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PREFACE

A primary objective of this report i1s to indicate that multi-region
or composite boundary value problems can be solved by using the conventional
methods The conventional methods are, of course, the method of separation of
variables and the method of the Laplace transform

This report consists essentially of two chapters Chapter I 1s divided
into three parts which deal with the general N + l-region or the N-interface
problem In Chapter I the emphasis hes been placed on obtaining formal results
without a great deal of attention to mathematical rigor Chapter II by contrast
deals quite rigorously with a Sturm-Liouville system with two regions or omne
1nterface

The two appendices are concerned with expansion problemsqfssociated
with composite cylinders and spheres Since Carslaw and Jaegar[:é]obtaln some
of these results and give reference to other results which have been obtained
by using the Laplace transform, the method of separation of variables has been
used here It was intended originally to have an appendix with the results associated
with "contact resistance” type interfaces [2] Although the results have been
obtained for finite and infinite cases it 1s felt that sufficient i1llustrations
of expansions are given without them

It 1s worth pointing out that in addition to the conventional heat
conduction, diffusion, potential and vibration boundary value problems which lead

to multi-region problems there also exist some interesting problems connected with



nuclear reactors In reactor language this report .deals with a one group,
multi-region reactor problem An important extension would be to the multi-groups,

multi-region reactor problem

* The number in the brackets refers to the Bibliography
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CHAPTER I
Part I

GENERAL THEORY OF M-th ORDER LINEAR DIFFERENTIAL EQUATIONS
WITH DISCONTINUOUS COEFFICIENTS

Problem The general linear differential equation of the M-th order i1s of the

type

M
Z g (x) s (x) = ()
1=0

~

In symbolic form this mey be written as

(11) L(y) = f(x) ,
where
M
L(y) = ;Z g, (x) y 1) (x)
yO yl IQ yn-l yn
=8 % X -1 X X1 =P

The usual assumptions [9, o) 11@ are that the coefficients 8y
(r =0, 1, , M) and the function f(x) are real, continuous one-valued

functions of x throughout an interval =a < X < b and that go(x) does not

-1-



vanish at any point of the interval These assumptions are going to be relaxed

here in the following fashion Let a = X < Xy 4 X, < < Xnel = b
and let 8y, = & - f,j = f and y, = when Xy < x < X301 (§ =0, 1, , N)
In each subinterval giJ and f J are assumed to be continuous and one-valued and
such that their limits when x tends to x, or exist and are finite We

3 T3+l
also assume that goJ (x) does not vanish at any point of the subinterval, and in

general has the same sign in all the subintervals The final assumption is that
at each "interface" or point of discontinuity X (k =1, 2, , N) the Yy
satisfy M homogeneous interface conditions of the form

M-1

(12) yl({m) (%) = Lzo Bﬁi) yl({j_q (x) (m=0,1, ,M1),

where the determinants, det(ﬁé::)) » the superscript k indicating the particular

matrix at the interface k , do not vanish Slightly more general interface
conditions could be considered

The fundamental existence theorem of differential equations Eg, D 73—_\
proves that there exists a unique continuous solution yJ(x) in each subinterval
%, < x X 41 which assumes a given value ér\J at a point 2 1in the
subinterval  Further the first M - 1 derivatives of y 3 are continuous and have
respectively the given values é,\j(m) (m = 1, , M-1) at 49  Further it
follows from the interface conditions that there exists a unique solution y(x) ,
continuous in each subinterval, which assumes a given value ﬁ'\ at a point é\
in a subinterval The first M - 1 derivatives of y are likewise unique and
continuous in each subinterval and have respectively the given values 9 (m) at

the point 4c\ -



Fundamental Theorems We shall use the formal operator L' in the following sense

If the equations L(y) = 0 and (1 2) are satisfied for y , then we shall write
L+(y) =0 The following conventional elementary theorems can be easily shown
1 Let y = v(x) be a solution of L+(y) =0, then y =C v(x) 1is

also a solution, where C 1is any arbitrary constant

. 2 Let y = vl(x) » Voo 'Yy be { solutions of L+(y) = 0 then
y= 2 ¢y, Yy 1s & solution of L+(y) = 0 , vhere the c's are arbitrary constants
3 Let y = vOZx) be any solution of equations (1 1) and (1 2), then
if v(x) 1is the complete primitive of L¥(y) =0, y = vo(x) + v(x) 1is the
general solution of equations (1 1) and (1 2) The complete primitive v(x) of

L+(Y) = 0 1s given by the formula

M
v(x) = 2 . vm(x) ,
m=1
where the vm(x) are M linearly independent solutions of L'(y) = 0 and the
c's are arbitrary constants
b  Let y = vl(x) » Vo s » vy be m (m £ M) solutions of
L+(y) = 0 , then if the Wronskian vanishes at any point of the interval a  x b

these solutions are linearly dependent The Wronskisn is defined in the conventional

manner as the determinant



Vio V2 oV
det(vl » Vo , vm) = vl
(m-1) (m-1)
vl 2 2 m
In the subintervel j this notation signifies det(vlj, vaj, , va) , Where
viJ = vi in this interval At the interface X the notation applies to either
the Yy ko1 ©F the Vik ? i1e,

(k)
det(vlk, Vo , vmk) = det(Bﬁh ) det(vl k-1’ Vo k-1’ , vmk)

5 Let AJ(x) be the Wronskian for M 1linearly independent solutions

+
of L (y) =0 1in the subinterval x < x < x

3 s then

J+1

_ A\ - b'e gl,j
AJ(x) = AJ(X) exp[ f/\———goJ de| )

X

A
where x'j < X <L xj+1 In particular ,

Since

=4



it follows that

41 8
By (X)) = det (Bﬁ””) 8, (x)) exp [-f it ] ,

g

X 0d

J
and therefore

- (g+1) (3) (J-m) x &
Aj+l(x) = AJ_m (&) det (BYy ' ) det (8'7,) det (Byp exp -f/\ :, ax
X

where xJ+l £ = < }:J_‘_2 and x,]-m < A < xJ_m+l This generalized

Abel identity indicates that ZSJ+1 (x) vanishes 1f and only if ZSJ_m 099 does

Ad joint Operator The formal linear differential operator L+ can be associated

with another formel operator L * which can be called the formal or Lagrange adjoint

of L' The notation L * (z) = O signifies that
M
L) = 2 (- (g 2™ <o
i=0
and that
M-1
(1 3) A (x) = P A ey,

where the determinants, det (7%$)) , do not vanish, and are such that a generalized

Lagrange identity vanlishes at each interface More specifically we can write in




each subinterval the Lagrange identity

L*(YJ ’ ZJ) ’

gl=

2, Wy) - vy T(zy) =

where

n
Xyy 5 29) = L L (-1)% ng) (5 zJ)(P)
f=1 p+q=L-1
The two integrations of the Lagrange identity or the Green's formulas which involve

the interface at xk are

X _ X
I [zk—l L{¥g1) - ¥ Wz ) | a&x = ¥y 45 7,)
k-1 X1
and
'S ] *k+1
i [ék L(yk) - Y L (zk)] dx = L (yk s zk) ‘
" X

Our requirement 1s that the matrices (7 k)) be such that there exists non-zero

constants Ak such that when the L*'s do not vanish at the interface

A1 T I:yk-l (x) Zk-l(xk)] = A [Vk(’%)’ zk(xk)]

-6-



for any y and 2z vwhich satisfy the interface conditions
It appears desirable to show that the matrices Ck;EE (?éi) ) not only
exist but are unique up to an arbitrary scale factor We note that we may write

the above equation in the form

(14) Yo Teo1 B Beq = Y F %y )

where the bilinear forms L* are written in the form of a row vector times a

A
A

) where the superscript t indicates the transpose

matrix times a column vector and where T = The vector Y; indicates

the vector (yk s yﬁ , ’ yiM-l)

of a vector 1In similar fashion we mey write

(1 5) Y, = B Y and Z, = Cp %y 4 ’

in place of equations (1 2) and (1 3) By assumption the matrices B, 5 Cp

E, and F, are non-singular Upon substituting from equations (1 5) 1n equation

(1 4), we obtain,

t
Tk Tg1 B2y Y18 FC2Z 4

or

#
o

%
Y1 (CxBg - B F CJ 2y



Since this last statement is true for every vector Yk- and Z

1 k-1 1t

follows that

and consequently that

C, = pt (B

t)-l
k x Tk

Kk E

k

With the aid of thescale factor T ? this equation gives a recipe for obtaining

— (SK)
the n matrices Ck = (Zém )

Equations (1 2) and (1 3) can be rewritten in the form

M-1
i () = w® - L efE) 5 ) - o

and
M-1
_ (x) () )
Vo [zk(xk)] = z, - s "o Zk-1 (x) = o,
vhere m , p=0, 1, y M~ 1 The operator L+ wi1ll be called self-adjoint
if L= 1 and 1f V [ ( 5]==M§l (k) W ( )] where det ( (k)) £0
= p Uk %k I [?k " %om ’

1s true for every k In this case the conditions Vm = 0 are said to be equivalent

to the conditions Wm =0



Boundary Conditions In addition to the interface conditions it is, of course,

necessary to give a set of supplementary conditions in order to specify the operator
(or problem) We shall be concerned with two-point boundary problems rather than

one-point or initial conditions problems Our supplementary conditions have the form

M-1
_ (L) () } _
(16) Um(y)_ﬁo [aZmy (8) + By’ ()] = 0,

(m =1, 2, ;h)

For a particular m , i1n the cases to be considered, either all the éfm =0
or all the plm =0 The h Dboundary conditions are assumed to be linearly
1ndependent

The equation Ld(y) = 0 signifies that L'(y) = 0 and that Uﬁ(y) =0
L. 1s then the "discontinuous" linear operator associated with the differential

d
equations system defined by equations (1 1), (1 2) and (1 6) TLet f&(z) =0

signify that T ' (z) = 0 and that ﬁm (z) = 0 , where

M-1
(17) T (2) = JLEO [Eﬂm D oy . B ) (b)] = 0

(m = l) 2, » P) »

~

and the bars over the a's and b's indicate elements unrelated to the original

a's and b's The operator L. (or the associated differential system) is called

d



adjoint to the operator id (or the corresponding differential system),and

conversely,1f L' 1s adjoint to L * and

Ay L* [YO (a) , zo(a)] = Ay L¥ [yN(b)’ ZN(b):l ,

where Ao and AN are the constants previously used at the interfaces and where
the relations (1 4) and (1 5) are used In the cases to be considered, the

requirements at & and b are to be satisfied separately, i e ,

w* [v5(a), zp(a) ] = 0 = 1x [y (8), 2y (v)]

Further we shall consider from now on that h = M in relation (1 4) and that

P =M 1n relation (1 5)

The operator Ld is called self-adjoint if L+ is self-adjoint and

1f the conditions (1 6) and (1 7) are equivalent

Green's Function We now seek a generalized Green's function G(x, &) for the

differential system Ld(y) =0 The Green's function satisfies the following

conditions

(a) Each Gj(x, ¢) 1s continuous and possesses continuous derivatives
of orders up to and including (M - 2) vwhen x, £ X < X1 [GJ(X, L) =

G(x, &) when X, £ x K X3 (3 =0, 1, , N)jl

-10-



(v) Each Gj(x, t) possesses a derivative of order M - 1 which is

discontinuous at x = ¢ Explicitly, the jump 1s given by

1

(M-1) .+ (M-1) .-
G ( ’ ) - G ( ’ ) = ’
fof SR S O

J J

where xJ < & L xJ+l

(c) The Gj(x, ¢) formally satisfy Ld(Gj) = 0 except possibly at
The "symmetry" property of the Green's function appears in the form
A(x) o(x, &) = A(e) B(E, %),

where H(x, t¢) 1is the Green's function for the adjoint system id (y) =0 and
vhere A(x) = AJ , the Aj as previously used, when X < x < Xy This
may be verified in the following manner [ 9 ] Divide the interval from & to b
into three parts (a, gl) , (gl , g2) , (§2, b) and consider the two Green's
functions G(x, gl) and H(x, ge) which correspond respectively to L, and id

The generalized Green's formula 1is

b

b
f A(x) {z L(y) - yL (Z)} dx = A(x) L* (y, z) ,

where the range of integration may be regarded as the limiting case for the sum

of the thtee intervals (a, g -¢ ), (gl +€, &y -€ ), (g2 +€ , b) when € tends

-11-



N

to zero Since L' (G) =0 amd T ° (E) = 0 1in each of these ranges, it

follows that

gl-e gl -€
lim A(x) L*(G, H) ‘ + A(x) L*(¢, H) +
€ >0

a g +€

A(x) L*(G, H)

]
o

§2 +€

Upon applying the end conditions (1 6) and ( 7) and requirement (c) for the

Green's functions this reduces to

A(gl) H(El, §2) = A(§2) G’(§2) gl) 2

the result indicated above

This result has been proved when E5 > and it may likewise be

&

proved when §2 < The above manipulations likewise were carried out for the

S
£'s lying within the subintervals It Ld is a self-adjJoint operator then

A(x) G(x, E) = A(g) G(§J x)

If therefore we define S(x, ¢) by

S(X, E) = A(x) G’(x: §) ’

we see that S(x, ¢) is symmetric when L; is self-adjoint

-12-



The following diagram exhibits the character of the Green's function

(2,b) (v,b)
G
Cow  {Caw » N
Xy
G0,1\1-1 Gl,N-l "N, N-1
*N-1
GiJ(x, g) G(x} §)
(%, % xg 958 & Eq)
(1, J=0,1, :N)
*2
ffor self-adjoint G,
G G G G _
x, 01 N-1,1 N,1 Ai Gij = AJ GJl
o | %0 Fp-1,0 | B,0
EAAAAAAAAANS * >
(a,8) X X, X 1 X (b,a) x
Non-homogeneous Solution The non-homogeneous system
(18) L(y) = f£(x) ’
-1
(m " k {
) (x) = = sfi) 8 (x) (@=0,1, ,M-1) ,

M-1
U, (v) = /Ezo [ajm ¥ (@) 7 o) (b)J =0 (m=12, ,M,

can be solved with the aid of the generalized Green's function The solution for

y(x) 1is given by

-13-



b
y(x) = [  6(x, &) £(¢) a¢

a

This can be verified by noting that

b
F®) 0 o f Tem ) g g

a dx
and that
() > Mox, ¢) £(x)
yi(x) = —=—== () de + FREI]
a d = go\ X
The non-homogeneocus system
(19) L(y) = £(x)

M-1
D, [Y(xk)]s yl(im) (%) -ﬁo Bﬁf) yﬁ{ (%) = 0

M-1
Um(y) = [aﬂm y(ﬂ) (a) + Bn y(ﬂ) (b)] = v

1=0
has the solution
b M
y(x) = [ G(x, &) £(e) a&¢ + T v, G,
a i=1l
where
{e,) = © Py [Gi(xk)__] =0

=1h4-

(m=1, 2,

(x) ,



and
Um(Gl) = b )
Wwhere 6m1 1s the Kronecker delta

Non-homogeneous systems involving non-homogeneous interface conditions

could also be handled

-15-



CHAPTER I
PART II
THE EIGENVALUE PROBLEM FOR M-TH ORDER LINEAR DIFFERENTIAL

EQUATIONS WITH DISCONTINUOUS COEFFICIENTS

Problem We shall now consider the differential system L(y) = O, Um(y) = 0 and
Dm[-y(xk)J = 0, where the coefficients in the equation L(y) = O depend upon a
parameter A The notation remains the same as in Part I A primary problem is
to find those values of A for which the differential system has non-trivial
solutions, 1 e , solutions other than y = 0 These values of A are called

eigenvalues or characteristic numbers The solutions of the differential system

corresponding to the eigenvalues are called eigenfunctions or characteristic

functions

The eigenvalues are roots of an equation called the characterigtic

equation For our case we may look at this characteristic equation in two ways
First if we let Yy (1 =1, 2, , M) be a fundamental set of real solutions,

M
ie, ¥ C1 ¥, (x) forms a complete primitive, of the system L+(Y) = 0, then the

=

characteristic equation becomes

U ) U, (y,,)
B}) = 17y AL [Um(yi)] = 0

Uy(yy) Uy )
Second, if we let yij(i =1, 2, », My, J=0, 1, , N) be the fundamental set

of real solutions in the j-th interval for the equation L(y) = O, then the

characteristic equation becomes symbolically

-16-



h) = det [E (v, ]| = o

where Emn(yig) ig defined as follows

Emo(ylo) = U; [ylo (a)J ’ (m, 1 =1,2,

Emo(ylj) = 0 ’ (J = 1, 2, , B
+

Emo(le) = Uﬁ‘:le (v) ] ’

By n - 1= Dp[vin oy )] (n =
Epn(v,,) = 0 ) (3 #
Bon(¥ig) = Dy [y 0]
when
Ly = Gly@] + g [ym],
and

D, [¥(x)]= v [ % o1 ()] + oy [y (g9 ]

-17-
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In each subinterval j, the fundamental set of solutions yiJ and their
derivatives with respect to x up to order M - 1 are continuous functions of the
real variasble pair x and A [ 9, p 218 J We are assuming here that in each

subinterval the coefficients of the formal operator L are continuous functions

of A

At this stage it appears essential to restrict the dependence of the
coefficients upon A in the following fashion We shall consider the formal

operator L to be defined either by

where

Py) = E(piy(i)) (1)
1=0
and

— i i
ay) = 7 (g ¥ W
i=0
are self-adjoint expressions which do not depend upon A or by

L = M -2 g(x) ,

where

-18-



M
Wy = 2 g (0 vy (»)
i=0

may be a self-adjoint expression and does not depend upon A

General Problem We shall consider first therefore the problem defined by the

equations
Ly) = Py -2y = 0 (2p =M, 0 a<p) ,
(2 1) u(y) =0 (m=1,2, ,M ,
D[y(x) | = o (k=1,2, ,® ,
where p, = pl(x) and q; = ql(x) are i-differentiable continuous functions

in each subinterval The eigenvalue problem given by the equations of (2 1) is

called self-adjoint if the operator Ld is self-adjoint and is called adjoint
if Ld is adjoint In particular this means that we shall define the eigenvalue

problem to be self-adjoint 1f the relations

'b -

[ A(x) [z Py) - yP(z) |da&x = © ,
(2 2) ]

b -

[ Ax) [ Ay) - yalz) |ax = o,

a .

are satisfied for two arbitrary functions y and 2z which are M-differentiable
in each subinterval and which satisfy either the end and interface conditions of

problem (2 1) or satisfy linearly equivalent conditions If conditions (2 2) are

-19-



satisfied but non-linearly equivalent conditions were used, i e , adjoint
conditions were used, at either the ends or interfaces for one of the arbitrary
functions y and 2z , then the problem is called adjoint

Orthogonality Let us assume that A and p are two eigenvalues with associated

eigenfunctions y; and yu for a self-adjoint problem (2 1) Since the problem

is self-ad joint we have

ib A(x) [y)\ Py) - v, P(s&)de =0 ’
end

b

£ A(x) ‘:yl oy) -y, alyy) :Idx = 0
From the differential equation we also have

P(y,) = 2raly,) eand P(y,) = uQ(yu)

Consequently

b
0 = A - ax
£ (x) l:u v, Q(yu) A Q(yl )]

b
(u - A( Q dax
- 2) i x) ¥, (yu)

If then pu # A the functions Yy and yp are called orthogonal in the general

sense, i e ,

-20-~



b

/] Ax) vy, y) ax = o0
a
If further . # 0 then we also have
b
[ A vy, Py) ax = o

a

If we eliminate the requirements that the end or the interface conditions

be self-adjoint and allow them to be adjoint conditions then we have
b
LGRS P(zg}ax -0,

and

b
A |5, Ay -y, Q(zl)]dx - 0

The differential equations are

P(yu) " Q(yu)

and

P(zl) A Q(zl)

Therefore, we can obtain as above, that

-2] -



b
i A(x) z, Q(yu) dx

i
o

(if w# 1)

and

b

Ja' A(x) =z, P(yu) ax

(1f p#0)

]
o

The yu and z form a generalized biorthogonal system where the orthogonality

)y

A
Reality of Eigenvalues If A\ =8+ 1t is an eigenvalue for problem (2 1) then

is 1ndicated and the yu and z, satisfy adjoint systems

80 18 X =8 - 1t For the self-adjoint problem we can obtain in the conventional

manner that

b

21th(x) le(§X)dx=0 ’
a

where the bar denotes a complex conjugate If then the integral
b —
[ Ax) vy, alyg) ax £ 0
a

1t follows that t = O and that the roots are real If we let Yy = u+ iv,

then

b b

b
J Ax) vy, y.) & = [ A(x) uq(u) ax + [ A(x) v Q(v) ax
a A a a

b
+ 1 [ A(x) [VQ(u) - u Q(v) ] dx

a

-22.




Now
b

[ A(x) [v Q(u) - u Q(V)] dx = O ,

a

since the real and imaginary parts of y satisfy (2 2) It follows that if

b
] Ax) u Qu) ax # o

a
for all functions u which are M-differentiable and satisfy the end'and interface
conditions then the self-adjoint problem (2 1) has only real eigenvalues
Definite An eigenvalue problem is called definite if all the eigenvalues are
real and of one sign If all eigenvalues are positive the problem i1s called
positive definite while if the eigenvalues are negative the problem is called
negative definite Semi-definite implies that the problem is definite except

that zero is also an eigenvalue Problem (2 1) 1s called completely definite if

b

] AMx)y P(y) a&x > 0
a

and

b
] Ax)y ay)ax >0

a
for all y which are M-differentiable and satisfy the end and interface
f
conditions A completely definite problem is clearly positive definite

Rayleigh Quotient The Rayleigh quotient R(y) is defined by the formula
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b
£ A(x) y P(y) ax
i)

[ A(x) yq(y) ax
a

R(y) =

For a completely definite probléﬁ R(y) >0 If yl. is an eigenfunction
R(y)\) = X Without proof it will be asserted that if the problem (2 1) is
self-adjoint and completely definite, then the minimum value of R(y), for the
class of functions y which are M-differentiable and satisfy the end and inter-
face conditions, is Kl s the smallest eigenvalue of problem (2 1)

Multiple Eigenvalues An eigenvalue is called an r-fold eigenvalue, or of

multiplicity r, 1f just r 1linearly independent eigenfunctions belong to this
elgenvalue If Py ’ @r are r linearly independent eigenfunctions
belonging to an eigenvalue A of multiplicity r, then any eigenfunction Y

assoclated with A can be written in the form

In particular it 1s possible to choose constant @, 8O that if we define

t
)
Y = a ? (s =1, 2, y T)
8 t=1 st t
then
b
.{L A(x) Y Q(Yt) dx = B8

In particular we can always choose a set of eigenfunctions for the self-adjoint

24



completely definite eigenvalue problem (2 1) which are orthonormal in the
generalized sense  For the adjoint problem we have two sets of eigenfunctions
which are bi-orthonormal

Expansions For the self-adjoint complete definite eigenvalue problem (2 1),
consider the set of orthonormal eigenfunctions {Yﬁ } Iet f(x) be an
"arbitrary” function subject to certain restrictions which will not be con-

sidered Let us assume that it 1s possible to write

£(x) = Y (x)
x o ay ¥ (x

If we multiply both sides of this equation by A Q(Yk) and integrate with

respect to x, we obtain
b b oo
fAQ(Yk)fdx=fAQ(Yk)l: aJYj:ldx
a a J=1

If on the right hand side of this equation we interchange the order of summation

and integration and then apply the orthogonality corditions, we obtain

b
o =/ A £ a [y ] ax
a

If the {Y J} were not normalized, the formula for & would be

b
i A(x) f(x) Q [:Yk(x):] dx

k T 3
] a(x) ¥ (x) Q[ Yk(x)] dx
a
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There are a number of questions which will be left unanswered but

nevertheless should be mentioned First, is the set of eigenfunctions complete?

By a complete set of eigenfunctions { ¥ } one means that the only function which

J

is orthogonal in the generalized sense to every YJ(x) is the zero function The
o0

second question 1s, does the series 2. aJ YJ(x) converge? Third, if the series
=1
converges, does it converge to f£(x)?

Special Problem Although most of the above remarks apply, let us consider the

following special system

L(y) = My) - rgx)y = 0 ’
(2 3) Um(}’) = 0 (m =1, 2, ) M) )
D [y(xk) J = 0 (k =1, 2, , N)

The corresponding adjoint system has the form

L(z) = M(z) - rg(x)z = 0 )
(2 )"') ﬁm(z) = 0 (m =1, 2, M,

]
o

(k » M),

“ [i ,

where the bars denote the adjoint conditions If M = M and both the sets

]
[
-
n
~-
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U, and U as well as D_ [:y(xk)j]and D, [.y(xk)] are linearly equivalent,

then the system (2 3) is self-adjoint

i
Orthogonality If we proceed in the same fashion as was followed for the general

problem, we can show that

b
[ A(x) g(x) v, (x) zu(X) dx = 0 ,

a
where y}_(x) 18 the eigenfunction for the system (2 3) with eigenvalue X ,

i
zu(x) 18 the eigenfunction for the adjoint system (2 4) with eigenvalue yu and
where A # ) If the system (2 3) is self-adjoint the orthogonality condition

beconmes

b

[ A(x) g(x) v, (%) yu(X) dx = 0 (x #u)

Expansions If the set {?J(x)} and {Ek(x)} are a countable complete bi-

orthogonal system of eigenfunctions,then the formal expansion of f(x) 18 given

by
f(X) = Jz__.:l a,j yJ (X) 2
where
b
J a(x) g(x) £(x) z,(x) ax
a = 8
J b

[ A(x) g(x) yJ(X) zJ(X) dx
a
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For the self-adjoint problem

b

[ A(x) g(x) £(x) yJ(X) dx
a = a

J b
[ a(x) glx) ¥, (x) ax
a
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CHAPTER I
PART III
STURM-LIOUVILLE SYSTEMS WITH DISCONTINUOUS COEFFICIENTS

1 Results of Ordinary Sturm-Liouville Theory Systems of the following type,

(1 1) [ry'(X)—_I' +[>~P+ g__]y=0 )

a y(a) + ayy'(a) + ay(d®) + o y'(®) =0 ,

By ¥(a) + By y'(a) + By ¥(b) + B y'(®) = 0
where the ' denotes differentiation with respect to x , are known as Sturm-

Liouville systems The coefficients r(x) > 0, g(x) and p(x) are
continuous functions of x in the interval a £ x £ b and A 1s an arbitrary
parameter The first systematic development of the theory of such systems was
published, as the name indicates, by J C F Sturm and J Liouville
Many mathematicians have added to or generalized the results of Sturm and Liouville
It 1s the objective of this part to indicate some generalizationse resulting from
discontinuous coefficients which are believed to be new

The great interest in S - L (Sturm-Liouville) theory arises largely from the
fact that many boundary value problems in physics and engineering lead to questions

which can be answered by using S-L theory In addition certain problems involving

-29-



the expansion of an arbitrarily given function either in an infinite series

whose terms are prescribed functions or in terms of an integral of prescribed
functions can be resolved by using S-L theory Although the expansion problem is
generally an auxiliary problem to the boundary value problem it is also of interest
in other fields of mathematics The primery interest in this part will be

centered upon either obtaining the expansions or indicating the character of the
expansions Before considering the generalized situations some of the known results

for S-L theory will be listed

Consider the general second order linear differential equation
11 L -—
(12) £o(x) ¥+ £i(x) ¥ o+ I:fo(X) + lgo(X)] y = 0,
where A 1is a parameter and where f2 s fl s fo and go(x) are continuous

functions of x on the interval a <; b4 4; b Further 1t i1s assumed that

fé(x) is not equal to zero anywhere on the interval The general homogeneous
boundary conditions

(1 3) @ y(a) + o y'(a) + o y(d) + o y'(b)

]
QO

By y(a) + By ¥'(a) + By y(b) + By ¥y'(D)

il
o

are taken to be linearly independent Upon dividing the differential equation

f
(2.2) vy fz(x) and then multiplying the result by r = exp [ 2 ax one

o
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obtains the equation

[ry'(X)]' + [lp + g__] y =0,

g T
where p = ?9 r and g = ?9 r It follows since this equation and the boundary
2 2

conditions (1 3) form a S-L system that such systems are quite general
The differential equation of a S-L system 1s self-adjoint The
concept of self-adjoint has been discussed in Part I A S-L system is called

self-ad joint when
(1 4) (o) By - By @) =(b) = (o B5 - o5 8,) r(a)

The most common type of self-adjoint S-I. system has two additional
conditions First p(x) is assumed not to vanish for a LxgKh In this
case both r(x) and p(x) can be assumed greater than zero The second
condition is that the boundary conditions are of the Sturmian type, that is,
(15) o y(a) + ayy'(a) = 0 amd B ¥(b) + B, ¥'(b) =

Where

loil + I Oél > o0 and l Bll + l le > 0

-31-
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The following two theorems summarize the primary results of ordinary S-L theory

TH 1 Oscillation theorem The system

[ry‘(X)]' + l:lp + g] y =0,
o y(a) + a,y'(a) end B, ¥(b) + B, ¥'(B) = 0 ,

where

m] v o > 0w ) v e > o,

has an infinite number of real characteristic numbers which may be arranged in

a monotone increasing sequence,

which tends to + oo Correspondiing to each simple eigenvalue ln , there
ex1sts an eigenfunction @n(x) ; unique except for a multiplicative constant
Each cpn(x) has exactly n zeros in the interval a < x < b

TH 2 Expansion theorem Given an arbitrary continuous and piecewise differential

function f£(x) which vanishes at the end points of the interval when wo(x)

vanishes, then the series,
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) b
nzo C, @n(x) where Cn = £ £(x) p(x) @n(x) ax ,

converges uniformly and absolutely and has the sum f£(x)

The eigenfunctions fulfill the orthogonality conditiomns,

b
I p(x) o (x) QJ(X) dix = 0 when 1 # )
a

The @n(x) form a complete set, that is,

b
[ »(x) £(x) o (x) ax = © for all n ,
a

implies f(x) 1s 1dentically zero and is assumed that the @n(x) are normal,

that 1is,

b 2
] p(x) o, (x) dx = 1
a

The normality condition can easily be attained by letting

1
b

OREXCRIRC 9-(x) ax

The general self-adjoint boundary conditions given by conditions (1 3)

and (1 4) can be reduced easily to the form
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(1 6) y(®) = ayla) + gy'(a) ,
y'(p) = yy(a) + &8y'(a) ,
where
(@ - B7y)r(d) = r(a)

In this case also the eigenvalues are all real The totality of eigenvalues

can be arranged into two sequences converging to + oo These sequences
1 t 1
xl< A, < x3< and (xo<)xl<12< ,

where l(') is present if either B < 0 or B=0 and a > 0O, have the
property that }‘n < }‘1'1 <L }‘n+l It }‘n = }‘x; then this number 1s a double
eigenvalue If )‘n < )\;1 then both numbers are simple eigenvalues  The
corresponding eigenfunctions have 2n , 2n-l or 2n-2 =zeros in the interval
a < x < b , depending upon ¢ and B The expansion theorem and the properties
of the eigenvalues and eigenfunctions for large n have been developed E.QJ

If p(x) chenges sign on the interval, two cases arises according to
whether the S-L system is definmite A S-L system is called definite when

A =0 1is not an eigenvalue and when
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-fb [(ry')' + gy2] ax » o
a

for each twice differentiable function y(x) , which satisfies the given self-

ad joint boundary conditions Both the definite and non-definite cases have

been investigated [ 12 ]
big

Let 'f']': be once and -— be twice differentiable then the transformation
2

=
—
N
~—
il

s(x) v(x) ,

where

X g
/ 0
z = f -f—- dx
a 2

and

y /&
S(x) = ._9 exp .']: f ._l dx ,
b g 2 Tt
2 a 2
takes equation (1 2) ainto the Liouville normal form
(1 7) T"(z) + [A + gz) ] ¥ = 0,

where
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a(z) = %o L L2 s 2o
go 2 f2 S go S

In this transformation i1t 1s necessary that f2 and 8, be positive (or, which

is equivalent, non-zero) on the interval It may be noted that the above

transformation takes Sturmian boundary conditions into Sturmian boundary conditions
The eigenvalue problem given by equations (1 5) and (1 7) is equivalent

to the Volterra integral equation

¥( A 1 X
z) = -a, cos s(z - a) + s sin s(z - a) - 5 [ &(x) ¥(x)sin s(z-x)ax,
a

where A = 52 and s 1is determined so that Y(z) satisfies

' -
By Y(b) + By Y (v) = o
This integral equation form of the eigenvalue problem is most comvenient for

finding the eigenvalue and eigenfunction for large values of the parameter X ,

ie, kn and n are large Tt 1s not difficult to show [ i2 ] for example,

that 1f a £0,840 and
1
) f Q(x) dx ’

H(c, d) =

then
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and

¢ (x) = cos “.2(1_{;8’) + ﬂln [(x-a) {H(x, b) - %}

(v - x) {:H(a, x) + g:} J sin ’q;(f ; 2) < O(—%—)

n

The final interesting result can be summarized in the following theorem
The proof of this theorem involves of course, some of the above results

TH 3 Equi-convergence theorem Given f(x) 1s integrable over the interval

(a, b) then the S-L expansion behaves as regards convergence in the same way

as an ordinary Fourier series

2 8-L Theory with N-points of Discontinuity Problem We shall now consider

a S-L system wath N points of discontinuity The differential equation is

of the type

[ry']' -l:g 4 }\h:]y = o,

that 15 in each subinterval x, <€ x < x

1 (1 =0, , n) the differential

equation 1s given by

(2 1) [rlyij' '[%*“‘i]yi\:‘)
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The assumptions which the coefficients of these equations will fulfill will be

given later

Yo Y. | Yo Ypa1 | Y

X, =8 X

0 1 %o N-1 N

The i1nterface conditions are given by the equations

e (%) & Ny (B) o+ o ey ()

(2 2)

Y (m) = v (g + eovp, ()

where we assume dk Cy - bk SN £0 The end conditions will be chosen as the

Sturmian condaitions

n
o

o y(a) + a, y'(2)
(2 3)

B, ¥(b) + B, ¥'(b)

]
o
-

el

where Ioi' + l oél £ 0 and | Bll + l Bel £ 0 , although most of what follows

applies to the more general self-adjoint end conditions Conditions (2 1),

(2 2) and (2 3) therefore constitute the general S-L system we shall consider

Orthogonality Let the subscripts s and t denote association with the

eigenvalues ls and At If we multiply the equations
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-

L -
[ri Is1 [_gl + }“s hl] Vs1 = 0

by Vi and the equations
)

' —
riy'bi] - [31 N hi] Vg3 = O

by Ysq and then subtract the second set from the first set, we obtain

1

' - ’ - -
Ty [yti Ys1 Ye1 y‘tlj B (}“s l‘t) By Ys1 Yia

We now multiply this equation by Ai , integrate over the subinterval X, < x < X1

and sum from 1 =0 to 1 =N This gives

N

1 ] -
1§o A 47y(xg,,) [yti(xi+l) Va1 (%47) Ve %g4)

y‘l':l( xi+l)] ’

- ry(x) [yu(xi) i (x) -y, (x) y,;i<xi)]}

x+1

N i
= (}‘ - }‘t) Z Al,}fc hl(x) yiS(x) yit(x) dx
i

Now
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"
o

[7%0 (®) yg (®) - v (b) y{o(bﬁ]

and

1
o

] - '
[Fen(® vin(®) - yop(e) yip(@)]
because of condition (2 3) The other terms of the above sum can be written as
N
lgi Al-l rl—l(xi) - A1 Ty (xl) (gi di - bi el{]
1 ]
[yf 1-1 (xi) Vg 1-1 (xi) - Jgi1-1 (xi) g 1-1 (xli}

Consequently if

r1—l (xl) -1
A, = -;:-(2:7— (cl d -b ei) A, (=1, 2, ,» N),
we have
N X141 b
g -2) 2 A [ nx)y vy, & = (g =2) [ A(x) h(x) y () y(x)ax = ©
1=0 b’d a
i
The orthogonality conditions therefore become
b
£ A(x) h(x) y (x) y(x)ax = o (g £ 2p)
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Self-adjoint Interface Conditions In the above deraivation of the orthogonality

conditions 1t was assumed implicitly that the general S-I. system was self-adjoint
Although this assumption proved successful 1t appears worthwhile to show that the
system is actually self-adjoint We note that the differential operator in
condition (2 1) 1s self-adjoint Further the Sturmian boundary conditions (2 2)
are self-adjoint conditions In Part I the recipe

Cx = A—XS Fl-:l (B;)-l By ’

was obtained for finding the adjoint interface conditions In our case

0 -1, (x)

F =

k r(xk) 0 )

B = 4 ®k ’
by Cy

and

0 -r (. (%)

5, = Tr-1\ ¥
r(xk) 0

=41



Consequently

o - Aer T (%) 1 5
kT e (%) (d ¢ - D &) 7k
Since we choose
1 (%) )1

Ay = T, (%) (4 o - by ey

Wwe see that

and that the interface conditions are self-adjoint

Reality of Eigenvalues If X =s 4+ it is an eigenvalue with eigenfunction y

then X =s - it 1s an elgenvalue with eigenfunction ; » Where the bar denotes
a complex conjugate Proceeding in the manner used to find the orthogonality

condition, 1t can be shown that

b 2
21t [ A(x) (x)|y(x) | ax = o

We now i1ndicate the assumptions which the coefficients 1n condition (2 1)
will satisfy As in the general case in each subinterval 1 (1 =0, 1, , M)

the coefficients T, 8 and hi are continuous and such that their limits when

\
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x tends to ¥y or x, . are finite  Further we assume that T, is positaive

for x x £ xi+l and that each h1 1s positive or identically zero for

1 <

x1 <; b 4 << x1+l For at least one subinterval h1 1s positaive The final

assumption i1s that g‘]dJ - fJ eJ be positive for J =1, 2, , N With these

assumptions, we have since

M

A hi(x)l yl(x) |2 dx > 0,

b 0 %11
[ A B(x) | y(x) | % ax = L
a X

1=0

i

that t must be zero and that all the eigenvalues must be real

Since t =0 and

1]

?
v ' !

21t l:hl(x) v, (x) 51(")]
it follows that

§i i -y, 5; = constant for 1 =0, 1, , N
The constant for each subinterval may be taken as zero  Therefore §1 is a
constant times ¥, and y, can be considered as real since they can always be
made real by multiplying by the appropriate constant The eigenfunctions will be

considered henceforth to be real

Characteristic Equations Let the general solution of (2 1) for the i-th intervalbe
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(2 4) v.(% ) = E(X) Y (x,2) + F,(Q) 2(x, 1) =
E, Yl(x) + F, Zi(x) (r =0, 1, , M),

where Yo(x) satisfies o Yo(a) + O Yé(a) =0 , where ZN(x) satisfies

' — — ' - -
By ZN(b) + By ZN(b) = 0 , where Yl(x) satisfies Yi(xl) = 0 and Yi(xi) = -1
(1

(r=1, 2, , N-1) The existence and uniqueness of the Yl(x) and Zi(x)

1, 2, , N-1) , and where Zl(x) satisfies Zi(xi) =1 and Zi(xl) =0
are assured by the fundamental existence theorem for differential equations

We now substitute from equations (2 4) in conditions (2 2) and obtain

for k=1, 2, , N-1

Fe = R gln) = 4 l}?‘k—l Yealx) + By Zk—l(xk)] *
" [Ek—l Ye1(md + By Zl'c-l(xk)]
= Bxa l:dk Y a(m) + e Yl':—l(xk)] * T [dk Ze_1(x) + & Zﬁ-l(xk)] ’
(2 5)

B, = B Y!(x) = E_, [bk Nealm) + o ch-l(xk):l *

Fe-1 [bk Zealxm) + o Zﬁ-l(xk)]

~bho



For k = N we obtain

Py Zy(xg) = By, [dn Yra(xg) + ey Yﬁ-l(’ﬁv):l *

Fy-1 [d‘N Zaaly) + g Zpaly)|

Fy Zn(xy) = By, __bN Tpoalxg) + ey g O | +

A
-1 | Pw Zy1(xy) o S B (=)

Since we can consider Fo = 0 and EN = O and satisfy conditions (2 3),

the relations (2 5) represent 2N linear homogeneous eguations in the 2N

unknowns, E, , F , E; , F (1 =1, 2, , N-1) In order that the E's and

i
F's be non-trivial it i1s necessary that the determinant & of the coefficients
should vanish This requirement gives, of course, the characteristic equation

The determinant has the following form

E, E) Fy B, Fp §E, Foa B Fy oy Ty Ty
vl(Y) 0 -1 0 0
A = ]
Wl()f') 1 0 Q 0 O
0 ve(:f) v2(Z) 0 -1
0 We(Y) we(z) 1 0

O
e

%vi(y) v,(z) 0 -1
O w(Y) w(z) 1 0
(O v (z) -z (x,)

|
Q i O WD) w(2) -zix)




where vi(X) = 4 Xl_l(xl) + e Xi_l(xl) and wl(X) = b, Xi_l(xi) + ey Xi—l(xi)
The eigenvalues are therefore the solutions of the equation A (1) =

It is believed that with suitable conditions upon the d's, e's, b's
and c's the eigenvalues can be shown to be simple
Expansions Let f£(x) be an "arbitrary" function subject to certain restrictions
which will not be considered Further let {:y(x, lj):} be the set of orthogonal

J
non-simple eigenvalue then the set of orthogonal functions includes two linearly

functions associated with the entire set of eigenvalues {:lj;} If A, 1s a

independent functions associsted with lJ Now we assume that it is possible

to write
£(x) ip aj y(x, A )

Proceeding as usual we multiply both sides of the equation by A(x) y(x, lk)

and integrate from a to b This gives

b b oo
] A(x) b(x) y(x, 1) f(x)ax =[ A(x) h(x) y(x, A) l:z ay y(x, KJ)J ax
a a J=1

Upon interchanging the order of integration and summation on the right hand side

and then applying the orthogonality conditions, we obtain

b b ‘
[ A(x) h(x) y(x, &) £(x)ax = a_ [ A(x) b(x) ¥ (x, A )ax

a
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3  Singular S-L Theory with N-points of Discontinuity We now wish to consider

the problem in Section 2 vwhere either b 1s +co or a 1s -ooand b is

+ 00 These two cases, one on the semi-infinite interval and the other on the
infinite interval, are called singular I¥ on a finite intetrval,. r. vanishés at
& or b, or 1¥f~'g or h begome infinite atila’ or b', thenh the 58-I systen is
also called singular These cases will not be~considered but could be treated in
e manner similar to that used for the infinite case

Semi-infinite Problem We first consider a semi-infinite problem The finite S-L

system defined by the relations (2 1), (2 2) and (2 3) must be modified for the
semi-infinite interval The differential equations (2 1) are modified in that we

shall take for 1 = N the equation

woc v ey - o (x > x)

As has been pointed out this is the normal form for a second order differential
equation and 1s most convenient when obtaining asymptotic properties for large
\xl and Ill Although this form is not necessary for the Iy equation since
the asymptotic properties can be obtained in any case, it is less work apd just
as instructive to consider this form

We will consider only one type of 8y gy w1ll be assumed to be greater
than or equal to zero, to be continuous and to be absolutely integrable

Finally it is necessary to make a statement about the boundary condation
at infinity We wi1ll not be careful or explicit here but merely comment that the

solution y should be bounded as x tends to infinity
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Expansions Without any jgustification outside of the results obtained in Chapter II,

we shall consider expanding an arbitrary function f£(x) in the following fashion

(1) t(x) = [ o(s) ¥(x, shs
-co
where A = -32 and Y(x, s) 1is a solution to the modified relation (2 1) which
satisfies the condition o Y(a, s) + o, Y'(a, s) =0 In order to obtain the
formel G(s) which is appropriate for the expansion, we will proceed in a manner
similar to that used in the finite case
First we multiply both members of equation (3 1) by A(x) h(x) Y(x, t)

and integrate the reult, on both sides, from a to oo This gives

I A(z) n(z) ¥(z, t) 2(z)dz =] A(z) h(z) ¥(z, +) []”c,(s) Y(z, s)ds | az
a a

-z

Recalling the procedure used in the finite casel we now wish to interchange the order

of integrations and carry out the inmer integration This leads to the following

faA(z) h(z) Y(z, t) £f(z)dz = lim fx’G&s) [fo(z) b(z) ¥(z, t) ¥(z, s)dz] ds

a X—D oo -co a

o N x1+l
= lam [ ¢(s)| Z Ay / h(z) Yi(z, t) Yi(z, s)dz |as
XD oo =0 Xy

where xN+l here represents Xx
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In order to evaluate this final expression we note that the differential

equations lead to the following result

X Z=X

o o i+l 1+l

- = ' .t
(t s ) i hi(z) Yl(z, s) Yl(z, t)dz ry ['51 Yo, - Y Ty
1 ‘ _
2=X;
. 1) -
At x = a the quantity [?So Yto Yto qu} vanish as a consequence of the initial

condition which Y satisfies In the same fashion as used for the finite case, we
have as a consequence of the interface conditions and the selection of the Ai

(r =1, 2, , N) that no contribution is given to the value of the integral

fx A(z) h(z) Y(z, s) Y(z, t)dz s
a

by the discontinuities at the interfaces Consequently, we obtain

X
(t2 - 52) [ A(z) n(z) ¥(z, s) ¥(z, t)dz = Aq YI{I(;:, s) YN(E,t) - Yl'v(i,t) YN(E,sﬂ
a i

Therefore
?A(z) n(z) Y(z, t) f(z)dz = . _13‘% ZG(S) Ay YI;I(EE,s) YN(E,t) - Yl;,(:"c,t) YN(E,s)]
(42 - 62) 7 as
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At this point we need, in order to evaluate the right hand side of this

last equation, the asymptotic properties of Y. and Yﬁ for large x We first

N
note that YN and Yﬁ can be written in the form
YN(X; S) = QO(S) YNl(x’ s) + (PO(S) YNQ(X’ S) b
and
1] —— L [ ]
Th(x, 8) = o () Yh(x, 8) + o,(s) Yi(x, 8)

where YNl and YN2 are any two linearly independent solutions of the equation

1" Proe
yN - [} + gN] g = 0 It 1s convenient to let YNl and YN2 be the particular

solutions which satisfy

Y = cos s(x - xN) . £’os1n s(x - z) YNl(z, s) gN(z)dz R
and
Yo = s 1 san s(x - xN) -t zkosin s(x - 2) Yﬁe(z, s) gN(z)dz

It is easily verified by differentiation that these are solutions It can be
shown, as 1t will be in Chepter II, that by using the above forms of YNl and ZNE

that
Y = ul(s) sin s x + vl(s) cos s % + o(1) ,

Nl

as X tends to oo and
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Yﬁe = u2(s) sin s x + v2(s) cos s x + of1)

as x tends to oo , where formulas for the v's and u's can be obtained The

essential result i1s that Y and Y'! have the forms

N N

Y, = o(s) sans x + o@(s) cos s x + o(1)
and g

Yﬁ = 0(s) cos sx - s o(s) sans x + of(l1)

as x tends to infinity

We now have

_ lim TOG(S) Ay (t2 - 82)-1 l}ﬁ (%, s) YN(E, t) - YI:I(E,t)YN(E,s)] ds
X—D9 —co

G( in x t)
- ;c__l_iémoo f; Ay 25) g nsxist" [cp(S) o(t) - o(s) e(t):|

sin X Sst- t) [}p(s) o(t) + o(s) g(ti] _ cos X(s + t)

s s+t

|:cp<s> o(t) + a(t) e<s>]

wrries b [e<s) P(t) - oft) <p<s>] s

At this point we apply formally the formulas

sin k(z - x)
- X

o0 o0
lim [ F(x) coskxdx =0 end lmm [ F(x)

Z dx = j'[F(Z)
k%oo -0 k—ew -
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We now can obtain the desired result for we have

[7M(z) n(z) ¥(z, ) 2(z)az = & & &u)+¥uﬂ[}u)+mwﬂ ,

a

since ©(s) is an odd function of s and o(s) 1s an even function of s

Since Y(x, s) 1s an even function of s , we have

f(x) = TC,G(S) Y(x, s)ds = TO[F(S) + G(—s)} Y(x, s)ds
0]

-

Consequently

-1
(5 2) ﬂm=§f ﬁﬂmunnmwﬂmg[&w+&5]
0
Y(x, s) Aﬁl ds

Infinite Problem For the infinite interval the fimite S-L system must be

modified at both ends For x > xN we again take the differential equation to be

- [l+gN]yN =0

vhile for x ( x, we take the differential equation to be

Yo —[l+go]yo=0
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We assume that 8, and gy are greater than zero, continuous and absolutely
integrable
Expansions Again without justification, we shall consider expanding an arbitrary

function f£(x) in the following fashion

(3 3) £(x) = [ |H(s) Y(x, s) + K(s) Z(x, s)] as §
-o0
where X = -s2 and Y(x, s) and 2Z(x, s) are linearly independent solutions of
the differential equations (2 1) The procedure here i1s similar to that used for
the semi-infinite case
In order to find H(s) and K(s) we first multiply both sides of
equation (3 3) by A(x) h(x) Y(x, t) and integrate between - oo and + oo

The result is given by

7 A(2) n(z) Y(z,t) £(z)az = ﬁ(Z) h(z) ¥(z,t) {J?O [H(S) Y(z,s) + K(s) Z(Z.S)] ds {dz

- OO O -0

Proceeding formally we obtain

T A(z) h(z) ¥(z,t) £(z)az = _ 1lim T[H(s)f}_cA(z) n(z) ¥(z, &) ¥(z, t)dz
-oo X —Doo -co -x

+ K(s) fi.A(z) h(z) Y(z,t) Z(z, s)dz| ds
-X
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_ L f:fw) G {Am U&, 5) Yy(%, ¥) - TN(E, t) Y (E, s):l -
A, [Y(;(E,s) YO(E, t) - YI;I(SE, t) YN(;E, s)]} ds
+ _ lim TOK(S) (t2 - sg)'l {AN I:Z&(S‘—’ s) YN(E, t) - YI%(E, t) zN(E, s)] -

x—%oo -0
A [YC')(E, s) zo('i, t) - zc')(i, t) YO(SE, S)]st

At this stage it 1s necessary to have the order properties for large |x|

We shall assume that as x tends to infinity that

YN(x, s) = ul(s) cos s x + vl(s) sin s x + o(1) |,
Yﬁ(x, §) = -8 ul(s) sinsx + s vl(s) cos s x + o(l) ,
ZN(x, s) = u2(s) cos 8 X + v2(s) sins x + o(l) ,

and

-8 u2(s) sinsx + s ve(s) cos s x + of(l)

Zy(x, s)

We also assume that as -x tends to infinity that

Yo(x, g) = ‘ﬁi(s) cos s X + '?1(5) sins x + o(l) ,
Yé(x, s) = -s ﬁi(s) S1In s X + s Qi(s) cos s x + o(l) ,
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i

Zo(x, s) Gé(s) cos s X + ?é(s) sins x + o(l) |,

and

Z(')(x, s)

-5 u2(s) sinsx + S v2(s) cos s x + ofl)

It should be noted that the u's are even 1n s and the v's are odd in s

We shall also use the formulas

sin k(z x)

P-4
k:igg [ F(x) coskxdx = O and _E;m f F( ) - AX =nF (2)

0 - k

With the aid of the above properties and formulas, we obtain

[ AGz) n(z) ¥z, t) £(z)dz = g E() u(t) + gK(t) v(t) |,

- D

where

u(t) AN—ui(t) + vi(t):\ + Ao [ﬁ’ (t) + v (t)]
—

and

v(t)

[ )+ ) ]
SERCIRAS 7 |

Proceeding in a similar fashion 1t is possible to obtain

P

J  A(z) n(z) z(z, t) £(z)dz = ®H(t) v(t) + nK(t) w(t) ,

- OO
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where

w(t) = ANEé(t) + vg(t)] + A [’ﬁg(t) + ?;g(t)]

We can now solve for H(t) and K(t) and obtain

w(t) [ A(z) h(z) £(z) ¥(z, t)dz - v(t) [A(z) B(z) £(z) Z(z, t)dz

H(t) _ l -0 -
X a(t) w(t) - vo(t)
and
w(t) [ A(z) n(z) £(z) %z, t)az - v(t) [ A(z) B(z) £(z) 2(z, t)dz
K(t) = % -z —
n u(t) w(t) - v (t)
It should also be pointed out that H(s) , K(s) , Y(x, s) and 2Z(x, s)
are all even functions of s Consequently,

o<

f((x) = 2 [ [ﬂs)ﬂx,ﬂ + K(s) 2(x, s) | ds
0
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Chapter II

SOME EXPANSIONS ASSOCTATED WITH SECOND ORDER DIFFERENTIAL
EQUATIORS WITH DISCONTINUOUS COEFFICIENTS

1 Introduction In this chapter, in addition to obtaining some expansions

vhich apparently have not appeared in the literature, the method of using

the Laplace transform in order to obtain expansions will be illustrated [2, 61
In order to conveniently use the Laplace transform we shall consider certain
boundary value problems This has the advantage of also illustrating the well
known connection between boundary value problems and expansion problems We
are concerned primarily, of course, with the expansions, since the solutions
to the boundary value problems may then be easily found, and shown unique and
valid by the usual methods [ 5 ]

Another objective of this chapter is to develop the regular (finite)
and singular (semi-infinite and infinite) cases in parallel rather than in
sequence It is believed that this development in parallel will exhibit more
clearly the similarities and differences between the regular and singular cases

The concept of equi-convergence plays a fundamental role in the
following As previously noted the S - L expansion of an integrable function behaves
as regards convergence in the same way as an ordinary Fourier series Similar
situations are shown to exist in both the following regular and singular cases

It 1s interesting to note that the classical method of separation can
be used to obtain the expansions

This chapter consists of eleven sections Since the details become

somewhat involved it appears worthwhile to point out in advance the essentials
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Section 2 contains a statement of the "composite" boundary value problems under
consideration In Section 3 the corresponding Laplace transform problem is
obtained and solved by using a "double" Green's function The formal inversions
of the solution of the transform problem is carried out in Section 4 The formal
expansions are given by equations (4 3), (4 4) and (4 5) In Section 5 the formal
expansions, given by equations (5 4), (5 5) and (5 6), are obtained for the simplest
composite cases

The asymptotic properties, which are needed to prove the equi-convergence
of the general expansions (4 3), (4 4) and (4 5) and the special expansions (5 4),
(5 5) and (5 6) respectively, are developed in Section 6 In Section T the
characteristic equations are investigated and the properties of the spectrum are
found Using primarily the results of Section 6 and 7 an equl-convergence theorem
18 proven in Section 8 The verification of the formel expansions is obtained in
Section 9 This result is summarized in an expansion theorem In Section 10 the
boundary value problems and expansions are found by using the method of separation
of variables The equations (7 4), (10 11) and (10 14) which are derived in this
fashion are equivalent to the equations (4 3), (4 4) and (4 5) The final section
contains some remarks concerning some specializations and generalizations

In summary the formal results of this chapter may be found in the

first five sections, p 1 through p 19, the Equi-Convergence Theorem, p 45,

the Expansion Theorem, p 50, and the last two sections p 50 through p 70

2 The boundary value problems Consider the one dimensional distribution

of temperature U(x, t) in a slender rod or wire consisting of two sections
composed of different materials, when the initial temperature in each section

is an arbitrarily given function of the distance from one end and heat transfer,
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with thermal emissivity q(x) , takes place at the surfaces ILet x =0 be
taken as the surface of separation and let k1 R k2 and Ki R Ké be the thermal
diffusivity and conductivity constants of the two materials There are three
cases to consider corresponding to whether the x-interval is (a) finite,

(b) semi-infinite or (¢) infinite 1In the finite case (a) let the ends be
insulated and let the length of the layers be a and b In the semi-infinite
case (b) let one be the length of the finite section and let the end at x = -1
be insulated Case (a) leads to the regular case while cases (b) and (c¢) lead

to singular cases The boundary value problems become

A L, 4 (X y B (X))
ko, K, £ (x) ky » Ky 5 £, (%)

T T v T x
(21) U(x, ) = KT -qxU (x <0 ,
(2 2) u(x, o) = £, (%) (x < 0),
(2 3) Uy = KU, -3 0 (x >0),
(2 W) Ulx, 07) = £,(x) (x >0,
(2 5) u(0™, t) = u(o*, t) ; (26) x5 U (07, t)=K,U (0%,t) ,
(2 Ta) U, (-b*,t) = 0o , U (a7, t) = 0,
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+

(2 o) u (-17,t) = o, 'U(x, t), < M, where M 1is a constant,

(2 Te) lU(x, t)l < M, vwhere M 1is a constant,

where t > 0 in relations (2 1), (2 3), (25), (2 6), (2 Ta), (2 Tb) and (2 Tc)
For convenience let £(x) = fl(x) wvhen x < 0 and f(x) = f2(x) when
X > 0 and let q(x) = ql(x) wvhen x < 0 and q(x) = qe(x) wvhen x > 0
f(x) is, of course, assumed bounded

We shall assume that q(x) satisfies the following three conditions
First q(x) 1s continuous except possibly at x = 0O Second the integrsl of
lq(x)l over the x-Interval exists This condition is closely connected with the
equi-convergence properties Third q(x) is greater than or equal to zero
This final condition is not a necessary one for the following methods However,
the proofs and results do become less complicated if we use this condition

If ve let K = Ky, & =k,=1 and a(x) be continuous at x = 0
the composite (or two materials) problems reduce to continuous (or one material)
problems

3 The transformed problems and their solutions Let w(x,pn) denote the Laplace

transform of U(x, t) with respect to t , 1 e ,
2o _ut
L{U(x,t) = [ e U(x, t) d&t = w(x,p)
0

Applying this transformation formally to the boundary value problems, we obtain

-60-



(3 1) (o) wix, p) - =k v, , (32 (u+a)v-fh=kv ,

(3 3) w(07, u) = w0, u) , (38 K w (07, ) =K, w (0%, ),
(3 5a) Wy (b, p) =0 ) wx(a: p) = 0 »
(3 5b) wx(-l, u) =0, 'w(x, p,)' < M p;l » where u_ 1s the real

part of _ and is greater than zero ,

(3 5¢) lW(x, u)l < M u;l

If p, > 8 > 0 then Jw(x, p.)l < M p.;l can be written Iw(x, p,)] < N

r 5

where I‘I5 1s a constant dependent only upon B
The solution of these nonhomogeneous problems can be written in terms
of the solution of corresponding homogeneous problems Define the "double"
Green's functions G(x, y, p) by JG(x, y, p)=R(x, y, p) when x < 0 and
JG6(x, y, u) = s(x, y, p) when x > 0 , where J=K when y<O0 and
J = K, vhen y > O and where R(x, y, ) = R(x, y) eand s(x, y, p) = S(x, y)

satisfy
klex-(p+ql)R=Owhen x{y,y<x<L o0, kESxx-(p.+q2) S = 0 when

o< x<y , y< x,
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R(x, y) 4is continuous for x,y < 0, S(x, y) 1is continuous for

o < X, Y

R, M -RGL, M =1 , s, (v, M -8,y =1,
R(0, y) = s(o, y) , K, B (0, y) = K,s.(0,y ,

( a) Rx( -b } y)

]
o
v

Sx(a: y) = 0 )

(b) Rx(']-: y)

i
o
-

S 1is bounded 2

(e) R and S are bounded

As might be expected then from the theory of Green's function tHe solution to

the above transformed problem is given by

(3 6) w(ix, u) = - [ p(y) G(x, vy, n) £(3) ay ,
ot o
vhere p(y) = q when y < 0 and p(y) = -k—z— vhen y > 0 The interval

of integration is from -b to a for case (a), from -1 tooo for case (b)
and from - co to oo for case (¢) This solution may be verified in each of
the three cases in the usual manner by using theproperties of G(x, y, u)

a(x, y, u) can 1n turn be expressed in terms of solutions of the

second order R and S differential equations TIet g's be solutiohs to the
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R differential equation while h's are solutions to the S differential
equation For case (a) let gl(x, n) = gl(x) and ga(x) , and hl(x) and ha(x)
satisfy gi(-b) =0, gl(-b) = 1 and g2(0) =0, and h]‘_(a) =0, hl(a.) =1 and
hé(o) =1 For case (b) let gl(x) and gz(x) , and hl(x) and h2(x) satisfy
-g)(-1) =0, g(-1) =1 and gy(-1) =0, gi(-1) = -1 , and 1, (0) =0, bi(0) =1

and h2'(0) =0, h2(0) = -1 For case (c) let gl(x) and ga(x) , and hl(x)
and hz(x) satisfy gl(O) , gi(o) =1 and 32'(0) =0, g2(0) = -1, and
hl(o) =0, hl'(o) =1 and b2'(0) =0, h2(0) = -1

In case (b) and (c) we also need solutions of the differential equations
vhich are bounded as x tends to infinity even though p be complex When x
tends to infinity let the bounded solution be h(x) = A hl(x) +B h2(x) and
when -x tends to infinity let the bounded solution be g(x) = E gl(x) + F gy(x)
We will indicate how to obtain these particular solutions later

It is shoun in the theory of differential equations [: 9,p T2 and
P 218] that solutions g and h exist which, together with their first
derivetives with respect to x , are continuous in x and p together and analytic
in p for each finite x region and bounded p region

For case (a) if we define wg , W, and W, by

h

Ve = 83 2)(3) - g}(3) g5(3) » Wy = hy(y) Bi(y) - by(y) hi(y) and

Wo =K &{(0) n(0) - K, bj(0) g (0) ,

we obtain
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R(x, y) = [-K2 by (y) Wy - K, 1,(0) g3(0) g () Wél W;l]gl(x) + g,(y) g (x) Wél

(- € x < vy

= [-Ka h, () W;.l -K; 1,(0) g5(0) &, (¥) Wél W;l]gl(x) + g, (y) gy(x) W;l

s(x, y)

[
|

e
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[ ad
~~
s
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=
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e
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=
o
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D‘sl
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For case (b) 1f we define M and N by

M = [B K, g/(0) + AK, gl(o)] and N = - [B K, 83(0) + AK, 82(0)] ’
we obtain
R(x, y) = [N g (¥) + K, h(y)__] g, (x) M + go(y) g (x) (-1< x < y)
= [N g, (y) + K, h(y)] g, (x) M+ g, (¥) ey(x) (y £ x< 0),
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(a7 &, &1(0) B(y) + K, &)(3) ] B(x) M - &70 n(y) By(x)

s(x, y)

(0 € x<K v

(A % 1(0) n(y) + X, &0 ]| B0 ¥ - a Ty B® (v ®

For case (c) if we define W by W = K, BE - K, AF, we obtain

R(x, y) = [K2 AET g(y) + K, h(y):l g(x) W +E7 gy(y) g(x)  (x< ¥ < 0)
= [ aE e + Ky n( | g W BT gy g0 (<x < 0,
sGe, ¥ = [ EAT R + K e ] B ¥ - AT n) ny(x)  (0< x < )

- [ Ean vk em] B@ W -2 R < )

It may be noted that &(x, y, u) = 6(y, x, u), i e , 6(x, y, ) 1is a symmetric
kernel in each case Consequently, with recourse to the theory of integral
equations an expansion theory could be developed

Substituting in equation (3 6), we obtain for case (a)

& K 0 X . -1
(37 wix, w = £ ghl(y) £,(y) ay + { ggg(o) h (0) g (y) £1(y) W, dy

-1
g, (x) W,

J"x—L (v) £,(3) dy gy(x) W fo—l— (y) £,(y) &y g (x) W'
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a

= g (x) (f) E—Z b (y) £,(3) ay W;h + [Kl g5(0) h,(0) g (x) - W, GQ(X)]

X

1 -1 -1
-1{ & g, (v) £,(y) ay W~ W
o - -
+ g (x) J —}h—l (%) 830 0, (0) & (3) - Wy gy(¥)] £1(») ay W' W5+
X

(-» £ x £ 0 ,

w(x, u) = fo 2 g, (v) £,(y) ay + fa 1 g](0) ny(0) h (¥) £,(y) W™ d%}
3 K &Y o kK, &Y% % 2\’ My
by (x) W'
*a -1 %1 -1
- X, h(y) £5(y) ay b (x) W~ - X, b, () £,(y) ay hy(x) W
0 X

= b (x) { ;% g, (y) £,(y) ay Wy~ + [#i g,(0) h,(0) hy(x)-W, hQ(X{}

8 1

J -%; B (y) £,(y) dy W~ WG
X

) —%; [K1 81(0) 1,(0) b () - by(¥) wf] £,(9) dy W, WGt

0 £ x £ a) j

while we obtain for case (b)
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0

2= % 1 -1
(38) w(x, n) = [— (J; E, h(y) f,(y) dy - ¥ J_'l X g, (y) £,(y) dy | g,(x) M

0 -1
- {c _1_1;; g,(y) £,(y) dy g (x) - i —ll{-z g, (y) £,(y) dy g,(x)

X
= (J; E—-—Zh(y) £,(y) ay g (x) M - [N g,(x) + M gQ(X)] fl —];lq g,(y) £,(y) ay M

= °f (¥) | Ng(y) +¥ ge(y):] dy g, (x) Mt (-1 < x < 0

"N
o
[

Xy . ! -1 -1
J_'l K, g, (v) £,(y) dy - K; g{(0) (J; , h(y) fy(y)dy A" | h(x) M

A
X
=
n
i l

+ A7 [ S hy(y) £,(y) ay n(x) + A7

= ] —%— n(y) £,(y) dy hy(x)

= e,(y) £,(y)dy h(x) Mt - -i—g [K-l g{(0) b (y) - X, & (0) he(y)]

-1 71 0

fl
1
—

£,(y) dy h(x) M
- )f{—%‘— n(y) £5(y) dy [Kl g,(0) n,(x) - K, & (0) he(x)] M (x 2 0

and we obtain for case (c)

n(y) £,(y) dy - AE™ ZC% g(y) £,(y) dy] g(x) W

SIS

(3 9) mw>=ET—
0
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0
- E'l f
X 1

2

(J?o
0 k

o

0

W(x: P-) =

X

+ A'lé -i—e hy(y) £5(¥) dy b(x) + A”

0
-

-0

- (f) —11(—2 [Kl Eh(y) +K,F he(y):\ £,(y) ay h(x) W (x

4  The formal inversions

f]l‘— gx(y) £,(y) dy g(x) -
h(y) £,(y) dy g(x) W - [
,{ —%‘I £,(y) |:K1 B gy(y) +K, A gl(y)] ay &(x) W (x <

°K -1
[--LOEI gly) £,(y) dy - E & é K
K g(y) £,(y) dy n(x) v~ -

Formula (3 6) expresses

X
B I + &y £,(3) ay g,(x)

oo

X

—i; g(y) £,(y) ay Wt [K1 B g,(x) +K, A gl(X):]

-0

0) ,

oo K
= 1(y) £,(3) dy] h(x) Wt

3

1 1

*, h(y) £5(y) ay h,(x)

M-

3

_1];— h(y) f2(y) dy |:K'.|. E hl(x) + K2 F h2(x):| w-l

2

1

"~

> 0)

w(x, p) 1in terms of a

double Green's function, a step function and the arbitrary function £(x)

Roughly speaking we obtain the desired expansions by inverting formula (3 6)

and expressing f(x)
will prove later, that w(x, p)
poles, the zeros of Wf

(4 1)

in terms of w(x, p)

£(x)

For case (a) we shall now suppose, and

has & countably infinite number of simple real

In this case we formally let

= lim




where (Cn) are large contours in the p-plane which enclose all the poles in the
limit For cases (b) and (c) we shall now suppose, and will prove later, that

e
w(x, u) has as its only singular point a branch point at the origin For these

cases we formally let

I

0
(s 2) (0 - =1 1 fulx, u)} %

where I {z;} is the imaginary part of =z
Using formula (3 7) in equation (4 1) we obtain formally
-1

oo a
(4 3) 2 = 2 [ e X, £() oy ,(0) [,0) ¥y (0) W, ]

where p(y) has the previous meaning, where Wn 18 the derivative of Wf

with respect to p evaluated at the n-th zero of Wf P where either

¢ (0) = n (0) = h(0, p ) and Wn(o)_=_ g,(0) or @ (0) = K, h'(0) and ‘i’n(o)

b

Kl gﬁ(o) , €ither choice being equivalent for each n , unless for a particular

n both hn(O) and gn(o) are zero or both hﬂ(o) and gﬁ(o) are zero, in which

case the non-zero palr is chosen and where

N

X (x) = 9 (0) g (x) = o_(0) g (x, p) (-b < x

i

= Wn(o) hn(x)
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When p is real in case (b), gl(x, n) = gl(x) s ge(x) s hl(x) and h2(x)
are real while A = A(p) and B may be complex Using formula (3 8) in equation (L4 2),

we obtain formally

Iif: Y £.(y) (3 I {MN} dy+f Ez £,(y)1 {h(y)M}dyJ

gl(x) M-l ﬁ _l d'“ 2

bW o = -2

0 X
f [Jl' %fl(y) g, (yay 1 {h(x)ﬁ} + g '1};"

"'lll-"

()

{I& 8{(0) 1y (y) - K, & (0) ha(y)} £,(y) dy I {h(x) ﬁ}

o

1 o '
= A G {h(y) M} dy {Kl g/(0) b (x) - K, g, (0) he(xﬁJ

where M 1s the complex conjugate of M
When p 1is real in case (c), gl(x, n) = gl(x) , ga(x) , hl(x) and ha(x)
are real vhile A=A(p) , B, E and F may be complex Using formula (3 9) in

equation (4 2), we obtain formally

P
5 £ = -= }_’Oo [g £,(¥) I{h(y)W g(X)} dy + f k1 £ 1

{g(y) W[k Bay(x) + K, A gl(X):l} dy
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0
+ -%I £,(y) I -{F(X) W [Kl B egy(y) +K, A sl(Y);{} dy:] IR e,
X
1 0 ° K = e 1
B = -2 | gn®T {0 T} a [t T
.{P(y) W’[Kl Eh(x) +K, F he(x)]:} dy
X 1 _
+ é X £,(y) I {;h(x) W [Kl Eh(y) +K, F he(y)]:} dy

5 The special cases g(x) 1dentically zero When gq(x) 1s i1dentically zero

equations (3 1) and (3 2) become differential equations with constant coefficients
Consequently, they can be solved along with the auxiliary conditions by using
variation of parameters or by using the Laplace transform with respect to x

For case (a), we can obtain

(5 1) wix, p) = - [éos sl(x +b) p(s) + (cos S, & COS 8) X + k! sin s, & sin s x)q(s
-1 -1 -1 X
W, s - 8 é —EI fl(y) sin sy (x - y) dy (-b £ x K 0)
wix, p) = - [?os sl(a - x) a(s) + (cos s) bcos s, x - K sin s, b sin s, x) p(s{]

_11?5 £(y) sins, (x -y) dy (0 < x < &),

where
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ol
=
=

0
p(s) = Ef) -k—i- £,(y) cos s, (2 - y)dy , a(s) = {b ELJ: ,(y) cos &,(b + y) dy and

'—J

X
2

EK__LIL_L coss asinslb+K2k cosslbsinsza.

1 1
We shall always select the branch of “2 where the real part of “2

is greater than zero, i e , we choose -x < © =« when p=r eio and

11 0

2 2 i3
u = r e Let S=Sr+isi Since S=i~/u:51>0

For case (b), we can obtain

is,y
2o K 1 2 -1
(52) w(x,p) = - {) k, ZIs, e fz(y) dy cos s; (L +x) M
b4 K
1 -1 el 2
-] == f(y)coss (L+y) ayM s—=—— CO0S 8, X + sin s.x
1 ]L_L 1 1 o] 21 85 1 2 8y 1
- ? Ly (y) ————cKJ' os s + sin 8, x | dy cos 8 (l+x)M-:L
y K 17 21s, 1Y N 1 y 1 o
(-1 € xK 0)
( fo 1 i 8y X 4
wix, p) = - 7= cos s, (L+y) £.(y) iy =——— e M
‘LK 1 1 21, o
X k is
1 2 1 17 -1
- f k) l:KE cos sy cos 8, ¥ - K| % sin s, sin s, y:l fz(y)dy 5o © M,
0 1 2
is,%y k
21 1 2 2
- f k. 5.5 °¢ fQ(Y)dyl: cOs 8, COS B, X - K'.L \/;sm 8y sin 85 x]
x 2 2 1
-1
M (x > 0,



where

5 V%

M = —————— sins + 5~ cos s
o] / 1 2 1
21 kl

For case (c¢), we can obtain

cx:Ké i 8, ¥ - i 8, X % -is y
(53 wx,w = | ] = 50 3733 Sy + f—}l;-zilse '

o Ko 2 1 ool 1

fl(y) ay ( 5T cos s) X + 5 5y sin 8 x)

-1 8, X
. 0 5 %

0 K1 -i 8 ¥ 1 8, X - i 8y ¥
w(x, n) = | [ Z850) F— 1= dy+fll§ ST 5L W
. 1 2 x 2 -
K
( 51 s, cos s, X - —3 > sin s, x)
1s x
+ Z - fx i (2 2 cos s, y - §El_ sin s, ¥) fg(y)dy
18, o o 18 E

-+ 1)k /S,y + Ky )T (x > 0)

Using these last formulas and equations (4 1) and (4% 2) we can obtain

the formel expansions TFor case (a), we obtain
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) a _
(5 4 £(x) = L fb p(y) z,(y) £(y) ay Z (x) |:CPon(0) Vo (0) Won:l .

n=0

where Won is the derivative of Wo with respect to 8 evaluated at the n-th

a
zero of W, , p = p  , where either q)on(o) = cos 8 and won(o)

X ® X

2 a

b — s_ 8in s
n or q)on(O) = + s, 8in s and Won(o)z 7k1 n n
v J B ko

, elther choice being equivalent for each n , unless for particular n both

a
cos s ————  and

n cos sn -—b; are zero or both sin sn b and sin Bn 8
Ve /A /4 VA

are zero, in which case the non-zero pair is chosen and where

Zn(x) = CPon(O) cos s N (x + 1) (- << x K 0)
kl
= V_(0) cos s ——l—-—-—(a-x) (0 £ x X sa)
on n \/TE
For case (b), we obtain
2 o0 o0 "1
(5 5) f(x) = ;’ é Z(x) 8) [Il P(y) Z(Y} 8) f(y) dY} [G’(S) } ds ,
where
g(s) = ‘2 (cos2 8y + K2 sfi.n2 sl)
Vv k2
and where



7Z(x, 8) = cos 8, (1 + x) (1< x K 0)

= cos 8, ¢c08s 8, X - K sin 8, s1n 8

1 2 1 o X (x > 0

For case (c), we obtain

e [zL(x,s) z,(¥,8) + KK, [k, zg(x,s)zg(y,sﬂdyds

— NN AW

(56 o = 2

cnhﬁg

where

- CO8 8

Zl(x, s) 1 % (x £ 0)

K, / kl sin 8y X, Zg(x, 8)

Kl k2 Sin s, X

[}

- cos 8, X (x > 0)

6 Asymptotic properties As previously indicated we shall show that the general

expansions (4 3), (4 4) and (4 5) are equi-convergent respectively with the special
expansions (5 4), (5 5) and (5 6) In order to prove the equi-convergence property
we need asymptotic or order properties for the two cases, |x| is large and |s|
(or | ul ) 18 large The methods of obtaining these properties are found largely
in Titchmarsh [18} Consequently only some of the results and a few words of
explanation will be displayed

Using the differential equations and the initial conditions which the
solutions satisfy it 1s easily verified that [18, P 9] the g's and h's satisfy

integral equations similar to the following particular cases
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X

(6 1a) g(x) = cos s (x+D) + Bi ) {b sin 8 (x - y) ,(7) & (¥) ay
1 1 x
(6 1c) g (x) = 55 sin 5 X 4 R é sin 8, (x - ¥) a,(y) & (y) dy
1 X
(6 2a) gi(x) = - 8 sin sl(x + D) + jEI {b cos sl(x -y ql(y) gl(y) dy

Using equations (6 la) through (6 2a), it is possible to obtain the

8 s
following representative order properties TIet ¢ = 1 and T = 1 ’
=) /%
vhere s =s8_+ 18, *
Tr i
6 3a) (x) = (x +1b) +0 -1 (o(b+x) iformly f b x & O
(6 3a g (x) = cos s,(x + ) + |s| e wniformly for -b x (

Equation (6 3a), for example, may be verified in the following masnner Let

G(x) = gl(x) e-o(b+x) and C = max 'G(x)l
L xgK 0
Therefore by equation (6 la)
~o(b+x) 1 x
G(x) = cos sl(x +b) e X, -Egiigl {b sin sl(x - y) &(y) ql(y)
e- U( x-Y) dy

+*
We shall write gl(x) =0 {?c(b+x):} uniformly for -b  x O to signify that

-c(b+x)|

for large |s| , Igl(x) e < M, vhere M 1is independent of x 1n the

interval -b <; x 0
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By taking the absolute value, we._have

X
1
c £ 1 + J Clq(y)ldy
X
|81|k1 -b 1
and consequently

-1

c<|:1-—i-—- fo lq(y)ldy
=~ 3] By p R :l ’

provided the denominator is positive This is certainly true if |s| is large

-o(b+x)l < M, where M 1is independent of x Using this

Consequently gl(x) e
in equation (6 la) we have equation (6 3a)
The following order properties for large le can be obtained in a

manner similar to that used by Titchmarsh [}8, P 98]

i sl b 4
(6 ke) gl(x) = e {%(s) + o(l{}

as -x tends to infinity (complex s) , where

1 1 0 -is vy
R(S) = 3] Sl T 953 sl 1& {oc.e ql(Y) gl(y) dy ’
(6 5¢) gl(x) = Ei(s) cos 8, X + Gi(s) sin s; x + o(1)

as -x tends to infinity (real s) , where



0
~ 1 0

~ 1 1
(s) = J] sins, yq(y) &(y)dy and 7 (s) = - /
Y 8y kl - os 1l 1 1 1 8y 8, k1 D oo
cos 8, ¥ q;(¥) g (y)dy ,
i 8y X
(6 6c) ge(x) = e {é(s) + 0(1);}
as -x tends to infinity (complex s) , where
0 -is ¥y
1 1 l
8(s) = -5 - z75% [ e 0, (¥) &(y) dy ,
11l -co
(6 Te) ge(x) = Eé(s) cos 8y X + %E(s) sin s, x + o(1)
as -x tends to infinity (complex s), where
1 0
U(s) = -1 +—=— [ sins ¥q(y) &ly) ay
171 -co
and
1 0
vp(s) = 5 K ] cos s yq(¥) gy(y) ay ,
l -
-1 8, X
(6 8v, c) hl(x) = e .{%(s) + o(l{}
as x tends to infinity (complex s ) , where
is,¥
1 1 £ 2
P(s) = - - ] e (y) b (y) ay,
Zis, " FTisy K, ) RY) By
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(6 9v, <) hl(x) = ul(s) cos 5, X + vl(s) sin &) x + o(1)

as x tends to infinity (real s), where

w (s) = - —?:—ka— (j;oosin 8, ¥ a(¥) by (¥)dy
and
v,(s) = tz + 321k2 [ cos 5, ¥ 4(¥) n(¥) ay ,
0
-1 8, X
(6 10b, c) h2(x) = e {Q(s) + o(l)}

as X tends to infinity (complex s), where

is,y
a(s) =--;- - 2—1—%—1;— Te g(¥) h(y) &y
22 0
(6 11v, c¢) b,a(x) = ue(s) cos 8, X + VE(B) sin s, X + o(1)
as X tends to infinity (resl s), where
l =D

w(s) = -1 - 5, X, £ sin s, ¥ a,(y) h(y) dy
and

vy(s) = — X, [ cos s, ¥ a,(¥) by(y) ay
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The following equations can be derived in a straight forward fashion

from the above definition and order properties

(6 12¢) Rs) = 3 [@(e) - 19,(s)] = [‘2‘11—51 . 0{|s|-2}]
(6 13c) s(s) = 3 [A“%(s) - 1%(5)] - [_%_ . 0 {'sl-l}]
(6 1, o) Ps) = % :“1(9) *i"l(s)] _ :5—}—&; . o {lsl' }:\
(6 15b, c) Q(s) = -;- :uE(s) +iv2(s)] = :-% + O{lsl—l}]

(6 16¢) W (s) Fp(e) - F(e) H(s) = %1

(6 17v, c) uy(s) vp(8) - vy(8) wy(s) = _;;

Let us now consider the existence of solutions to the R and S
differentisl equations which are bounded even when s (or pu ) is complex
Since the methods are similar consider only the case of a solution bounded as
x tends to infinity We previously let h(x) = A h._L(x) +B h2(x) Using

equations (6 8b, c) and (6 10b, ¢), we have

hix) = A e-1 %2 % -{?(s) + o(li} + B e—i "2 '{9(5) + o(l{}

as X tends to infinity When s > 8 > 0, it is apparent that h(x) can

not be bounded as x tends to infinity unless A(s) P(s) + B(s) Q(s) = 0 Therefore
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we put A = Q(s) and B = -P(s) Consequently, we have

(6 18) A Q(s) amd B = -P(s) , h(x) = a(s) hy(x) - P(s) hy(x)

18, x
2 1 1 1
e %Q(S)—— + P(s) 53 + z5—— [
21 N 2 21 85 k2 0

-1 8y ¥
a(¥) h(y) e dy

-21 8, x 1s

0¥
e a,(y) h(y) dy}

21 52 k2

n
'._-l
x%‘g

It is possible to verify directly that the right hand side of this equation

satisfies the § differential equation
-1 8, X
e h(x) eand let C = LUB |H(x) | eking
x20

Now let H(x) = 85

absolute values, we obtain from equations (6 18)

|50 < o) g + 20 B+ gk | %) |50+

§T521|—ke FCQQ(Y)I H(y)ldy
X

Therefore

82 1 =0
+ '2—1’(8)' YR [5,] c é w(y) &y ,

f\)ll—‘
[y

¢ < |ale)
and
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8 oo -1
c K IQ(B)% + 2—2-P(s)| l: - é_l_s-i-l-%— é qe(y)] ’

provided the denominator is positive This is certainly the case if lsl is big

8
enough By equations (6 14b, ¢) and (6 15b, ¢) we can see that ,Q(s) —%I + §§ P(s),

is bounded for large |s| Consequently

h(x) = O.{!slcl e-Tx;} uniformly for x >0

Using this order property along with equations (6 1lib, c) and (6 15b, c), we obtain

1 -1 1 1 -2 1
G, o) o« ([} of | }]QT; o lag et s
is,x
0 {:|s|—2g}:> e °
is,x
1 2 -1
g e o)

In a similar fashion, the following equations can be obtained Iet E = S(s)

and F = -R(s)

-1 8, X
(6 20c) g(x) = S(s) g (x) - R(s) gy(x) = e
0 18 ¥
{-S(S) 51—-;-'8'-—-+ R(s) ']é:'"é'i_JS-T I gy eme *ay «
1 1 x
2i s, x x -21s
e -Qi—iﬁgf [ e * q; () &(y) d.v} ,

_§2 -



-1 8, x
(6 21c) g(x) = 2118 e l:l + 0 {lsl-l}]

1l

Equations (6 19b, ¢) and (6 2lc) indicate that h(x) and g(x) not
only are bounded but also tend to zero respectively as x and -x tend to
infinity, provided |s| is large enough In the case of complex s it would be
desirable to eliminate the requirement that |s| be large The writer has been
unable to do this directly Using Titchmarsh's results [}8, P l9:]this may be
accomplished in the following indirect fashion

Now h(x) = Q(s) (x) - L)Y (x) It is easily seen from

h1 Qs 2

the previous order properties that

(s hl(b) hl'(b) hl(b)cos s+h1'(b) sin B
alsy ~ bgmw heib) = blgx he'Zb) = bgoohe(b) cos B+h2'(b) ein B

hl(b) cos B + hi(b) sin B
h2(b) cos B + hé(b) sin B

satisfies the boundary condition

If ve let { (b, 8) = then hl(x) + f(v, s) h2(x)

l:hl(b) + f(v, &) he(b)] cos B+ [hl'(b) + f(b, 8) he'(b):l sinp =0

Using Titchmarsh's results [;8, P 21] we can conclude that for every value of
n= -52 other than real values lh(x)l2 is Iebesgue integrable Further as

Titchmarsh has shown [18, P 22:| for any fixed complex p and A

-£83%-



1m  [n(x, u) b'(x, B) - B'(x, w) b(x, B ] = o
X —> oo

The last result is the one which will actually be used in investigating the
properties of the roots of the characteristic equation

Likewise g(x) satisfies

&

un  [alx, w) &'(x, B) - &(x, B) g'(x, W] = 0
b'd -0

In the sections dealing with equi-convergence proofs we need the order
properties of the characteristic equations For case (a) we can obtain by using

order equations of the type (6 3a) the relation

(6 222a) Wf = -8 Wo + O {:eTa * Gb;}. uniformly for -b  x K a,

where W, 18 defined in comnection with equation (5 1) For case (b) we can

obtain the relation

/ k K
(6 22b) Moo= - El————g sin s, + == cos s + 0 [s|—l e’
o1 [k 1 2 1
1

uniformly for x ;; -1 For case (c) we can obtain the relation

(6 22¢) w=-1£—S [Kl\/TQ+K2/kl:|ljl+O Ti—]—il

uniformly for all x
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In case (b) we also need the order property for N
/ / 1
(6 23vb) N = fi———fg- c + fg———fl in s, + 0 J | |_2 e’
3 -7 Z21s 98 % 2s 8 1 8

T The characteristic equations Before considering the equi-convergence proof

we need to consider whether the characteristic equations have any zeros And,
if there are zeros we need to investigate their number and location

First let us show that there are no complex zeros pu for any of the
three cases Consider the following "Sturm-Liouville" type systems which determine

the characteristic equations

(7 1) Roug - [ ] uxw = o (x < 0,

(7 2) kyu o - (b+g)u = 0 (x > 0) ,
(7 3) u(0”, w) = u(0’, u) , (7% ¥ w(,u = K u(,u ,
(7 5a) ux(-b) = 0 = ux(a) R (7 5b) ux(-l) = 0, u bounded ,
(7 5¢) u bounded

Taking complex conjugates we obtain also



u,-M+g)u =0, kKu -(i+a)u =0,

E(O_, ll) = E(O+; ll) ) K'_L

1]
o

u, ()

2

X

E(O_; ll) K2 E(O+, ll) )

7, (a)

o , @(-1) = 0

Eliminating ql(x) and qe(x) between corresponding differential equations,

we obtain

n = o - 2 o
[u u-u u] = -—kl pyuu (x

where Hy is the imaginary part of p

<o), [_u"ﬁ-ﬁ"u]:—i—piuﬁ(x>0),
2

Integrating these two equations, we have

- = 0 © % - a
[_u' u - u' u]_b = -2u, [ = u(y) u(y)ay , [u' u-u' u] =
14, K 0
a —
-2u, [ T uwu dy ,
i 0 k2
- 0] 0] K.l _ - oo o.,Ke _
[u'u-u'u:l = -2p1f — uwudy , [:u'u-u'u] =-2pif—uudy,
1 a0 0 o ¥
_ _ L0 oK _ - oo Ky
[u'u-u'u:l =-2p.1f El—uudy ’ [u'u—u'u] ='2“1ffé'uudy
c— oo 0 0

In case (a) if we apply equations (7 3), (7 4), and (7 S5a) and their conjugates we

have
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In case (b) we note that the only possible bounded solution of equation (7 2) are

given by constants times h(x) Using equations (7 3), (7 4), and (7 5b) and the

result
lim [h(x: p) h'(x, d) - h'(x, u) h(x, )‘)] = 0,
xeoo
we have
0 K oo
~2py / El uudy + [ ;2 uudy| = ©
-1 1 o 2
In case (c) in a similar fashion
oK _ e Ky _
-2u [ = uudy + [ = uudy = 0
i k k
-co 0 2
5 5
If = E; > 0 , vwhich is certainly true in the physical case, then for case (a),
1

(b), and (c), u; =0

Next let us show that there are no positive roots p of the characteristic
equations Since qg(x) 2> O , equations (7 1) and (7 2) indicate that u and
u_ always have the same sign 1In case (a) it is easily seen that u‘'(x) 1is

unable to satisfy the requirement of vanishing at both a and -b Thas is
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apparent since both u(x) and u'(x) are monotone functions on the interval
DL x<Ka In case (b) 1t is again apparent that u(x) and u'(x) are
monotone functions with the same sign Consequently wu(x) can not satisfy the
condition of being bounded as x tends to infinity A similar argument shows that
there are no positive roots of the characteristic equation in case (c)

In case (b) and (c) we can show that when p 1s negative, i e , s
1s real, that the characteristic equations have no zeros In case (b) let us
suppose that M = K, Q(s) gl(O, 8) - K P(s) gi(O, s) has a real zero ¢
Then for this value o , K, Q g (0) = K; P g1 (0) Multiplying by P , the complex
conjugate of P , we obtain K, Q P gl(O) =K P P g]‘_(O) Since the right hand
side of this last equation is real for real ¢ , the imaginery pert of Q P must

equal zero Now hI<{Q f{} = I {(uE +1 Vé) (u1 + 1 vli} = W v, -u, v
This latter quantity uk % u, v, o, however, can not equal zero since by equation
(6 17) it is equal to 0—2

In case (c) let us suppose that W = K, AF +K BE =K, Q(s) R(s) -
K P(s) S(s) has a real zero ¢  For this value of ¢ » L, QR=K, PS
Consequently K, QRPS=K PSP5 amd K, QR P S 1s positive In particular

I.{?é QR P %}-= 0 Making use of equations (6 12c¢) through (6 17), we have

8QRPS = (u2 +1 va)(u1 -1 vi)(ﬁi -1 Gi)(ﬁé + 1 9;) =

S5 A

[(“1“2+V1V2)(qﬁ2+?1?"2)'—2_ + 1 ol (u) vy + vy v,)

o
V/ka ~ —~
(o (ul YW + 1 vé)



By equations (6 16) and (6 17) P, QR and S can not be zero for finite o

Since I£K2 QR P E} =0 and K, QR P S 1is positive,

k
2 A A ~r A
byt + vy ¥ = - K (L o, + ¥ %)
and
~ )
(v vy + vy vp) (o By + vy vp) 2 2

These last two relations give

'k k. x
2 .2 1 %2
N (U + 7 ) > 2

This 1s obviously a contradiction We can conclude there exist no zeros of W vwhen
s 1s real
We still must consider case (a) when pu 18 negative, i e , s 1is real

From equation (6 22) we have

r
Wf = K'_L S]'_(O) hl(o) - K2 hi(o) gl(o) = - 8 wo(s) + 0 {jc'bvca}

uniformly for -b <L x 4; a , where again

K

5 2
Wo(s) = i;7§:r cos 5, & s1n 8, b+ cos s; b sin s, a
1 Vo2

-89-



Now when . 18 negative By » and consequently o and <t , vanish The

characteristic equation becomes

We = -8 [wo(sr) + 0 {|sr['}]

For large Isrl the zeros of W,

The equation Wo(sr) = 0 may be written in the simpler form sin & = K sin C5,

]
o

are therefore approximately those of Wo(sr)

where

b, s\ 50 B

vE VA vV E V.

-1
Kl + Ké and
N k1 V2
(f ) = =)

It 1s clear that the value (2n + 1) , n an integer, does not satisfy thas

last equation It is also clear that there exists one and only one & between
= % (2n + )n and & = % (2n + 3)x which does satisfy the equation Wo(sr) =0

We next shall show that the zeros of Wo(s) are simple ILet 5, be a

root of Wo(s) =0 It 1s easily seen from the differential equations involved thst

[8i(x, o) &y (x, 8,) - g(x, 5)) g,(x, 8) | = (s -5) glx, 5) gx, s

and

~90 -



[h]'_(x} 8) hl(x} sn) - h]’_(x} sn) hl(x} S)] = (S = Bn) hl(x} sn) hl(x} 8)

Integrating these last expressions and using the end and interface conditions,

we can obtain using the notation of section 5 ,

(s - s)7 Pon(0) ¥ (o) W (s) = [ X(y, s) p(y) X(y, sy)dy

Consider now the result of taking the 1limit on both sides of this equation as s
tends to s Since s 18 a zero of wo(s) and Wo(s) is an entire function
of s because gl(x, 8) , gi(x, s) , hl(x, s) and hi(x, s) are, the left hand
side of the equation becomes mbn(o) won(o) Won From function theory we have,
since gl(x, s) , gi(x, s) , hl(x, s) and hi(x, s) are continuous in x and s

together and therefore bounded provided s 1s bounded, that X(x, s) converges

uniformly to X(x, sn) Consequently we can interchange the order of taking the
a
limit and integrating on the right hand side and obtain [ p(y) Xﬁ(y) dy It
a -b

follows that q%n(o) wbn(o) W = [ »o(y) Xﬁ(y) dy end W_, £0 The zeros of
-b

Wo(s) are therefore simple

8 The equi-convergence proofs In rough language the equi-convergence properties

for case (a), (b) and (c) result from using limiting processes on certain integrals

For case (a) we shall start with the contour-integral (Qni)-l / w(x, p)du ,
(Pn)
where the path (Pn) is the simple closed curve determined by the two large parabolas
2 2 2 2 2, 2
n, =a, (an - ur) and u = an(an + “r) , where
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g - M+l b . _= -1
n 2
VR Vs
For case (b) and (c) we shall start with the integral

r+ie
f w(x, wdp where ¢ > 0
-r+ie

A+~

Since our order properties are expressed in terms of s , we desire
integrals in the s-plane corresponding to the above two integrals in the p-plane

Recalling that p = —32 » we have as an equivalent integral for case (a)

-(n::l.)_l { ) w(x, -se)sds ,
Hn

where the path (Hn) consists of the three lines s, = e, where -a, < sr,<; a_ ,

i n

sr = an where O <§ Bi <§ an and Br = -arn where O <; si 4; an For case
/

(b) and (c) an equivalent integral is

/ w(x, -se)sds ,
(8)

]
Al

where (H) is the path made up of the lines 8y = (R + 8) where -(R + 8)K 31.4; -8
€
and s = -(R + 8) where 5 ( 8,  R+56 , with 8= SR T5) > 0
Since 1n case (a) the equivalent integral results from merely a change of

complex variables, we can write



(8 1) ()t [l -sDeas = (2)T [ w(x, wWan
(Hn) (Pn)

provided w(x, p) 1s analytic along the path (Pn) Thie last condition is

fulfilled for large n since (Pn) was chosen to pass between the zeros of Wo R

> e , the zeros of Wf
In case (b) and (c) the lines making up path (H) map into portions of

the two parabolas u? = k(R + 8)2 L(R + 6)2 - pr] and uf = 4(R + 8)2

[(R + 8)2 + pri} Considering large R and small & , put r = (R + 5)2 - 82

The parabolas in the p-plane thus contain the pointe p = -r + 1 ¢, p = 2i1(r + 52)

and py =1r + 1 € This path in the p-plane 1s equivalent relative to the integral

A

f w(x, u) du ,

to the original straight line path of the integral between p = -r + 1 € and
p=r+21e€ Thais follows darectly from the Cauchy-Goursat integral theorem
provided that w(x, pn) 1s single-valued and analytic within andon the simple
closed curve formed by portions of the above two parabolas and the straight laine
path between p=-r +2€ and r + 1 € This will be the case if w(x, u) is
analytic in the upper half of the p-plane

Now gl(x, p) = gl(x) , ge(x) R hl(x) and h2(x) , along with their
first derivatives «#ith respect to x , were previously noted to be continuous in x
and 8 together and analytic in s for each finite x region and bounded u region

Using equation (3 8) it follows that in case (b) w(x, p) may have singularities only



at the singularities of P(s) or Q(s) and the zeros of M(s) It is apparent
from equations (6 8b, c) and (6 10b, c) that P(s) and Q(s) have at most

branch points at p =0 We previously showed that M(s) has no zeros Using
equation (3 9) 1t follows that in case (¢) w(x, p) may have singularities only

at the singularities of P(s) , Q(s) , R(s) or S(s) and the zeros of W(s)

From equations (6 b¢), (6 6c), (6 8b, c) and (6 10b, c) it follows that P(s) ,

Q(s) , R(s) and S(s) have at most branch points at p = O W(s) was prevfously
shown to have no zeros Consequently w(x, p) 1is analytic in the upper half p-plane
for both case (b) and (¢) Therefore

r+ie

(8 2) i 1) w(x, pldp = - f w(x, -52)5 ds
T riie (m)

alr

. Before substituting in the right hand sides of equations (8 1) and (8 2)
we may make use of the order properties for large |s| of the functions which

2
meke up w(x, -s") In case (b), using eugation (3 8) we can obtain

’ oo K, 1 ls,y

-1
(8 3) wix, p) = - é E; 51 : e fe(y)dy cos sl(l + X) MO
X K
1 a1l 5 2
- J = £.(y) cos 5,(1 + y)dy M cos 8, X + sin s x}
21 kl 1 1 0 21i 85 1 2 sl 1l
0 K
1 5 2 -1
- i kl fl(y) 55735 cos 5 ¥ + —EEI sin s, ¥ dy | cos sl(l + x) Mb

X
cofit [ el ot [ o]
0 1

2 X 6(x-y)
O{Isl ] TV gy (1< x < 0
0
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0 1 s8.x

! 1
w(x, IJ) = - fl q cos Sl(l + y) fl(Y) dy . 21 82 e

* % 1 s
- £ -k—a [KQ cos s) cos 8, ¥ - Ky q sin s; sin s, y:l fa(y)dy 2—1—;; e My

k

201 1 18,y 2 -1
-f = 5 © fe(y)dy I:K2 cos sy cos 8, X - K, [=sin 5, sin s, x:l My
x 2 2 1
0 X
+ 0 {|s|—2f eIV dy}+ 0 Isl'ef eT(x-Y) ay L+
-1 4]
o0
0 {[sl'ef 7 (¥-%) dy} (x > 0)
x

In case (c), using equation (3 9), we can obtain

isay —:lex

TcKa e e
(8 4) w(x, p) = — £,(¥) dy +
0 k2 2 2i 32 21 Sl
-isy

fx 'Tl{" e_21_2_ f,(y)ay 21;1 cos By X + —po— sin g X

—oo 1 1 82 1

-is.x

1 0
e 1 K.L K2
+ [ £.(y) | = cos s, y+ —— sin s y> dy}
21 8, % kl 1 21 8, 1 251 1

() (i + % VR )

=0 0
+ 0 {lsl_a [ T dy} + O{'sl.2 1) ¢~0(¥-%) dy}
0 X
o X
+ 0 {] o [eoe'o(x'y)&y} (x £ 0)
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0 K_L -1sly 152y 132y
o0
oW = | E a0 e He v+ T 575, TN
-—co" 1 1 2 x 2 2
K X
2 cos 8, X - —5— sin s, x + [ —i- fa(y) 5ia- €08 8, ¥ - z=—sin 8,y
2i s 2 0o 2 1 2

is. x
2 0
dy Zi 5, (-h1s) (K /K, + KQ\/k_l)-l + 0 {ISI—Q f_ eIV~ dy}+

OO

0 {l s|-2 fx ec(y-x) dy} + 0 {]srz J?Oec(x-y) dy\} (x > 0)
0 b4

In case (a), using equation (3 7) we can obtain

a
(8 5) w(x, p) = - [f ;2- f2(Y) cos sz(a-y)dy cos sl(b + X)
0 2
+ fo K—1 f.(y) (cos s, a cos + K1 si a sin Ydy cos s, (b+x)
x K 1Y 2 81 % B 8y 8, VY 1
x K 1
+ {b El fl(y) cos sl(b+y)dy (cos 8, 8 cos 8; X + K~ sin s, & sin sx
a X
W(;l et + o {Isl_e [ W dy} + 0 {Isl-zf ec(y—x) dy} +
0 -b
2 0 o(x-y)
+ 0 |sl [ e dy (-6 € x K 0)
X
o Kl
wix, n) = - | f = fl(y) cos sl(b + y)dy cos 52(a - x)
-b 1
x K
+ é -g f2(y) (cos 8, b cos 8, y - K sin s, b sin s, y)dy cos 52(3 - x)
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2l

2
— f2(y) cos s2(a. - y)dy (cos s, b cos s

2

-b 0]
b
0 {:|s|_2 / eT(x-y) di}_ (o
x

1
where aln K=K -1 k 2 k
ag =K K K

+
>¢~=8

2x-Ksmslbsins2xj|

N

x £ 8a) ,

ST

The relations (8 3), (8 4) and (8 5) hold under the assumption that
£(x) 1s bounded and integrable They can be easily verified by using the various
order properties

We see that the fairst three terms on the right hand sides of each equation
in relation (8 3), (8 4) and (8 5) are exactly what we obtained for the cases where
q(x) 1s identically zero, i e , the right hand sides of equations (5 1), (5 2), and
(5 3)

Consider the contribution to —(ﬂl)_l [ w(x, -52)5 ds as n tends
to infinity of the 0‘{ :}terms in relation (8 5)(HF¥aking absolute values and

using the O{ } terms for -b  x O , we obtain

.(:\:i)”1 {H ) [O {Isr2 éa TXY d}} + 0 {Isl-e f: I (¥-x) d}} +
0

0 {j |s|-2 f ec(x-y) d?iF} s ds
x
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< n [ l:O {Isrl s;l (1 - e—'ra)} + 0{]9"1 5;1 (1 - e—o(’b+x))}
(Hn)
+ 0 {I s s;l (1 - eox)}J | as |

Each of these last terms three 0 {: ;} terms gives a contribution of order

0 {:aglg} For example,

a
I o{lsl“l s;l (l-e_Ta)} las] = o {a-e / d sr} +
(Hn) n a

(2n + 1

Since an

) (2 + =271 | 1% follows that the three original
JE J B

o] { } terms converge uniformly with respect to x to 0 as n tends to

infinity
If we substitute the 0 { } terms of either equation (8 3) or (8 4)

in the right hand side of equation (8 2), we can show in e similar way that the

o {: :} terms converge uniformly wath respect to x as r (or R) tends to infinity
The equi-convergence properties now follow directly 1In case (a) for

each large n the right hand side of equation (8 1) is equal to the sum of a

finite number of terms of the right hand side of the equations in the relation

(4 3) This follow& from the residue theorem At the same time upon substituting

from equation (8 5) the right hand side of equation (8 1) 1s equal to the

corresponding sum of a finite number of terms of the right hand side of equation (5 4)




plus a term of order O {;a;l:} Consequently the expansions given by
relations (4 3) and (5 4) behave in the seme way as regards convergence

In case (b) and (c) let us formally consider

r+ie
I lim lim ) w(x, p)dp

€e> 0 r oo -r+ie

Al

Assuming the limits exist and recalling that the © {.} terms of equations

(8 3) and (8 4) contribute nothing when r tendsto infinity, i1t is also clear
that no contribution is made by using either equation (8 3) or (8 4) to the above
expression when pu is positive The sbove expression therefore gives formally
the rfght hand sides of equations (5 5) and (5 6) respectively when we use
equations (8 3) and (8 &%)

Again assuming the limits exist the above expression is equal to

Al

Qo
f I {W(x, U-)} dp
-oo

Using equations (3 8) and (3 9), which define w(x, u) , and the equations which
define P(s) = -B , Q(s)
show that I {w(x, u)}

(b) and (c)

A,R(s) =-F and S(s) = E, it is not difficult to

O when p > O Therefore formally in both case

ol
S

r+ie 1 0
I{ lim 1im w(z, plapl = = [ I {w(x, u& du
€e=50 r-De= T _rie - oe



The right hand side of this equation was used in obtaining the right hand sides

of the equations in the relations (4% 4) and (4 5) Consequently the expansions given
by equations (4 4) and (4 5) behave respectively as regards convergence in the

same way as the expansions given in equations (5 5) and (5 6) Here of course

the equi-convergence results from letting r tend to Infinity

Using equations (6 14b, ¢), (6 16b, c) and (6 17), we can obtain
- 1
I {N M} = - E Kl K2 82
I {h(X)ﬁ} - -3 8, [K1 g,(0) n,(y) - K, g,(0) hg(Y)]

MM = i— {[Kl g;(0) v, - K, g (0) “2] . [Kl g(0) v, - K, & (0) ve]e}

Using equations (6 12¢) through (6 17b, c), we can obtain

I Wely n(x) = 1 {[K,2 QR - K, P 'S':l [S g, (y) - R gg(y)] [Q h(x) - P %(Xﬂ

= -é\/il—ke I:{3} b, (x) & (¥) + qlfg- {l} bhy(x) gx(y) - LKI {2}132(1) &, (¥)

1

- X {2) b, (x) sg(y)] ,

I{ﬁ e(y) ':Kl Bgy(x) + K, A sl(x)J} =

P

-/ Bk

“Bs [{3}1{2 g (x) &, (y) + -%g {IJ g(x) g,(3) - {E}gQ(X)sl(y) - {E}SI(X)SQ(YJ
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I {x’r n(x) [Kl Eh(y) +K, F h2(y)J =

- k1k2 1
£ [m e + 0 )~ ot - {5 et

and
Wﬁ:[KQQR-KlPS] [K2§§-Kl§§J \/K:2 I@,&}-{e}{e},
where
2 2
= K2 Kl 8) + Vv s + Kl K2 8) +V S
f\l}-ﬁa_ [ul() 1()} o [ul() 1():],
{2}=K1K2 T +r\\r,’\\rI + K1K2 + VvV, V
\/_kI Y % 1 V2 \/—g- Y % 1 V2
and

Kl ~ ~
{é} {: + V§.1 + \//E;- ! ug + vg ‘}

These results may be used to write equations (4 4) and (% 5) in a form which will
be obtained later by the method of separation of “variables
The results may be summarized in the following theorem

EQUI-CONVERGENCE THEOREM ILet f£(x) be bounded and integrable and let q(x) be

a function greater than or equal to zero which is continuous except possibly at

= 0 and whose 1ntegral exists then
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(a) the right hand sides of equations (4 3) and (5 4) are equi-convergent,
(b) the right hend sides of equations (4 4) and (5 5) are equi-convergent,
(¢) the right hand sides of equations (4 5) and (5 6) are equi-convergent

In order to verify the relations (4 3), (4 4) and (% 5) it thus suffices,
subject to the above hypothesis, to verify the relations (5 %), (5 5) and (5 6)
The situation then corresponds to verifying that a function is equal to its ordinary
Fourier series expansion and thus is equal to its ordinary Sturm-Liouville series
expansion

9 A verification of the expansions in the case q(x) = 0 In order to verify

the expansions given by equations (5 4), (5 5) and (5 6) we may make use of the
standard procedures [?] involving the inversion of the Laplace transform Specifically
we shall use one of Churchill's theorems [6, P 1591 In essence this theorem
allows us to conclude that a certain inversion integral gives the inverse Laplace
transform even at t = 0 , provided the Laplace transform satisfied a certain order
property Since the procedure is standard only a condensation of the verification
will be given The details of the procedure may be found in an earlier paper [lé]

Suppose U(x, t) 1s equal to the inversion integral of u(x, p), 1 e,

r+1B

(91) O s T e L
B=>o= 7-18

where y > O 1is a fixed constant In case (a) the contour of the inversion

integral may be completed by the arc Cn of the parabola r = aﬁ csc2 % e,

1o 2n+l b a -1
a = 75— ( + )

where as usual py =r e and
n 2
\;kl v K

For large n
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we know that Cn passes between the singularities of w(x, p) , i e , the zeros
of Wo(s) The right hand side of equation (5 4) can be obtained formally by
using the residue theorem, letting n +tend to infinity and letting t equal
zero The inversion integral when t equals zero will thus be equal to the
inversion series, i e , the right hand side of equation (5 4) if the integrel over
the added contour tends to zero as n tends to infinaty
In case (b) and (c) because of the branch point at p = 0 we can
complete the contour of the inversion integral by adding a curve A'B'C'D'EDCB A
The curve A' B' C'D'EDC B A consists of the arc A' B' C' of a circle of

large radius Ty and center at y = 0 starting at pu =y - i and ending at

Wo=T e-i(n-e) where € 18 & small positive angle, the straight line C' D'
starting at p = r. e_i(“-e) and ending at u = rg e-i(“—e) , the arc D'E of a
circle of small radius g and center at pu = 0 starting at p = rs e_i(ﬂ-e) and

ending at pu = Ty and the reflection of each of these in the real axis By the
Cauchy-Goursat theorem 1t is apparent that
7+18

/ M wlx, wap = [ Y w(x, way
y-1B (A'B'C'D'EDCBA)

In the usual procedure for the Laplace transform when py = O is a branch point
the integral of eut w(x, u) over the eirculer arcs A'B'C' ,D'ED and CB A
tends to zero as the radius I tends to infinity and T tends to zero

Granted that this is true for every fixed € > 0 , then when we take the limit

as € tends to zero of the integral of e“t w(x, u) over the lines C' D' and

D C , we formally obtain from equation (9 1)



oo

U(x, t) = 5%1_ £ e Tt [:w(x, re'i“) - w(x, rein)] dr

Upon setting t = 0 , we have

£(x) = —§l—— fco[?(x, re-in) - w(x, rein)J ar
i 0

Letting r = 82 it is easily confirmed that this is equivalent to equation (4 2)
from which we derived the expansions given by equations (4 4) and (4 5)

The first step in verifying the above formal procedure comsists in
showing that the inversion integral is equal to U(x, t) 4n all three cases
It proves advantageous in obtaining the order properties needed in order to
apply Churchill's theorem to use integration by parts for the integrals on
the right hand sides of equations (5 1), (5 2) and (5 3) In order to write down
the resulting equations and to insure convergence of all integrals, we shall assume
that f£(x) is continuous and absolutely integrable for the range of integration
and that f£'(x) 1is bounded and integrable for the range of integration By
assuming that f£(x) is continuous, it also follows that fl(o) = fa(o)

Upon carrying out the details for each case one can show that v(x, p) =
w(x, p) - u-l f£(x) dis of order O [;u°3/2 uniformly with respect to x for
the x-intervel for the region r > 5 and "-x + € £ g =n - €, where p 1is
a fixed positive number and where € 1is a fixed positive angle which is chosen
as small as desired With this order property and Churchill's theorem it follows

that the inversion integral of v(x, p) is equal to zero at t = 0 1in each of
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the three cases Comsequently the inversion integral of w(x, u) 1is equal to
f(x) when t =0

Next it 1s necessary to investigate the relationship between the
inversion integral of v(x, s) at t =.0 and in case (a) the inversion series

and 1n case (b) and (c)

=

(2;11)-1 ) [%(x, re-iﬂ) - wix, relﬂ)] dr

0

For case (&) this consists of showing that the integral of v(x, p) over the
path Cn tends to zero as n tends to infinity With proper care using
previously obtained order properties for v(x, u) and its components [16] this
can be shown to converge to zero uniformly in x

For case (b) and (c) one needs to investigate the value of the integral
of v(x, u) over the previously indicated curve A' B'C'D'EDC B A By
using v(x, p) = w(x, p) - p-l f(x) it 1s not difficult to. show that the integral

of v(x, p) over D'ED 1is equal to (21 - 2¢)1 f(x) when rq tends to zero
x-¢ _ -1/4

Choose cos 5 =T Using the obtained order properties 1t can be shown
that the integral of v(x, p) over A'B'C' and C B A tends to zero when ro
tends to infinity As Ty tends to 1nfinity € +tends to zero It follows that

-1 1 el -1x ix

L v(x, p) = - f(x) + [ {v(x, re™™ ") - v(x, re™™) ar
i 2ni 0
-1 - -

Since L, v(ix, p) Y =0 and v(x, re ijt) - v(x, reiﬂ) = w(x, re ijt) - w(x, re’™)

one obtains the desired relationship
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D

£(x) = é%f (j; [w(x, re-i“) - w(x, rei“):] ar

The results may be summarized in the following theorem

EXPANSION THEOREM If ¢£(x) is continuous, is absolutely integrable and has

& bounded and integrable derivative then the expansions given by the right
hand sides of relatioms (4 3), (4 %) and (4 5) converge wniformly to f£(x)

In 1light of the Equi-convergence Theorem the right hand sides of the
relations (5 4), (5 5) and (5 6) converge uniformly to £(x) under the same hypothesis

10 The method of separation of varisbles We shall now obtain by the classical

method of separation of variables the solutions and expansions for the boundary
value problems given by the equations (2 1) and (2 Te) 1Let U(x, t) = X(x) T(t)

whereX(x) = Z(x) when x < 0 and X(x)

W(x) when x > O We obtain

(101)  -gqyfx) + K Z’;‘ - :t » (102)  -gy(x) + X, W;" = :t
(103)  z(0) = w(o) , (04 K z(0 = gW() ,
(10 5a) Zx(—b) = 0 , Wx(a) =0 , .
(10 5b) Zx(-l) = 0 , Z(x) bounded , (10 5¢) Z(x) bounded .

2

The members of equations (10 1) and (10 2) may be put equal to a constant -s

2 2
Let the solutions of k) 2, = |:q_1(x) -8 J Z end kK, W _ = [qe(x) -8 ]Wr be



designated in the same fashion as they were in Section 3, 1 e , let g(x)'s %be

solutions of the Z differential equation, let h(x)‘'s be solutions of the W

differential equation, for case (a) let gl(-b) =1, g (-v) =0 hl(a =1 and
b*(a) = 0 , for case (b) let gl(—l) =1, gi(—l) =0, hi(o) =1, h2(0) = -1 and
hé(o) = 0 , and for case (c) let gl(O) =0, gi(O) =1, ge(O) = -1, gé(O) =
hl(O) =0, hi(O) =1, h2(0) = -1 and hé(o) =0

The solutions to the above differential equations subjgect to the finite

end conditions can be written as

(a) X(x) = zZ(x) = Agl(x) (- £ x < 0)
= W(x) = Bh(x) (0 < x £ a)
(b) X(x) = C g (x) (1< x < 0
= Dh(x) + E hy(x) x > 0 ,
(c) X(x) = Fg(x) + G gylx) (x < 0)
= Eh(x) + Jhy(x) x > 0o ,

where A, B, C, D, E, F, G, E and J are independent of x , although they as
well as the g's and h's may be functions of s Wraiting X(x) = X(x, s) and

using the interface conditions (10 3) and (10 4) we obtain
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(a) A gl(oJ S) =
(b) C 81(02 8) = -E ) Ki c Si(O) 8)
(e) G = J , KZF = K, H

= K,D ,

Bmn(o,8) , KX Agfo,s) = K,Bnlo,s) ,

It is now necessary to treat each case in a separate but parallel fashion

For case (a) A and B are non-trivial only if s satisfies the characteristie

equation

Kl gi(oy 8) h(O, 8) - K2 gl(o’ 8) h'(O, 8) =0
integers n (n = 1, 2, 3, ) to the assumed simple positive roots

characteristic function corresponding to the characteristic number

X(x, Sn) = Xh = Zn

]
=
i

?,(0) g (x)

wn(o) hn(x)

?,(0) g (x, - S§)

¥,(0) b (x, - s2)

8
n

The

is

We can attach positive

where either wn(o) = hn(O) and wn(o) = gn(O) or wn(o) = K, hﬁ(o) and Wn(o) =

Kl gA(O) s either choice being equivalent for each n s unless for a particular n

both hn(O) and gn(o) are zero or both hﬁ(o) and gﬁ(o) are zero, in which

case the non-zero pair 1s chosen

Paralleling Sturm-Liouville theory we now obtain orthogonality conditions

for the characteristic functions

Eliminating ql(x) and qe(x) from



" 2 - 1" —
A (ql - sn) z, = 0 and AR (ql - sm) Z, = 0,
and
w' - (q, - 82) W = 0 and wo- (q, - 82) W =0
n % n n m % m m
and then integrating, we obtain
0 0
2 1
(sm ~ si) [ T Zn(z)dz = AR Z, Zﬂz] ,
-b 1 b
and
a a
(si-sa)f —11;- W W dz = ['wm-wnwn'l]
0 2 0

0 K a
2
(sﬁ—sn) f - Z, 2z dz + [ kﬁwwmdz} =
b B n 0 2
Now 1f n 7! m , we obtain the orthogonality condition
a
(10 6) [ a2 %) X(x)az = 0,
kl k2
where p(z) = q when -b < z < 0 and p(z) = g Vhen 0< z <K
2

-_'1_09 -



We assume that U(x, t) and #£(x) can be expressed as

2

o0 -s_ t oo
v(x, t) = 2 c, Xn(x) e O and f£(x) = L c, Xn(x)
n=1 n=1

Still proceeding formally multiply the members of this last equation by p Xﬁ

and integrate We obtain

a e —
J_'prmfdz= J:prm n§1 c X |)az

If we interchange the order of integration and summation and use the orthogonality

condition (10 6), the right hand side of this last equation reduces to

a
Cp {bpxi dz

The solution and expansion therefore become

— a a -1
(20 7) u(x, t) = 21 [Ib p(z) X (2) f(Z)dZ} [Ib p(z) )(,2,(2) dZJ

-si t
Xn(x) € )

1 8 -1
08  f) = T | [ p(e) %) 2(aa | | [ p(x) Ko(a) a2 X, (x)
n= - -



This last equation is seen to be the same as equation (4 3) if we use the result
at the end of section 7
For case (b) we obtain using the interface conditions the characteristic

functions

X(x, s)

c(s) g (x, s) (-1 < < 0)

c(s) [jgi 81(0, &) b (x, 8) - (0, 5) hy(x, BJJ
(x > o)

We ghall therefore assume that U(x, t) and f(x) can be expressed as

oo 2 oo
U(x, t) = [ c(s) X(x, &) e ® t as and f£(x) = [ ¢(s) X(x, s)ds

Since the parameter s occurs as -52 , X(x, 8) = X(x, -8) , and we are therefore

assuming that

£(x) = Jo?o [C(s) : C(—s)] X(x, s)ds

In order to find C(s) formally, first multiply both sides of the equation

f(x) = fxa c(s) X(x, s)ds by p(x) X(x, r) , where p has the usual meaning Upon

)

integrating the result, we obtain



(10 9) 7 p(2) Xz, v) 2(m)az = [ p(z) Xz, v) | T c(s) x(z, s)as J az

-1 -1 ~oo

27 oo el (
= L , , r)ds| 4
-1k1_{o<,CS)gly s)gly r)sjl z o+
. (
o K
lim é 'EE‘ I[K'K_: 81'(0: 8) hl(z’ s) - gl(ox 8) hg(z, S)}
A %OO
o

[% g,(0, r) ny(z, r) - g (0, r) hy(z, r):l dz

It is easy to verify using the Z differential equation that

‘%I 8(2 8) g (2, 1) = (") iz, 1) gz, 8) - &z, 8) gy(z, ¥)

Upon integrating and using the end condition at x = -1 we have

fl T:tl-.. 81(2, 8) 81(2, r)dz = (32 - r2)‘1 [gl'(o,r) gl(O,s) - gi(o,s) gl(O,r)]

Similarly we have

2
o]

[ £ mee nene - (7.5 [§i<zo,r> b (2,,8) - hi(z,8) h1<zo,r{] ,

o

é -%2 h, (z,s) h,(z,r)dz = (52 - re)"l l:hé(zo,r) B (z,s) - h]'_(zo,s)he(zo,r)+1]

and



Z

2 2,-1

1 z,r) he(z,r)dz = (s -1)

fo
= n
o

2( [%é(zo,g) h2(zo,s) - hé(zo,s)he(zo,r)]

Upon interchanging the order of integration on the right hand side of equation

(10 9) and simplifying we obtain

[~ o(=) x(y, v)az = 1m [ c(s) k, Jg (0, 8) &0, )
-1 20900 -0

2
hé(zo; r) hQ(ZO’ s) - hé(zo; 8) hg(zo; r):] + <:;§‘:> 8i(o; s) gi(o; r)
L

B K
1
hi(zo) r) hl(zo’ s) - hi(zo; s) hl(zo’ r) - i gi(oy s) gl(O, r)
L 2
— - K
1
hé(zo; r) hl(zo’ S) - hi(zo; S) hg(zo’ r) - E; gi(oy r) gl(o’ S)
] 2 2, -1
[%i(zo, r) h2(zo, s) - hé(zo, s) hl(zo, r) (s - ) ds

)

In order to evaluate the above limit we may substitute various order
properties of the g's and h's for large zZ, For example, using equation

(6 11) and the corresponding equation for hé(x) we obtain

[hé(zo, r) h2(zo, s) - hé(qo,s) h2(zo, r{} =



T, [—uE(r) sinr, z_ + ve(r) cos T, z + o(l)] I:u,a(s) cos B, z_ + VQ(B) sin szzow(l)]

-8, I:-u2(s) sin s,z + ve(s) cos 8,z + o(l)] [uE(r) cos r,z  + ve(r) s1n T,z + o(l)],

Rearranging terms, we have

8.-T
(33027 Ba,00) - By(agoimzg )| = 22 [0 - wylormy(o)|

sin zo(32 + r2) + f?—;-r—z l:ue(s) u,a(r) + v2(s) ve(r)] sin zo(s2 - re) +

8, + T,
— [ue(s) v2(r) - ug(r) ve(s)] cos zo(s2 - re) -
e

8

-r
2""—'2 2 l:uE(S) Vz(r) + 112(1') 72(8):] cos 20(32 + r2) + 0(1)

The other bracketed quantities above can be written in e similar fashion

We now may make formal usage of two closely related formulas which involve

Dirichlet type integrals These are

lim [ F(x) coskxdx = 0 and  lim [ rp(x) s :(f = Xax = ¢ F(z)
k%oo -0 k——}oo - oo

-11k-



Noting that g, , g! , and u, are evenin s , while v, and v, are odd in
128 0% 2

2 1l

8 , we obtain the formal result,

oD

I

p(z) £(z) X(z, r)dz =

rnja

5 2 2 2
[C(r) + C(—r)jl —\71;_—- g (0, r) l:ue(r) + va(r)]
2

-1
5\ 4 2 2 Xy )
*\ & g (0, r) [vﬁﬂr) + vl(r)t} -2 E;-gl(O,r) g;(0,r) [él(r)ug(r) + vl(r)v2(€1)

K, 2
[?(r) + C(-r;] [jﬁ;- g1(0, ) w (r) - g (0, 1) u2(r;] +

Kl 2
K, g1(0, r) v (r) - g(0, T) v,(r)

It may be noted that this result may be obtained in a speedier fashion from equation

(10 9) if we interchange the order of integration on the right hand side and use

the order properties before performing the inner integration The solution and

expansion therefore become

(10 10)

U(x, t) =

Zk: [fbo p(z) £(z) X(z, s)dé] ”/ig

T

!

2
K, 87(0, 8) u (s) - g(0, &) u2(s)j| +

-1
-52 t

2
g(0, 8) v (s) - g, (0, s) ve(S):] X(x, 8) e ds ’



S|

(10 11) f(x) = ;2; ?‘O I:rc p(z) £(z) X(z, s)dz]
o -
2
[;i 8i(0, 8) ul(s) - gl(o, 8) u,(s) J +

-1

2
K
[K—: g(0, s) v,(s) - g (0, &) VQ(S)] X(x, s)ds

This last equation is seen to be the same as equation (4 4) if we use the results
obtained in Section 8

For case (c) the interface conditions give the characteristic functions

X(x, 8)

F(s) K, g;(x, 8) + &(s) gy(x, s) (= £ 0

F(s) K, hl(x, 8) + a(s) he(x, 8) (x > 0)

We shall therefore assume that it is possible to express U(x, t) and f£(x) as

oo 2
Ux, t) = [ [?F(s) Xl(x, 8) + G(s) Xa(x, s’] e® bas

- o0

and

£(x)

"

fx’ [F(s) Xl(x, 8) + G(s) x?_(x, s)] ds |,

-0



where Xl(x, s) = 5 gl(x, s) when x £ O and Xl(x, 8) = K, hl(x, s) when
x > 0, and where Xe(x, 8) = ge(x, s8) when x £ 0 and Xz(x, 8) = he(x, 5)
when x 2> O

In order to find F(s) and G(s) formally we may proceed in a fashion

sumilar to case (b) First multiply both sides of

£(x) = 7?9 [%(s) Xl(x, 8) + G(s) Xe(x, s{} ds

-0

by p(x) Xl(x, r) , where p(x) has the usual meaning Upon integrating the

result, we obtain

<0 (o}
(10 12) T e xy(e ») t@a = T° o 56,0 4 T n e, «

) -0 -

G(s) Xe(z, s):] di:} dz

1lim f P(Z) foo IEF( 8) Xl(z’ s) + G(S) XE(Z, S):] Xl(Z, r)ds dz

Zo—e oo —Zo - o0

1}

Interchanging the order of integration on the right hand side of the equation leads to

2

[° »(z) X,(z, 7) £(z)dz =

~Z
(o]

Z Z
)

lim fks F(s) [ ° r(z) Xl(z,s)Xl(z,r)dz + a(s) [ p(z)Xz(z,s)Xl(z,r)dz ds

Zo% oo~ —Zo —Zo

-117-



Using the Z and W differential equations it is easy to show that

J p(z) Xl(Z, r) Xl(z, ) dz =
X —el_re [-si(-zo, r) g (-2zy, 8) + g](-2 , ) g (-2, r)]

e [hlwzo, r) by(z, 8) - h(z,, 8) by(z, r)] ,

Z

{zo p(z) XQ(Z, 5) Xl(z, r)dz =
o
K K, ?-];:;2— l:- 81'(-20, r) 32(-z0, 8) + ga'(-zo, 8) gl(-zo, r)]

+ K K, 'sa—i;é [hl'(zo, r) h2(zo, 8) - h2'(zo, 8) hl(zo’ r):l

Similarly to case (b) we may substitute the various order properties for

large z and make use of the two formulas

lim f F(x) cos kx d&x = O
k% SO - &0
and
lim 7 Flx) Sinzk(zx‘ %) ax = F(z)
k—>Deoe _oo -

- -118-



Now the u's and v's obtained by substituting the order properties have the
feature of the wu's being even 1n s and the v's being odd 1n s Usang

these properties and formulas, we obtain formally

K K2

To p(z) Xl(z, r) f(z)dz = F(r) = 2 1 |:u]2_(r) + vi(r)] +

Lo /e

K, K
[?f'j(r) +$§(r)]} + o(r) n{—lﬁ—_ﬁ [’arlm B(r) + 7 (r) v@(r):‘ +
1

=~
[

~
n

o)

Ne
e

k

|:u1(r) u2(r) + vl(r) v2(r)]} = F(r) x {1} + G(r) = {2} s

where the meanings of {l} and {2} are the same as those given in Section 8

Proceeding in a similar fashion it 1s possible to show that

To p(z) X2(z, r) £f(z)dz =

r ""I‘{&" [uz r +V2r] + "K—l' l:’\'zr +?f'2r]
G()ﬂ{\/g 2() 2() \/i(—]- u2() 2()

a T (r) © + V. ¥, i\ + b % v v ]
e [1< ) Ty(x) + T () Ty Yo [ulm (£ 4, (1) vp(r)

+ F(r) =«

= F(r) = {2} + G(r) =« {3}

-119-



Solving for F(r) and G(r) , we obtain

3} T~ 2(2) 2(2) x,(3, ez - {2} cf;p(z) #(z) Xy(z, r)dz

F(r) = 'i‘ == ’
& - B
(1} T 22 22) x50z, maz - {2} Fn(w) 2(2) x.(s, v
G(r) = -3'-[- -2 o9

8- &8

Since {_1_} ’ {2} ’ {3} , F(r) ’ G(r) ’ X.l(X, r) and Xe(xl r)

are all even in r , the assumption that

o0
£(x) [ [F(s) Xl(x, 8) + G(s) Xe(x, s)j| ds |,

- oo

is equivalent to

£(x)

2 }?O [F(s) Xl(x, 8) + G(s) Xe(x, s):| ds
0

The solution and expansion therefore may be written as

oo 2
(10 13) Ux,t) = 2 f [%(s) Xl(x, g) + G(s) X2(x, s):] e® b 4 ,
0
(10 14) £f(x) = 2 To F(s) Xl(x, 8) + G(s) Xe(x, s):l ds ,
0

where

~120-



{3} T o) 2(2) 5,0z, )32 - {2} [~ 3(a) £(2) Xy(z, s)az

o} 33 - {2 {e

F(s) =

A

and

{}} f>o p(z) £(z) X2(z, s)dz - {?}- fao p(z) £(z) Xl(z, s)dz
I EREI N L B L,

Equation (10 14) 1s seen to be the same as equation (4 5) when we take into account

Al

Ga(s) =

the results in Section 8

11 Observations The Expansion Theorem takes care of the major step in the

procedure for verifying that the solutions obtained really satisfy the original
boundary value problems The remaining steps, e g , uniqueness of the solutions,
may be verified using the standard procedures

The conditions given to insure the validity of the expansions are clearly
sufficient rather than necessary ones It 1s obvious therefore that the expansions
hold under weaker restrictions and that weaker restrictions could be obtained without
much more work

It is possible, of course, to use the Laplace transform inversion
procedures indicated in Section 9 to establish directly the general expansions given
by equations (10 8), (10 11) and (10 1)

It seems likely that one can show quite directly that the expansions

converge uniformly to f(x) , provided sufficient restrictions are placed upon

£(x) e q(x) |9, b 273-276 ]

-4+12%-



When we let Ki =K k, = k2 =1 and q(x) be continuous at x = O

2’71

we obtaln expansions for the continuous cases For case (a) we obtain

—o a a -1
f(x) = L l:f Xn(z) P(z)dz {f xi (z)dz X (%) ,
where
Xn(z) = gn(z) = hn(z) for b £ z £ a |,

where n (n=1, 2, 3, ) 1s, as usual, the integer attached to the n-th
simple positive root s of the characteristic equation gi(o, 8) hl(o, 8) -
hi(o, 8) gl(o, §) = 0 , and where gl(x, s) and hl(x, 8) are solutions of the
equation X - [:q(x) - s2:] X(x) = 0 which satisfy respectively Xk(-b) =0
and Xx(a) =0 Since gi(x, s) hl(x, 8) - hi(x, 8) gl(x, 8) can be shown to
be constant by using the differential equations it follows that gi(a, 8) =0 =

hi(-b, 8) are other ways of writing the characteristic equation The above

expansion is, of course, a conventional Sturm-Liouville expansion When q(x) = O
we have

a a

1 2 < nyx
£(x) = P [ f£(z)az + 51D % [  £(2) cos 2+ D (z + b)dz
-b n=1 -b
nxt
cos ——= (x +b) ,

-122-



the ordinary Fourier cosine expansion of f(x)

For case (b) the expansion in the continuous case is easily seen to
give known results [}9, o lOlj] It may be noted that gl(x, 8) = gi(o, s) hl(x, 8)
- gl(o, 8) hl(x, s) for x > -1 For real valued s , gl(x, s) has the form

gl(x, 8) = u(s) cos s x + v(s) sin s x + o(1) as x tends to infinity Consequently,
u(s) = gi(o, s) w(s) - g (o, &) u,(s)
and
ws) = &0, 8) v(a) - &0, 8) vyla)

The expansion therefore becomes

-1

-1
t) = 2 T [‘fx’ 2(2) g, (z, s>az1 [f(s) : v2<s>1 g, (x,8)ds

In case q(x) = 0 this reduces to the ordinary Fourier cosine integral representation

f(x) = % TO l:?: £(z) cos s (1 + z)dz] cos s (1 + x)ds

For case (¢) in the continuous case, it is clear that gl(x, s) = hl(x, g)

and gz(x, 8) = hz(x, s) for all x The expansion for f(x) may therefore be

written as

~123-



[gl(x)s) {3}‘82(}()5) {2}] {%gl( Z)S)f(z)dz+ [gg(xys) {1} 'gl(x)s){e}] {ooge(zys)f(z)dz

f(x) =;2[-

°—9

where now

and

When q(x)

given by e

8- &

{;} = ui(s) + vi(s) + ’E?(s) + ’Vi(s) ,

{2}: T (e) Tls) + F(e) Tple) + w(s) uy(s) + wy(s) vy(s)

{3} = ug(S) + vg(S) + ”ﬁg(S) + ”V'S(S)

= 0 this reduces to an ordinary Fourier integral representation

0 -0

£(x) = % To [TG £(z) cos s (z - x)dz} ds

The Equl-convergence Theorem also applies to the continuous cases
It would be desirable to find conditions under which the expansions

quations (5 4), (5 5) and (5 6) are equi-convergent respectively with

the ordinary Fourier series, Fourier cosine integral and Fourier integral type

expansions

of the met

characteri

The conditions q(x) > O is clearly not necessary for the application
hod used in this chapter When gq(x) is allowed to be negative new

stic numbers and functions may arise

~12h-

ds



Proceeding in the manner of Section 10, it is not difficult to obtain

formally expansions where the interface conditions take the form
- - + +
by Ulo™, t) + b, Ui(o , t) o+ b3 Ulo', t) + by, Uk(o ,t) = 0
and
- - + +
b5 Ulo™, t) + be U%(o , t) + b7 Ulo', t) + bg Uk(o ,t) = 0,

provided the b's satisfy certain moderate conditions Likewise expansions can

be obtained when the end conditions for case (a) take the form
a) u(-b, t) + 8, Uk(-b, t) = 0
and

ay U(a, t) + 2, Uk(a, t)

i
o
.

and for case (b) the form

8y U(-1, t) + a, Ui(-l, t) = 0

~125~



It 18 also possible to obtain formally expansions which involve a
finite number of sets of interface conditions It seems certain that this type

of expansion, along with equi-convergence theorems, can be established in the

manner of this chapter



APFENDIX A

CYLINDER

Composite Cylinder with Finite Cross Section Let us consider the temperature
E]

distrabution U(r, t) 1n an infinite cylinder with a circular cross section made
up of two materials The boundary value problem under consideration i1s defined

by the following equations

(1 1) Ut(r,t) =kl(Urr+%_-Ur) (0 r< a, t>0),
(12) U(r, 07) = £(x) (0<r<a) ,

(1 3) Ut(r,t)-kE(UH+-iiUr) (a <r< v, t>0),
(1) U(r, 07) = f(r) (e< r<p)
(15) us", t) = u(a’, t) (t >0 ,

(1 6) K, U(a’, t) = K,U(a", t) (t> o) ,

17 u(b, t) = 0 (t > 0)



Let U(r, t) = R(r) T(t) , where R(r) = X(r) when 0 < rd a
and R(r) = Z(r) when a < r < b  The substitution for U in equations

(1 1), (13), (15), (16) and (1 7) leads to the following equations

- o +x% W%

(19) k, o ;j = ;ﬁ ;

(1 10) X(a) = z(a) , (1 11) X xr(a) = K, Zr(a.) ,
(1 12) z2(b) = o

The members of equations (1 8) and (1 9) must equal some constant -52 The
solution which satisfy in r equations (1 8), (1 9) and (1 12), and a boundedness

condition at the origin are given by

(1 13) R(r)=X(r) = A I, (s r
Jor

= 2z(r) = BL(r, s)=B\\¥, @:_*b J°QFL> - J, Qi_—} YO<[E_§J
2 2 2 2

In order that A and B be non-trivial when conditions (1 10) and (1 11)

are applied, s must satisfy the characteristic equation
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K

= (F <J‘_><Ji:3<f 2

8

Y

1

K
—J a\ L(a, s)
s ()

We can attach positive integers

n (n=1, 2, 3, ») to the assumed positive

roots Corresponding then to the eigenvalues s, We have the characteristic

function
(1 1) R = R(r, sn) = Ao, JOQ;{ r (0 r£ a)
1
= Ay L (r,s) (e r < 1)

s
where either ¢, = Lo(a, sn) and ¥ =J 2 a) or
V71

and

K2 Y —iE——E> J —52— a
SARESNE
JO <;!E;. jé Yl <;!E; )

=129~



Kl s
n
11rn = 9 | & ?
\/El \/EZ
ei1ther choice being equivelent for each n , unless for a particular n both of
& pair are zero, in which case the non-zero pair is chosen

It 1s easily verified in the usual manner that the orthogonality

condition becomes

b
/ p(r) rR(r)R(r) ar = 0 (s, # 8))
0]

wherep:-K?'- when0<r<a.a.ndp=52- when a < r<d b If then

k) ks

we assume that

(1 15) #(r) = L a R(r) |,
n=

we can obtain formally that

b
(f) PTrR fadr
(1 16) 2, = %
[ PrR_adr
0
Consequently, we have
—s2 t
(1 17) Ur,t) = T a e ® R (r)
=1

where the a  are defined by equation (1 16) and the Rn(r) are defined in

equation (1 14)

:..130 -



Composite Cylinder with Infinite Cross Section Consider equations (1 1) through

(1 6) and again let U(r, t) = R(r) T(t) , where R(r) = X(r) when 0& r< a
and R(r) = Z(r) vhen a < r This substitution leads again to equations
(1 8) through (1 11) When we set the members of equations (1 8) and (1 9) equal

2
to the constant -s  , we can obtain using a boundedness condition at the origin

A Jo <;[;_ T
1

BJO<\/§_
2

R(r)

I

X(r)

]

Z(r)

5
+ C Yo <:ﬁ§; r

The interface conditions require that

AJO<\/IS£_;& = BJ, \/_Ii—ga +CYO<\/I_§_Z_

a

and

Kl // s K2 s s
A ) = e— BJ, [———1a + CY

These conditions are satisfied i1f we let

3 [y )

2K _
= = X(s)

".-1-51»



=\/ﬁ Jl<\/;_l> Y, ﬁ;é - \F_;_ J°<\/ETE>Y1<\/Z; §E¢(S)

B )

The characteristic function 1s given by

Rs(r) = R(r, 8) = X(r, s) = X(s) Jg - r
JEr

(1 18)
= 7z(r, s) = @(s) J S r\ +y(s) ¥ E_r
In this case we assume that
f(r) = [ a(s) R(r, skds = [ b(s) R(r, s) ds
- 0

where b(s) = a(s) - a(-s) Proceeding in the customery fashion, we have
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f p(r) r £(x) R(z, o)ar = lim frop(r) r R(r, ¢) [}'mb(s) R(r, s)ds:\ dr
0 ro—%ooo 0

o

r
= lim fob(s) [f p(r) r R(r, o) R(r, s)dr] ds
r —o~ 0 0

r

im [ b(s) K —-2————-2—° [Z(r » 8) 2'(r_, o) -
roﬁoo 0 2 s -4d © ©

Z'(ro, s) Z(ro, g)] ds

K2 ro
5 5 [— oZ(ro, s) Zl(ro, a) +
ro—‘%"o 0 / k, 8 - g

,_.
b
‘\8
=4

s Zl(ro, s) Z(ro, o)i‘ ds |,

where Z.(r , s) = ¢(s) J 5 r + y(s) ¥, [——r and 0 > 0
1 1 1
: <f—k2 o <F_k2

In order to evaluate this last expression 1t is possible to use the

following asymptotic formulas of the Bessel functions for large values of the

arguments

% T X ,’% T X
T

where cp=x-(p+%)§,—n<al‘gx < =
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Using these asymptotic formules, we can obtain

—E
2 J 2
ﬂro

l:-o Z(ry, 8) zy(r , 0) + s Z,(x,, s) Z(r, o)] =
{s [ #(s) #(9) cos N(0) san W(s) - ¥(s) ¥(0) sin N(o) cos N(s)
- §(0) ¥(s) cos (o) cos M(s) + #(s) ¥(0) sin N(s) san N(o) |
- o [ (s) #(0) cos N(s) san M) - w(s) (o) sin N(s) cos N(o)

- @(s) ¥(0) cos N(s) cos N(6) + @(0) w(s) sin N(o) sin N(s)]‘}

k
= ni-' s<2‘7 {cos [N(G) + N(s)] |:¢(o) v(s) + @(s) \y(q)] (o - s)
o\

+ cos [W(s) - Mo)] [-B(o) W(s) + #(s) Wo)] (o + o)

+ s [W(a@) + Ne) ] [-g(s) #(a) + ¥(s) Wo)] (o - )

+ s [N(s) - NMo)] [A(e) (o) + w(s) o)) w+s&,

where N(s) = 5 r L

et

=13ha



We now apply formally the formulas

SO
lim [ F(x) coskxdx = O
k—>° -co

and

sin k(z - x)
z - X

lim jﬁoF(x) ax = q F(z)

k )

We obtain using the above results that

=0 K
(f) p(r) r £(r) R(r, o) dr = D(0) CH. [¢2(0) + \lxz(ﬁ):l

JE
The solution of the boundary value problem 1s therefore given by

oo 2 t
(1 19) Wr, t) = [ e° b(s) R(r, s)ds
0

where R(r, s) 1s defined by equation (1 18)cand where

-1
\/ k )
b(s) = % Kz [ »o(r) r R(r, s)ar [¢2(S) + WQ(S)]
0
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Finite Composite Sphere

APPENDIX B

SPHERE

V(r, t) 1in a sphere of radius b made up of two materials

considered 1s defined by the following equations

(21)

(2 2)

(2 3)

(2 &)

(2 5)

(2 6)

(2 7)

2
v, = kl(vrr + ;v)

r

V(r, 0') = g(x)
Ve = ky(V. + -i—vr)
V(r, 07) = g,(r)
v(at, t) = v(a, t)

K V(e t) = K,V (", %)

v(b, t) = 0
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We now wish to consider the temperature distribution

The problem being

(0€r <a, t > 0)

(0 < r < a) |,

(a<r<v,t >0,

(a< r <v) ,

(t >0 ,

(t >0 ,

(t > o)

b4



become

(2 8)

(2 9)

(2 10)

(2 11)

(2 12)

(2 13)

(2 1k)

First let U(r, t) = r V(r, t) Equations (2 1) through (2 7) then

Uf = kl rr ,
U(r) O) = r gl(r) = fl(r) 2
Ut = k2 rr ,

U(r, 0) = r gz(r) = f2(r) ,

U(a', t) = U(a, t) ,
K, [:a u(a’, t) - U, t)] = K [a.Ur(a+, t) - u(a', ti]
b, t) = 0

Next let U = R(r) T(t) , vhere R(r)=X(r) when 0 < r < a anmd

R(r) = 2(r) when a < r < b This substitution in the above homogeneous

equations gaives

(2 15)

T 4

= —= , (216) k, ==

2 p

'—EII d_l—]
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(2 17) x(a) = z(a) (218) x [ax'(a) - x(a)] =

Kel:a Z'(a) - Z(a)—_l ,

(2 19) zZ(b) = 0

2
We set the members of equations (2 15) and (2 16) equal to the constant -s° )
Applying condition (2 19) and the boundedness condition for V at r = 0 , We

can obtain

R(r) = X(r) = A sin r ,
Ky
= Z(r) = B sin 5 (b -r1)
S

In order that A and B be non-trivial when conditions (2 17) and

(2 18) are applied, s must satisfy the characteristic equation

K, sin g (b - a) [a 5 cos E _ & - sin —2 a.] +
JEz NCREN Y ey
K, sin \/_s_ a lja \/E_ cos —s (b - &) + sin ——0 (b - a.)]
=1 ko Via Vi
= sin — (b - a) [(KQ-K._L) sin a + K a S cog —— a:l +
I ﬁ; Y
s s jl
s1n a = 0

S(bc-a.) a
Je K- oy
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We attach positive integers n (n =1, 2, 3, , ) to the assumed positive

roots  Associated with the eigenvalue s, 18 the eigenfunction

— _ n
(2 20) Rn(r) = R(r, sn) Ao sin \ﬁ;— T
1
n
= AVY_sin (b-1r) ,
n
Vg
s s
where either ¢, = sin (b - r) and ¥, = sin r or

cos

and

either choice being equivalent for each n , unless for a particular n both
of a pair are zero, in which case the non-zero pair 1s chosen
In the usual manner the orthogonality condition can be shown to be
b

J p(r) R(r) R(r)dr = O (s
0

£ os))

m

where p has the customary meaning The assumption,
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T
(2 21) f(r) = R a Rn(r)
therefore leads formally to
b
/ PR fdr
(2 22) g = 2
/] PR dr
0
Consequently the solution becomes
=0
Ur,t) = ¥ a e
n=1 2

where the a
n
equation (2 20)

Infinite Composite Sphere

members of equations (2 15) and (2 16) are set equal to the constant

Rn( r) )

are defined by equations (2 22) and the Rn(r) are defined in

Consider equations (2 15) through (2 18) where the

-s This

time when we apply the boundedness at the origin but do not apply condition (2 19)

we obtain

R(r) = X(r)

A sin

s
r

V5

Z(r) B sin

=140~

r + C cos




[t]

From the interface condition we have

A sin a = B sin a + C cos
Ky ko 2
and
A Ki S a Ccos 5 a - sin 5 a] =
VE1 JEL VEL

These conditions can be satisfied by letting

K

A = —2 o= X(s)
V 2
C = - K2 5 a cos 5 a - sin 5 a sin S
J Ko JE2 \/Ez k)

Kl sin a cos sin

i

-1hi-

s - 5
Ja Vo

a

8 s1n




B = K —-—s—asin 5 a + cos 5 a>sin 3 a +
<f Ve Fe )

K, cos —— g S acos —2—a - gin—2 5E¢(S)
L Qk: S

The characteristic function is given by

(2 23) R(r, s) = X(r, s) X (s) sin — r

Ve

#(s) sin S _r ¥(s) cos ——— r

Ve Vo

Z(r, s)

We assume that

f(r) = [ a(s)R(r, s) ds = J [a(s) + a.(-s)] R(r, s)ds
- D 0

If we proceed in the standard fashion we can obtain

[ o(r) £(r) R(r, t) dr = lim fr° p(r) R(r, o) I:Ta(s) R(r, s)ds} dr
0 ro-%x 0 - 00

r

= 1im [ a(s) [}' op(r) R(r, o) R(r, s) dr} ds
ro—->-><7 - co 0

oo

lmm [ a(s) Ky ——S-Q—]-'-—-T Z(ro,s) Z'(ro,cr) - Z'(ro,s)z(ro,o_):lds
-oo -0

r oo

-1lho.



(s + o)

= [¥(s) ¥(o) - #(s) #(c))
ro-—€>co eo 2 JG;; s+ 0

r
sin o (s - o) cos ———{(s+0)
Jx, J,

2 2

. [8s) d(o) + W(o) w(e)] - —55

S -0

[4(s) w(o) + B(o) w(s)]

cos i (s - o)
k,
- [* [4(s) W) - #(o) ws)] 1 as

S -0

At this stage, we apply formelly the formulas

oo

1lim J] F(x) coskxdx = O

k—eoo ~oo
and
1lim ] F(x) Slnzkgzx_ %) ax = xF(z)
k—Seoo - co

We then have

= K
[ o(r) £(x) R(x, o)ar = 5 —= [ﬁ(o) + ¢2(o)] [a(0) + a(-0)] ,

0 Jk—e

13-



J
where we have made use of the fact that ¢ 1s an even function in t and ¢ is

an odd function of t

The solution of the boundary value problem is therefore given by

>° 2
(2 24) V(r, t) = % [ &3 K a(s) + a(—sj] R(r, s)ds ,
0

vhere R(r, s) 1s defined by equation ( 23) and where

[a(e) + a(-2)] = 2 ﬁ—ég I 5(x) x a(x) R, s)ar [Pee) + )]

~14h .
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