearly, the above construction

may be used 1n connection with Eqs. 4.7
and 4.8 and a zero variance process
for Eq. 4.6. In this case the ad-
ditional requirement 1s that g(x) be

nonnegative and the choice f,(x) =
g(x) Q(x)/I must be made. This latter
procedure 1s the one i1ntroduced by
Goertzel.(7)

4.3. A MUCH USED ESTIMATOR OF &(x)

The fundamental basis for all the
estimation processes discussed so far
has been the random variable 3.1.
Many Monte Carlo experiments that have
been actually performed 1n computing
laboratories have not been based upon
Eq. 3 1 but rather upon the physical
analogue scheme to be described and
generalized i1n this section.

Suppose that Eq. 1.1 arises 1n a
particle diffusion problem. A partacle
moves about 1n a phase space R and
collides with other particles 1in a
random manner and 1s subjected to
possible absorption on any collision.
Let the rules of this process be the
following (1) g(x) 1s the probability
density of the point at which the
first collision occurs, (2) for each
fixed y in R, A\ K(x,y) 1s the proba-
bility density of the position x of
the collision i1mmediately following a
collision at y, (3) p(x) = 1 - A
fﬂ K(x,y) dy 1s the probabilaty
of absorption on collision at x. It
1s not difficult to see that the term
I, (x) of the series 1.3 1s the density

that the i1ntegral- .function for the (N + 1) collision,

‘that 1s, I, (x) dx 1s the probability
that the particle gets as far as the
(N + 1) collision and that the collision
w1ll occurin the interval (x, x + dx).
For any subset A of R, the integrals

J, = IA P(x) dx

and

J, = fA o(x) d(x) dx

represent, respectively, the proba-
bi1lity of at least one collision in A
and the probability that the particle
1s absorbed on some collision in A,

Let 8(x,A) denotethe characteristic
function of the set A and define the
two functions w,(x,4) = 8(x,A) and
w,(x,A) = p(x) 8(x,A). Then the
integrals J, and J, take the forms

\
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f, v (x, 4) $(x) dx

J, =
(4.9) {
Jy =

that 1s,
Eq. 4.1.
Define the i1ntegral equations

(4.10)

j; w,(x, A) d(x) dx

they are special cases of

These are of the form of Eq. 4.6, and
the integrals 4.9 may be written as

(4.11) J, = J; g(x) Q. (x,4) dx ,
v =1, 2,

Either of the integrals J can then
be estimated by the method of Eq. 4.8.
This method requires an unbiased
estimate of Q‘(x,A). The appropraiate
specialization of Eq. 3 1 could be
used. As already mentioned, an
alternative to Eq. 3.1 1s of interest.

Consider the following procedure
forestimating Q (x,,4) for an arbitrary
choice of x5 1n R. In following the
description of the particle process
above, by some random device decide
that the particle 1s absorbed at x,
with probability p(x,) or not absorbed
with probability 1 - p(x,). If 1t 1s
decided that the particle 1s not
absorbed at x,, by an appropriate
device select a point x = x, an R by
using the distribution A K(x,zx,).
Again decide upon absorption or no
absorption at x,, with probabilities
p(x,) and 1 - p(x,), respectively.

A
Q] (xoy A) = w] (xo,A)
n(w)

(4.13)

AV K(x,,x0) K(x,,x) ... K(x‘,x

values of p(x ) for all of those
collision points x, that fall in A.
In formulas,

(4.12)

est QJ(xO,A) = E w)(x‘,A) ,

=0

Q (x,4) = w,(x,A) + A [ Q(y,4) K(y,) dy , =1, 2.

The estimate 4.12 of Q,(x,,4),
used 1n conjunction with 4,8 to
estimate 4,11 for ¢+ = 1, provides
a new method for estimating ¢(£) at
any £ i1n R, as follows. Let A be a
set containing & for which the measure
m(A) = fA dx 1s small and over which
the variation of ¢(x) 1s small. Then
(&) > J,/m(4), according to the law
of the mean for integrals. Consequently,
an estimate of J, gives an estimate of
@(£). Clearly, this estimate of ¢(£)
1s simply the total number of collisions
that occur 1n A divided by the measure
m(A). Such an estimating procedure
could be used to obtain simultaneous
estimates of ¢ on a partition of R
into small sets A, A,, ..., 4 .

Before considering the statistical
properties of the estimates 4.12, 1t
will be convenient to generalize the
method. Suppose that a stochastic
process [Q,P(A)] of the type given by
Theorem 1 1s at hand., It will be
assumed that the process i1s conditioned
for a fixed x_ (cf., section 2.2).

0
Consider the random variable

) wJ(xl, A)

-1

2

=1

1=0 f‘(’yllxo) H ql(y;)

If nonabsorption at x, 1s decided,
select x = x, at random by using the
distribution A K(x,x,) and so on untail
the particle 1s absorbed at some
point x, .

To estimate Q,(x,,A), simply count
thoseof the points x,, x,, x5, ..., x
that fall in the set A. This count 1s
the estimate of Q,(x,,A). To estimate
Q,(xy,A), use the sum of all of the

i

n

30

=0
where the functions in the denominators
are defined in section 2,2.* It will
be shown that 4,13 generalizes Eq.
4,12 1n the sense that, 1f the process
[Q,P(A)] 1s the fundamental particle
process described atove and con-
ditioned for fixed x,, 4.13 reduces to
4,12. Moreover, 1t will be shown that

w)
*The summat.lon'& 18 to be omttedifn(w) = 0

1=1



the random variable 4.13 provides an unbiased estimate of Q (x,, A) relative to

the process [Q,P(A)].
To show that 4,13 generalizes 4.12 construct [Q,P(A)} from the partic le

process, as follows. With reference to Definition 1 and the functions 2.2 and
2.3 of section 2.2, define pN(yN) = p(xy) for each N =0, 1, 2, +.. . Then
qN(YN) = 1= p(xy). Also, define

N N K(x,,x,_,)
oy = M 4 5
=1+1 t-1

It can be seen i1immediately that the denominators in 4.13 are
1-1 t XK(x X -l)

f,('yllxo) H QI(')’;) = H H q;(')’l) = H xK("l"‘l-l)
=0 1=1 ql-l('yl.-l) b= =1

and 4,13 reduces to 4.12.
To see that 4,13 gives an unbiased estimate of Q (x , A), 7 =1, 2, relataive

to the process [Q,P(A)], consider

(4. 14) E{/Q\)(xo,A)Ixo} = P{n(w) = 0]z} w,(x,,4)

® A
+ Zl P{n(w) = N|xo} E{aj(xo,A)|n(w) = N,xo} , J =1, 2.
N=
The conditional expectation under the condition n{(w) = N occurring on the right
in Eq. 4.14 1s '

A
E{Q (x,,4) [n(w) = N,z,}

A
[P{n(w) = N|x,}])"" | Q, (20.4) fylrylzy) Pylyy) dyy
) N ) ﬁ: MKy, | feCrylxg) Py(ory)
= yA) + cos A
v, (% ) j; j‘;wl(x' =1 q, (%)) for lxy) n

1=1

f f v, (x,,4) [ M X k(xp,z,_ ) ] fylryly?)
1 R R 1=1

a, V) oos gy 1 Orgsy) py(rg) dyy

™M=

= wJ(xO,A) +

13

By using this in Eq. 4.14 and permuting the double summation z ‘z to the
N=1 =

@ @
form z Z , the following 1s obtained
11 N=a

I -]
(4.15)  E{Q,(x, M) |x,} = w (x,4) + ¥ f

1=1YHR

f wj(x‘,A) [llill )\K(x,,x,_l)}
A =

[ lam V,  (y}) ] dy,

a—®
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Since 1t was shown 1n the proof of
Theorem 2 that lim V.'t(y:) = 1,
n - @®
Eq. 4.15 1s the Neumann series for

Eq. 4.10.

The variance of the random variable
4,13 seems to be difficult to handle.
Presumably, stratification and repeated
sampling devices should be useful
in reducing that variance just as
they were 1n connection with 3.1.
The estimator 4.13 has much intuitive
appeal 1n that 1t reduces to the
standard Monte Carlo procedure of
counting collisions when the estimating
process [Q,P(A)] 1s an analogue of
the physical particle diffusion

Qly,u) = A K(u,y)

N=1 R

x”*‘u['...'j' K(ty, ty o) --. K(t;,y) Klu,ty) dt,
R

and ¥, (,) 18 independent of the value

f x,. It follows at once that
é(w,xo) 1s an estimate of ¢(x,) for
arbitrary x,. More general procedures
for estimating the entire function
¢(x) will be given next,

In section 4.1 there 1s nothing
in the theory to prevent the weight
function w(x) from depending on a
parameter. Consider, 1n fact, the
integral 4.1 1n which w(x) = X\ K(u,x).
Then Eq. 4.6 has a solution Q(y,u),
and the equation becomes

(4.16) Q(y,u) = X\ K(u,y)
+ A f K(x,y) Q(x,u) dx .
R

4.16 1s

The Neumann series for Egq.

dty .

By using this in Eq. 4.7 and writing I(u) instead of 1,

Iw = ¥ xﬁ./' ..../' K(u,x,) K(x,,2,)
k=1 R R
(4.17)
= p(u) - glu)
process. The author hopes to be able

to give more consideration to 4,13 at
some later date.

4.4. ESTIMATION OF ¢(x) IN THE LARGE

Throughout chapter 3 the discussion
was concerned with the estimation of
the value of the solution ¢(x) of
Eq. 1.1, at a single point x = x, 1n
in the spaceR, or of a single component
of the vector solution of Egq. 1 5.
The reader may have recognized that
in certain special cases the estimation
process actually yields an estimate
of the entire function ¢(x) over R.
To be explicit, 1f the distributions
fN(yﬂlxo) are independent of x, for
each N > 1 and 1f the stopping proba-
bilities py(y;) are constants 1inde-
pendent of ¥y, the random variable 3.1
will depend only upon x, asa parameter.
That 1s, x, appears 1n the formula 3.1
only i1n the term g(x,) and the factor
K(xo’xl) of Gn(w)(xo’yn(w))’ the
sampling procedure for obtaining n(w)

32 .

K(x, ,,x,) g(xk) dx, ... dx,

In obtaining Eq. 4.17, the change of
variables x;, = t,, =x, ty_ 1o
xy = t; was used and followed by
inversion of the order of integration.

Any unbiased stochastic estimate
of I(u) will be an estimate of ¢(u) -
g(u), according to Eq. 4.17. If the
estimating process can be so chosen
that the experimental determination
of the chains x,, x,, x5, «¢., X,(4)
1s i1ndependent of the value of u in R,
the corresponding statistics for
estimation of I(u) will be valad for
all u in R.

Suppose that a stochastic process
[Q,P(A)] conditioned for arbitrary
fixed z, and wath p (x,) = 0 has been
chosen by Theorem 1. The process 1s
defined by the sequences of proba-
bi1lity functions

fulrwlzg), N =1,2 3, ...,

Po(xy) = 0, Pylxg,vy),

N=1, 2,3,



Let f,(x,) be an arbitrary probabilaity (density) function on R, For any fixed
integer r, let r points xé'), 1 =1, 2, ..., r, be drawn independently and at
random from fy(x,), and let the r chains w,, beginning at xg‘), 1 =1, 2, ...,
r, be drawn from [Q,P(A)]. These chains are determined by the values n(wl) and
the finite chains 7;(w‘) xé‘), xg‘), ceus xizg‘), 1 =1, 2, ..., rv In terms
of these samples, Eq. 3.1 gives the r point estimates &(w‘,xg')) of ¢(xg‘)) at

the r points z{*’

(4.18) $(w‘,xé‘)) = g(xé'))
G ( () )
nlw )\ %o 1 Vntw))
1 1

+ , 1v=1,2, ..., r
(1)
fn(wt)(yn(w‘)lxot ) Pn(wl)(xo’yn(wl))

Also, on modifying Eq. 3.1 appropriately for estimating the solution Q(y, u) of
Eq. 4.16, 1f [Q,P(A)] 1s 1ndependent of u, these same r chains give the r
estimates

A
(4.19) Qw ,u) = X K(u,x{*))

}\n(a)t)+1

K(xg‘),xé‘)) e K(xifil),xizit)_l) K(u,xitl‘))
+ ’
)
frto ) Pntwo 15" P ) (201 Yata )
1 =1, 2, ..., r ,

of Q(xg‘),u). By applying 4.19 in the manner indicated above, the quantity
. g(xg‘)) 6(w u)

=y fo(xé‘))

‘,

A
(4.20) I (u)

S| e

1s an unbilased estimate of I(u) = ¢(u) - g(u) that 1s valid for all u in R.
The estimate 4.20 may be obtained from the r point estimates 4.18 by a kind

of interpolation formula. To see this, define the function

K(x,,x,) K(x,,x,) ... K(xy,xy ,) N K(u,zxy)
(4.21) S(u,xy,7y) = ——— 2071 N R xy

K(xy,%,) K(x,,x,) ... K(xN-l’xN) g(xN)

for Yy = Eys Xgs o rees Xy N > 1. In terms of 4,18 and 4.21, the random variable
4,20 becomes

1 glx{*))

A r
(4.22) 1 (u) = =) ———— X K(u,z5*")
r :E: fo (x$*)) 0

1=0

+ S(u,x((,‘),’)/n(w )) [$(wl,xé‘)) - g(x((,‘))]} .
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The relationship 4.22 between estimates
4,18 and 4.20 1s of little more than
academic 1nterest, since 4.20 1s the
simpler formula to use., Moreover,
the efficiency of the process [Q,P(A)]
for estimating ¢(u) - g(u) 1s best
judged 1n terms of 4,20 and the

si1derably 1f the kernel K(x,y) of
the integral of Eq. 1.1 1s symmetrical
and g(x) 1s a probability density
function on R. In this case Eq. 4.21
reduces to A K(u,x,)/g(xy), and the
choice f (x) = g(x) may be used.
Thus 4.22 reduces to

K(u,x:zi ))

:))

)\ r
(4.23) 1 () =72 K(u,z{*)) +

=1

appropriate modification of the
variance formula 4. 4. The latter
takes the form:*

2
2 g‘(x)
[6(u) - g(w)]® + r var T () jn o)

It should be evident that strati-
fication and repeated sampling tech-
niques could be used i1n the estimation
of Q(x,u) 1n 4,20, The structure
of the zero variance process of the
type described 1n section 3.3 1s such
that, when applied to the integral of
Eq. 4.16 for Q(x,u), the process will
depend upon a part1cularAcho1ce of u.
Thus, zero variance for Q(w,u) can be
achieved only at one value of u.

The formula 4.22 reduces con-
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[$(wl,xg - glz{*N)]

(1)
g(xnz@‘))

Various modifications of the above
procedure should suggest themselves
to the reader. The following question

{var [6(w,u)|xo = x] + Q*(x,u)} dx .

poses an unsolved problem. A close
examination of 4.22 shows that fr(u)
1s composed of two parts, one arising
from the fact that the estimate 1s
made of ¢(u) - g(u) instead of ¢(u),
and one arising as a weighted sum of
the separate point estimates 4,18. Is
the weighting-interpolation operator
4,21 of the second part of fr(u)
optimal i1n some sense? A negative
answer would raise the problem of
determining such an optimal operator.



APPENDIX A. AN ILLUSTRATION

Consider the simpleintegral equation

(A1) P(x) =
1
ey fo‘ exp [-(x + y)] &(y) dy ,

0<x <1,

which was chosen for ease of compu-
tation., The terms 1.4 of the Neumann
series 1.3 are readily integrated for
A.1l and the series 1s summed

Ngl 2"f‘j;’["[;[:

0

Hx) =1+ e°

A simple process [Q,P(A)], of the
type defined by Theorem 1, conditioned
for fixed x5 and with py(x,) = 0, 1s
constructed in the following manner.*
Choose po(x ) =0, go(x,) =1, and
Py (7 ) =1/2 = 9y (7 ) for every N > 1,
Let fN(YNIZO) be the JOlntd1str1but1on
of N variables that are i1ndependently
and uniformly distributed over (0,1)
for each N > 1, that 1s, for each
N > 1, the function fN(7N|7N 1) 1s the
uniform distribution for x_ over (0 1)
and therefore 1s independent of 7N

The distribution of n(w), given «x
1s given by the specialcase Eq. 2,
of Eq. 2.11, and 1s

ll
0
18
0, 1 f k=0,

2k 3 f R > 1,

Sampling from Eq. A.2 1s simple. From
the Neumann series, 1tcan be seen that

(A.2) Prin(w) =k|xo] ={

|V

*
See the remark at the end of section 2 2 and
the special process b of section 2,2 1

-2z -x
e '} e N dx

the terms for N < 8 should give
sufficient accuracy to five decimal
places. Divide the integers from 1
through 128 into classes according to

Eq. A.2, as follows
CLASS INTEGERS IN CLASS
k= 1 through 64

1

2 65 through 96
3 97 through 112
4 113 through 120

dx, =

-z
- N l+c¢ce ,

2(e? - e)

C 5 ot

3e2 + 1

¥ 0.40322 ,

121 through 124
125 through 126
127

8 128
Draw an integer in the range 1 to 128
from a table of random numbers. The
class k'to which that integer 1is
assigned i1n the table above gives
n(w) = k', The samplifig for the
relevant part of w continues by drawing
k' valuesx,, x,, «.., z,+ 1ndependently
from a uniform distribution on (0,1).

The basic estimate 3.1 then gives
L
k
-2x

m e
t=1

for an arbitrary value of x,. This 1s
an example of the type mefitioned at
the beginning of section 4.4, 1n which
3.1 estimates the entire function

d(x).

The sampling described above was
carried out four times, 1in a rough

~ O

X ~x
k

(A.3) Slw,x) =1+ ¢ "0

manner, with the followaing results,
(nw,) =3, $lw,,x,) = 1+ 0.0362 ¢ °,
n(wy) = 1, Plwy,zy) = 1+ 0,5543 ¢ °
(A.4) -x
n(wy) = 2, $lw,,z,) = 1+ 0.0750 ¢ °
| n(@) =1, $lw,,z,) = 1 +0.8025 ¢ ° ,
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The average estimate 1s $ =
-x

e °.

1 + 0.3668

Consider the application of 4,22,
In A.1, the kernel K(x,y) 1s symmetracal
and g(x) = 1 may be used as f (x),
therefore 4.23 applies, The estimate

of ¢(u) 1s
1 4
(A.5) est ¢(u) = 1'+7;e'" E
- 1=1
in which the ¢ and z(}) |, 1 =1, 2,
1 n(w,) -x
3, 4, are the coefficients of e % and

the final chain points 1n the four
estimates A.4 and the xé'), v =1, 2,
3, 4, are to be drawn 1independently
from a uniform distribution on (0,1),

The x(?) of A.4 were 0.78, 0.59,

n(wl)
0.63, 0.22, respectively, and four
are

numbers suitable for the x(%)
0.44, 0.30, 0.88, and 0.41,. The
result 1s

est ¢(u) = 1 + 0,3932 7 ,

Thas 1s considerably better than the
average of the four estimates A.4.
Such an i1mprovement could have been
anticipated on theoretical grounds, 1in
this example.

The variance of the fundamental
estimate A.3 1s easily computed from

var $(w,xo) = var [&(w,xo) - 1]

and

[Pp(x,) - 11% + var [Bw,x,) - 1]

Jvar 8(w,z,) = 0.2895 ¢ "

Thus the standard deviation of the
average of estimates A.4 1s 0,1448 e FO,
The variance of the estimate A.5 may
be found as one-fourth of the variance
of a single one of the terms on the

(1) -z(l)
-x (@ )
0 l+c e ¢ ,
right, the calculation 1s similar to

that above. The result 1s var (A.5) =
0.0050 e-2v, for the standard
deviation, ¥ 0.07 e, which 1s less
than one-half the standard deviation
of the average of estimates A.4.

It 1s interesting to see the effect
of stratification on the variance of
the average of M estimates of the type
A.4. Let the process [Q,P(A)] used
above be stratified as in example (a)
of section 2,3.1. The 1ntegers N,,
N,, ..., N, will be chosen as N, = 0,
N,=2,N; =4,N, =7, Ng = ©, Thus,
there are four strata given by all

or,

sequences w for which n(w) = 1, n(w) =
2, 3, nlw) = 4, 5, 6, or n(w) > 7, for
which v, = 1/2, v, = 3/8, v; = 7/64,
and v, = 1/64. Assume that M 1s such

that the sample sizes for the strata
may be chosen by Eq. 3.22. The re-
duction 1n variance because of repre-
sentative sampling over the strata
will be given by

] 1 1 |[N=1
-22 -4 - 22
= E 27N ¢ Of I e il e M dx, .. dx, ,
No1 0 0 o ! ¥

with the result

-2:0

var $lw,z,) = 0.0838 e

The standard deviation 1s

1 -2
v, ¢,(x,) = v, +-§-e 0 f e

N -1
-x Jt1

1 1 1 -x,-cee-x
- 0 1
v, ¢,(xo) =v, ¥ 5 k}% f; ces j; e kodx
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14
(A.6) " ?1 v, o, (x4) - #(x4)]2
;=

where, from Eq. 3.13, the ¢,(xo) are
given by
1 -x

1
0 dx,

1



Formula A,6 can be easily computed to

find the value 0.0558 e-zxo/M. Since

the variance of the average of M
estimates drawn from [Q,P(A)] 1s

-2
0.0838 e zo/M, the variance for the

representative sample will be 0.0280
e-zzo/M. The effect 1s roughly equiva-
lent to tripling the sample size M for
the random sampling case.

APPENDIX B. THE ESTIMATION OF DEFINITE INTEGRALS
OF FIXED MULTIPLICITY

It was suggested i1n section 3.4 that
representative sampling might be
advantageous 1n the estimation of
individual integrals of the Neumann
series 1.3, This matter will be con-
sidered 1n some detail here. It wall
be clear that the integral beang
estimated need not be a term of a
Neumann series.

Consider Egq. 1.4

(B.1) I, (x,)

=J. oo JGylxg, vy Ay,

Let gN(yNIxo) be a probability densaity
function on Ry, 1t may be independent
of x,. In section 3.4, g, would be
given by Eq. 2.17 conditioned for =x
and with k& = N,

0
If Yy 1s a chain

Xy, %5, ., %y whose distribution 1s
gN(yNTxo), then the random variable
G,(x,, 7,)
A N'To /N
(B.2) I, (yylxy) & ————
gy(ynlxo)

1s an unbiased estimate of IN(xo).
Likewise,the average

A 1« & iy
(B.3) Iy, (xg) == L Iy lx,)
1=1

of r stochastically independent values
of B.2 will be an unbiased estimate of
B.1 relative to the probability density

r

| gN(yﬁ"Ixo) on RN

1=1

(B.4)

The variance of B.3 will be computed,
presently, i1n a form comparable to
3,14, that will be convenient for
comparison with the variance of an
estimate of B.l obtained by repre-
sentative sampling.

Partition the space R¥ of Yy 1nto
m nonoverlapping subsets AN o L= 1,

2, «.., m, for some 1nteger m, and
define the probabilitaies
Ty oy = f ea fAN , gN(lexo) dyy

l =1, 2, oo, m,

and the conditional probability densaity
functions

gy vy lzg)
B ) s
77' Ll
N, 1 /
(B.S) gN(lexo, By ) =
0, 1f ¥y not 1n AN,l ,
l =1, 2, ..., m. Also, define the quantities IN,l(xo): by
(B.6) L In,l(xo) = f “ee jg l Gy (x,, ) dyy » 1 =1,2, «oo, mn,
N,
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The variance of the estimate B.2 may be expressed as

var [}N(Yﬂlxo)] = ) L E{[}N(7~]xo) - I~(10)1217~ in AN.I} .
1=1

As can be seen, IN(xo) 1s not the mean of B.2 under the condition 7y, 1néw 3
In fact, )

(B.7) B, Oy lxg) 1y, in B, ) = I, (x,)

A
Thus the expectations on the right in var I

are broken down in the following
manner

E{[fn(ynlxo) - IN.l(xo) + Iu,z(”o) - IN(”o)]zlyn in AN.I}

- B, 0y, 12) = I, )12y, i b, 3+ I, (xy) = I (x)]% .

Thus

B.1) var (1,010 = L my , ELLT, (o l20) = Iy (x))2]yy 1n B, )
1=1

t 12 Ty 1 Uy 1 (xg) = I,(x)]17% .
=1

It follows i1mmediately that the variance of the average B.3 1s obtained by
dividing B.7 by r. In B.7,

(B.8)  E(IL,(ryl2,) = I, (x,)12]7, 1n By )
Gz(xo, Yy )
f gN('yNIZO’AN,l) d’)’N - [IN,I(ZO)]z
gh (rylxy)
Gilzy, 7y)
7” - [IN'I(ZO)]Z .

o ey Oylay)

The integrals I, ,(x;) defined 1n B.6 may be estimated by using the con-

ditional d1str1but10n B 5 1n much the same manner as Eq. B.1 wasestimated. The
random variable

A Gy(xy,vy)
(B.9) IN,1(7~|10)E N "o /N , Yy 10 An,l
WN,ng(7W|”o'Aw,z)
1s an unbiased estimate of Iy ,(x,) relative to B.5 for any Il =1, 2, ., m.

Note that B.9 1s the same as B.2 except that Yy 1s forced to fall 1in AN ;» that
1s, the 7y ! cancels out.
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Let the integer r used in B.3 be
partitioned into a sum

r = ‘E r,

=1
of integers r; and let

9~.1(7ﬁ1)|x0) v 7 =1,2,

be stochastically independent values

R rl ’

Of B|9 for eaCh l = 1, 2, esey M,
[} W; 1
(B.13) var [I, (xz4)] = ) -
' 1=1 "1
Consider
(B.10) IN,R(xo)

» r A
= (1)

Z z #1] IN,l(yﬁJ |x°)1

l=1 J=1
where the u, are constants. The
random variable B.10 will be an un-
biased estimate of B.1l, relative
to the distribution

n i
=1 ;=1

1f the constants u;, are chosen to
satisfy

(B.11) X By, =7

1=1

N,1L

l =1, 2

Since the terms on the raght ain
B.10 are stochastically independent,
the variance of IN,n(xo) will be
given by

“s 0y m .

var [IN,R(IO)] = Z

1=1 ;=1

Now write

1 r m

. z " =
1y
"1 ;=1 ™

N,1

1f Eq. B.11 1s satisfied. Then

r

2
1 ! TN, 1 U
2 - L] »
Z /J'l) = E /J'l)— +
1

- r
171 J=

1

” A
) Ki, var [In.z(yﬁj)]”o)} =

Clearly the variance above will be
minimized by the choices

i

N,
(B.12) Ky, = ,
™
= 1, 2, 06y rl for each l = 1, 2,
ees, m. Tt 1s not hard to see that

var [fn,l(ynlxo)] 1s given by Eq. B.8.
Thus

ECLTy (vl 20) = Iy (2501 %lyy 1n By )

1f Eq. B.12 1s satisfied., Moreover,
this 1s the minimal variance that can
be achieved by this method.

In the special case in whaich the

products LT l=1, 2, «.., m, are
integers, the choices
(B.14) ry =TIy 1

l =1, 2, .e., m,

make B.13 comparable to B.7 divided by
r (that 1s, with the variance of B.3).
Clearly, in this case

var [IN.R(xO)] < var [fn,r(xo)]

by the amount

1 n
(Bols)_;- Z: WN'I[IMIKIO) —IN(xo)]z [}
1=1
If Egs. B.12 and B.14 are satisfied,
the estimates B.3 and B.10 for B.1l
will be formally similar and B.1l0
wi1ll have the smaller variance,

r

l A
p?} var [IN'1(7N|xO)] .
1 5=1

M=

l

That 1s, 1t 1s advantageous in forming
B.3 to force r; of the vectors Y
to fall in AN ;o l =1, 2, ..., m, by
using the conditional sampling distri-
butions B.5 for the sampling.

An 1mportant special case arises
when the integrand GN(x , 7N) of B,1
1S nonnegative over tge region of
integration R¥, 1In this case, by
assuming that I, (x;) 1s known, for
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the moment, a possible choice for the

sampling distribution gN(yNIxO) used
above would be

G, (xq, V)

N [ N

(B.16)  gylyylzy) = ——

I,(x4)

The choice B.16 makes B.2
estimates derived from 1t exact,
1s,

and all
that

A
var [IN(YNIxO)] = 0.

It can then be seen that the individual
terms of B.15 would all be zero
(Eg. B.14 1s assumed). The converse
appears difficult, but 1t may be
conjectured that under appropriate
hypotheses on the integrand G,(x,, ¥)
the following might be true. If for
every partition AN,I' il =1, 2, ...,
m, for which there 1s an integer r
such that Eq. B.14 holds, the ex-
pression B.15 vanishes and then the
of B.2 1s zero. Under
conditions such that this conjecture
15 true, 1t should be possible to
construct a practical approximation to
the zero variance estimate 1ndicated
here. The following procedure seems
clear for such a construction,

Let R be a finite interval (a,b) and
suppose that Gy (x,, ¥y) 1s nonnegative
for Yy or Ry. Partition R 1into ¢
subintervals for some i1nteger gq.
These serve to partition the product
set R¥ 1into m = g¥ oriented N-dai-
mensional intervals AN,I’ 1 =1, 2,
..., g¥. Choose a point z;, 1n each
of the AN,I’ and define the step
function

varliance

N

. 1 ¢
(B. 20) var [IN R(xo)] = — Z Ty lf...f [GN(xO,’YN) -1, l(xo)]z
’ r o= . AN I ’ m

N
~ L {f.
= - ) A
T =1
H(xy, v,) = Gy(xg, 2z,) ,
1f v, 1n AN L.

Let the choice
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N,

J(B.17) SN(')’N;IO)
H(xg, 7y)
fn c e fﬂ H(xox ’)’;J) d’)’;,
be made. It 1s evident that the ¢¥

conditional distributions B.5 defined
by using B.17 will be uniform over
their respective 1ntervals AN,I'
that 1s,

(B.18) g, (v, |x,,8, )

, 1f Yy 10 A

)
N, 1 N1

0, otherwise .,

It follows that, under the condition
Yy 1nAN’l, the components x,, x,, +..,
%, will be uniformly and independently
distributed over their respective sub-
intervals of (a,b). Thus, sampling
for yy 1n Ay ; by usaing B.18 waill
be very simple.

If the partitioning 1s done as
described above and the integer r 1is
such that the products B.14 are
integers, the estimate B,10, subject

to the choice BR.12, reduces to

(B.19) Iy ,(z,)
N

1
r

n D=

"l
(5)
;l GN(xO’yN) )
)=

=1

and the variance B.13 becomes

dyN

. N,l

G:(IO’ Yy) dyy - 7T)\!,I[I)V.l(xo)]2 } )

In many practical examples, Eq. B.20
might be used 1n designing the esti-

mation process. Let

U, = LUB [Gi(xy, 7))



\ “

¥

] \
]

over AN,I and . 1 ¥ )

L, = GLB [G,(x,, 7,)]

over AN,I' l =1, 2, ..., g¥. Then Obviously the partitioning should be
the variance B.20 1s dominated by chosen to make B.21 small.
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