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CHAPTER 1. INTRODUCTION

1.1. BACKGROUND

Considerable interest has been

focused in recent years on the sta
tistical (Monte Carlo) estimation of
the solutions of integral equations of
the type

(1.1) <*><*) = g(«)

+ k f K(x,y) 0(y) dy , x in R ,
B

R being a Euclidean space, and on
related estimation problems. Some
research on these problems has been
published, ' ' ' ' and much more of
the research has been done via intra-

and inter 1aboratory communications,
either oral or written. The present
report leans heavily upon such re
search, with little or no indication
of such dependence.

Fundamentally, the aim of this
report is to present (1) the appli
cation of rigorous stochastic process
theory to the generation of a unified
theory of estimation processes for the
solution 4>(x) of Eq. 1.1 at a single
point x = xQ, (2) the application of
elaborate sampling schemes based upon
simple distribution functions in an
attempt to realize an over-all computing
efficiency by appropriate balance
between statistical efficiency and
machine efficiency, and (3) the esti
mation of the entire function 4>(x) by
a weighted interpolation of many
single-point estimates of <fe. Related
estimation problems will be mentioned
only briefly.

1.2. NOTATIONS AND ASSUMPTIONS

Define the sequence of functions

(1.2) GN(x, u1,u2, ,uN) = kN K{x,ur)

The Neumann series for Eq 1.1 has
the form

(1.3) 4>(x) = g(x) + Z V*} •

in which

It will be assumed throughout the
report that series 1.3 for Eq. 1.1
converges for x in R. In much of the
report the main interest will be
centered about Eqs. 1.1 for which the
source term g(x) is nonnegative and
bounded oni? andA. K(x,y) is nonnegative
and bounded for both variables in R.

These assumptions will not be mentioned
explicitly except in the sections in
which the stochastic processes that
depend critically upon them are first
introduced.

1.3. RELATED PROBLEMS

The Basic Estimation Idea. Let A

be an r x r nonsingular matrix of real
numbers and let \p and h denote column
vectors of length r, where h is known
and <// is unknown. The linear system
of algebraic equations A ' ip + h = 0
may be written as

(1.5) ^ = h + (A + I) • \fi .

A formal similarity between Eqs. 1.5
and 1 1 is evident. By iteration of

Eq. 1 5, an analogue to Eq. 1.3 is
obtained

(1.6) <// =h+ £ (A +I)" • h.
A=l

If series 1.6 is convergent, stochastic

methods for estimating series 1.3 may
be adapted to series 1.6 by replacing
the continuous distribution functions

by discrete distributions

The similarity between Eqs. 1.1 and
1.5 is important in estimating the

solutions of certain equations of type
1.1 Most of the estimation methods to

be discussed forEq 1.1 are inapplicable

K(U j,U2) . • • K(Ujv_l,U;y) g("W ) ,

/V ~ X i £i t 0} • # • •

if the kernel, K(x,y), is unbounded in
R . Nevertheless, if the integral

fRK(x,y) dy

(1.4) !„(*) = J ••• J Gu{x, u.,u.N JR JR N 1 ,uN) dut du.



is a bounded function of x in jR, Eq.
1.1 may be approximated by Eq. 1.5
and the solution estimated by a
stochastic process for series 1.6. To
see this, partition R into nonover-
lapping sets, Aj, A2, ..., Ar, and
choose points x , i = 1, 2, ..., r, in
A.. Let i/» denote the column vector

question. Computational efficiency
would then be achieved by choosing the
process and the random variable that
give the best balance between statisti
cal efficiency (minimum dispersion)
and speed of computing. This optimal
choice may be difficult and has not
been found, in general. It is hoped

whose elements are the values <p(x ) of that sufficient variety has been in-
the solution to Eq. 1.1, and let h be
the vector whose elements are g(x ).
Define the matrix A of elements aan
so that

aa/3 + Sa/J XK(-Xa'Xfi) m(A/3)
where

8 a{3

m(A^)

the Kronecker delta,

the measureJ^ dy of A„ .
If 4>(x) and g(x) do not vary much over
each of the sets At , the solution t/> of
system 1.5 approximates the set of
values 4>{x x) , i = 1, 2, ..., r, and a
stochastic estimate of <fi gives a
stochastic estimate of <£(*,).

The general methods to be discussed
in these pages estimate series 1.3 or
1.6. The basic idea of the methods is

to define a class of stochastic
processes and random variables thereon
whose expectation is the series in

eluded here to allow good choices in
many problems.

Physical problems that give rise to
Eqs. 1.1 and 1.5 are sometimes called
steady-state problems.(*) The dis
cerning reader will easily see that,
in general, the estimation processes
to be discussed in chapter 3 of this
report are not limited in their appli
cability to only Eqs. 1.1 and 1.5. The
same processes could be used to esti
mate series like 1.3 orl.6 in which the

integrands, GN, or matrices, {A + I) ,
are of more general form. For example,
the functions G^ need not have the
explicit form given in Eq. 1.2. The
factors K might vary in functional form
with the indices on their arguments.
Similarly, the matrices (A + I) in the
series 1.6 might be replaced by the

N

more general forms II B
i = i

CHAPTER 2. STOCHASTIC PROCESSES

2.1. SUMMARY AND REMARKS

This chapter presents the formal de
scription of certain stochastic proc
esses that will be applied in Chap. 3 to
the statistical estimation of solutions

of equations of types 1.1 and 1.5. The
uninitiated reader might s tudy sections
2.2, 3.2, and 3.3 before attempting to
follow the elaborate descriptions given
in sections 2 3 through 2.3.3.

Any statistical theory should begin
with a description of a sampling space
and a probability measure defined
thereon. Doob* ' has given a rigorous
theory for the type of stochastic proc
esses needed here. The definitions to

be given below conform with his defi
nitions and theorems. Section 2.2

contains a description of aprocess that
will be used in Sections 3.2 and 3.3 to

define the basic estimation procedure to
be used in this report. Most of the esti
mation methods described in refs. 1, 2,

3, and 4 are special cases of that
basic procedure. Sections 2.3 through
2.3.3 define more complicated sto
chastic processes for use m the
elaborate sampling schemes involving
stratified and multiple sampling
described in section 3.4.

2.2 THE BASIC PROCESS

For convenience and simplicity, the
space R of the integral in Eq. 1.1
will be assumed henceforth to be an

interval a < x < b of the real number



axis. Generalization to multidi- 1, 2, ..., r. For uniformity in
mensional intervals fl offers no diffi- notation, fN(j'N) villi denote the
culty in theory. For unity in notation, probability concentrated at yN
in dealing with thesystern of Eqs. 1 5, It follows from Assumption 1 that
the set of integers (1, 2, 3 r) ^v ("Xjv ^ vanishes if one or more of the
will be denoted also by R. components x^ of y'N is less^than a and

is unity if all the xt of yN exceed 6.
The following notations will be

The following abbreviated notations useful
will simplify the formulas and will be (2 2) PN (y* ) =pN(y'N) "ft q, (j\ ) ,
used freely without comment l=0

y« ~ \X ^, X2t X^, . • . , *u '

= point inR", (2.3) fN(yN\y[)
7N = (x0,xy,x2,. ,x ) = = f (x x ... x \y')

JNK l +l' 1+2 ' • ' * ' N ' f\ '
(x0,7N) = point in R"*1 ,

dyN - dxx dx2 ... dxN , „Il^lL t t <N ,
(2.1) / (y*)

dy'N - dx0 dxt ... dxN « '

= dxo d% • (2.4) HK+l(yH+l\y'H)
f(yN) = f(xltx2,...,xN) ,

f(y') = fix x x ) . s /w+i^j»+il^) n ^(y*) •J\/fl> J V*0' 1' ' /¥ i=0
_ , The function 2. 3 denotes the conditional

Definition 1. Define a sequence bablllt (density) of z,+1, *l+2,
FN(yN), N- 0 1, 2 of cumulative ^ _ J . „ gi*en> «+> *+>
distribution fund ions on the spaces _,. " , l n ^ , .

N+1 J r The sampling space U to be envisagedR* with the consistency properties may be thought of as a space of
FN(xo'xi' •• ,xf'm' **•'°°' p,p) *°r infinitely many dimensions, provided
each N > 1 and p < N. * Also, define a „ , ,, „„„t ,„t^„,.ofoj ct,,,tiu— , r • », dimension is not interpreted strictly.sequence of functions pN(yN)N = 0 The definitlon of the sampllng space
1, 2, ... , ontR" such that for each foUows Asslgn two dlstinct states,
N and each y^ 0# < pJy„) < 1. Let s ^ ^ {qt which intultlve meanings
^N^n) 1 ~ Ph^n)' will be given later. Let Xdenote the

Assumption 1. (a) If the solution collectlon of all elements a that are
<fr(x) of Eq 11 is to be estimated, pairs 0f the forms (x,S) and (*,D,
it will be assumed that a piecewise where x 1S ln fl. For any flxed x in R,
continuous-density function fN(yN) tne two pairs (x,S) and {x, T) are to be
exists such that regarded as distinct elements a of X,

as are (xltS) and ix2,S) or (x^D and
FN(r'N) =/"° • fXf,fN(y'N') dy'K' , (x2,T) for distinct i„ *2 in fi.

a a Subsets of Jf will be denoted by A and
(= 1 if yl = 6, 6, ..., 6,) B, with, possibly, subscripts or

superscripts or both. The symbols
(b) If the vector ip of Eqs. 1.5 is to A(S) and B(5) will denote subsets of X
be estimated, it will be assumed that that are composed entirely of elements
FN(yN) is a discontinuous distribution of the form (x,S). Similarly, A^T'
with all the probability concentrated and B(T) contain only (x,T) forvarious
at points y'N, for which each component x. The symbols [A *• s) ] " ' , [A(r^]_1,
x , 0 < i £ N, is one of the integers etc. will denote the complete subsets
_! of R for which (x,S) is in A(5), A(T),

*See reference 6, p 19, for further properties. etc., respectively. Let 0) denote an



arbitrary, denumerab1y- 1nfin 1te
sequence {a }Q of elements a0, at, a2,
... a , ... from X. The sampling space

n

Q will be composed of the collection
of all such sequences co.

The class Fx of Borel subsets of R
induces a Borel field Fa of subsets of
X in the following way. Any A in X
may be decomposed into a sum /4 = A' '
+ A^T^ of disjoint sets of the charac
ters described above. The set A will

belong to Fa if the complete inverse
sets [A(s>]-1 and U(r)]'1 both belong
to F .

Let nx < n2 <
The symbol A„ „ „

i i r

fcr a Borel cylinder subset of Q over
a .a a . Such sets are

n n ,

< n, be k integers.
ft

W ill be generic

value of that measure for any B-
cylinder set over a finite number of
a's. His results will be specialized
suitably in the following for later
applications.

Let A0 denote any B-cylinder set
over a as specified by a.Q is in
A0(s) + A<n . Define

/(2.5) P0(A0) -
u<«r

W Po(*o) dxo

f
MP*

/0(*0) %(xo^ dxo

Let An+1 be any B-cylinder set overa^j,
= 0, 1, 2,3, Clearly,A,, is de

fined by a^ in A«\ + A«\
n+l

Define

(2-6) Qn+1(An+1|y;> / ^i^+J^) PB+i^„+i) dxnn
J^]-1

/ , n^y^n ) V.(^l' d*n+l fRHn+1(yn+1\y:) dxn+1
-1

In terms of Eq. 2.6, define

<2 7) pn+i(A„+ik'ai>

a

"i •• i «

B-cylinder set over a , a

Doo b* has
" «

fine a probability measure on a
Borel field of subsets of fi. In

particular, he has given a for
mula for the calculation of the

See reference 5, p. 102-3.

(An+1|y*) , if a = (x .T)•n+l v n+l

(x ,S) and
n

is in ^n+l

a = (x ,S) and x is not in A^P.
n n n n+l

Theorem 1 Let 8 denote a Borel
field of subsets of Q that includes
all the B-cylinder sets defined above
A probability measure P(A) exists on
the elements A of B. The functions
2 7 are the conditional probabilities
P(A\a0,al, ,aj, if A = An+1 is a
cylinder set over o-n+1 and aQ, a1, . ,
an are given If A = A,,^..^ is any
B-cylinder set over an , an2, .. , anfc
and 8(A) denotes its characteristic
function, the probability P(A) is given
by the formula

br ief1y,

1 "2

shown how to de -

on a

Integrals are to be replaced by sums for
6 of Assumption 1

case



(2.8) P(A) =/ P0(de0) f P(dei\a0) ... f B(A) p(den \a0 ,a,, ... ,a _^j .
Theorem 1 is a special case of one

given by Doob in the last citation.
The interpretation of the symbolic
iterated integral of Eq. 2.8 should be
made clear by the calculations that
follow.

The stochast ic process given by
Theorem 1 will be denoted by [Q.,P(A)~\.
The process is a generalization of the
Markoff chain process, with absorption,
that is familiar in particle physics.
Indeed, [fi,P(A)] reduces to such a
process if the conditional proba
bilities 2.7 reduce to the form

P(An+Jan) for each n > 0. Note that
the index n + 1 on P has been dropped.
Intuitively, the general process may
be thought of in terms of the follow
ing random walk. A particle moving
through a space it in a random manner
suffers collisions at successive

points x0, Xj, x2, . m R. It may
be absorbed at any one of these points
xn, with probability P„(yn). or go on
to *n+1, with probability qn(yn). The
distribution (density) of x0 is /0(x0)
and, for any n > 0, if the particle is
not absorbed at xn, the distribution
of xn+1 is /n+1(yn+1|y*). The choice
a = (x,S) indicates that the particle
is absorbed at x, and a = (x,T) indi
cates that the particle is not absorbed
at x. Note that the notations allow

the absorption and transition proba
bilities at any x to depend upon all
previous collision positions, as does
the distribution of the position of
any collision. Moreover, the proba
bility functions may change from one
collision to the next.

The special values 1 and 0 stipulated
in probabilities 2.7 for the case

a = (x ,5), guarantee that absorption
(state S) at xn will be followed by

a = (x ,5), with probability 1.
The definition may seem artificial in
that no attention is paid to the forms
of aQ , ap ..., °-nl. The (1,0) cases
for smaller index take care of this

omission in such a way that Eq. 2.8
assigns zero probability to any set A
of sequences co in which a state S is
followed by a state T or even by a
state 5 at a different point of R.

The following definition continues
the description of a stochastic process
for estimating the series 1 3 or 1.6.

Definition 2. Let n(a>) be defined,
for each co in the space Q, as equal
to the smal le st integer k such that
the element a^ofco has the form (x,S).
Let 2, denote the set of all co in Q on
which n(co) = k.

The set 2, has the following form

zk - n a, ,
1=0

(2.9) <Af ={set of all w such that ai = (x,T), x in R) , if i = 0,1, ..., k - 1 ,

Ak ={set of all co such that ak = (x,S), x mi?}.

The definitions 2.5 and 2.7 apply to the At in set 2 9 so that

r rb
Pq^o) =J /o(*o> So^q) dxo •

(2 10) <

"a ^^

faK,^yx\y\-J dxi
f tffe^K.i) Pk<y\) dxk

/ tffe(rJn_i) dxk

Pl{\\ao'ai al.i) =

Pfe(Afe|a0,a1,. ..,akl)

V

1 < I < k - 1 ,



The integration elements needed in
Eq. 2 8 to compute P(2^) are obtained
from Eqs. 2.10 by replacing the inte
gration ranges (a,6) of the numerators
by the ranges (x , xt + dxt), i = 0,
1, 2, ..., k, in the respective cases.
Then P(2,) is given by the iterated
integral

P[n(co) = k] = P(2fc)

=/ /o^o* 9o(*o> dxo

«-i

holds for all y in R] uniformly in j .
Theorem 2. Under Assumption 2, the

limit 2 13 holds. Moreover, there is
a positive t. such that the moment
generating function

£p(2t)
k=o

kt

n
f V">\K-.i) 9,(7*) dxt

/Vrj-y;.,) dxl

(2.11) J HklVk\Vk-i) Phi?!* dxi
a

["••'fakfk(ytk) p^yl"> dyl • k=o, i, 2
The symbol PR(7fc) ln tne integrand
here refers to Eq. 2.2 (see also Eq.
2.1 for notations).

It will be important that the
random variable n(co) be finite with
probability 1. That is, it is re
quired that

(2.12) lim I P(2J = 1 .
"-» k=0 k

Since

00

t = 0

and P(fi) = 1, to establish the limit
2.12 it is sufficient to show that

09

(2.13) lim £ P(2t) = ° .
jv-»a>

k=N

which will be established as a conse

quence of the following assumption.
Assumption 2. There is a constant

c, 0 £ c < 1, and an integer M such
that for an arbitrary integer j and
all integers m >_ M + j, the inequality

of the distribution of the dur at ion
n(co) exists for all t < t. All the

moments of this distribution exist
Proof. Consider the sum (for

arbitrary j )

v».j<y? -p^y?

+ i ;;.../4/,(rjr;)

9/7*) '•• ,?jv_i(7y'_i)

pN(y'„) dx] +1 . . dxN .

* *

Since Pyy(7jy) = 1 - 5^(7^), this sum
telescopes into

(2.15) vm,j(y]) -

i - A../a6 /.<y.ly;> q}(y'j)
••• <?m(7l) dxJ +1 .. dxa .

(2.14) / ••>fbfm(.ym\y'J) 9J +i(7*+1) ... qmly*m) dxJ +1 ... dxm <



Assumption 2 guarantees that, for any

integer k, if i > kMc + j , the integral
on the left in Eq. 2 14 or on the

right in Eq. 2.15 will be dominated by
Thus

1"c* 1 ^,/7j) i 1, i£m > kMc
is satisfied uniformly in y .
es tablishes

lim V (y*)
• J J

+ J ,

This

uniformly iny over R}
1 Then

+1 for arbitrary

(x ,x ,...,* ) over i?* +1 under the
condition n (co) = k Since a process
defined by Theorem 1 ignores sequences
co for which a /a .,,. when m > n(co) ,

n n I oj )

function 2 17 may also be regarded as
the conditional distribution ofoi under
the condition n(co) = k

It is possible now to envisage a
different intuitive concept of experi
mental sampling for chains co from the
process [Q,P(A)] that is perhaps
simpler than the random walk concept.
First, draw a value n(co) = k' at
random from the population whose

(2.16) Z P(2fe) = /'
*=JV

la /j»(7jj) 9o(70*) ••• <7,y-i(7tf_i)

if yV>rA/e, as before. This establishes
limit 2.13.

Consider the sum

I P(2h) ekt = I L P(2t) ekt
k=Jf, j = l *=;*,

X[l^V*.»^\ dy'N < c>

distribution is given by Eq. 2.11, and

then draw a finite chain

yk' = (*o 'x\ xk')
from the population with distribution function
2.17 .for k = k' . The sequence co is then

From Eq. 2.16, it is seen that ]Me < k defined by <Xj = (x\ J) for 0 < I < k' and
< (j +l)tfc - 1 implies that P(2fe) < c>
so that

00 CO

L P(2t) ekt < I c' eJ
«=tf ; = 1 « = 0

,Jfe-l

£ ekt) L (c e

e=0

.The infinite sum on the right is con
vergent if ce"c' < 1, that is, if

t < t.
1

In ,
c

This*completes the proof of Theorem 2.
The sequence of numbers P(2t), k =

0, 1, 2, 3, ..., forms a probability
distribution on the nonnegative
integers, it is the distribution of
the duration n(co) of the random walk.
For any fixed nonnegative integer k,
the function

a, = (x'/,S) for I > k'
L k

Considerable

attention will be given in the sequel
to special processes [Q,P(A)] for which
this sampling concept is practicable.

Remark In most of the applications

of processes [Q,P(A)] to the stochastic
estimation of the solutions of Eqs. 1.1

or 1.5, the first chain point aQ will
be preassigned as (xQ,T), where xQ is
a fixed point in R Thus the entire
process must be conditioned for the
choice a0 = (x0,T). To effect this

(2 17) gk(y'k\n(co) = k) =
/fc(7R) ffe(7R) conditioning, replace fk(y*) in Eqs.

2. 11 and 2. 17 by /, (y. ), choose
P(2t)

represents the conditional probability
(density) of the finite chain yk =

p (x ) = 0, and drop integration with

respect to xQ. The notations P[n(co) =
k\x ] for the modified form of Eq.



2.11 and gk (y k| n (co) = k,x0) for the
modified form of Eq. 2.17 will place
this conditioning in evidence.

2.2 1. Important Special cases.

(a) Most of the existing literature
on stochastic processes of the type
studied in Theorems 1 and 2 has been
further specialized to Markoff chains,
that is, the transition probabilities
2.4 actually depend only upon x , not
upon all of yN. Some attention will
be given to this type of process in
sections 3.3 and 4.2. (6) The follow
ing specialization is in some ways
simpler than aMarkoff chain and should
be very useful for high-speed sampling
on an automatic-sequence computer.

Suppose that for each k = 0, 1, 2,
3, ..., the functions Pk(yk) defined
in Definition 1 depend at most upon k
and xfl . In this case Pjy(7w) °£ Eq.
2.2 reduces to a form PN(xQ) and Eq.
2.11, conditioned by x„, reduces to

(2.18) P[n(co) = fe|xQ] = Pk(xQ) ,
k = 0, 1, 2, ... .

In this case the nonsequential (non-
random walk) type of sampling described
at the end of section 2.2 becomes

practicable. Indeed, such sampling
would be practicable in any process for
which the integrals of Eq. 2.11 are
amenable to explicit computation.

A further simplification of the
process [f2,P(A)] occurs if the proba
bility (density) functions /t(7el*0)
are chosen so that they are independent
of xQ and the Xj, x2, ..., xk of yk
are stochastically independent, that
is, let f(x) be a probability (density)
function over R and let

/s(7ek> • n /<*,)
=i

for

K *~ 1 j ^ 1 ^ J ••• •

If f(x) is such that machine sampling
is easy for values x randomly drawn
from the population whose probability
distribution is specified by f(x),
high-speed sampling for the chains
ai» °2 • ••' an(a>) should be achievable.

2.3. MORE ELABORATE PROCESSES

The three parts of this section
will be given to the formal description
of fairly elaborate processes derived
from the basic process defined by
Theorem 1. They will be used later
in various rather complicated sampling
schemes. The processes will be
described in considerable generality,
but the author wishes to emphasize
that the general descriptions are
likely to be of theoretical interest
only. Practicable special cases
are given by using a simple basic
process of the type described in
example 6 of section 2.2.1. In
such cases the elaborate formal
descriptions given below simplify to
such an extent that the -resulting
processes should be very easy to
construct and use for experimental
sampling on high-speed computing
machinery.

2.3.1. Stratification of a Process

[fi,P(A)]. Let the collection Cl be
partitioned into a finite number 5 of
disjoint Borel sets Alt A2, ..., As
and let [n,P(A)] and [n.P^'U)],
j =1, 2, ..., 5, be S + 1 stochastic
processes, say of the kind specified
by Theorem 1 and of the same type,
either all continuous or all discrete.*

Assume that P(A ) > 0 for each j =
19 9 ;

Definition 3. The process [fi,P(A)]
will be said to be stratified into
the S strata [fi,P(1)(A)], j = 1,
2, ..., S, if for each j and for
each Borel set A

P('}(A ) = 1 ,

(2.19)

P(AA ) = P(A ) P(^(A) ,

that is, the probability measure
P'J'(A) is the conditional probability
of A in [ft,P(A)], subject to the
condition co in A .

Suppose [f},P(A)] conditioned for
fixed xQ and p0(x0) - 0. The sets
lk} = 2t A;, k = 0, 1, 2 j = 1,

More general processes than those specified by
Theorem 1 could be stratified



2, ..., S, are those subsets of A on
which n(co) = k, and

A = F 2t .
t = o

Define

(2.20) Vj =P(A;) = f P(Zkj),*
« = i

j = 1, 2, .... S .

From Eqs. 2.19, the probability
measure P } (A) of the ,; th stratum is
given in terms of the original measure
P(A) by

(2.21) P(>>(A) =v-1 £ P(A24.) .
ft = i

In particular, if A = 2. , Eq. 2.21
gives the probability that n(co) = I
under the conditions xQ and co in A .
For each j = 1, 2, . . . , «S,

The analogue of distribution 2. 17 is
obtained in the following manner.
For any co in which the x's of aQ ,

(2.22) P^nn(co) = l\xn]

a , a.j are specified by y{
\Xq,Xj,...,Xj/, let

A = j set of all co for which a

= (x[,T), x[ in (x,, x% + dxx)\

for i=l, 2, ..., I — 1 ,

A = j set of all co for which <Xj

= (xj,S) , x[ in (xj, Xj + dxj)| .

0, if I = 0

vj1 P[2jA;] , if I = 1, 2, 3,

From the law of the mean for integrals
The assumption P0(.xQ) - 0 has the effect an(J tne formulas above, it IS found

P(Z0]) =0 for each j that the probability element

(j )pi j
I-l

a, n a
1 = 1

g<"(y,|n(<u) = i,x0) dyt
P(J>[n(o;) = l|x0]

v-1 P
}

A;A, 'n A,
i = i

v1 P[A -2,]

i- l

2I;Aj n a

pal})

r

CO

I p
* = 1

2,. A, IT A

P(2l7)

0, if a not in A ,

V i(7il*0) V^P dyi
P(2J;)

, if w in A



From this,

if co not in A
)

(2.23) g\>Hyx\n(a>) = l,x0) =< Pln(a>) = z|xQ]
I g,(y, |n(o») = l,x0) —— j -

v^JHnia) = l\x0]
1 f co in A

Each of the strata [ft,P(;)(A)] is ,
«.ii .. r n r .. i subiect only to the conditionsspecifiable in terms of Definition 1 J ; _ -

• ^l j i i j ». fixed and p„(xA) = 0. For practicaland the developments leading up to *•**•*" ro 0' f
TL i tu i i .. u l sampling purposes, the results are of
Theorem 1. This will not be shown K 8 K , m n/A\i i

i ^ i ^ i r -l i little value unless L",P(A)J is simplein complete detail for the general i-i^xc »«xu<= * ! r
T^ ,. r i enough for easy computation ol thecase. It is important for sampling " e J ^

._ i ^i r integrals of Eq. 2. 11, say as in thepurposes to know the functions im,cB*«ia , -,, , r
quoted example. The derivations tor

/(;)(yj|x0) PJ;)(y]) . the general case will serve as further
illustrations of the use of Theorem 1.

From Eq. 2.11, it is seen that _

(2.11a) P^Hn(co) = l|x0] =/' ... fb f\j)(yt\x0) P\>Hy\) dy, .
« a

On comparing this with Eq. 2.22, it is evident that the definitions

lO, \i co not in A ,
(2.24) /'"(yJxJPJ^yp -\fl(yi\Xo) P^)

, if co in A ,
v

)

xo

will serve for each I > 1 and each j = 1, 2, ..., 5. It isnow evident that Eq.
2.23 may be written in the alternative form

v, /,u)(r,l*0) P\})(yV /!;)(7«Uo) p\3)(yV
(2.17a) gj'^yJnGu) = I, x0 ) P(2J;) P<J>(2J;)

and that this is the analogue of Assign S integers, 0 = Nlt N2,
Eq. 2.17. N3, ..., Ns, in increasing order, and

Example a. The following particu- denote co by W„+1 for convenience.
larly simple stratification may be The partition A j = 1, 2 5,
of considerable value in estimating of 0 will be defined by co in A if
series 1.3 and 1.6, especially when N < n(co) < N +1. In this case %k} - 2ft
it is based upon a process [ft,P(A)] if N < k < N +x and is empty if this
of the simple character of example 6 condition on k is not met. The
of section 2.2.1. The discussion will formulas 2.20, 2.21, and 2.22 special-
be given for a general process [fi,P(A)J, lze to

10



(2.25)

r Vi-1

<

Z Pin(co) = fe|x0] ,
*=JV

Vi-1
P(>>(A) =v;1 Z p(AZ*) -

k=N

P{>}[n(co) = l|x0] =<
0, if l < N} or I > N]+1 ,

V"1 P[n(o>) = l\xj , if yV < t < N . ,^ j o j — j +1V

In connection with Eqs
ha

of Eqs. 2. 25

2 25,
should be recalled that P[2Q]
The third

2.23 to

i t

0.

reduces Eq.

and

(2.26) A n a<t> + A(s)

/v-i

n a</>

(2. 176) [(.^(y. \n(co) = i,x0) -<
0, i f I < N} or I > Nj +! ,

gj(yjn(a;) = i, x0 ), i f N} < I < N] +1

Formula 2.24 needs no specialization
other than the interpretation of A as
N} < n(u) < JVj +1.

As will be proposed later, actual
experimental sampling would be done by
using the distributions specified in
Eqs. 2 25 and 2. 17 6. However, in
this example of stratification, it is
possible to exhibit specific functions

/ij)(7jUo) and pl'^y'i^ for the con"
struction of the processes [Q,P(j,(A)]
from Theorem 1. This will be done

next for its mathematical interest.

Careful consideration of the

construction leading to Theorem 1
shows that if the index I is equal
to one of the partitioning integers

Nj . ftl3, ](7iV; Ix0 ) is the marginal
probability (density) of yn com
puted from the conditional distri
bution of co, subject to the condition
N < n(co) < N

}, ~ i 'cylinder sets
+ l'

Define the B-

Then

(2.27) /ij)(y, I*.) *YK

Nj+l-1

k=N

P(A2t)

Since the second set product on the
right in Eq. 2 26 is a subset of
2„ , its contribution to Eq 2.27 is

v-1 P(A2„ )

fN (7* x0) pN (7; ) dyN
j j j

The contribution of the first term

on the right in Eq. '2. 26 is

A( T) = { all co such that at = (x|,T), x[ in (xt, dxt)} ,
for 1

A(s)
J

•{ all co such that a
N

(x'N ,5), in

1, 2, N

(. XN >}+ d

11



Vi-1
"J1 £ /.' ••• /„ /»<rj*.) Vrp dxff +1 ... dxk r^

k=N + 1

On defining the functions

(2.28) M\>Hy\) *P,(7P + '£ jf ... /* /fc(yJyJ) V^P d*i +i ••• d** •
for I < Nj +l - 2 ,

a pVi-i(7jVi-i)' for z =*+1"*'

tf +1-1

it is seen that Eqs. 2.25 and 2.27 give

b ,6

•a •] -jv, =fba ••• /' /# (^ I*.) "iJ)^M> dyN •
; ; j

(2.29)

IT •* » 1 IIJ J ; ; ; ;

Similarly, for N < I < N +x - 2, the conditional (density) functions
/[ij(y2+1|y|) are the marginal (density) functions of xJ+1 under the condition
that I + 1 < n(co) < N +, and that a , a.j a { is of form (x,T), with the
position vector y! in Rl 1, that is, let A^ +] and A^ +\ be defined as above and
write A for their sum. Then, using aQ , a.j at as specified,

"j +l"1

/r+i(7, +il7;) dxJ+1

£ ^(^2,|a0,a1(...,a,)
* = j + l

Vl"1
£ P<St |a0 ,a1 a, )

* = i + 1

A calculation much like that leading to Eqs. 2.29, but using the conditional form

P(A|a0,a1(...,a,) =/ P(deI +1|a„,.. . ,a,) ...

of Eq. 2.8, leads to

(2.30) /ii{<yI+1|y;)

12

/0(A) P(deN + 1|a0,...,a,,a,+1 aN . ,-2 ^j + 1

/l +i(7l +1l7p *!il(r? +1)

fa /I+i(rI+ily;) ^iil(7l+1) d*J +1

, N} < I <N} +1 -2 .



For I < N , the distributions

/|j)(7jl*o) are" defined from Eqs. 2 29
by integrating with respect to the
variables xJ +1, ..., xN over (a,6).
Definitions for I ^_ N + ^ are un
necessary since P } [n(co) < N . 1 - l] =
1 in the process [fl,P(' }(A)] .

Define p\>)(y\) = 0 for I < N
The functions p\})(y\), N} < I < N x
are now easily defined in succession
by using the form of Eqs. 2.2 and 2.24
and the results of Eqs. 2.29 and 2.30.
It is convenient, first, to note the
recurrence relation

draw xL, x2, ..., xn^0)-i from Eq. 2.176
to obtain y ,,,•*. For such an order
of procedure to be practicable, explicit
calculation of Eq. 2.25 is required.
For a general process [fi,P(A)J this
might be very difficult but, if the
basic process [fi,P(A)] used in the
construction described above is of

the simple type described in example 6
of 2.2. 1, the necessary calculations
could be performed easily. Moreover,
sampling from Eq. 2.176 would be
simple. Indeed, in this case, the

(2.31) M\>Hy\) = V7P + f /l +1(7i +1l7P M\])(y\+i) dx l + l

for the function defined in Eq. 2.28.

This leads to

(2.32) p\j)(y\)

Evidently,

p^yV

*|'}(yp

Nj < I < tf,+1 - 1

.(j)

in agreement with

P('> ln(co) < yVj +1] =1

probability functions 2.25, 2.176,
2.29, and 2.30 simplify to such an
extent that sampling from the indi
vidual strata could be performed
either as indicated above or in the

sequential manner of a random walk.
To see this last remark, first recall
that Pj (y!) has the simple form Pj(x„).
Then Eq. 2. 28 reduces to

*|"(*0)
^Vi-1

£
k-i

Pk(x0) .

On using this, Eqs 2.29, 2.30, and
2.32 reduce to

ff{Nj)(yN Uo> s Sm (^ l*o> •

/!il(7I +il7p - /l +i(7i+1l7p , if N, < I < N} +! - 2 ,
(2.33)

p\])(xQ) =
P[n(co) = l\x0]

f N} < I < Nj +1 -
"j +1-1

Z PU(co) = fc|x„]
V fc = l

As already mentioned, sampling
from the process [ti,P{}'(A)] will
be performed by using Eqs. 2.25 and
2.176. First, draw a value of n(co)
by usmgthe third formula in Eqs. 2.25
for the distribution of n(co), and then

In the last of these three formulas,
the terms P[n(co) = k\x„ ] are given by
Eq. 2. 18.

Example b This example is quite
complicated, perhaps too much so to
be practicable. It is constructed from

13



example a above, that is, the simple
case given in Eqs 2. 33

Select a sequence of integers rlf
rs and, for each j = 1, 2,

2 »

, 5 of example a, partition the set
A^ of all co for which N} < n(co) < N]+l
into r Borel subsets A., A. ...,
A,. that are nonoverlapping in pairs.
First, partition the space R J of
7/v; = (xltx2 xN]) into r} disjoint
Borel sets ", j f ', 2 » •••» j r , •
Second, define A , i = 1, 2, ..., r ,
as the set of all sequences co contained
in A for which y« is in T. . This

S

H is partitioned into the Jj r,
J~l

subsets A j = ] 2, .., 5, i = 1,
2, .... r . Next, stratify £fi,P(A)j

into £ r strata by as many processes

[n,P(>'l)(A)] for which

(2.34)

p(;.»)(Ajp = 1 ,

p(;.«)(A) =
P(AA )

j »

P(A;P

J = 1, 2,

i • 1. 2,

5,

r

Since, for each i = 1, 2,
A are in A , the second of Eqs. 2.34
may be written in terms of the proba
bility functions P*}'(A) of the strati
fications over the A Thus, since

;'
the

P(;>(AA )
P(AA;iA;)

P(A;)

P(AA;i)

P(Ap

and

P(A A )
P<;>(A ) = ;' ;

; » P(Ap

P(A )
j »

P(A;)

Eqs. 2.34 become

P<J.»>(Ajt) = 1 ,
(2 34a)

P('>(AA )
p(;..)(A) LL..

pO)(A;p

Thus Eqs. 2.34 amount to substrati-
fication of the individual strata

tn.P^^A)] over the sets A^ , j = 1,
2, . . , o.

It should be evident to the reader

that if [n,P(j)(A)] is specified by
Theorem 1 in terms of functions 2.33,
then [fi,P(>• *>(A)] is specified by
Theorem 1 and the functions

r fN (7* \x0)
j ] , for yN in r ,

(2.35) <

14

f- • /r h {yh |xo> dys
j j

;»

.0, otherwise,

/|ii,)(7l +1l7p = /, +1(rl +ilrp . for yv; < i < yvj +1 - 2 ,

P(,;,l)(*0) " P|;)<*0) . for W; < I < JVj +1 - 1 .



2.3.2. Processes for Repeated

Independent Sampling of Chains of a

Given Length n(co). It has been

remarked, in connection with example 6
of 2.2.1 and the stratifications of it

defined by Eqs. 2.33 or 2.35 and
Theorem 1, that experimental sampling
could proceed as follows. For some
integer^, let nx(co), i = 1, 2, , M,
be M stochastically independent val
ues drawn from the distribution of

n(co). These having been obtained, the
associated position vectors y„ ( <u)
would be drawn independently from the
appropriate form of Eq. 2. 17. Such
a procedure would probably not utilize
the computing efficiency possible in
high-speed automatic equipment. Once
a value of n(co) had been chosen and
the sampling process for yn{Q}) set up
in a machine, many independent chains
ynico\ might be run in a very short
time. A process design is needed that
will allow repeated sampling of
yn- v for each n(co) that is obtained.

A new sample space must be defined.
The explanation will be given in
terms of a general process Lfi,P(A)],
supposed already defined, but any
practical case would likely be based
upon a simple [fi,P(A)J of the type
described in example 6 of section 2 2.1.

(2.36) Jk(zQ ,zj,..,zp

r

It will be assumed, without further
mention, that the given process
[f2,P(A)J is conditioned for some
specific choice aQ = ( xQ , T) , all
finite chains yn will begin at xQ and
p0(*0) = 0 is assumed. Let M be an
assigned integer and denote A/-tuples
\ x , x ,...,x ^,oi points x

in R by the single letter z. Let Z
denote the collection of all elements

of the forms ( z, S) and (z,T) That
is, Z is a collection similar to X of
section 2.2, except that the single
point x in the elements (x,S) and
(x,T) of X is replaced by an A/-tuple
z of such points Denote elements of
Z by /3. Let H denote the collection
of all denumerably infinite sequences
€ ~ (/30 , /Sx , /32 , . . . ) of elements /3t
chosen from Z Clearly, f2j is the
original collection fi. A finite
chain (z0,Zj, ..,z ) denotes the
position components of the elements
/3Q , /3X, . , /3n of <f. Such a chain
consists of n chains y* ' = (xQl ,
x(1*), ,x{nl)), i = 1, 2 M, of
the type already used, and this
notation will be useful on occasion.

Let I and k be any pair of integers,
with I < k. By using the probability
functions 2.2, 2 3, and P[n(co) = k| x„ ]
of the given process [fi,P(A)J, define
the collection of functions

n IR ... /, /4(rJ[olr,,(0) Pft(7;(,)) dx\i\ .. *,(•>
1 = 1

{Pln(co) = fe|*0]}'
, if I < k ,

<

»(l)
n Pk[yl

1 = 1

iP[n(co) = fe|*JH ' Xf I = k

Probability functions for the z's that are analogous to Eqs. 2.2 and 2.3 are de
fined by

15



(2.37)

and

/i*<zilzo> s{ II fx(-x[^\x0)\ £ P[n(co) =k\x0] JiU„z,) ,
I 1=1 J fc = l

Inh^n >zo'2i' •" ,zyif-i^

^v

i=i

£ P[n(co) = fe|x03 Jh(z0,z1 zN)
*=jv

OS

£ P[n(co) = fe|x0] Jk(z0,z1, . . . ,zfl_1)
k=s

/^"Poi#(2n )'ojr 'o ' Pffjf'20,2l' ' ,ZN'

P[n(co) = A^lx,,] JN(z0, zit . .. , zN)

CO

Jj P[n(w) = fe|x0] Jt (z„, zx,. . . , zN)
k=N

Pnh '

, N = 1, 2, 3,

(2. 38 )<

1mm

<~pnh( 2o» 2i> •• • • ZJV^ ~~ °lJf(zo» zi^ • •• °tf-i, jr 2o »• • •» zjv-i ' Pjvir zo »• •• • zJp

Theorem 1 may be revamped by using
Eqs. 2.37 and 2.38 in place of their
analogues to generate a stochastic
process on fi^, to be denoted by
[n„, Pj.( A) ] , which will be conditioned
for /3Q = (z0,T), where zQ = (x0,x0,...,
xQ) to M components. The random
variable n(£) on the elements £ of

&n is defined as the smallest integer
for which the component fin(c) of £
has the form (zni g) >S)' 1*- xs not
difficult to see that the process
[QM,PM(A)] is such that the proba
bility (density) of zlt z2, ..., zn(g)
and n(g) is given by (for N = 1,
«, ... /

v2. 39 j J jvj/ 'zi»* ••» zjv! zo ^ nu' 2o* • • •' zn

- /uf(ziU0) /2Jf u2 lzo»Zi >••• //vtf(2w'zo ZJV-1^ "/VIT Z0 '

/*(7;i,lx0) v?;(,)>

,*»)

16

" PU(co) =iV|x0] TT <
P[n(co) =N\x0]

= P[n(co) = N\x0] ft {gjv(7Ji,)U0. n(^) " N> •

1 = 1

u

i=i



This shows that sampling may be
conceived entirely in terms of ft and
its probability functions. The
probability P[n(£) = N\xQ] will be
obtained by integrating Eq. 2. 39 with
respect to all of the x's involved
except x0. Clearly, the result is

(2.40) P[n(<f) =yv|x0] =P[n(co) =N\xQ] .
Experimental sampling for the relevant
part of elements £ is performed in
the following manner. First, draw
n(£) = n(co) at random from the distri
bution of n(co) in [ft,P(A)]. Second,
draw M independent chains 7„(^)i
i = 1, 2, ..., M, at random by using
the conditional distribution gn iw)
[yn{(o)l*o'n(^^• Then form &o> P\<
..., p ,£, in the manner indicated
above in the description of the
sampling space ft^. The elements
fik, k > n(g) , of £ are irrelevant.

As a consequence of the reduction
obtained in Eqs. 2 39 and 2 40, it
will be possible to combine multiple
sampling and stratification. This
will be done in section 3.4, and a
discussion of the process will be
given.

2.3.3. Product Spaces and Measures.

Let [ft,P(A)l be a stochastic process
given by Theorem 1. For some positive
integer M, let ft*"' = ft x Q x ... x Q.
be the familiar product space of M
factors ft That is, ft( *> is the
collection of all A/-tuples (co1,co2, . . . ,
cou) with w in fl for i = 1, 2, . . , M.
A probability measure may be defined
on a Borel field of subsets of Q.{M),
as follows. Let A be such a set and

let Aik,
• • • 7 *• 1

I

that Z " ",.
«=1 ,=1

the probability of the set A as
I H

(2.41) P(A) = g.l.b. £ J] PKft> '

where the greatest lower bound is
taken relative toall possible coverings
of A of the type described. The
measure defined by Eq. 2.41 is termed
a product measure, and the combination
[n("),P(A)] is a stochastic process
on the space ft(Af) If A is a Borel

i = 1, 2, . . , M, k = 1, 2,
be Borel subsets of ft such

covers A. Define

product set, A = {J A , where At
i=l

is a Borel subset of f2 for each i,
from Eq. 2.41 it is seen that P(A) =

M

JI P(A ). The sets A are called
i=l

stochastically independent. If M
chains colt co2, ..., cou are subject
to co in A for each i, the chains
are said to be stochastically inde
pendent.

A modification of the product
measure given by Eq. 2.41 will be used
in section 3.4 in connection with a
stratified process such as is given
by Definition 3. Let Mlt M2, ..., Ms
be positive integers and let Q( ,

5

M - Y M , again be a product space
j =l

of factors 0. In place of the defi
nition 2.41, a probability measure
will be defined by

(2 42)PU)

- g.i.b. £ n ri po) u,ft>'
*=1 j=l i=M,_i+1

where MQ = 1 and the symbol P }
denotes the measure for the jth
stratum. The essential difference
between definitions 2.41 and 2.42 is
that different probability measures
have been used on the right in defi
nition 2.42 on groups of factors M of
fr*'. Again, M chains are said to be
stochastically independent if A is a
product set. The intuitive concept
of M independent chains is the follow
ing. The A/j chains co j , co 2 , ...,
cou are drawn independently from

[ft* x ,P ( 1 MA ) ] by using a measure
defined by Eq. 2.41, the M2 chains

Wtf1+1' ^ +2' •••• UM1*M2 arC draWn
independently from [ft 2,P(2)U)] and
so on. Note that, apart from sets of
probability zero, in considering
Eq. 2.42, the product space ft(w) may
be replaced by the product set Aj x

.x A(/5\ where A(AS > *A2 "* x . .
A x A7 x . x A , to JK factors,
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CHAPTER 3. ESTIMATION AT A FIXED POINT

3.1. SUMMARY AND REMARKS

Stochastic estimation of the so

lution <p(x) of Eq. 1.1 at a single
point x = xQ (or of a single component
of the vector solution \p of Eq. 1 5
is based upon the definition of a
random variable <p(co, xQ) over ft, which
has some standard estimation character

for cp(xQ) in a statistical sense, xQ
is a parameter. In this report it
will be required that the expectation
E{<£> (co , x 0 ) | x0} in the conditioned
process [ft,P(A)] be equal to <t>(xQ).
That is, d)(co,x0) is an unbiased esti
mate of 4>(xQ). The average of, say M,
stochastically independent values of
d)(co,x ) is also an unbiased estimate
of cp(xQ). Variations of this simple
idea are used in connection with the

stochastic processes already defined
for purposes of constructing estimation
procedures that may balance statistical
efficiency and computing efficiency in
some sensible manner.

Section 3.2 contains a discussion

of the important sampling charac
teristics of the particular random
variable that has been most discussed

in the literature for this estimation

problem and which is the basic variable
to be used in this report. Section 3.3
contains a discussion of a special
Markoff chain process for which ^(co,x )
has zero variance. It is definable

only if g(x) and k K(x,y) of Eq. 1.1
are nonnegative and bounded. There
has been much speculation as to the
possibilities for approximation of
such zero variance processes. The
author, being skeptical of the feasi
bility of such approximations, proposes
to use, as a substitute, representative
sampling from stratified simple
processes in conjunction with high
speed sampling. Indeed, it will be
pointed out that such a substitution
actually amounts to a new method for
approximating zero variance processes.

3.2. THE BASIC ESTIMATING VARIABLE

Suppose that a particular equation
of the type of Eq. 1.1 is to be
solved at x = xQ and that a process
[ft,P(A)] of the type described in
section 2.2 (conditioned for a =

(x0,T)) has been selected for the
purpose. Define the random variable

(3.1) $(co,x0) = g(xQ)

Gn(<D)(*0' 7„(<u))

•^n(6))('yn(a)) l*V Pn(a.) 0,7n(A>>

for each co in ft by using Eqs. 1.2, 2.2,
and 2.3 on the right.

The expectation of the random
variable 3.1 in [ft,P(A)] is

**(«.«.> =.<«.) * £ *[»<*> =IL.] M/t(yJx0)Vx0,yp xn, n(co) = k

C C Gk(x,,yk)

X X /«(y*,*o> Pft(*o'->Vg(x0) + Z Pln{co) " fel*ol
*=i

g, [7,1*0- n(du) = *3 d^«

g(x0) + £ Jfc(x0)
* = 1
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Since this is the series 1.3, it is seen that <p(co,xQ) is unbiased. Its variance
is given by

(3.2) var 0(oj,xo) = var [<£>(&),xQ )-g(xQ)]

=E{&(co,x0) - g(x0)]2U0> ~ ^(*o> " S(x0)]2 .

Now

(3.3) E{[$(co,x0) - g(x0)]2|x0}

X "X V.(^J*o> pk{xo>yh
Z P[n(co) = fe|x0]

t = i

Jk= i

In general, the variance formulas
3.2 and 3.3 are likely to be completely
intractable. However, in a practical
experiment that is to make use of, say
M, stochastically independent values
oi <p(oo,x0) from the process [ft(*),P(i4)]
of Eq. 2.41, the variance of the
average may be estimated by familiar
statistical methods.

The following comment may aid the
reader in an intuitive manner. The

random variable

(3.4) P[n(co)=k\x0][$>h(oo,x0) -g{x0)] ,
k fixed ,

is a conditional unbiased estimate of
the term I (x ) of series 1.3 under

the condition that n(co) = k, that is,
variable 3.4 is an unbiased estimate

of Ik(x0) relative to the distribution
g«^lJ*o> n(w) = *} of 7t • Thus it
appears that the method for estimating
<p(x0) consists of three steps* (a)
choose a term Ik of series 1.3 at
random by using the distribution of
n(co) , (6) estimate Ik by the random
variable 3.4, (c) adjust the estimate
of Ik(x0) by division by P[n(co) = fe|x0]
to obtain an estimate of the entire

series.

St [7AU0' n(aj) = fe] d7.

Evidently, the series of integrals
being estimated need not have the
particular form of the Neumann series
1.3. Any series of integrals of
steadily increasing multiplicities
could be estimated in this manner.

Modification of the estimating

process described above for the esti
mation of a component of the vector \p
given by Eq. 1.6 should be evident.
The space R is discrete (the integers
1, 2, ..., r), and the functions
/«(7«l*o) *V*o'7P are correspondingly
defined. To estimate the ith component
of 0, the analogue of variable 3.1
will be obtained by replacing g(xQ)
by the ith component of h and re
placing the numerator Gn . . (xQ , n(co) )
by the ith component of the vector
(A + !)»(«> h.

3.3. ZERO VARIANCE PROCESSES

Suppose that g(x) and k K(x,y) of
Eq. 1.1 are nonnegative and bounded on
the ranges of their variables. It
will be shown that there exists a

process [ft,P(A)} for which the variance
3.2 of 3.1 is zero. This process is of
no practical value because <p(x)
must be known for its construction.
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Approximation methods that may be
practical will be evident from the
discussion.

Let a(x) be any nonnegative, bounded
function on R and define

(3.5) /S(x) =g(x) +kf K(x,y)a(y)dy .
R

In terms of these functions, define a
process [ft,P(A)] from

r

(3.6) <

h(y\x) =
k K(x,y) a(y)

/3(x) - g(x) '

e

n
1=1

fk(yk\x0) - II h(xi\xi_1) ,

P0(*P

«<**)
k > 1

By using Eqs. 3.6, 3.1 reduces to

(3.7) $a(co,x0) =g(x0)

Since, in this case,

G2k(x0,yk)

fk<*k\*J v*..v
s [/3(x0) - g(;

the variance 3.3 reduces to

(3.8) E([$a(co,x0) - g(x0)]2|x0}

= [/3(x0) - g(x0)]

Thus, in this special case,

(3.10) var $a(co,xQ) = [/3(xQ )

- g(xo)][0(xo) - g(x0)]

- [<£(*„) - g(x0)]2 .

It is evident that a(x) = <p(x) implies
/3(x) - a(x) - i/>(x) - 4>(x) and variance
3.10 has the value zero.

Approximation to the zero variance
case seems evident by choosing as a(x)
some approximation to (p(x) , However,
such an approximation may be very hard
to find. Indeed, the purpose of a
Monte Carlo experiment is to obtain an
approximation to 4>(x). The circular
situation is self-evident. One

immediately questions the value of a
Monte Carlo experiment if, in order to
design it, a good approximation to
4>(x) is already necessary. Certainly
one would insist in such a procedure
that the stochastic process provide a
useful method for improving the accuracy
of the approximation used in the con
struction of that process. Such a
demand might place exceedingly stringent
requirements on the statistical
accuracy of the stochastic estimation

nk K(x * ) /3(xp

.., <x(x )

k K(xi_1,xi) /3(xt)
00 ~ ft -

2i x^\ a(x, )
dyh •

*=i

The summation on the right in Eq. 3.8
is the formal Neumann series for the

quantity ip(x0) - g(x„) defined by the
integral equation

(3 9)

20

iA(x) = g(x)

+ k f K(x,y)^L^j(y) dy
a(y)

method. Moreover, practicability of
such a composite approximation method
would imply that the stochastic
process furnishes a better method (in
some sense) of improving the approxi
mation already at hand than would some
other available method. Explicitly,
let 0 < K' < 1, and suppose it is



\

desired that the average of lvalues of and it is not difficult to see the >
variable 3.7 be a more accurate estimate implication of this reduction. Very
of cp(x0) than is /3(x„) with large large M would be required to achieve
probability.* This requirement might an improvement of the estimate /3(x0 )
be expressed by requiring that three already obtained.
standard deviations of the stochastic

estimate be no larger than 3.4. REPRESENTATIVE SAMPLING FROM A
STRATIFIED PROCESSK\/3(x) -<p(x)\

j. Suppose that a process [ft,P(A)] and
stratification of it into [ft,P(7)(A)]a si

9var$a(o>,x0) over A , j = 1, 2, . .., 5, are given.
<_ K2\fi(x ) - <p(x ) I2 . It will be shown in this section that

M

ea

sample size Msatisfy variable 3.1, taken over [ft,P(A)], may

a reduction in the variance of the

This leads to the requirement that the average of M independent values of the

9{[/S(x0) - g(x0)] ty(x0) - g(x0)] - [<p(x0) - g(x0)]2}
(3.11) M >

K2[/S(x0) - cp(x0)]2

The following remarks are now be achieved by an appropriate division
pertinent. In general, there would be of the sampling over the S strata,
little point to the use of a Monte Before proceeding, it will be con-
Carlo method1 for estimating (p(xQ) if venient to derive a new formula for
the operator of the integral equations the variance 3.2.
were such that iteration was rapidly Referring to the notations of
convergent, that is, if the Neumann section 2.3.1, the variance 3.2 may be
series 1.3 converged rapidly. In the written as

(3.12) var $(co,x0) = £ v} E{[$(co,xQ) - 0(xQ)] 2| co m Ap .**

opposi te case, series 1.3 is essentially Define <p (xQ) for j = 1, 2, ..., 5 by
useless for computational purposes. !_
Moreover, if a(x) m Eq. 3.5 is a fair (3-13) v} <P}(x0) - v} g(x0)
approximation tocp(x), slow convergence
of series 1.3 very likely implies that + V f f r t \ W
yS(x)/a(x) differs little from unity L •> 'mm •£ G« Uo'^P d?* •
and the solution *p(x) of Eq. 3.9 is **
very close to (p(x). However, the The notatlon 2t for the range of
right member of 3.11 is then of the lntegration is symbolic for the set of
order of aH y^ for which the co fall in 2^

= 2tA . The random variable 3.1has
the conditional expectation

9[<p(x0) - g(x ,»

K2[/3(x0) - <t>(x .)] **A process conditioned for fixed a^ - (xq,T)
is to be used Indication of this conditioning

•The construction implies that /8(*) is known. will be omitted except where confusion night arise
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E{$(co,x0)\co in A^} =g(xQ)

LjJ Jy /,(7tUpPt( *0>7R)

g(kn(yk\xo) ^ftJ)(^o.7P dyk = cp}(x0) ,

for each j = 1, 2, ..., 5. It follows that the variance of the average <p(co,x.)
of M stochastically independent values of variable 3.1 (from [(1^",P(A)] , Eq.
2.41) is given by

' 1 f S(3.14) var $(co,xQ) =—\ £ v}E{ [$(co, x0) - 4>} (x0)]2 \co in Ap
I j =\

+ Z v}l4>}(x0) - 4>(x0)]
;=i

In this formula,

(3.15) E{[$(co,xQ) - 0pxp]2|o) in Ap

(-yj-o) ^'^.-V=Y C C GfU0,yp /<'>(•
ZjJ""X. [/PnUp
t=i *j

dyk

VW."

- [<p}(x0) - g(x0)]

Suppose now that for each j = 1, 2, ..., S, the quantity <p (xQ) defined in
Eq. 3.13 is estimated by using an analogue of variable 3.1 on the jth stratum
[ft,P(j)(A)] of [ft,P(A)] . The random variable used to estimate 4> (x ) is

(3.16) $}(co,x0) = g(xp + G„ (<»)(*(>> 7„(<ap

v fd > (y lx ) P(j > (x y )j J n (o>) y'n(co ) Ix0 ' ^n ( a)) VX0 ' /n ( co ) '

and the sampling distributions involved are Eqs. 2.22 and 2.17a. By methods
exactly like those used to obtain formulas 3.2 and 3.3, the mean and variance

of the random variable 3.16 are given by

E$j(a>,x0) - 0p,o) ,

*"*,i">*o)2jJ...Jlkj G2k(x0,yk) dyk

v) /."J)<7j*o) ^0)(Wfe)
«=i
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Note that the variance here is given
by the series 3.15.

Let the integer M be decomposed
into a sum

S

M = £ M
j=i }

of integers M in some manner, and
suppose that, independently for each
j = 1, 2, ..., S, M stochastically
independent values <p (co ,xQ), i =
1, 2, ..., MJt of variable 3.16 are
drawn from [ft,P<J >(A)]. Let \ , i =
1, 2, •>., M, , j = 1, 2, . . . , S, be A/
constants, and form the combination

5 J,
(3.17) 0fl(xp = £ £ kxj $}(cox},xQ) .

j=i i=i

The combination 3.17 is a random

variable on the process [Cl^M),P(A)]
with measure defined by Eq. 2.42.
Moreover, the specification that the

(3.18) £ k = v ,
1=1

1, it , ..., O

Consider the variance of the com

bination 3.17 subject to condition 3.18,
and write

k

i=i

for each j. Then

1=1

+ A/
}\M

and, for the combination 3.17, the
variance is

(3.i9) ».*.<..>• 2 j2 k,-ir) tJ,'(^ • var (pj (co,x0) ,
; = 1 I ,= 1

chains co , i = 1, 2 M , J = 1,
2, ..., 5, be stochastically in
dependent implies that they be drawn
from a product set

s Or
n n a
;=i i = l

«7

co in A , where A is a Borel subset
of A for i = 1, 2, ..., M and each

1 J
j = 1, 2, ..., 5. If it is desired
that the combination 3.17 always

5 v2

because, for a given j , all the
cp (co x , x 0) have the same variance.
Clearly, for a fixed choice of the
stratification and the M , var cp (xQ)
is minimized by the choice

-k -V-±M}.j M}

J = li 2, ...,5,

(3.20) k1} = k2]

which is consistent with the condition

3.18. Under the conditions 3.20,
the variance 3.19 becomes

(3.21) var <PR(xQ) =J) -J- E{[$>(co,xQ) - <P}(x0)]*\co in A; } ,
= 1

furnish an unbiased estimate of the

solution cp(x ) of Eq. 1.1, then

*;

EV*o) -I L K, W
j=i i=i

implies the condition

where Eq. 3.15 is used on the right.
An important special case arises

when the stratification of [ft,P(A)] is
such that the S products, Mv , are all
integers. In this case, the choices

(3.22) M} =Mv} , j = 1, 2, .... 5 ,

reduce variance 3.21 to
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(3.21a) var <PK(x0
i -i

E{[$(

In other words, the sampling method
gives an estimate 41R(x0) whose variance
is less than the variance 3.14 of

<p(co,x ) by the ten

7 = 1

Sampling subject to 3.22 is known
as representative sampling from the 5
processes [ft,P0)(A)]( j = 1, 2 S.

Note that 3.16 is formally the same
as 3.1. There is a sampling difference
between the two estimates, however.
In using 3.16, co is forced into A .
Also, the conditions 3.20 and 3.22
reduce the combination 3.17 to the

average of M values of variable 3.16.
Thus, in this case, <pR(x0) and the
average

<p(co,x0 )

are formally the same. Only the
sampling methods differ between the
two estimates!

If the products Mv are not all
integers, one could approximate the
choice 3.22. The choice 3.20 makes

<pR(xQ) an unbiased estimate of 0(x„),
but the precise reduction of variance
discussed above would not be achieved.
Nevertheless, the discussion above
would be expected to apply in some
approximate sense.

If the conditions 3.22 hold, the
formula 3.21, or 3.21a, lends itself
to easy estimation from an experimental
sample, as follows In the combination
3.17, for each j = 1, 2, ..., S, the
terms cp (cox ,x0) with i = 1, 2, ...,
M are independent estimates oicp (*»)•
They may be averaged to obtain

f <<- ,.*.» •»;' i •£<<»,,•*»>
« = i

and their sample variance

24

co,x0) - 4>}(xQ)] \co in A }

•'•TT-i't [V».,.*.>
J » 1

~4>}(co jtx0)]2
may be computed for each j • This is
an estimate of the variance

E{[cp(co,x0) - cp}(x0)]2\co m Ap
that occurs in 3.21. An estimate of

var cpR(x0) is obtained by inserting
the estimate s2 in place of the true
variance in formula 3.21, or 3.21a.

If the processes used are such that
each of the conditional variances 3.15

is zero, variance 3.21a is zero. Let
[A ,P^(A)] denote a process for which
3.16 is a zero variance estimator

of cp (x0). Assign 5 nonnegative
numbers v , v , ..., v and construct

a process [ft,P(A)] for which P(A ) =v
and the [A ,p(}^(A)] are the strata
over the A . Under the conditions 3.20
and 3.22, cpB (x. ) will be an unbiased
estimate of cp(x0) with zero variance.

This new way of describing zero variance
processes might lend itself to approxi
mation according to the following
scheme. Suppose that for some pre-
assigned small positive number e, the
partial sum

Ne

g<*0> + £ V*o>
k = i

of Eq. 1.3 is within e of <p(xQ). As
in example b of section 2.3.1, let the
partitioning integers N2, N3, ..., AL
be the consecutive integers from 1 to
N , and choose the partitioning of
each Rk, k = 1, 2, ..., Ne, and the
individual processes on the elements
of the partitions in such a way that
approximate zero variance is achieved
for each estimator used (cf., Appendix
B for stratified sampling in the
estimation of multiple integrals).
Approximations over coarser stratifi
cations should suggest themselves to ,
the reader. Undoubtedly, quite a bit (
of ingenuity might be required in the



design of a sampling experiment for
which the variance of cpR (x0 ) is small
and the experimental sampling 13
adaptable for high-speed machine work.

It should be evident that repre
sentative sampling could be combined
with repeated sampling for single
integrals. Given the process [ft,P(A)]
and a stratification into [ft,P^J*(A)],
j =1, 2, ..., S, assign an integer r
to each stratum and estimate (p(x ), as
follows. As in forming <pR(xQ), inde
pendently for each j = 1, 2, ..., 5,
draw M independent chain lengths
n (co ) , 1 = 1, 2, ..., M , from the
distribution of n(co) for the j th
stratum. For each pair (i,j), draw r
chains co x . , k = 1, 2, ..., r , of
length n(cotJ), independently, from the
distribution 2.23 with I = n (co ) .
Average the r values <p(co t,x„) of

0 ; 1 j ft 0
the random variable 3.16 on those

to obtain the unbiased estimate

:ha:

(3 23) $(coi}, xQ)

=— £ #K,ft, x0)

of 4> (x ) for each 1 = 1, 2, ..., M ,

j =1, 2, ..., S. Define the estimate

S *;
(3.24) </>;<x0)= £ £ \, V".;'^

;=1 t=l

of <£(xQ ) by using 3.23 on the right
and coefficients A. subject to
conditions 3.18 and 3.20 and, if
possible, 3.22. In other words, in
3.17 replace the <P7 (&>, , »*0 ) by the
averages 3.23. A discussion of the over
all stochastic process on which

*

0fl(xo) is defined will be found at the
end of this section.

Since the terms on the right in 3.23
all have the same determination (random)

of chain length n (co ), they are
correlated. Thus, to compute the
variance of 3.24, it is not sufficient
merely to divide the expectations on
the right in Eq. 3.21 by the integers
r . Instead, for each 1 = 1, 2, ...,

(3.25) e\[^j(cox], x0) -cPj(x0)]2\coxj i„ A}
CO

= £ P(>Hn(co) =l\xQ] E[[$}(coxj, x0) -cp](x0))2\n(cox}) =l] .

The expectations on the right in Eq. 3 25 are relative to the conditional process
[ft,P^J ' (A)] . Under the condi tionn(o) )=Z, the terms on the right in 3.23
do not have cp (x ) as their mean. Instead,

E[$ (co xn)\n(co p = I]

= g(*0> + lv,Puy{n(co) = llx,}]'1 f ... / GP*0.7P dyt .

If the multiple integral on the right is symbolized by Ii,(*0), then
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E{[$j(coij, xQ) -cpj(xp]2|n(o,ip =1} E< #>/%• xo] -Z{xo} ~
I0(*o>

v. pO >{„(_) = I |x0}
+ g(*o)

V*o>
~<P(xn)

v} P<'>{n(_>) =l\xQ} ' °.
\n(co ) = I cp (x) -g(x) --

.' v pl'Hnfr) = llxj

V*o>

+ r'1 Ei ^,x0) - g(x0) - fl/*.>
v pO>{n(_>) = l|* }

\n(co) = I > ,

in which all expectations are relative to [ft,P(j)(A)]. By using this result in
Eq. 3.25 and recalling Eq. 2.25, it is seen that

s v

(3.26) var^(xp =£ -j- £ P<'>{n(a>) = l\xQ}<
]-i } i-i

+r;»£( V*o>^(o,,xp-g(x0) _____ |n(_») = i > .

For r j = r2 = . = r^ = 1, Eq. 3.26
constitutes a breakdown of Eq. 3.21.
The effect of the averaging in 3.23 on
the variance is easily seen.

It should be clear to the reader

that the sampling procedure described
above requires that the stochastic
processes involved be simple enough to
make practicable the order of sampling
first, chain lengths, second, chain
points. This is not necessarily
required if r, = r2 = ~ rS ~ ^'

Some insight may be gained from
Eq. 3 26 into the problem of choosing
a good stratification for the repre
sentative sampling. The terms in
volving the r"1 as factors may be made
small by making the r large. This
involves repeated sampling. Bepetitive
calculations can be made very rapidly
on high-speed calculators. It appears
then that in choosing the stratifi
cation, attention should be paid to
making the terms

26

v P^Hn(co)
J

l\ *.> <t> (x^j 0

small.

Estimation of the variance 3.26
from an experimental sample appears to
be complicated. The difficulty is in
finding an estimate of the variance of
3.23 for any fixed index ;. The r
terms on the right in 3.23 all have
the same random determination of

chain length and so are correlated in
pairs, each pair having the same
correlation. Thus a method is needed

for estimating the mean of several
random variables in the presence of
intraclass correlation. As far as the
author knows, no such estimate is
available in the statistical literature.
It would be desirable to have an

estimate of the variance 3.26 to use
in connection with approximate normality
of the estimate 3 24. The author

conjectures that the estimate 3.24
should be more nearly normally dis
tributed than any of the other estimates

) -g(*0> -
J,P*o)

° P{n(co) = l\xj



of the series 1.3 that have been

suggested.

Consider the definition of a

stochastic process for the estimate
3.24. The notation there was used for

ease in describing the sampling, but
it is misleading for the present
purpose. On recalling section 2.3.2,
it is seen that the sampling space is
actually the product space

n<"Px „<«_> x ... xn<V .
rl r2 rS

On the component ftr , the probability
measure P*1' is to be derived from

[ft,P0)(A)]J, as was P„ from [ft,P(A)]
in section 2.3.2, that is, in place of
the functions 2.2 and 2.3 for [ft,P(A)]
used in section 2.3.2, the functions
of the type 2.2 and 2.3 appropriate to
[ft,P(;)(A)] in the construction 2.36
through 2.39 are used. This will
generate the probability density
functions fN§r (ztl\z0,z1, ••,zN_i) and
the s toppmgprobabilities pN r (zQ zx,
...,z„) for N > 1. Theorem 1, re
vamped for ftr , then gives the process

[ft ,P*7*(A)]. The measure on the
i }product space

s U )
n k]

is then defined as a product measure
by using M factors P(> MA) for each
J = 1> 2, ..., o.

It should be remarked that the

probability functions of the type 2.2
and 2.3 that are needed in the con

struction indicated above have been

described only for the special cases
of examples a and 6 of section 2.3.1.
The general process description is
then dependent on the possibility of
defining the needed functions. On
the other hand, the sampling description
for 3.23 and 3.24 is given in terms of
the generally defined sampling func
tions 2.11a and 2.17a. The author's
opinion is that a structure theorem
for stochastic processes of the type
needed for this work, based directly
upon the sampling functions of the
types 2.11 and 2.17, might be more
convenient than the structure theorem
by Doob upon which Theorem 1 is based.

CHAPTER 4. WEIGHTED AVERAGES OF <p(x): SOLUTION IN THE LARGE

4. 1. ESTIMATION OF A WEIGHTED AVERAGE

The discussion in chapter 3 was
devoted entirely to the problem of
estimating the solution <p(x) of
Eq. 1.1 at a single point x = x0 or
a single component of the vector
0 of Eq. 1.5. This chapter will
present stochastic estimates of
integrals of the form JR w(x) cp( x) dx,
where w(x) is a specified function,
and the estimation of the entire

function (p(x) over R

Consider first the integral

(4.1) I = / w(x) cp(x) dx ,
R

where w(x) is a known function and
4>(x) is the solution of Eq. 1.1. A
well-known stochastic technique for
estimating I proceeds as follows

(cf., Appendix B). Let f0(x) be an
arbitrary probability density function
defined and positive on R. For some
integer r, draw r stochastically
independent values x , x(2 , ...,
x at random from the population
whose distribution is fQ(x). An
unbiased estimate of I is given by

(4.2) (est I) fli
i=i

(xu)) cp(x{l))

/P*(,)>

which involves a knowledge of the
values cp(x{x)), i = 1, 2, ..., r, of
the solution of Eq. 1.1 at the points
x(l). Estimates of these values
could be obtained by any one of the
processes described in chapter 3,
with ther values xK used successively

th < fixed point x. Let the
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estimate of I so obtained be denoted by I, that is,

w(x{l)) $(x{l))
(4.3)

A J_ V> V>(xKl>) cP(xK

where the x*1^ are randomly drawn from f0(x) and ep(x(l)) denotes an estimate of
(p(x) at the (fixed) point x(l). Thus

EI---^ f W{X{1)) E{$(x0)\x0 =x<'>} /„(,<»>) dx<,( t)

1 = 1

=_ £ / u>(x(,)) 0(x(,)) d; ,( i) _= I

»=i

according to the unbiased character of each <p(x(*>). The variance of j is given
by the formula

(4.4)

•f.

A J w(x) $(x) ^
I2 + r var If = EJ

f0(x)

w(x) £{ [^(xp]2|x0 = x} fQ(x) dx

!(x)

/0(x)
{ var [<p(x0)\x0 = x] + <£2(x) } dx

'fl Jo

It is clear at once that, even though zero variance processes are used to obtain

the <p(x^ l)), the variance of 4.3 will not be zero. Does a zero variance esti
mator of I exist7

The answer in the affirmative seems to have been given first by Goertzel.^ '
His result and an alternative one will be given in the next section. First, the

integral I of Eq. 4.1 will be put into adifferent form and an alternative esti
mate to 4.3 will be introduced.

Assuming uniform convergence of the Neumann series 1.3 over R, one has from
Eqs. 4.1 and 1 3

co

I =/ w(x) g(x) dx + £ / w(x) IN(x) dx .
P=\

By using 1.4 and the change of variables x
for N > 1, it is seen that

VM> Ul
en that

J w(x) Ifj(x) dx =

kN J g(y) dy f ... / K(vlty) K(v2,v1) ... K(vN,vll_1) w(vN) dv x ... dvN
R R R

Thus

(4.5) I=/fl g(y) j w(y)
CO ]

+ £ A* / ... J K(vlty) K(v2,v1) ... K(vN,vN1) w(vN) dv 1 ... dvN > dy
ff=l " ' J

u/v-i =vi> u»=y
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Consider the integral equation

(4.6) Q(y) = w(y)

+ k j K(x,y) Q(x) dx .

The series in the bracket in Eq. 4.5
is the Neumann series for Eq. 4.6.
Thus I may be written as

(4.7) I = L g(y) Q(y) dy
R

Upon applying the method of Eq. 4.2
to Eq. 4.7, an estimate of I is
obtained that is an alternate to

estimate 4.3, it is,

(4 8) '-42
g(x(,)) <?(x(,))

1 = 1 /„(**")

where Q denotes a point estimate of
the function Q.

This reformulation of the estimation

procedure leads to two very important
items (1) a generalization of a much
used method for Estimating <p(x) over
a fixed net of points xt, x2, ..., xn,
(2) a stochastic method for estimation

i

of the entire function <p( x) over R.
These problems will be discussed in
sections 4.3 and 4.4. \

4.2. ZERO VARIANCE ESTIMATES OF I

Consider the variance formula

4.4. Suppose that the integr a~l~
equation 1. 1 satisfies the conditions
(cf. , section 3 3) for the existence
of a zero variance estimate of <p(xQ)
for each x0 in R. Then (p(x) is
nonnegative on R. If, in addition,
w(x) is nonnegative on R, the choice

, x w(x) <p(x)
f0(x) -

may be used. Suppose that the zero
variance process for <p(xQ) is used in
obtaining each of the <p(x(l)) in 4.3.
The right member of Eq. 4.4 easily
reduces to I2 from which var Jr = 0
follows.

Clearly, the above construction
maybe used in connection with Eqs. 4.7
and 4.8 and a zero variance process
for Eq. 4.6. In this case the ad
ditional requirement is that g(x) be

nonnegative and the choice f0(x) =
g(x) Q(x)/I must be made. This latter
procedure is the one introduced by
Goertzel.( *

4.3. A MUCH USED ESTIMATOR OF <p(x)

The fundamental basis for all the

estimation processes discussed so far
has been the random variable 3.1.

Many Monte Carlo experiments that have
been actually performed in computing
laboratories have not been based upon
Eq. 3 1 but rather upon the physical
analogue scheme to be described and
generalized in this section.

Suppose that Eq. 1.1 arises in a
particle diffusion problem. A particle
moves about in a phase space R and
collides with other particles in a
random manner and is subjected to
possible absorption on any collision.
Let the rules of this process be the
following (1) g(x) is the probability
density of the point at which the
first collision occurs, (2) for each
fixed y in R, k K(x,y) is the proba
bility density of the position x of
the collision immediately following a
collision at y, (3) p(x) = 1 - k
JR K(x,y) dy is the probability
of absorption on collision at x. It
is not difficult to see that the term

IN(x) of the series 1.3 is the density
.function for the (N + 1) collision,
^that is, Ijy(x) dx is the probability
that the particle gets as far as the
(N + 1) collision and that the collision
will occur in the interval (x, x + dx).
For any subset A of R, the integrals

ind

J. = J <p(x) dx

J2 = / p(x) <p(x) dx
A

represent, respectively, the proba
bility of at least one collision in A
and the probability that the particle
is absorbed on some collision in A.

Let S(x,A) denote the characteristic
function of the set A and define the

two functions wL(x,A) - o(x,A) and
(x,A) = p(x) o(x,A) Then the

integrals Jx and J2 take the forms
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(4.9)
•>! = J wt (x, A) <p(x) dx ,

J2 = / wAx, A) <p(x) dx ,
JR •*

that is, they are special cases of
Eq. 4.1. j = 1, 2

Define the integral equations

values of p(x ) for all of those
collision points xx that fall in A.
In formulas,

(4.12) est <?px0fA) = £ »}(xx,A) ,

(4.10) Q^x.A) = wx(x,A) + k j Qx(y,A) K(y,x) dy , i = 1, 2 .
R

These are of the form of Eq. 4.6, and •
the integrals 4.9 may be written as The estimate 4.12 of Q1(xQ,A),

used in conjunction with 4.8 to
(4.11) J, = J g(x) Qx(x,A) dx , estimate 4.11 for i = 1, provides

i = 1, 2 . a new method for estimating ep(£) at
c, . r ,, .. , , „, any cf in fi, as follows. Let A be a
Either of the integrals J can then ' _ . . . .
, _ ^jl-l -u j '.r i? a o set containing ef for which the measure
be estimated by the method of Eq. 4.8. ... r , 11 i l l
_,, , , , , m(A) = I . dx is small and over which
lhis method requires an unbiased . A . ,, v ,, ,,,,

r s\ / *\ tl _ the variation of <p(x) is small. lhen
estimate of V (x.A). Ihe appropriate ,/-x T / /.\ , ^ ^i_ i

. * , „ - , 1,1 <p(c) ~ J,/m(A), according to the law
specialization of Eq. 3 1 could be r , ~ r 1 Z 1

, A , , , of the mean for integrals. Consequently,used. As already mentioned, an & r
1*. „ .-,.,,. ^„ i?„ 11 , <- ~f <..* t-^r.,.c. t- an estimate of J, gives an estimate ofalternative to Hq. o. 1 is 01 interest. 1 ° , . ...

Consider the following procedure ^^ Clearly, this estimate of ^)
forestimatmg Q(x0,A) for an arbitrary 1S slmP1y the total number of collisions
choice of x. in R. In following the thafc occur ln A divided by the measure
description of the particle process m{A )• Such an estimating procedure
above, by some random device decide could be used to °btain simultaneous
that the particle is absorbed at x0 estimates of 0 on a partition of R
with probability p(xQ) or not absorbed lnto sma11 sets Ai> A2> •••• An •
with probability 1 - p(xQ). If it is Before considering the statistical
decided that the particle is not properties of the estimates 4.12, it

bsorbed at xQ , by an appropriate will be convenient to generalize th e
a

device select a point x = xx in R by method. Suppose that a stochastic
using the distribution \ K(x,x0). process [ft,P(A)] of the type given by
Again decide upon absorption or no Theorem 1 is at hand. It will be
absorption at x,, with probabilities assumed that the process is conditioned
p(xt) and 1 - p(x1), respectively. f" a fixed xQ (cf., section 2.2).

: Consider the random variable

(4.13) Q} (x0, A) = w} (x0,A)

kl K(xx,x0) K(x2,xx) ... K(x ,x p w (x , A)
+ > , j =1, 2 ,

1-12
1=0 /, (7,1*,,) II 9i(r!)

i=0

If nonabsorption at Xj is decided,
select x = x, at random by using the
distribution kK(x,x.) and so on until be shown that 4'13 generalizes Eq.
the particle is absorbed at some f'12 innthe sense that' lf the Process

,„t [ft,P(A)J is the fundamental particle
point x . , 111 1

rr. " . n ( ,\ 1 „„. process described arove and c on -lo estimate (j.(x0, A) , simply count K
^u~r,o~f+Uo r,«,ni-o •, •* ditioned for fixed xn , 4.13 reduces tothoseoi the pointsx0,x.,x2,...,x 0 '
f. t r„ii ,„ •_• „, i Tk,c „«„„«- ,2 4.12. Moreover, it will be shown thatthat tall in the set A. lhis count is '

the estimate of Q.(xn,A). To estimate "fe) , . _ n
xl 0' i«.i *"e summation V is to be omitted if nl^) - 0

Q2(x0,A), use the sum of all of the **
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where the functions in the denominators

are defined in section 2.2.* It will

»=i



the random variable 4.13 provides an unbiased estimate of Q (x , A) relative to
the process [ft,P(A)].

To show that 4.13 generalizes 4.12 construct [ft,P(A)] from the particle
process, as follows. With reference to Definition 1 and the functions 2.2 and

2.3 of section 2.2, define PN(y*N) = P^xn^ ^or eacn W = 0, 1, 2 Then
1n(y'N) - 1 ~ P(xN). Also, define

* k K(x x )

'•w*• n ,.,<;,,, •
1=1+1 t-1

It can be seen immediately that the denominators in 4.13 are

»-i ' k K(xt ,Xj p i-1 i
/P7,u0) n 9,(7,*) = n — n 9j<^r> = n ^ *(*,,*,.p

I=i 9,.,(7/.,) i=o i-i1 = 0

and 4.13 reduces to 4.12.

To see that 4.13 gives an unbiased estimate of Q (x , A), j = 1, 2, relative
to the process [ft,P(A)], consider

(4.14) E{§(x0,A)\x0} =P{n(co) =01 x0} w(x0,A)

+ £ P{n(co) =N\x0} E{Q}(x0,A)\n(co) =N,xQ} , j =1, 2
N=l

The conditional expectation under the condition n(co) = N occurring on the right
in Eq. 4.14 is >

E{Q(x0,A)\n(co) = N, xQ}

= [Pin(co) =Wlxj]-1/ ... / Q(x0,A) fN(yN\x0) PN(yN) dyN
R R J

<\(*o^> + £ f • • f v>Axx,A)
l =l*/* J*

»P*o^> +Z f • J »P*.M)
1 —* ft a

' k K(x.,x, ,)
n

<=1 9J.1(7l„P

j=i

//v(7*U0> ^(7P

/.(r.l«.) *'

fN(yN\yV

<?,(7P ••• <7jv.i(7;.P Psiy't,) dyN

CO tf

By using this in Eq. 4.14 and permuting the double summation £ £ to th
00 00

co n

z
JV= 1 i=l

form £ £ > the following is obtained
t= l JV= i

(4.15) E{§(x0,A)\x0} =w(x0,A) + £ C... f w}(xx,A) ft \X(x,,xM)
,= l ^ •/« L 1=1

lim VB#,(yp dy,
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Since it was shown in the proof of
Theorem 2 that lim V Ay'.) = 1,

m , i *

B -» 00

Eq. 4.15 is the Neumann series for
Eq. 4. 10.

The variance of the random variable
4.13 seems to be difficult to handle.
Presumably, stratification and repeated
sampling devices should be useful
in reducing that variance just as
they were in connection with 3.1.
The estimator 4.13 has much intuitive
appeal in that it reduces to the
standard Monte Carlo procedure of
counting collisions when the estimating
process [ft,P(A)] is an analogue of
the physical particle diffusion

Q(y,u) = k K(u,y)

and 7n(a)) is independent of the value
f x„ . It follows at once that
(co,x0) is an estimate of <p(xQ) for

arbitrary x . More general procedures
for estimating the entire function
<p(x) will be given next.

In section 4.1 there is nothing
in the theory to prevent the weight
function w(x) from depending on a
parameter. Consider, in fact, the
integral 4.1 in which w(x) - k K(u,x).
Then Eq. 4.6 has a solution Q(y,u),
and the equation becomes

(4.16) Q(y,u) = X K(u,y)

+ k f K(x,y) Q(x,u) dx .
R

The Neumann series for Eq. 4. 16 is

£ kN+1 f ... f K(tN,tN1) ... K(t,,y) K(u,tN) dtl ... dtN
N=l Jr JR

By using this in Eq. 4.7 and writing I(u) instead of I,

I(u) = £ kk f ... j K(u,xA K(xltx2) ... K(xkl,xk) g(xk) dxj ... dxk
k=i Jr Jr

(4.17)
= cp(u) - g(u)

process. The author hopes to be able
to give more consideration to 4.13 at
some later date.

4.4. ESTIMATION OF cfi(x) IN THE LARGE

Throughout chapter 3 the discussion
was concerned with the estimation of
the value of the solution cp(x) of
Eq. 1.1, at a single point x = xQ in
in the space/?, or of a single component
of the vector solution of Eq. 1 5.
The reader may have recognized that
in certain special cases the estimation
process actually yields an estimate
of the entire function <p(x) over R.
To be explicit, if the distributions
fN(yN\ x0) are independent of x0 for
each N > 1 and if the stopping proba
bilities PN(yJ/) are constants inde
pendent of y*N, the random variable 3.1
will depend only upon x„ asa parameter.
That is, x0 appears in the formula 3. 1
only in the term g(x0) and the factor
K(x0,xP of Gn{oj)(x0,yn{a))) , the
sampling procedure for obtaining n(co)
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In obtaining Eq. 4.17, the change of
variables Xj = t N, x 2 = rjy_i> •••>
xN = tj was used and followed by
inversion of the order of integration.

Any unbiased stochastic estimate
of I(u) will be an estimate of cp(u) -
g(u), according to Eq. 4.17. If the
estimating process can be so chosen
that the experimental determination
of the chains x„ , xlf x2, ..., *,(„,)
is independent of the value of u in R,
the corresponding statistics for
estimation of I(u) will be valid for

all u in R.

Suppose that a stochastic process
[ft,P(A)] conditioned for arbitrary
fixed x0 and with pQ(xQ) = 0 has been
chosen by Theorem 1. The process is
defined by the sequences of proba
bility functions

fN(yN\x0), N = 1, 2, 3

V*o> = °> V*o.7P,
N = 1, 2, 3, ... .



Let /0(x0) be an arbitrary probability (density) function on R. For any fixed
integer r, let r points x<'>, i = 1, 2, .... r, be drawn independently and at

random from /0(x„), and let the r chains a), , beginning at x0* , i = 1, 2, ...,
r, be drawn from [ft,P(A)]. These chains are determined by the values n(a>p and
the finite chains y'n (a) , x< '>, x<° *»<»)» 1 = 1-2, .... r. In terms
of these samples, Eq. 3.1 gives the r point estimates ^(w^atj'') of ^(x(p) at
the r points Xq

.( i)(4.18) cp(cox,xli)) = g(xp')

Gn(co )(*o' '7„(o> P

I I » l

= 1, 2,

Also, on modifying Eq. 3.1 appropriately for estimating the solution Q(y, u) of
Eq. 4.16, if [ft,P(A)] is independent of u, these same r chains give the r
estimates

(4.19) Q(cox,u) = k K(u,x{Ql))

K(
( i)*1\L >.* ii )-i> *<«.*iiip>

/n(<Ui)(7n(<Ui)l^l)) ^(.^(^o^^.j)
i = 1, 2, . . ., r ,

of Q(x(,),u). By applying 4.19 in the manner indicated above, the quantity

l ' g(xp>) $(<»,,«)
(4.20) v-)-7£ .(«)f (x{l> )t = o Jouo '

is an unbiased estimate of I(u) = 4>(u) - g(u) that is valid for all u in R.

The estimate 4.20 may be obtained from the r point estimates 4.18 by a kind
of interpolation formula. To see this, define the function

K(x%, x0 ) K(x2, xP ... K(xN, xN1) k K(u,xN)
(4.21)

for y

S(u,x0,yN)

n xi> x2'
4.20 becomes

K(x0,x1) K(xltx2) ... K(xN_ltxN) g(xN)

.., x , W> 1. In terms of 4.18 and 4.21, the random variable

1 r g(*ol>)
(4.22) i(u) = -Y (kK(u,x<A))

_„ Jouo '

+S(u,x0>\yn{co p [$K,x^P -g(xp>)]}
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The relationship 4.22 between estimates
4.18 and 4.20 is of little more than

academic interest, since 4.20 is the
simpler formula to use. Moreover,
the efficiency of the process [ft,P(A)]
for estimating <p(u) - g(u) is best
judged in terms of 4.20 and the

siderably if the kernel K(x,y) of
the integral of Eq. 1. 1 is symmetrical
and g(x) is a probability density
function on R. In this case Eq. 4.21

reduces to k K(u,x^)/g(xN), and the
choice f0 (x) - g(x) may be used.
Thus 4.22 reduces to

(4.23) Jr(„) .-i^ K(u,x<l)) + — [<p(oox,x{A>)
gl'liL P

<*<»>)]~ g

i = i

appropriate modification of the
variance formula 4.4. The latter

takes the form*

'n(a-p'

Various modifications of the above

procedure should suggest themselves
to the reader. The following question

g2(x)[cp(u) - g(u)]2 + r var ? (u) = f \ * {var [$(<u,u)|x0 = x] + Q2(x,u)} dx .
JR fo(x>

It should be evident that strati

fication and repeated sampling tech
niques could be used in the estimation
of Q(x,u) in 4.20. The structure
of the zero variance process of the
type described in section 3.3 is such
that, when applied to the integral of
Eq. 4.16 for Q(x,u), the process will
depend upon a particular choice of u.
Thus, zero variance for Q(co,u) can be
achieved only at one value of u.

The formula 4.22 reduces con-
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poses an unsolved problem. A close
examination of 4.22 shows that Jr(u)
is composed of two parts, one arising
from the fact that the estimate is

made of 4>(u) - g(u) instead of <p(u) ,
and one arising as a weighted sum of
the separate point estimates 4,18. Is
the weighting-interpolation operator
4.21 of the second part of I (u)
optimal in some sense9 A negative
answer would raise the problem of
determining such an optimal operator.



APPENDIX A. AN ILLUSTRATION

Consider the simple integral equation

(A.l) <p(x) = 1

+—ff exp [-(* + y)] <p(y) dy ,

0 < < 1

which was chosen for ease of compu
tation. The terms 1.4 of the Neumann

series 1.3 are readily integrated for
A.1 and the series is summed

<p(x)
JV-i •'o •'o L, =1

A simple process [ft,P(A)] , of the
type defined by Theorem 1, conditioned
for fixed x0 and with p0(x0) * 0, is
constructed in the following manner.*
Choose pQ(x0) 3 0, q0(x0) = 1, and
PN(y'N) " 1/2 = qN(y'N) for every N > 1.
Let /yp7pxP be the joint distribution
of N variables that are independently
and uniformly distributed over (0,1)
for each N >_ 1 , that is, for each
N >. 1, the function /w(7jvl7jJ_P ls tne
uniform distribution for x over (0,1)
and therefore is independent of yfl_l>

The distribution of n(co), given xQ,
is given by the special case Eq. 2.18
of Eq. 2.11, and is

(A.2) Pr[n(co) =k\xQ] f k 0

>-* f k > 1

Sampling from Eq. A.2 is simple. From
the Neumann series, it can be seen that

See the remark at the end of section 2 2 and

the special process 6 of section 2.2 1

the terms for N £ 8 should give
sufficient accuracy to five decimal
places. Divide the integers from 1
through 128 into classes according to
Eq. A.2, as follows

2x

CLASS

k = 1

2

3

4

N dx,

INTEGERS IN CLASS

1 through 64

65 through 96

97 through 112

113 through 120

dx = 1 + c e"*

2(e2 - e)
c = ~ * 0.40322 .

3e2 + 1

5

6

7

8

121 through 124

125 through 126

127

128

Draw an integer in the range 1 to 128
from a table of random numbers. The
class fe'to which that integer is
assigned in the table above gives
n (co) = k' . The sampling for the
relevant part of co continues by drawing
k' values*,, x,, ..., xt« independently
from a uniform distribution on (0,1).
The basic estimate 3.1 then gives

(A.3) $(co,xQ) =1 + e"*°"V J]
i= i

for an arbitrary value of xQ.

-2x
e »

This is

in example of the type mentioned at
the beginning of section 4.4, in which
3.1 estimates the entire function
4>(x).

The sampling described above was
carried out four times, in a rough
manner, with the following results.

(A.4)
n(co3)

3 ,

1 ,

2 ,

n(co4) = 1 ,

$(<»!, *rP

<p(<»2.*o )

$(co3,x0)

$(^4.*0)

= 1 + 0.0362 e" ° ,

= 1 + 0.5543 e'"° ,

= 1 + 0.0750 e'"0 ,

= 1 + 0.8025 e'"0 .
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The average estimate is cp = 1 + 0.3668

Consider the application of 4.22,
In A.l, the kernel K(x,y) is symmetrical
and g(x) = 1 may be used as /0(x),
therefore 4.23 applies. The estimate
of cp(u) is

(A.5) est (p(u) = 1 +•

in which the c and x(p ., i

4

- £
.=i

1. 2,

3, 4, are the coefficients of e and
the final chain points in the four

estimates A.4 and the xj l ,̂ i = 1, 2,
3, 4, are to be drawn independently
from a uniform distribution on (0,1).
The *<!>, , of A.4 were 0.78, 0.59,

0.63, 0.22, respectively, and four
numbers suitable for the x('> are
0.44, 0.30, 0.88, and 0.41. The
result is

est cp(u) = 1 + 0.3932 e_u .

This is considerably better than the
average of the four estimates A.4.
Such an improvement could have been
anticipated on theoretical grounds, in
this example.

The variance of the fundamental
estimate A.3 is easily computed from

var cp(co,xQ) = var [$(co,xQ) - l]
and

J var <p(co,x0) = 0.2895 e~'° .
Thus the standard deviation of the
average of estimates A.4 is 0.1448 e
The variance of the estimate A.5 may
be found as one-fourth of the variance

of a single one of the terms on the

.( O

right, the calculation is similar to
that above. The result is var (A.5) =

0.0050 e"2u, or, for the standard
deviation, S' 0.07 e"u, which is less
than one-half the standard deviation

of the average of estimates A.4.
It is interesting to see the effect

of stratification on the variance of
the average of M estimates of the type
A.4. Let the process [ft,P(A)] used
above be stratified as in example (a)
of section 2.3.1. The integers N%,
N2, ..., Ns will be chosen as Nt = 0,
N2 = 2, N3'= 4, NA = 7, Ns = oo. Thus,
there are four strata given by all
sequences co for which n(co) = 1, n(co) =
2, 3, n(co) = 4, 5, 6, or n(co) > 7, for
which vx = 1/2, v2 = 3/8, v3 = 7/64,
and v = 1/64. Assume that M is such
that the sample sizes for the strata
may be chosen by Eq. 3.22. The re
duction in variance because of repre
sentative sampling over the strata
will be given by

i<p(x0) - l]2 + var $(<u,*P - 1]

JV= 1

1 I /V-l

n *
1 = 1

4x -2i„

e N dxt dx,

with the result

var cp(co,xQ) = 0.0838 e

The standard deviation is

2x, (A.6) — £ v^cp^x^ - cp(x0)]2
M 7=i

where, from Eq. 3.13, the <p (xQ) are
given by

-i *,<*.> ="i +Te"0 K e'%1 dx*
N +1-1

v. *.UJ - v, +|e"*° '£ /„' ... J,; ^j v~o' j 2
k=N ,
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Formula A.6 can be easily computed to

find the value 0.0558 e" *°/M. Since
the variance of the average of M
estimates drawn from [ft,P(A)] is

_ 9 %

0.0838 e /M, the variance for the

representative sample will be 0.0280

e °/M. The effect is roughly equiva
lent to tripling the sample size M for
the random sampling case.

APPENDIX B. THE ESTIMATION OF DEFINITE INTEGRALS

OF FIXED MULTIPLICITY

It was suggested in section 3.4 that
representative sampling might be
advantageous in the estimation of
individual integrals of the Neumann
series 1.3. This matter will be con

sidered in some detail here. It will

be clear that the integral being
estimated need not be a term of a

Neumann series.

Consider Eq. 1.4

(B.l) IN(x0)

- fR ... fR GN(xQ, yN) dyN .
Let g„(7.,l*P be a probability density

iV pi o

function on i?„, it may be independent
of xQ. In section 3.4, g„ would be
given by Eq. 2.17 conditioned for xQ
an d wi

Xj, x?) . , Xff whose districution
IAyv[x0), then the random variable

(B.2)

th k

A

IM(yK

N. If y„ is a chain
N

x„ whose distribution is

•andom varn

GN(x0, yN)
l*o> "

gjv(7wl*0)
is an unbiased estimate of J„(x0).
Likewise,the average

1
(B.3) INir(x0) -— £ IJ¥(7^,)U0)

r i= i

of r stochastically independent values
of B.2 will be an unbiased estimate of

B.l relative to the probability density

(B.4) II ^°l *.> on
e-JV

The variance of B.3 will be computed,
presently, in a form comparable to
3.14, that will be convenient for
comparison with the variance of an
estimate of B.l obtained by repre
sentative sampling.

Partition the space RN of yN into
m nonoverlapping subsets A {, Z = 1,
2 m, for some integer m, and
define the probabilities

Vi =f '•' f*Mtl Sjv^Uo) dyN ,
I 1, 2,

and theconditional probability density
functions

'gjv(7j*0)
, if yN m AN>1 ,

(B.5) */Y(?jJ*o' \.i) "

•n
N. I

0, if 7jy not in A^ j ,

I = 1, 2 m. Also, define the quantities -Tjy,i(*<p> DV

(B.6) ttn jIN ^Xq) =f ... f GN(x0, yN) dyN , I = 1, 2, ..., •
AJV. i
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The variance of the estimate B.2 may be expressed as

A m Avar ilN(yN\xQ)] = £ nHil E{[l„(yN\x0) -I„(x0)]2\yN mA^P .
1 = 1

As can be seen, IN(xQ) is not the mean of B.2 under the condition yN in Aff( r
In fact,

(B.7) E{iN(yN\xQ)\yN mA^p =INil(xQ) .
A

Thus the expectations on the right in var I are broken down in the following
manner

EiiiN(yN\x0) -IN.Ax0) +INtl(*0) - IN(x0)]2\yN in Affjp

= Ei[lN(yN\x0) -lNtl(x0)]2\yN mA^p + [lN>l(x0) -lN(x0)]2 .

Thus

(B.7) var [lK(yN\x0)] = £ ^ , £{[l/yjxp - I„# , UJ] aI?, m A^ p
1 = 1

+ £ Vi[lJV.*Uo> " V*o>]2 •
1 = 1

It follows immediately that the variance of the average B.3 is obtained by
dividing B.7 by r. In B. 7,

(B.8) E{[IN(yN\x0) - IN>l(x0)]2\yN mA^p

/C G*uo- V... I — ; BN(yN\x0ANil) dyN - [IHil(x0)]
JR g^P*0>

= /••• / : dyN - [IN tix0)] .

The integrals IN x(x0) defined in B.6 may be estimated by using the con
ditional distribution B.5 in much the same manner as Eq. B.l was estimated. The
random variable

(B.9) I h|,|. VW»^__ A

is an unbiased estimate of Iw jUq) relative to B.5 for any 2=1,2 m.
Note that B.9 is the same as B.2 except that yN is forced to fall in A^ J( that
is, the n^ , cancels out.
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Let the integer r used in B.3 be
partitioned into a sum

1 = 1

of integers r, and let

^V.l(^jv; )\xo) > J =1.2 r, ,
be stochastically independent values
of B. 9 for each I = 1, 2, ..., m.

Clearly the variance above will be
minimized by the choices

77

(B.12)
N.l

Llj

j = 1, 2, ..., rj for each I = 1, 2,
..., m. It is not hard to see that

var [tHtl{yH\x0)] is given by Eq. B.8.
Thus

* ^N I A
(B.13) var [lffiR(x0)] = £ ~ £{[^(7WU0) " h. i (*o >3 2l^jr in\.i>

i = i rJ

Consider

(B.10) INiR(x0)

- £ £ /*„ ^.,^'M*.) .
1=1 ;=1

where the jJ. j are constants. The
random variable B.10 will be an un

biased estimate of B.l, relative
to the distribution

* rl

n n eMj)\*oA.i) -
i=i }=i

if the constants /u.j are chosen to
satisfy

(B.ll) Z Hi,
j =1

77
N, I

I 1 | ^| • • • f (ft •

Since the terms on the right in
B.10 are stochastically independent,
the variance of IN fl(x„) will be
given by

if Eq. B.12 is satisfied. Moreover,
this is the minimal variance that can

be achieved by this method.
In the special case in which the

products m ,, I = 1, 2, ..., m, are
integers, the choices

(B.14) rt = rirN^ t ,

I = 1, 2, ..., m ,

make B.13 comparable to B.7 divided by
r (that is, with the variance of B.3).
Clearly, in this case

var [I,. ,<*,)] < var [l,,,^)]
by the amount

1 "
(B.15) £ ^jv. ,[-T*, P*<P -IN(x0)]2 .

r l= l

If Eqs. B.12 and B.14 are satisfied,
the estimates B.3 and B.10 for B.l

will be formally similar and B.10
will have the smaller variance.

var [I„<ft(xp] =£ Z/*?, "'Pjr.ltyMxo)]- ^ E' M^ V" ['*. I<*» K>•
1=1 7=1 1=1 7=1

Now write

1 ''
7~ L *" rr I 7 =1 I

if Eq. B.ll is satisfied. Then

77
N. I

That is, it is advantageous in forming
B.3 to force rj of the vectors yN
to fall in A I = 1, 2, ..., m, by
using the conditional sampling distri
butions B.5 for the sampling.

An important special case arises
when the integrand G„(x„, y„) ofB.l

HON .
is nonnegative over the region of

integration RN. In this case, by
assuming that IN(xQ) is known, for
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the moment, a possible choice for the
sampling distribution gN(yN\x0) used
above would be

(B.16) sN^yN\xo)
IN(x0)

The choice B.16 makes B.2 and

estimates derived from it exact,

is,

var [V^J*o>] - ° '
It can then be seen that the individual

terms of B.15 would all be zero
(Eq. B.14 is assumed). The converse
appears difficult, but it may be
conjectured that under appropriate
hypotheses on the integrand Gjy(x0, yN)
the following might be true. If for
every partition A j, Z = 1, 2, ...,
m, for which there is an integer r
such that Eq. B.14 holds, the ex
pression B.15 vanishes and then the
variance of B.2 is zero. Under

conditions such that this conjecture
is true, it should be possible to
construct a practical approximation to
the zero variance estimate indicated

here. The following procedure seems
clear for such a construction.

Let R be a finite interval (a ,b) and
suppose that GN(xQ, yN) is nonnegative
for yN or RN. Partition R into q
subintervals for some integer q.
These serve to partition the product
set RN into m = qN oriented ZV-di-
mensional intervals A„ j, Z = 1, 2,

"N Choose a point zt in each

all

that

of the A
function

N . I
and define the step

_i(B. 17) gN(yN,x0)
H(x0, yN)

IR •.. /„ H(xQ, y'N) dy'N

be made. It is evident that the qN
conditional distributions B.5 defined

by using B.17 will be uniform over
their respective intervals A,
that is,

JJV. I •

(B.18) g^Lo.VP

= <
=^- lfr»inA-< '

^_ 0, otherwise .

It follows that, under the condition
yN in A„ j, the components x j, x2, . .• ,
x will be uniformly and independently
distributed over their respective sub-
intervals of (a,6). Thus, sampling
for yN in A(|, by using B.18 will
be very simple.

If the partitioning is done as
described above and the integer r is

such that the products B.14 are
integers, the estimate B.10, subject
to the choice B.12, reduces to

(B.19) *'m. «(*o)
N

1 q
- £

r i = i

£ GAx0Mn)

and the variance B.13 becomes

(B.20) var [l'N>R(xQ)] —£ n J ... I lGN(xQ,yN
r 1=1 ** v N.l

) -IN>l(x0)}2
dyK

77
S.l

—L {/ ••• faNil G*(*o. V dyN -"na^n.i^
In many practical examples, Eq. B.20

up]

H(xQ, yN) - GN(xQ, 2p ,

if yN in A
Let the choice

JV» i
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might be used in designing the esti
mation process. Let

Ut = LUB [G2N(x0, yN)]



A * JVover A^ j and ^ ! 1 L

L, = GIB [G^txj,, y^)]
(B.21) — Jj 77J¥> j [t/£ - I2] .

r 1= 1

over A„ j, I = 1, 2, ..., g . Then Obviously the partitioning should be
the variance B.20 is dominated by chosen to make B.21 small.
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