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PREFACE

A primary objective of this report is to indicate that multi-region

or composite boundary value problems can be solved by using the conventional

methods The conventional methods are, of course, the method of separation of

variables and the method of the Laplace transform

This report consists essentially of two chapters Chapter I is divided

into three parts which deal with the general N + 1-region or the N-mterface

problem In Chapter I the emphasis has been placed on obtaining formal results

without a great deal of attention to mathematical rigor Chapter II by contrast

deals quite rigorously with a Sturm-Liouville system with two regions or one

interface

The two appendices are concerned with expansion problems associated

with composite cylinders and spheres Since Carslaw and Jaegar[2Jobtain some

of these results and give reference to other results which have been obtained

by using the Laplace transform, the method of separation of variables has been

used here It was intended originally to have an appendix with the results associated

with "contact resistance" type interfaces 2 Although the results have been

obtained for finite and infinite cases it is felt that sufficient illustrations

of expansions are given without them

It is worth pointing out that in addition to the conventional heat

conduction, diffusion, potential and vibration boundary value problems which lead

to multi-region problems there also exist some interesting problems connected with
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nuclear reactors In reactor language this report jdeala .with a. one group, >

multi-region reactor problem An important extension would be to the multi-groups,

mult1-region reactor problem

* The number m the brackets refers to the Bibliography
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CHAPTER I

Part I

GENERAL THEORY OF M-th ORDER LINEAR DIFFERENTIAL EQUATIONS
WITH DISCONTINUOUS COEFFICIENTS

Problem The general linear differential equation of the M-th order is of the

type

M

Z t(x) 7V""X' (x) = f(x)
i-0

,(M-i)

In symbolic form this may be written as

(11)

where

L(y) = f(x) ,

M

L(y) = Z g (x) y
i=0

(M-i)
(x)

*N-1 *N ^H+l = b

The" usual assumptions I9, p njJ are that the coefficients g.

(1 = 0, 1, , M) and the function f(x) are real, continuous one-valued

functions of x throughout an interval a ^ x ^ b and that gn(x) does not
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vanish at any point of the interval These assumptions are going to be relaxed

here in the following fashion Let a =x < x < x2 < < x^ =b

and let gij - gi 'fj — f and yj —y wnen xj < x < xj+i (J =0, 1, ,N)
In each subinterval g and f are assumed to be continuous and one-valued and

such that their limits when x tends to x. or x exist and are finite We

also assume that g (x) does not vanish at any point of the subinterval, and in

general has the same sign in all the subintervals The final assumption is that

at each "interface" or point of discontinuity x. (k = 1, 2, , N) the y

satisfy M homogeneous interface conditions of the form

(1 *) ,W (V .¥ £> #> (^ (. .o, 1, ,M-l) ,

(k)
where the determinants, det^W) , the superscript k indicating the particular

matrix at the interface k , do not vanish Slightly more general interface

conditions could be considered

The fundamental existence theorem of differential equations [9, p 73 ~]
proves that there exists a unique continuous solution y.(x) in each subinterval

Xj < x ^ x which assumes a given value y\ at apoint ^ in the

subinterval Further the first M-l derivatives of y are continuous and have
J

respectively the given values $V (m-l, ,M -1) at 4 Further it

follows from the interface conditions that there exists a unique solution y(x) ,

continuous in each subinterval, which assumes a given value ^ at a point ^

in a subinterval The first M-l derivatives of y are likewise unique and

continuous in each subinterval and have respectively the given values $ ^m' at

the point &
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Fundamental Theorems We shall use the formal operator L in the following sense

If the equations L(y) = 0 and (l 2) are satisfied for y , then we shall write

L+(y) • 0 The following conventional elementary theorems can be easily shown

1 Let y = v(x) be a solution of L (y) = 0 , then y = C v(x) is

also a solution, where C is any arbitrary constant

2 Let y a vn(x) ,v„, , v, be J?, solutions of L (y) =0 then
I 12 1

y = £ c v is a solution of L (y) = 0 , where the c's are arbitrary constants
m=l

3 Let y = v (x) be any solution of equations (l 1) and (12), then

if v(x) is the complete primitive of L+(y) »0,y=VQ(X) +v(x) is the

general solution of equations (l l) and (12) The complete primitive v(x) of

L (y) = 0 is given by the formula

M

v<x> - Z cm vm(x) >
m=l

where the v (x) are M linearly independent solutions of L (y) = 0 and the

c's are arbitrary constants

k Let y = v1(x) ,v2 , ,vm be m (m ^ M) solutions of

L+(y) = 0 , then if the Wronskian vanishes at any point of the interval a ^ x ^ b

these solutions are linearly dependent The Wronskian is defined in the conventional

manner as the determinant

-3-



det(vx ,v2 , ,vffl)
V, , V,

'1'

>-l)

m

,(m-l)
m

In the subinterval j this notation signifies det(vn,, v„,, ,v ) , where
-Lj 2j mj

vij = v± in this interval At the interface x. the notation applies to either

the vi k-1 or the vik ' i e '

det(vlk> v2k' 'vmk) Mdet^' )det(v1 k-1, v2 k-1, ,Vmk)

5 Let A (x) be the Wronskian for M linearly independent solutions
+,

of L (y) = 0 in the subinterval x. < x < x, , , then
J j+1 '

A^x) = A^A) exp fx Slj
1 A a dX
A S0j

Awhere x^ < '£ < x In particular

Since

AJ(2W = Aj(xj) exp
j+1 St,

-/ ^
L x b0J

V<*J+l' - «* <^+1> A (X ) ,

dx



it follows that

(j+D-
Aj+i <Vi> = det (pK }*3 <V exp -/

•]+i g
ij

S0j
dx

and therefore

AJ+i<*> - AJ.m <&> *•* ofe" >««* <^h> 4et (ejh"*0 exp

x g-.

•/ — dx

v° •

where x n ^
j+1 ^

x / x. » and x .<£ *x ^
^* j+2 j-m ^ **• j-m+1

This generalized

does

Adjoint Operator The formal linear differential operator L can be associated

Abel identity indicates that A (x) vanishes if and only if A nt

with another formal operator L which can be called the formal or Lagrange adjoint

of L+ The notation L + (z) = 0 signifies that

and that

(13)

M

L («) - E (-D1 (fc *)
i=0

(M-i)
= 0

»
M-l

k <v - A "ff 4-i <**>
i-0

(k)
where the determinants, det (y\ ') , do not vanish, and are such that a generalized

Lagrange identity vanishes at each interface More specifically we can write in
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each subinterval the Lagrange identity

where

Z3U73] - 7i I(Z^ = 15 L*(yj ' Zj) '

L*(y ,z) = Z Z (-1)P y<*> (f. « )<»>
3 J i=lp+q=i-l j i J

The two integrations of the Lagrange identity or the Green's formulas which involve

the interface at x, are

*k

vi L(yk-i> - yk-iL(zk-i) te - L*(yk-i> zk-i>

and

Vl r

*k
zk L^k) " yk L <zk} dx = L*(yk , zk)

*k

Our requirement is that the matrices (7/^ ) be such that there exists non-zero
constants A^^ such that when the L*'s do not vanish at the interface

\-l L* yk-l <V >zk-l(xk} \L* y^V' zk(xk)



for any y and z which satisfy the interface conditions

It appears desirable to show that the matrices C, = (70 ) not only

exist but are unique up to an arbitrary scale factor We note that we may write

the above equation in the form

(l4) \ Yk-1 \\-l " Yk FkZk

where the bilinear forms L* are written in the form of a row vector times a

iC-1 t
matrix times a column vector and where 7, = —7— The vector Y, indicates

'k A, k

the vector (y , y* , ' yv ) wnere "kQe superscript t indicates the transpose

of a vector In similar fashion we may write

(15) Yk - B^^ and ^ - Cfc Z^ ,

in place of equations (12) and (1 3) By assumption the matrices B , C, ,
k K

E, and F, are non-singular Upon substituting from equations (15) m equation

(l k), we obtain,

?kYk-l EZk-l - Yk-lBtFCZk-l

or

Yk-1 <CkEk " BkFkCk)Zk-l * °

-7-



Since this last statement is true for every vector Y -, and Z , , it
k-1 k-1 '

follows that

?kEk " Bk FkCk >

and consequently that

\ - \ '? f '̂"1 \

With the aid 6f thescale factor 7 , this equation gives a recipe for obtaining

the n matrices C, = (yd ')

Equations (12) and (l 3) can be rewritten in the form

\ h<v] - *" - 1 £> $ (V - 0
and

vp [,k,V]. ,<*> . g r(j> 4f) <v . 0

where m,p=0,l, ,M -1 The operator L+ will be called self-adjoint

if L= L and if Vp [y^)]=Z <£> ^ [y^)] where det <o£>) /0,
m=0 *^

is true for every k In this case the conditions V = 0 are said to be equivalent

to the conditions W = 0
m
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Boundary Conditions In addition to the interface conditions it is, of course,

necessary to give a pet of supplementary conditions m order to specify the operator

(or problem) We shall be concerned with two-point boundary problems rather than

one-point or initial conditions problems Our supplementary conditions have the form

(16)
BT

M-l

ujy)- flZ
1=0

,m y(1) (a) +bim jM (b) = 0

(m = 1, 2, , h)

For a particular m , in the cases to be considered, either all the a„ =0
i;m

or all the b» = 0 The h boundary conditions are assumed to be linearly

independent

The equation L,(y) = 0 signifies that L+(y) = 0 and that U (y) = 0

L, is then the "discontinuous" linear operator associated with the differential

equations system defined by equations (l l), (12) and (l 6) Let L\(z) = 0

signify that L + (z) =0 and that U (z) = 0 , where

(1 7)
m

M-l

iiL (z) = Z a!m
sba,]_ z'"' (a) + blm z({> (»)" = 0

(m = 1, 2, , P)

and the bars over the a's and b's indicate elements unrelated to the original

a's and b's The operator L, (or the associated differential system) is called



adjoint to the operator Ld (or the corresponding differential system),and

conversely,if L+ is adjoint to L + and

AQ L* [yQ (a) ,zQ(a)] = ^ L* [jjY>), z^)] ,

where AQ and A^ are the constants previously used at the interfaces and where

the relations (l k) and (l 5) are used In the cases to be considered, the

requirements at a and b are to be satisfied separately, i e ,

L* [y0(a), zQ(a)] = 0 = L* [y^ (b), zN (b)]

Further we shall consider from now on that h = M in relation (1 k) and that

p = M m relation (15)

The operator Lj is called self-adjoint if L+ is self-adjoint and

if the conditions (l 6) and (17) are equivalent

Green's Function We now seek a generalized Green's function G(x, |) for the

differential system Lfl(y) = 0 The Green's function satisfies the following

conditions

(a) Each G.(x, g) is continuous and possesses continuous derivatives

of orders up to and including (M - 2) when x. < x < x , Tg (x, g) =
J ^ ^ j+1 |_ y *'

G(x, |) when Xj < x< xj+1 , (j =0, 1, ,N)]

-10-



(b) Each G.(x, g) possesses a derivative of order M-l which is

discontinuous at x = g Explicitly, the jump is given by

(M-l) ,+ . (M-l) ( - . _ _1

where x < | < x .
J ^ s ^ J+1

(c) The G.(x, g) formally satisfy L,(G.) = 0 except possibly at

x = |

The "symmetry" property of the Green's function appears in the form

A(x) G(x, g) = A(|) H(|, x) ,

where H(x, |) is the Green's function for the adjoint system L, (y) =0 and

where A(x) = A , the A. as previously used, when x < x < x. 1 This

may be verified in the following manner |_ 9 J Divide the interval from a to b

into three parts (a, g.) , (|, , |p) , (|2, b) and consider the two Green's

functions G(x, g,) and H(x, |p) which correspond respectively to L, and L,

The generalized Green's formula is

/ A(x) ^ z L (y) - y L (z) (. dx = A(x) L* (y, z)
a

>

a

where the range of integration may be regarded as the limiting case for the sum

of the three intervals (a, g. -e ) , (g, +e , g -e ) , (g +e , b) when e tends

-11-



V

to zero Since L+ (G) =0 and L + (H) =0 in each of these ranges, it

follows that

lim ^Ja(x) L*(G, H)
e -> 0

h-*
+ A(x) L*(G, H)

*l"£

e1+*

"^

A(x) L*(G, H) = 0

io +e

Upon applying the end conditions (l 6) and ( 7) and requirement (c) for the

Green's functions this reduces to

A(gx) H(gx, g2) = A(g2) G(g2, gx) ,

the result indicated above

This result has been proved when g2 > g and it may likewise be

proved when g2 ^ gx The above manipulations likewise were carried out for the

g's lying within the subintervals If Ld is a self-adjoint operator then

A(x) G(x, g) = A(g) G(g, x)

If therefore we define S(x, g) by

S(x, g) = A(x) G(x, g) ,

we see that S(x, g) is symmetric when L, is self-adjoint

-12-



The following diagram exhibits the character of the Green's function

(a,a) x± x2

(b,b)

Gio(x, g) G(x, g)

'x X X. ,,g ggc-i)
* i i+l,bj s bj+l

(i, J = 0, 1, ,N)

for self-adjoint G,

A. G., = A G
i ij J Ji

x , x (b,a) x
n-1 n v ' '

Non-homogeneous Solution The non-homogeneous system

(1 8) L(y) = f(x)

£' <V - £ 4»' *& <V (m = 0, 1, , M - 1) ,

M-l r

U-Wsi?o
SD Si)

aim y (a) + \m y (b) =0 (m = 1, 2, , M) ,

can be solved with the aid of the generalized Green's function The solution for

y(x) is given by

-13-



y(x) = / G(x, g) f(g) dg
a

This can be verified by noting that

and that

(19)

yW (X) =/b ^ *(*> 0 f(|)
a o

m
dg (m = 1, 2, , M - 1)

r(M) « -/* ^t^ «i)«« ♦ mg^y

The non-homogeneous system

L(y) = f(x)

D
m ^^[•'(v -a sLk) 4!> <v =o (».o,i, ,m-d

M-i r

u»(y) -A
,(D Si)aim y (a) + % y (t) = vm (mo 1, 2, , M) ,

has the solution

where

b M

y(x) = / G(x, g) f(g) dg + Z v± G± (x)
a i=l

L(GX) = 0 , Dm [G^)"] = 0

-14-



and

W = 8.

where 6 is the Kronecker delta
mi

Non-homogeneous systems involving non-homogeneous interface conditions

could also be handled

-15-



CHAPTER I

PART II

THE EIGENVALUE PROBLEM FOR M-TH ORDER LINEAR DIFFERENTIAL

EQUATIONS WITH DISCONTINUOUS COEFFICIENTS

Problem We shall now consider the differential system L(y) =0, U (y) =0 and

D y(x.)J = 0, where the coefficients in the equation L(y) =0 depend upon a

parameter X The notation remains the same as in Part I A primary problem is

to find those values of X for which the differential system has non-trivial

solutions, i e , solutions other than y = 0 These values of X are called

eigenvalues or characteristic numbers The solutions of the differential system

corresponding to the eigenvalues are called eigenfunctions or characteristic

functions

The eigenvalues are roots of an equation called the characteristic

equation For our case we may look at this characteristic equation in two ways

First if we let y (i = 1, 2, , M) be a fundamental set of real solutions,
M

ie,Z C y (x) forms a complete primitive, of the system L (y) = 0, then the
i=l x x

characteristic equation becomes

H(X) = V3^ W

Vyi> w

= det [Un(y±)] = 0

Second, if we let y±i(i = 1, 2, ,M, j= 0, 1, ,N) be the fundamental set

of real solutions in the j-th interval for the equation L(y) =0, then the

characteristic equation becomes symbolically

-16-



h(X) - det [E^y^) ] - 0,

where E (y ) is defined as follows

when

and

E (y ) = U" Ty (a)]mowio' m |_ i° J

Emo(yij>

\o^ " Um[yiN^]

(m, I - 1, 2, , M) ,

(j . 1, 2, , N - 1 ) ,

Emn(ym-1)= Dm [yin - 1 <Xn> ] ' (n - 1, 2, , H) ,

E (y ) = 0mnwij'

Emn(yin> ' Dm [yin K^

(j 4 n - 1 or n ,

UJy) = u; [y (a)] + u; [y (b) ] , '

Dm \l^y Dm [ yk - 1<*k>] + Dm [yk ^ ]

•17-



In each subinterval j, the fundamental set of solutions y and their

derivatives with respect to x up to order M - 1 are continuous functions of the

real variable pair xand X [_ 9, P 218 1 We are assuming here that in each

subinterval the coefficients of the formal operator L are continuous functions

of X

At this stage it appears essential to restrict the dependence of the

coefficients upon X in the following fashion We shall consider the formal

operator L to be defined either by

L = P -XQ

where

and

p(y) = I (Piy(i)) (i)
i=0

Q(y) = S^y*1*) <*>
i=0

are self-adjoint expressions which do not depend upon X or by

L = M - X g(x)

where

-18-



M(y) = Z g (x) y*""*' (x)
i=0

M
(M-i)

may be a self-adjoint expression and does not depend upon X

General Problem We shall consider first therefore the problem defined by the

equations

L(y) == P(y) - x Q(y) = 0 (2p = M, O^qCp)

(2 1) Vy> = 0 (m - 1, 2, , M)

Dm[y (xk} ] = ° (k =X' 2> ' N)

where p. = p (x) and q. = q (x) are i-differentiable continuous functions

in each subinterval The eigenvalue problem given by the equations of (2 1) is

called self-adjoint if the operator L, is self-adjoint and is called adjoint

if L, is adjoint In particular this means that we shall define the eigenvalue

problem to be self-adjoint if the relations

(2 2)

b

/ A(x)
a

z P(y) - yP(z)

b

/ A(x)
a

—

z Q(y) - y Q(z)

dx = 0

dx = 0

are satisfied for two arbitrary functions y and z which are M-differentiable

in each subinterval and which satisfy either the end and interface conditions of

problem (2 l) or satisfy linearly equivalent conditions If conditions (2 2) are

-19-



satisfied but non-lmearly equivalent conditions were used, i e , adjoint

conditions were used, at either the ends or interfaces for one of the arbitrary

functions y and z , then the problem is called adjoint

Orthogonality Let us assume that X and u. are two eigenvalues with associated

eigenfunctions yx and y for a self-adjoint problem (2 l) Since the problem

is self-adjoint we have

and

b

/ A(x)
a

b

/ A(x)
a

yX P(V " yu P^yX) dx = 0

yX Q(yu) " \ Q(yX> dx = 0

From the differential equation we also have

P(y. ) = X Q(y. ) and p(y ) = u Q(y )

Consequently

[-0 = / A(x) u y^ Q(y ) - X T, Q(y, )
X ^V 'u "WX

dx =

(u - X ) / A(x) y Q(y ) dx
n A u

If then u ^ x the functions y^ and y are called orthogonal in the general

sense, i e ,

-20-



/ A(x) y Q(y ) dx = 0
a A u

If further u •£ 0 then we also have

/ A(x) y P(y ) dx = 0
a A ^

If we eliminate the requirements that the end or the interface conditions

be self-adjoint and allow them to be adjoint conditions then we have

and

b

/ A(x)
a

b

/ A(x)
a

zx P<V " VK*

ZX Q(V " yn «<»X>

The differential equations are

and

P(yJ - u Q(y )
r1 r*

P(zx) = X Q(zx)

Therefore, we can obtain as above, that

-21-
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/ A(x) zx Q(y ) dx = 0 (if u± X)
a

and

/ A(x) z P(y ) dx = 0 (if u 4 0 )
a ^

The y and z form a generalized biorthogonal system where the orthogonality

is indicated and the y and z satisfy adjoint systems

Reality of Eigenvalues If X = s + i t is an eigenvalue for problem (2 1) then

so is X - 8 - i t For the self-adjoint problem we can obtain in the conventional

manner that

2it / A(x) yx Q(yx) dx = 0
£1

where the bar denotes a complex conjugate If then the integral

/ A(x) y^ Q(yT) dx ^ 0

it follows that t = 0 and that the roots are real If we let y, = u + i v,

then

b _ b b
/ A(x) yx Q(y_ ) dx = / A(x) u Q(u) dx + / A(x) v Q(v) dx

b r

+ i / A(x) v Q(u) - u Q(v)
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Now

b

/ A(X) v Q(u) - u Q(v) dx = 0 ,

since the real and imaginary parts of y satisfy (2 2) It follows that if

b

/ A(x) u Q(u) dx 4 0

for all functions u which are M-differentiable and satisfy the end'and interface

conditions then the self-adjoint problem (2 1) has only real eigenvalues

Definite An eigenvalue problem is called definite if all the eigenvalues are

real and of one sign If all eigenvalues are positive the problem is called

positive definite while if the eigenvalues are negative the problem is called

negative definite Semi-definite implies that the problem is definite except

that zero is also an eigenvalue Problem (2 1) is called completely definite if

b

/ A(x) y P(y) dx > 0
a

and

b

/ A(x) y Q(y) dx > 0
a

for all y which are M-differentiable and satisfy the end and interface

conditions A completely definite problem is clearly positive definite

Rayleigh Quotient The Rayleigh quotient R(y) is defined by the formula
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b

/ A(x) y P(y) dx
R(y) =

b

/ A(x) y Q(y) dx
a

For a completely definite problem R(y) > 0 If y is an eigenfunction
A

R(yx) = *• Without proof it will be asserted that if the problem (2 1) is

self-adjoint and completely definite, then the minimum value of R(y), for the

class of functions y which are M-differentiable and satisfy the end and inter

face conditions, is X1 , the smallest eigenvalue of problem (2 1)

Multiple Eigenvalues An eigenvalue is called an r-fold eigenvalue, or of

multiplicity r, if just r linearly independent eigenfunctions belong to this

eigenvalue If cp.^, , q>r are r linearly independent eigenfunctions

belonging to an eigenvalue X of multiplicity r, then any eigenfunction Y

associated with X can be written in the form

r

Y = Z a <p
. ss

8=1

In particular it is possible to choose constant a . so that if we define
st

then

Ys " L, °st *t (s =1> 2> ' r> >

/ A(x) Y8 Q(Yt) dx = 5st
a

In particular we can always choose a set of eigenfunctions for the self-adjoint
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completely definite eigenvalue problem (2 1) which are orthonormal in the

generalized sense For the adjoint problem we have two sets of eigenfunctions

which are bi-orthonormal

Expansions For the self-adjoint complete definite eigenvalue problem (2 1),

consider the set of orthonormal eigenfunctions I Y. 1 Let f(x) be an

"arbitrary" function subject to certain restrictions which will not be con

sidered Let us assume that it is possible to write

f(x) = Z a Y (x)
j=l J J

If we multiply both sides of this equation by A Q(Y.) and integrate with

respect to x, we obtain

/ A Q(Yk) f dx = / A Q(Yk)
a a

Z a Y,
j=l J J

dx

If on the right hand side of this equation we interchange the order of summation

and integration and then apply the orthogonality conditions, we obtain

\ <= f A(x) f(x) Q[Yk(x) ] dx
a

If the {Y. Jwere not normalized, the formula for a. would be
b

/ A(x) f(x) Q[Yk(x)] dx
\ - S

/ A(x) Yk(x) Q[ Yk(x)] dx
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There are a number of questions which will be left unanswered but

nevertheless should be mentioned First, is the set of eigenfunctions complete'

By a complete set of eigenfunctions 1Y. I one means that the only function which

is orthogonal in the generalized sense to every Y,(x) is the zero function The
OS «

second question is, does the series Z a Y.(x) converge? Third, if the series
j=l J 2

converges, does it converge to f(x)?

Special Problem Although most of the above remarks apply, let us consider the

following special system

L(y) = M(y) - X g(x) y = 0

(2 3) Ujy) = 0 (m = 1, 2, ,M) ,

Dm y(*k> 0 (k = 1, 2, , N)

The corresponding adjoint system has the form

L(z) = M(z) - X g(x) z - 0 ,

(2 k) Um(z) =0 (m =1, 2, ,M) ,

\ [ZK) J=° (k =1, 2, ,N) ,

where the bars denote the adjoint conditions If M = M and both the sets
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1 y(x, ) Iand D yC^O are linearly equivalentU and U as well as D
m m

then the system (2 3) is self-adjoint

Orthogonality If we proceed in the same fashion as was followed for the general

problem, we can show that

b

/ A(x) g(x) yx (x) z (x) dx = 0 ,
a ^

where y, (x) is the eigenfunction for the system (2 3) with eigenvalue X ,

z (x) is the eigenfunction for the adjoint system (2 k) with eigenvalue u and

where X 4 u. If the system (23) is self-adjoint the orthogonality condition

becomes

b

/ A(x) g(x) y (x) y(x) dx = 0 (X 4 u)
a x u

Expansions If the set jy (x) J and Jz. (x) V are a countable complete bi

orthogonal system of eigenfunctions,then the formal expansion of f(x) is given

*y

where

f(x) = Z a y (x)
j=l J 3

/ A(x) g(x) f(x) z (x) dx

a, - a — J --
J b

/A(x) g(x) y^(x) Zj(x) dx
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For the self-adjoint problem

/ A(x) g(x) f(x) y (x) dx
a = _a ^
j _ _

/ A(x) g(x) y (x) dx
a J
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CHAPTER I

PART III

STURM-LIOUVILLE SYSTEMS WITH DISCONTINUOUS COEFFICIENTS

1 Results of Ordinary Sturm-Liouville Theory Systems of the following type,

(1 1) [r y'(x) ]' + [x p + g] y = 0 ,

o^ y(a) + Q^ y'(a) + o^ y(b) + o^ y'(b) = 0 ,

P-L y(a) + B2 y'(a) + ^ y(b) + p4 y'(b) = 0

where the ' denotes differentiation with respect to x , are known as Sturm-

Liouville systems The coefficients r(x) > 0 , g(x) and p(x) are

continuous functions of x in the interval a ^ x ^ b and X is an arbitrary

parameter The first systematic development of the theory of such systems was

published, as the name indicates, by J C F Sturm and J Liouville

Many mathematicians have added to or generalized the results of Sturm and Liouville

It is the objective of this part to indicate some generalizations resulting from

discontinuous coefficients which are believed to be new

The great interest in S - L (Sturm-Liouville) theory arises largely from the

fact that many boundary value problems in physics and engineering lead to questions

which can be answered by using S-L theory In addition certain problems involving
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the expansion of an arbitrarily given function either in an infinite series

whose terms are prescribed functions or in terms of an integral of prescribed

functions can be resolved by using S-L theory Although the expansion problem is

generally an auxiliary problem to the boundary value problem it is also of interest

in other fields of mathematics The primary interest in this part will be

centered upon either obtaining the expansions or indicating the character of the

expansions Before considering the generalized situations some of the known results

for S-L theory will be listed

Consider the general second order linear differential equation

(1 2) f2(x) y" + fx(x) y' + [fQ(x) + XgQ(x)] y = 0,

where X is a parameter and where f2 ,f ,f and g0(x) are continuous

functions of x on the interval a ^ x ^ b Further it is assumed that

f2(x) is not equal to zero anywhere on the interval The general homogeneous

boundary conditions

(1 3) o^ y(a) + Og y'(a) + o^ y(b) + o^ y'(b) = 0

Px y(a) + p2 y»(a) + 0? y(b) + ^ y'(b) = 0 ,

are taken to be linearly independent Upon dividing the differential equation
f

(1\2) by f2(x) and then multiplying the result by r=exp / 3= dx one
12

-30-



obtains the equation

[ry'(x)j + [x p + gj y = 0,

0 0
where p = s- r and g = ^- r It follows since this equation and the boundary

x2 I2
conditions (13) form a S-L system that such systems are quite general

The differential equation of a S-L system is self-adjoint The

concept of self-adjoint has been discussed in Part I A S-L system is called

self-adjoint when

(Ik) (oi p2 " h a2) r(b) = (ak p3 " °3 h^ r(a)

The most common type of self-adjoint S-L system has two additional

conditions First p(x) is assumed not to vanish for a ^ x ^ b In this

case both r(x) and p(x) can be assumed greater than zero The second

condition is that the boundary conditions are of the Sturmian type, that is,

(15) Q^ y(a) + c^ y*(a) = 0 and 0 y(b) + p2 y»(b) = 0 ,

where

°i °2 > o and Pc > 0
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The following two theorems summarize the primary results of ordinary S-L theory

TH 1 Oscillation theorem The system

|_r y'(x) J + |_Xp + gJ y = 0,

<\ y(a) + Qg y'(a) and p± y(b) + Bg y'(b) = 0

where

°i °2 > 0 and M + 0j > 0 ,

has an infinite number of real characteristic numbers which may be arranged in

a monotone increasing sequence,

x0 < xx < x2 <

which tends to + oo Corresponding to each simple eigenvalue X , there

exists an eigenfunction 9n(x) ,unique except for a multiplicative constant

Each cpn(x) has exactly n zeros in the interval a < x < b

TH 2 Expansion theorem Given an arbitrary continuous and piecewise differential

function f(x) which vanishes at the end points of the interval when cpn(x)

vanishes, then the series,
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oa b

Z Cn cpn(x) where C = / f(x) p(x) cp (x) dx ,
n=0 a n

converges uniformly and absolutely and has the sum f(x)

The eigenfunctions fulfill the orthogonality conditions,

/ P(x) cp (x) cp (x) dx = 0 when 1 ^ j
a d

The cp (x) form a complete set, that is,

b

/ p(x) f(x) cp (x) dx = 0 for all n ,
a

implies f(x) is identically zero and is assumed that the cp (x) are normal,

that is,

* 2
/ p(x) cp (x) dx = 1
a

The normality condition can easily be attained by letting

"cfn(x) = cpn(x) /// p(x) <pn(x) dx
v a

The general self-adjoint boundary conditions given by conditions (13)

and (l k) can be reduced easily to the form
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(1 6) y(^) = a y(a) + 0 y'(a) ,

y'(b) = 7 y(a) + 5 y»(a) ,

where

(a 8 - 07) r(b) = r(a)

In this case also the eigenvalues are all real The totality of eigenvalues

can be arranged into two sequences converging to + ex? These sequences

\ < X2 < X5 < and (X£ <) XJ < X£ <

i

where X^ is present if either 0 < 0 or 0 = 0 and a > 0 , have the

property that Xq ^ Xq < Xq+1 If 1^ = X^ then this number is a double

eigenvalue If X < X' then both numbers are simple eigenvalues The

corresponding eigenfunctions have 2n , 2n-l or 2n-2 zeros in the interval

a < x ^ b , depending upon a and 0 The expansion theorem and the properties

of the eigenvalues and eigenfunctions for large n have been developed fl2"|

If p(x) changes sign on the interval, two cases arises according to

whether the S-L system is definite A S-L system is called definite when

^ = 0 is not an eigenvalue and when
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-/ [_(r y')' + gy J dx > 0

for each twice differentiable function y(x) , which satisfies the given self-

adjoint boundary conditions Both the definite and non-definite cases have

been investigated

where

and

fl °0
Let -s- be once and ^- be twice differentiable then the transformation

r2 *2

[ «]

Y(z) = S(x) y(x) ,

x f&^

x f,
S(x) = 7i exp J / i to

f2 - a *2

takes equation (2 2) into the Liouville normal form

(1 7) Y"(z) + [x + g(z)] Y = 0 ,

where
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n(*\ f° ^ 1 f S°\2 S' f2 S"4(,) - r0 +5 <̂ r - ^ 5-

In this transformation it is necessary that f2 and g be positive (or, which

is equivalent, non-zero) on the interval It may be noted that the above

transformation takes Sturmian boundary conditions into Sturmian boundary conditions

The eigenvalue problem given by equations (15) and (17) is equivalent

to the Volterra integral equation

T. 1 xY(z) = -Qg cos s(z - a) + — sin s(z - a) - - / g(x) Y(x)sin s(z-x)dx,

2
where X = s and s is determined so that Y(z) satisfies

a

3X Y(b) + 02 Y'(b) = 0

This integral equation form of the eigenvalue problem is most convenient for

finding the eigenvalue and eigenfunction for large values of the parameter X ,

ie, Xn and n are large It is not difficult to show [_ 12 Jfor example,
that if Og 4 0 ,5 4 0 and

1 dH(c, d) = ^ / q(x) dx ,
2

c

then
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and

9n(x)

rtfi

b - a

1

jtn
H(a, b) ♦ I - I

n

itn(x - a) 1
cos =-* - +

b - a jtn

0
a(b -x) ^H(a, x) + ^

(x - a) J H(x, b)

sin
JtB (x - a)
b - a

I

o(4-)
n

The final interesting result can be summarized in the following theorem

The proof of this theorem involves of course, some of the above results

TH 3 Equi-convergence theorem Given f(x) is mtegrable over the interval

(a, b) then the S-L expansion behaves as regards convergence in the same way

as an ordinary Fourier series

2 S-L Theory with N-points of Discontinuity Problem We shall now consider

a S-L system with N points of discontinuity The differential equation is

of the type

[ry'J -[g + Xh]y o ,

that is in each subinterval x. < x< x .. (i = 0, ,n) the differential

equation is given by

(2 1) [ri K ] ' - [«i + xhJ yi, • °
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The assumptions which the coefficients of these equations will fulfill will be

given later

*N+1
= b

The interface conditions are given by the equations

yk <*k> - \ yk-l <**> + % yk-l (xk}
(2 2)

yk (xk) = \ yk-l <*k> + Ck yk-l (Xk)

where we assume \ \ ~ \ \ 4 ® The end conditions will be chosen as the

Sturmian conditions

a^ y(a) + Qg y»(a) = 0

(2 3)

Bjl y(b) + 02 y'(b) = 0

where G^ + Qg ^ 0 and P-, Pc 4 0 , although most of what follows

applies to the more general self-adjoint end conditions Conditions (21),

(2 2) and (2 3) therefore constitute the general S-L system we shall consider

Orthogonality Let the subscripts s and t denote association with the

eigenvalues Xg and X If we multiply the equations
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[riyslT - [«L + XShl]yS! " ° >

by y. and the equations

[ri^i] " [«x + XthiJ yti - ° '

by y, and then subtract the second set from the first set, we obtain
si '

*i |_yti ysl " ysl y*i J (Xs " V ni ysi yti

We now multiply this equation by A. , integrate over the subinterval x. < x < x .

and sum from i = 0 to 1 = N This gives

Now

N

Z A J
i=0

r

ri(xl+l) [/ti^I+l* ysi <xi+i> " ^i^i+l)

- ri(xi} \*%-&) ^i^) - ysi^x^ y-ti(xi)]j'
I xi+i

- (Xs - V * \/ \M yis<x> yit<x> te
i=v x.
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l/to^so^ - yso<b> yto<b>] = °
and

[ytN(a) ysN(a) " ysN(a) ytNUJ - ° '

because of condition (23) The other terms of the above sum can be written as

N r-

z
1=1

Al-1 rl-l<xi> - Al ri <*!> <*i di - bi \)\

[yt ,_! ixj y« 1_1 (Xi) -ys i_1 (Xi) y^ i_1 (Xi)J

Consequently if

ri-l <xi>
7TFT (ci dx "\ ei)_1 \-i (l ml>2* >N>>

we have

N xi+l

<Xs "Xt> Eo \ I \M yls yxt ta
i=0 x,

= (XS :,V / A^x) h<x) ysW yt^)^ = °

The orthogonality conditions therefore become

/ A(x) h(x) yg(x) yt(x)dx = 0
a

40-
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Self-adjoint Interface Conditions In the above derivation of the orthogonality

conditions it was assumed implicitly that the general S-L system was self-adjoint

Although this assumption proved successful it appears worthwhile to show that the

system is actually self-adjoint We note that the differential operator in

condition (2 1) is self-adjoint Further the Sturmian boundary conditions (2 2)

are self-adjoint conditions In Part I the recipe

\k . -i P-i (Ifc-i ^

was obtained for finding the adjoint interface conditions In our case

Fk "

Bk =

and

** =
:llK>

0
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Consequently

Since we choose

we see that

Vi Vi (*k> i
k = \ rk<V ^ s - \ ek) k

rk-l ^xk)*k = r~ (xk) (dkCk "bkek)"lAk-l >

Ck - Bk

and that the interface conditions are self-adjoint

Reality of Eigenvalues If X = s + it is an eigenvalue with eigenfunction y

then X = s - it is an eigenvalue with eigenfunction y , where the bar denotes

a complex conjugate Proceeding in the manner used to find the orthogonality

condition, it can be shown that

h I I22 it / A(x) h(x) Iy(x) | dx = 0
a

We now indicate the assumptions which the coefficients in condition (2 1)

will satisfy As in the general case in each subinterval i (i = 0, 1, , N)

the coefficients r^ , g^ and h are continuous and such that their limits when
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x tends to x. or x. - are finite Further we assume that r is positive

for x. ^ x ^ x 1 and that each h is positive or identically zero for

\ < x < xl+l For at least one subinterval h is positive The final

assumption is that s d •

assumptions, we have since

f e be positive for j = 1, 2, , N With these
J J

b 2 N Ai+1 . ,2
/ A(x) h(x) y(x) I dx = Z Ax / h(at) |y^x) | dx > 0
a i=0 x.

that t must be zero and that all the eigenvalues must be real

Since t = 0 and

2it \(x) yx(x) yi(x) = r^ yiyi yiyl]

it follows that

y. y'± " yx yi = constant for i = 0, 1, , N

The constant for each subinterval may be taken as zero Therefore y is a

constant times y and y can be considered as real since they can always be

made real by multiplying by the appropriate constant The eigenfunctions will be

considered henceforth to be real

Characteristic Equations Let the general solution of (2 1) for the i-th intervalbe
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(2*0 yx(x, X) = Ex(X) Y± (x, X) + F^X) Z^x, X) =

Ex Yx(x) + Fi Zi(x) (i = 0, 1, , N) ,

where YQ(x) satisfies c^ YQ(a) +Og Y^(a) =0 , where Z^x) satisfies

Px ZN(b) +02 Z^(b) =0 ,where Yjx) satisfies Yi(xi) =0 and Y'(x;L) = -1

(l = 1, 2, ,N-l) ,and where Z^x) satisfies zAx.) =1 and Z*(x )=0

(i = 1, 2, , N-l) The existence and uniqueness of the Y (x) and Z.(x)

are assured by the fundamental existence theorem for differential equations

We now substitute from equations (2 k) m conditions (2 2) and obtain

for k = 1, 2, , N-l

(2 5)

\ = FkW - \ E.:k-lYk-l<V + ^-iWV

ek [Ek-1 Yk-1<V +Fk-1 ^-l*V]

- Ek-i \\ Yk-A)+ ek Yk-i(xkO +Fk-i [s Vi^+ ek ^-i^j] *

Ek *£<**> =\-i [\ WV +ck K-i^] +-B,. =

F.
k-1 \\-i^ + \K-±(\K
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For k = N we obtain

FN W - EN-1 [*N YN-1<V +eN YN-1(V]

FN-1 [SWV +eHZi-l(x*)] '

WV - Vl [bNYN-l(V +CNYN-1(V]

FN-1 [bN ZN-lW) <? kJWV

Since we can consider FQ = 0 and E„ = 0 and satisfy conditions (2 3),

the relations (2 5) represent 2N linear homogeneous equations in the 2N

unknowns, EQ ,FR ,E± ,F (i = 1, 2, , N-l) In order that the E's and

F's be non-trivial it is necessary that the determinant A of the coefficients

should vanish This requirement gives, of course, the characteristic equation

The determinant has the following form

A =

F2 Ei-1 Fi-1Eo El Fl E2 F

v^Y) 0 -1 0 0

wx(Y) 1 0 0 0

0 v2(y) •2(z) 0

0 w2(Y) w2(z) 1 0

vx(Y) VjL(Z)

•wi(Y) wi(z)

S

-1^5-
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where v^X) = *± \-^\) + ex ^-iK) and w^X) =b± X1_1(xi) + e± X^x^
The eigenvalues are therefore the solutions of the equation A (X) = 0

It is believed that with suitable conditions upon the d's, e's, b's

and c's the eigenvalues can be shown to be simple

Expansions Let f(x) be an "arbitrary" function subject to certain restrictions

which will not be considered Further let Jy(x, X )I be the set of orthogonal

functions associated with the entire set of eigenvalues i~X. 1 If X. is a

non-simple eigenvalue then the set of orthogonal functions includes two linearly

independent functions associated with X Now we assume that it is possible

to write

f(x) = If a y(x, X )
j=l J °

Proceeding as usual we multiply both sides of the equation by A(x) y(x, X, )

and integrate from a to b This gives

/ A(x) h(x) y(x, J^) f(x)dx =/ A(x) h(x) y(x, 3^) Z a y(x, X )
j=l J J

dx

Upon interchanging the order of integration and summation on the right hand side

and then applying the orthogonality conditions, we obtain

b b/ A(x) h(x) y(x, Xj^) f(x)dx = \ I A(x) h(x) y (x, X^dx
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3 Singular S-L Theory with N-pomts of Discontinuity We now wish to consider

the problem in Section 2 where either b is + oo or a is - oo and b is

+ <=o These two cases, one on the semi-infinite interval and the other on the

infinite interval, are called singular If on a finite interval,- r- vanishes at

-a or b , or if- ~>g or h become infinite at"Ha1 or Jb1, "then the S-L system is

also called singular These cases will not be^considered but could be treated in

a manner similar to that used for the infinite case

Semi-infinite Problem We first consider a semi-infinite problem The finite S-L

system defined by the relations (2 1), (2 2) and (2 3) must be modified for the

semi-infinite interval The differential equations (2 1) are modified in that we

shall take for i = N the equation

y5 - Cx + %]yN - ° (x > V

As has been pointed out this is the normal form for a second order differential

equation and is most convenient when obtaining asymptotic properties for large

|x| and |X| Although this form is not necessary for the y„ equation since

the asymptotic properties can be obtained in any case, it is less work and just

as instructive to consider this form

We will consider only one type of g_ g.. will be assumed to be greater

than or equal to zero, to be continuous and to be absolutely integrable

Finally it is necessary to make a statement about the boundary condition

at infinity We will not be careful or explicit here but merely comment that the

solution y should be bounded as x tends to infinity
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Expansions Without any justification outside of the results obtained in Chapter II,

we shall consider expanding an arbitrary function f(x) in the following fashion

(3D f(x) = / G(s) Y(x, s)is

where X = -s and Y(x, s) is a solution to the modified relation (2 1) which

satisfies the condition c^ Y(a, s) + cig Y'(a, s) =0 In order to obtain the

formal G(s) which is appropriate for the expansion, we will proceed in a manner

similar to that used m the finite case

First we multiply both members of equation (3 l) by A(x) h(x) Y(x, t)

and integrate the reult, on both sides, from a to oo This gives

/ A(z) h(z) Y(z, t) f(z)dz = / A(z) h(z) Y(z, t)
a a

/ G(s) Y(z, s)ds dz

Recalling the procedure used m the finite ease we now wish to interchange the order

of integrations and carry out the inner integration This leads to the following

/ A(z) h(z) Y(z, t) f(z)dz = _lim / G(s)
a x—>«=o -oo

1+1

J A(z) h(z) Y(z, t) Y(z, s)dz
a

ds

_lim / G(s) Z A / h(z) Y.(z, t) Y,(z, s)dz
_i=0 xx x 1

ds ,

where x^ 1 here represents x
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In order to evaluate this final expression we note that the differential

equations lead to the following result

.2 2 i+1

(tc -s£) / hx(z) Yx(z, s) Yx(z, t)dz = Fj Ysi Yti " Yti Ysi

z=x
i+1

Z=X_,

At x = a the quantity Y» y - Y Y
so to to so

vanish as a consequence of the initial

condition which Y satisfies In the same fashion as used for the finite case, we

have as a consequence of the interface conditions and the selection of the A.

(1 = 1, 2, , N) that no contribution is given to the value of the integral

x

/ A(z) h(z) Y(z, s) Y(z, t)dz ,
a

by the discontinuities at the interfaces Consequently, we obtain

(t2 -s2) / A(z) h(z) Y(z, s) Y(z, t)dz Y|(x, s) YN(x,t) -Y^(x,t) YN(x,sj

Therefore

/ A(z) h(z) Y(z, t) f(z)dz = _ lim / G(s) A^ Y^(x,s) YN(x,t) -Y^(x,t) YK(x,s)J

,.2 2v-l .
(t - s ) ds
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At this point we need, in order to evaluate the right hand side of this

last equation, the asymptotic properties of Y and Y* for large x We first

note that YN and Y' can be written in the form

YN(x, s) = 9o(s) YN1(x, s) + cpo(s) YK2(x, s) ,

and

YN(x> s) = 9o(s) YNl(x> 8) + 'o(8) YN2(x> s)

where Y and Y^2 are any two linearly independent solutions of the equation

yN "LX +^J yN =° ** 1S convenient to let YN1 and YN2 be the particular
solutions which satisfy

YK1 = cos s(x "V " s" / sin s(x "z) YNi(z> s) %(z)dz >
and

YH2 = S sin s^x "V "S" ^ Sin S^X "z^ YN2^Z' s) %(z)dz

It is easily verified by differentiation that these are solutions It can be

shown, as it will be in Chapter II, that by using the above forms of Y . and YL-2

that

YN1 = ui(s) sin sx+ vi^s^ cos Sx+ 6(1) ,

as x tends to oo and
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Y 2 = U2(s) sin s x + v2(s) cos s x + o(l)

as x tends to c*o , where formulas for the v's and u's can be obtained The

essential result is that Y„T and Y' have the forms
N N

Y„ = ©(s) sin s x + q>(s) cos s x + o(l)
N

and

Y' = 9(s) cos s x - s cp(s) sm s x + o(l)

as x tends to infinity

We now have

lim Hg(s) Ajj (t2 - s2)"1 f~Y' (x, s) Y(x, t) - Y»(x,t)Y (x,s)~|

-j± r i, *p fBlv!v*' r^)^)-S(B)6(t)l
X >°o - <x> I L_ _J

)sm x (s - t)
+ —•

s - t
"q>(s) <p(t) +0(s) 0(t)] - COSs x(* +t]

Ms) 9(t) +cp(t) 0(s)l

005 x(.st" t} j"e(s) cp(t) - e(t) 9(B)] i ds

At this point we apply formally the formulas

lim f° F(x) cos kxdx =0 and lam J° F(x) sln k(z -x) ^ _ nf(z)
k ^Oo -<=X3 k ^00 .ao
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We now can obtain the desired result for we have

&oI A(z) h(z) Y(z, t) f(z)dz = |
a

cp2(t) + 02(t) G(t) + G( -t)j ,

since 9(s) is an odd function of s and cp(s) is an even function of s

Since Y(x, s) is an even function of s , we have

f(x) = / G(s) Y(x, s)ds = / G(s) + G(-s)- ;|o
0 L

Consequently

(3 2)
<=o

f(x) =§/
0

Y(x, s)ds

/~A(z) h(z) Y(z, s) f(z)dz| <p2(s) + 02(s)

Y(x, s) ^ ds

Infinite Problem For the infinite interval the finite S-L system must be

modified at both ends For x > x_. we again take the differential equation to be

yN " [X +%]yN - ° >

while for x < x, we take the differential equation to be

[X + gj yQ = 0
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We assume that g and g^ are greater than zero, continuous and absolutely

mtegrable

Expansions Again without justification, we shall consider expanding an arbitrary

function f(x) in the following fashion

(3 3) f(x) = / H(s) Y(x, s) + K(s) Z(x, s) ds ,

2
where X = -s and Y(x, s) and Z(x, s) are linearly independent solutions of

the differential equations (2 l) The procedure here is similar to that used for

the semi-infinite case

In order to find H(s) and K(s) we first multiply both sides of

equation (3 3) by A(x) h(x) Y(x, t) and integrate between - c*= and + o<=>

The result is given by

J A(z) h(z) Y(z,t) f(z)dz = /A(z) h(z) ?(z,t) )/ |h(s) Y(z,s) +K(s) £(z,s)J ds I dz
-OO -<=*=> / -CX3 I

Proceeding formally we obtain

r=A(z) h(z) Y(z,t) f(z)dz = _ lim /|h(s)/_A(z) h(z) Y(z, s) Y(z, t)dz
— ^>c? X —700 — <=*«? —X

x -,
+ K(s) /_A(z) h(z) Y(z,t) Z(z, s)dzj ds

-x
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^O p p

lim / H(s) (t - s rl \ *N [YN(X' S) VX> t} "YN(x' t} VX' 9)]X ^CX3 •o-o

Ao [Yo(x'S) Yo<X> *> " YN(X' *> YN(x> S>] [ds

+5J£„ Lf(S) (*2 ' S2)_1 K [^^ S) VX> *> " YN(X' *> VX' S>]
Ao|"To(*' S) Zo(x' *> " K&> *) Y0(x, 8)1 |ds,["^(x, s) ZQ(x, t) - Z^x, t) YQ(x, s)l I

At this stage it is necessary to have the order properties for large jx

We shall assume that as x tends to infinity that

YN(x, s) = u^s) cos sx + v1(s) sin sx + o(l) ,

?N(x, s) = -s u^s) sin sx + sv^s) cos sx + o(l) ,

Z.

and

N(x, s) = u^s) cos sx + v2(s) sin sx + o(l) ,

Z£(x, s) = -sUg(s) sin sx + sv2(s) cos sx + o(l)

We also assume that as -x tends to infinity that

YQ(x, s) = u^s) cos sx + v^(s) sin s x + o(l) ,

Yq(x, s) = -s u^s) sm sx + sv^(s) cos sx + o(l) ,



Z (x, s) = u^s) cos s x + vl(s) sin s x + o(l) ,

and

Z'(x, s) = -s Up(s) sm s x + s vl(s) cos s x + o(l)

It should be noted that the u's are even m s and the v's are odd in s

We shall also use the formulas

CxS

lim / F(x) cos kxdx = 0 and , lim f*F(x) sin k(z~x) dx=JtF(z;)
z - x

With the aid of the above properties and formulas, we obtain

where

and

/ A(z) h(z) Y(z, t) f(z)dz = tfH(t) u(t) + rtK(t) v(t) ,

u(t) = A^Tu^t) + v2(t)l +/

v(t) = Ajj fu^t) u^t) + vx(t) v2(t)l

AQ fu^t) ug(t) + v±(t) v^(t)l

ux2(t) + vx2(t)

Proceeding m a similar fashion it is possible to obtain

/ A(z) h(z) Z(z, t) f(z)dz = « H(t) v(t) + * K(t) w(t) ,
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where

At) = A^ u2(t) + Y|(t) + A. ^(t) + ^(t)

We can now solve for H(t) and K(t) and obtain

and

H(t) = i
it

K(t) =

w(t) / A(z) h(z) f(z) Y(z, t)dz - v(t) / A(z) h(z) f(z) Z(z, t)dz

u(t) w(t) - v^t)

w(t) / A(z) h(z) f(z) Z(z, t)dz - v(t) / A(z) h(z) f(z) Z(z, t)dz

u(t) w(t) - V (t)

It should also be pointed out that H(s) , K(s) , Y(x, s) and Z(x, s)

are all even functions of s Consequently,

r[.
0 L

f(x) = 2 / H(s) Y(x, s) + K(s) Z(x, s)
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Chapter II

SOME EXPANSIONS ASSOCIATED WITH SECOND ORDER DIFFERENTIAL

EQUATIONS WITH DISCONTINUOUS COEFFICIENTS

1 Introduction In this chapter, in addition to obtaining some expansions

which apparently have not appeared in the literature, the method of using

the Laplace transform in order to obtain expansions will be illustrated I2, 6J

In order to conveniently use the Laplace transform we shall consider certain

boundary value problems This has the advantage of also illustrating the well

known connection between boundary value problems and expansion problems We

are concerned primarily, of course, with the expansions, since the solutions

to the boundary value problems may then be easily found, and shown unique and

valid by the usual methods I 5J

Another objective of this chapter is to develop the regular (finite)

and singular (semi-infinite and infinite) cases in parallel rather than in

sequence It is believed that this development in parallel will exhibit more

clearly the similarities and differences between the regular and singular cases

The concept of equi-convergence plays a fundamental role in the

following As previously noted the S-L expansion of an integrable function behaves

as regards convergence in the same way as an ordinary Fourier series Similar

situations are shown to exist in both the following regular and singular cases

It is interesting to note that the classical method of separation can

be used to obtain the expansions

This chapter consists of eleven sections Since the details become

somewhat involved it appears worthwhile to point out in advance the essentials
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Section 2 contains a statement of the "composite" boundary value problems under

consideration In Section 3 the corresponding Laplace transform problem is

obtained and solved by using a "double" Green's function The formal inversions

of the solution of the transform problem is carried out in Section k The formal

expansions are given by equations (k 3), (k k) and (k 5) In Section 5 the formal

expansions, given by equations (5 k), (5 5) and (5 6), are obtained for the simplest

composite cases

The asymptotic properties, which are needed to prove the equi-convergence

of the general expansions (k 3), {k k) and (k 5) and the special expansions (5 k),

(5 5) and (5 6) respectively, are developed in Section 6 In Section 7 the

characteristic equations are investigated and the properties of the spectrum are

found Using primarily the results of Section 6 and 7 an equi-convergence theorem

is proven in Section 8 The verification of the formal expansions is obtained in

Section 9 This result is summarized in an expansion theorem In Section 10 the

boundary value problems and expansions are found by using the method of separation

of variables The equations (7 k), (10 11) and (10 1^) which are derived in this

fashion are equivalent to the equations (k 3), (k k) and (4 5) The final section

contains some remarks concerning some specializations and generalizations

In summary the formal results of this chapter may be found in the

first five sections, p 1 through p 19, the Equi-Convergence Theorem, p lj-5,

the Expansion Theorem, p 50, and the last two sections p 50 through p 70

2 The boundary value problems Consider the one dimensional distribution

of temperature U(x, t) in a slender rod or wire consisting of two sections

composed of different materials, when the initial temperature in each section

is an arbitrarily given function of the distance from one end and heat transfer,
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with thermal emissivity q(x) , takes place at the surfaces Let x = 0 be

taken as the surface of separation and let k. , k^ and K_ , K„ be the thermal

diffusivity and conductivity constants of the two materials There are three

cases to consider corresponding to whether the x-interval is (a) finite,

(b) semi-infinite or (c) infinite In the finite case (a) let the ends be

insulated and let the length of the layers be a and b In the semi-infinite

case (b) let one be the length of the finite section and let the end at x = -1

be insulated Case (a) leads to the regular case while cases (b) and (c) lead

to singular cases The boundary value problems become

* *l(x) * *2 (x) *

ci 'h. ' fi ^ k2 ,K2 , f2 (x)

(2 1) Ut(x, t) = J^ U^ - qx(x) U (x < 0) ,

(2 2) U(x, 0+) = fx(x) (x < 0) ,

(2 3) Ut = ^2 Uxx " <k>(x) U (x > 0) ,

(2 k) U(x, 0+) = f2(x) (x > 0) ,

(2 5) U(0", t) = U(0+, t) , (2 6) K^ Ux(0~, t)=K2Ux(0+,t) ,

(2 7a) Ux (-\>+, t) = 0 , Ux (a", t) = 0 ,
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(2 7b) U (-1 , t) = 0 , U(x, t) < M , where M is a constant,

(2 7c) U(x, t) I < M , where M is a constant,

where t > 0 in relations (2 1), (2 3), (2 5), (2 6), (2 7a), (2 7b) and (2 7c)

For convenience let f(x) = f-^x) when x < 0 and f(x) = f (x) when

x > 0 and let q(x) = q^x) when x < 0 and q(x) = q^x) when x > 0

f(x) is, of course, assumed bounded

We shall assume that q(x) satisfies the following three conditions

First q(x) is continuous except possibly at x = 0 Second the integral of

q(x) over the x-interval exists This condition is closely connected with the

equi-convergence properties Third q(x) is greater than or equal to zero

This final condition is not a necessary one for the following methods However,

the proofs and results do become less complicated if we use this condition

If we let K^ = K2 ,k^ = k2 = 1 and q(x) be continuous at x = 0

the composite (or two materials) problems reduce to continuous (or one material)

problems

3 The transformed problems and their solutions Let w(x, ^i) denote the Laplace

transform of U(x, t) with respect to t , i e ,

L ^U(x, t) j> = f e_lit U(x, t) dt = w(x, u)

Applying this transformation formally to the boundary value problems, we obtain
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(3 1) (u + q^) w(x, n) - fx =\ ^ , (3 2) (p + qg) w -fg =kg w.
XX

(3 3) w(0", u) = w(0+, n) (3 k) *1 Wx(0"' ^ =K2 Wx(0+' ^ »

(3 5a) wx (-b, p) = 0 wx(a, pi) = 0

(3 5b) w_(-l, u) = 0 , w(x, p) < M u~ , where p is the real
x r r

part of p and is greater than zero ,

(3 5c)
-1

w(x, p.) < M p.

If |ir ) 5 > 0 then w(x, p) < M u~ can be written w(x, p) < N. ,

where N~ is a constant dependent only upon 8

The solution of these nonhomogeneous problems can be written in terms

of the solution of corresponding homogeneous problems Define the "double"

Green's functions G(x, y, p) by J G(x, y, p) = R(x, y, p.) when x < 0 and

J G(x, y, p) = S(x, y, p) when x > 0 ,where J = K, when y < 0 and

J = Kg when y > 0 and where R(x, y, p) = R(x, y) and s(x, y, p) = s(x, y)

satisfy

kl Rxx " ^ + ql^ R= ° When x<y^y<x<°» k2Sxx"^|i'fq2^ S = 0 wnen

0<x<y,y<x,
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R(x, y) is continuous for x, y < 0 , S(x, y) is continuous for

0 < x, y ,

Rx(y+, y) -Rx(y"> y) =1 » sx(y+> y) -sx(y~' y) = 1 >

R(0, y) = S(0, y) , K^ Rx(0, y) = Kg Sx(0, y) ,

(a) Rx(-'b, y) = 0 , Sx(a, y) = 0

(b) Rx(~l> y) = 0 , S is bounded

(c) R and S are bounded

As might be expected then from the theory of Green's function tile solution to

the above transformed problem is given by

(3 6) w(x, u) » - / p(y) G(x, y, p.) f(y) dy ,

\ K,
j— when y < 0 and p(y) = ~

of integration is from -b to a for case (a), from -1 to oo for case (b)

and from - oo to oo tor case (c) This solution may be verified in each of

the three eases in the usual manner by using theproperties of G(x, y, p)

G(x, y, p.) can in turn be expressed in terms of solutions of the

second order R and S differential equations Let g's be solutions td the

x 2where p(y) = =— when y < 0 and p(y) = z— when y > 0 The interval
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R differential equation while h's are solutions to the S differential

equation For case (a) let g-(x, p) == g,(x) and g^x) ,and h,(x) and hg(x)

satisfy g^(-b) =0 ,gx(-b) =1 and g2(o) =0 ,and h£(a) =0 ,h^a) =1 and

h^(0) =1 For case (b) let gx(x) and g2(x) ,and h^x) and h2(x) satisfy

•g^(-l) =0 ,gx(-l) =1 and gg(-l) =0 ,g£(-l) = -1 ,and 1^(0) =0 ,h»(0) =1

and h^(0) =0 ,h2(0) = -1 For case (c) let g.,(x) and gg(x) ,and h_(x)

and hg(x) satisfy g^O) ,g£(0) =1 and g£(0) «0 ,g2(0) = -1 ,and

1^(0) =0 ,h£(0) =1 and n£(0) =0 ,hg(0) = -1

In case (b) and (c) we also need solutions of the differential equations

which are bounded as x tends to infinity even though p be complex When x

tends to infinity let the bounded solution be h(x) = A hu(x) +B hg(x) and

when -x tends to infinity let the bounded solution be g(x) = E g,(x) +F gg(x)

We will indicate how to obtain these particular solutions later

It is shown in the theory of differential equations I 9 ,p 72 and

p 218J that solutions g and h exist which, together with their first

derivatives with respect to x , are continuous in x and p. together and analytic

in p for each finite x region and bounded p. region

For case (a) if we define W ,W. and Wf by

Wg =s gx(y) g2'(y) -gj(y) g2(y) , \ = tag(y) h£(y) -h^y) h£(y) and

Wf = Kj_ gx(0) h^O) -Kg hj(0) gx(0) ,

we obtain
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R(x, y) =[-Kg h^y) W^1 -1^ 1^(0) g^(0) gx(y) W"1 W"1]gx(x) +g2(y) gx(x) W"1

(-b < x < y)

=[-Kg h1(y) W"1 -£,_ 1^(0) g£(0) gx(y) W"1 W^Jg^x) +gx(y) g2(x) W'1

(y < x < 0) ,

S(x, y) =[-Kx gx(y) W"1 -1^ h2(0) gx(0) h^y) W^1 W"1] h^x) +h^y) h^x) W"1

(0 < x < y)

= [-^ g±(y) W"1 -H^ h2(0) g±(0) h^y) w"1 W^1]h1(x) +hg(y) h^x) W"1

(y -^ x < a)

For case (b) if we define M and N by

M » [b K^ g£(0) + AK2 gx(0)] and N = -[b K^ g£(0) +AKg gg(0)] ,

we obtain

R(x, y) = [n gx(y) +Kg h(y)] gx(x) M_1 +gg(y) gx(x) (-1 < x < y)

= [n gx(y) +Kg h(y)] gx(x) M"1 +gx(y) g2(x) (y < x< 0) ,
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S(x, y) = [a-1 £,_ gj(0) h(y) +K^ g^y)] h(x) M-1 - A-1 h(y) hg(x)

(0 < x < y)

= [a-1 ^ gx(0) h(y) +i^ gx(y)] h(x) M"1 - A"1 h2(y) h(x) (y< x)

For case (c) if we define W by W= K1BE-KgAF,we obtain

R(x, y) = [Kg AE"1 g(y) +Kg h(y)] g(x) W-1 +E_1 gg(y) g(x) (x < y< 0)

= [Kg AE'1 g(y) +Kg h(y)] g(x) W_1 +E_1 g(y) g2(x) (y< x< 0) .

S(x, y) = [% EA"1 h(y) +Kj_ g(y)] h(x) W_1 - A-1 h(y) K>(x) (0 < x< y)

= [kx EA"1 h(y) +Kj^ g(y)] h(x) w"1 - A-1 h^y) h(x) (y < x)

It may be noted that g(x, y, p) = G(y, x, p), i e , G(x, y, p,) is a symmetric

kernel in each case Consequently, with recourse to the theory of integral

equations an expansion theory could be developed

Substituting in equation (3 6), we obtain for case (a)

(3 T) w(x, p) = *2 0 K/ j^h^y) fg(y) dy + / ^g^(0) 1^(0) gx(y) f±(y) w"1 dy

gx(x) W^

- * ir- gi<y) fi(y) dy Mx) "g1 - / 4" «2(y) fi(y) dy gi(x) wgx
-b 1 x 1
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a ^ i r "l
• gl(x) ' k~ Vy) f2(y) dy V + *1 g2(0) V0) gl(x) - Wf ^WJ

/ -r- gx(y) fx(y) dy w"1 w"1

0

gx(x) / _ [^ g£(0) h^O) g1(y) - Wf g2(y)] f^y) dy WgX w"1

w(x, p) =

(-"b < x < 0) ,

0 TIL a K.

/ 5r gx(y) fx(y) dy + / ^ §£(0) h2(0) h^y) f2(y) W^1 dy

\(x) Wj1

/ -5- Vy) f2<y> dy Vx) WhX - ' 4" Vy) f2(y) dy h2(x) W1

OK, r- -1
Vx) ' £7 gl(y) fl(y) dy¥f + K gx(0) 1^(0) h1(x)-Wf hg(x) I

a

r
x ~2

a 1
' ~k~ Vy) f2(y) dy W]h wf

VX) * 4" T^L gl(0) h2(0) Vy) "Vy) Wf

(0 < x < a)

while we obtain for case (b)
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(3 8) w(x, p) = - / 5T h(y) f (y) dy - N / -±- g (y) f (y) dy
0*2 * -1 *1 1 1

0 1 _1 1/ -g- S2(y) f±(y) dy gx(x) - / -g- g±(y) f (y) dy gg(x)
x 1 x 1

-1gx(x) M'

/ rf- h(y) f (y) dy g (x) M~X
0*2 d X

Ngx(x) + Mg2(x) A 1 1
/ — «i(y) fi(y) dy M

o

X X- / 4: My> n g±(y) + Mg2(y) -ldy gx(x) m (-1 < x < 0)

w(x, p) =
0 K, oo

I ^ gx(y) fx(y) dy - ^ gx(o) / y~ h(y) f2(y)dy A-l -1h(x) M

,-1 ,X 1 •i ri+ A"x / -±- h2(y) f2(y) dy h(x) + A"x / -±- h(y) f2(y) dy h£(x)

0 K.

f k-1 *1

w r. x r-

/n ^ gx(y) f-L(y)dy h(x) m'x - / y~ \ si(°) Vy) - ^ gl(0) Vy)

fg(y) dy h(x) M"

/ -i- h(y) f2(y) dy
x 2

Kx gx(0) hx(x) - Kg g±(0) h2(x) M

and we obtain for case (c)

(3 9) w(x, p) = - / ^ h(y) f_(y) dy - AE"1 / ^
0 *2 2
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-E"1 / -i- gg(y) fx(y) dy g(x) -E-1 / -±- g(y) f^y) dy gg(
X 1 -oo 1

x)

\oo x^2 11 i ~

=-/ Y" h(y) f2(y) dy g(x) W" -/ Y~ g(y) fl(y) dy W \ B fyte +K2k &
0 2 - oo 1

Sl(x)]
0

x 1

u i r
' ~k~ Vy) h B M3^ +Kg A gx(y) ,-1dy g(x) w"x (x < o) ,

w(x, p) = r° *1/ jT g(y) Vy) dy -EA~X / -± h(y) f(y) dy
- <=o T. 0 2

h(x) W"

-1 »X 1 T <=>0 1+A / -£- hg(y) fg(y) dy h(x) + A_X /-±- h(y) fg(y) dy hg(x)
x 2

,° *! 1 — 1=-/ J" g(y) fx(y) dy h(x) W"x -/-±_ h(y) f (y) dy
— oo 1 "x "a

Kj_ E h^x) + Kg F hg(x)

(x > 0)
0 K2

R^ E h^y) +Kg F h2(y) fg(y) dy h(x) W"1

k The formal inversions Formula (3 6) expresses w(x, p) in terms of a

double Green's function, a step function and the arbitrary function f(x)

Roughly speaking we obtain the desired expansions by inverting formula (3 6)

and expressing f(x) in terms of w(x, p) For case (a) we shall now suppose, and

will prove later, that w(x, p) has a countably infinite number of simple real

poles, the zeros of Wf In this case we formally let

(kl) f(x) = lim 5-i—
n->~ 2* x "(c)

x n'

-.66-

/ w(x, p) du ,

-1
W



where (C ) are large contours in the p-plane which enclose all the poles in the

limit For cases (b) and (c) we shall now suppose, and will prove later, that
«

w(x, p) has as its only singular point a branch point at the origin For these

cases we formally let

(k 2) f(x) =\ / Ijw(x, p)|dp ,

where I jzI is the imaginary part of z

Using formula (3 7) in equation (k 1) we obtain formally

co a

(* 3) f(x) = Z / p(y) Xn(y) f(y) dy X^x) U(0) ^(0) wl X
n=l -b J

where p(y) has the previous meaning, where W is the derivative of Wf

with respect to p evaluated at the n-th zero of W_ , p = p , where either

<Pn(0) = hn(0) = h(0, pn) and +n(0) mSj0) or q>Q(0) = Kg hj(0) and +n(0) m

K, g'(0) t either choice being equivalent for each n , unless for a particular

n both h(0) and g (0) are zero or both h'(0) and g'(0) are zero, in which

case the non-zero pair is chosen and where

Xn(x) = <pn(0) gn(x) = cpJO) gx(x, pn) (-b < x < 0)

~ V0) Vx) = V0) Vx' ^ (0 < x < a)
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When p. is real in case (b), gx(x, p) = gx(x) ,g2(x) ,h1(x) and hg(x)

are real while A = A(p) and B may be complex Using formula (3 8) in equation (k 2),

we obtain formally

(kk) fx(x) =-i J / Y-f^y) g-x(y) I{mn} dy +f°^ fg(y)I (h(y)MJdy

f2(x) = -hi

Jx(x) M"1 M-1 dp ,

,° *1I JT My) 8i(y)dy IJKx)m] + / -i"
-1 1 x x L J 0 2

1^ g£(0) h^y) -Kg gx(0) hg(y)J fg(y) dy I|h(x) M)

+ /4~ f2(y) I(My) Mjdy fa gx(0) h^x) -Kg gx(0) hg(x)]

M"1 M "X dp. ,

where M is the complex conjugate of M

When p is real in case (c), gx(x, p.) = gx(x) ,g£(x) ,h^x) and h2(x)

are real while A = A(p) ,B , E and F may be complex Using formula (3 9) in

equation (k 2), we obtain formally

0

(k 5) fx(x) = -i / \! ^ f2(y) I[b(y)W g(x)J dy +/ -̂-Vy) 1

|g(y) W[i^ Bg2(x) +Kg Agx(x)]1dy
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/-j- fx(y) Ijg(x) W[kx Bgg(y) +1^ Agx(y)]| dy W"1 W -1 dp ,

f2« - - ; /
0

1 r fi(y) x fg(y) whW} ay + ~1r f2(y) i
-co 1 L X 2

|h(y) W[k^ Ehx(x) +1^ Fhg(x)] Idy

+ '4~ f2(y) JIh(x) W [h EVy) +K2 Fh2(y)] [dy

5 The special cases q(x) identically zero When q(x) is identically zero

equations (3 1) and (3 2) become differential equations with constant coefficients

Consequently, they can be solved along with the auxiliary conditions by using

variation of parameters or by using the Laplace transform with respect to x

For case (a), we can obtain

(5 1) w(x, p) = -[cos sx(x +b) p(s) +(cos Sg acos sx x+K~ sin Sg asin s., x)q(s]

-1 X 1
s-l / Y" fl(y) sin sl (x ~ y) dy (-"b < x < 0)TT-1 "IW s

o

w(x, p) =-[cos s1(a -x) q(s) +(cos sx bcos s2 x-Ksin sx bsin Sg x) p(s)"|

where

TT-1 -1 -1
W_ s - s-

X 1
/ Y~ f2^ sin s2 (x _y) dy (0 < x < a) ,

K = K.K2

0 2

1 1

1 "2 ,2
kl k2

1 1

- 2 ." 2 _ " 2p = -s , sx = s k^ , s2 =• s k2 ,
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a K„ 0 K,
P(s) - / j— fp(y) cos sp (a - y)dy , q(s) = J — f (y) cos s.. (b + y) dy and

0 2 c -b T. X -1

1 1
2 " P

Wo — ^ *! COS s2 a sin sl b + ^ k2 COS sl ^ sin s2 a

We shall always select the branch of p where the real part of p'

is greater than zero, ie ,we choose -it < 0 -^ * when p =r eiQ and
1 1 ©

2 2 i2p = r e Let s= sr + i si Since s= i sf^T, s. ^ 0

For case (b), we can obtain

(5 2) w(x, ,0 = - J * _-i
Kg x i s2 y

0 2
fg(y) dy cos sx (1 +x) M"1

K„1

/ YT fl^y^ cos sl (x + y)
-1

dy H
h

2 x , cos sx x + -g— sin s..x

o T

x *l x
*L

2is0-c088ly+ TT
^

sm s, x
-1

dy cos s.(l+x)M"

(-1 < x < 0)

0 K.

w(x, p) = - / — cos Sl (1 +y) fx(y) dy g-j1 X S2 X „-l
-— e M
s0 o

x 1
f —
0 *2

KL cos s, cos s_ y - ^
f 1 1 i B2 y ,,
x k2 2 i s2 u ^'^ Kg cos 8]

sin s- sin s? y
is,x

f0(y)dy ott- e xm:x2is,

k„

J2 - " h J kij;sin si sin S2X

M. (x > 0) ,
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where

Mq=,_ \f «2
2i a *

For case (c), we can obtain

(5 3) w(x, p) =

i s2 y - i 8l x
? " ^2 * / \ e e i rl 1; - f2^y) rrr0 21B. dy + ! ir nr

d L - o<3 1 10 *2

*i *2fx(y) dy ( g-^ cos sx x + -^ sin B]_ x)

e-1S^ ,0 , % «2+ 2i Sl { "k^ fi(y) <nr^ cos si y+ti^sin siy) dy

-1(-k is) (Kx y 1^ + K2 y\) (x < 0) ,

i s0 y0 ^ -i s± y i s2 x
w(x, p) =

K2 K,_( -__ cos 8o x . __ sin S2 x)

i 8- X
2 x *2 *1nr f 4: (2~Ti7cos S2y-2Tsin S2 y) f2^dy
"2 0 2

-1(-^ i bki^ y£~ +k2 y^) (x > 0)

Using these last formulas and equations (k 1) and (k 2) we can obtain

the formal expansions For case (a), we obtain
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(5 k)
oo a

f(x) = Z / p(y) ZQ(y) f(y) dy Zjx) [cpon(0) *QiO) WQn] 'X

where W ^ is the derivative of W with respect to s evaluated at the n-th
on o

zero of W^ , p = p. , where either cp (0) = cos s
° n on n /k — ir

K ^2 T.
cos s„ —^=- or qp^ (0) = + JL s„ sin s_ —1= and * (0)= TT" Sn 8in n

onN

k2 yk2

a and *on(0) =

on^ "i

A"
, either choice being equivalent for each n , unless for particular n both

a , b b a
cos s ——z and cos s —7=- are zero or both sin s and sin s

u /tL n /,_ n xi n

are zero, in which case the non-zero pair is chosen and where

Zn(x) - 9on(0) cos 8n (x + b)

\

= *on(0) cos sn (a - x)
y k2

For case (b), we obtain

(5 5) f(x) =

where

g tSO
- I Z(x, s)
n 0

/ P(y) Z(y, s) f(y) dy
L -1

(-b < x < 0)

(0 < x < a)

G(s) ds ,

G(b) = ^ 2 _2 2(cos sx +K sin s1)

and where
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Z(x, s) = cos s., (l + x) (-1-^x^0)

== cos s, cos s_ x - K sin s.. sin s„ x (x ^ 0)

For case (c), we obtain

/ p(y)f(y) K(x,b) z^s) +kxk2 Jk^ z2(x,s)z2(y,sjdyds
(5 6) f(x) = § r -^ = •= —~

o h.^lh./^ +^y^J

where

Z.(x, s) = K2 /k^ sin s x , Z2(x, s) = - cos s, x (x ^ 0)

= TL.J k2 sm s2 x , = - cos s2 x (x ^ 0)

6 Asymptotic properties As previously indicated we shall show that the general

expansions (k 3), (k k) and (k 5) are equi-convergent respectively with the special

expansions (5 k), (5 5) and (5 6) In order to prove the equi-convergence property

we need asymptotic or order properties for the two cases, |x| is large and |s|

(or IpI ) is large The methods of obtaining these properties are found largely

in Titchmarsh Il8j Consequently only some of the results and afew words of

explanation will be displayed

Using the differential equations and the initial conditions which the

solutions satisfy it is easily verified that Il8, p 9Jthe g's and h's satisfy

integral equations similar to the following particular cases
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(6 la) 1 Xg(x) = cos b± (x +b) + —g- / sin Sl(x - y) qx(y) gi(y) dy

(6 lc) g (x) = -i- sin a, x + —
1 s. 1 s. — / sin s (x - y) q (y) g (y) dy

110 x xi

(6 2a) 1gx(x) = - sx sin sx(x +b) +-TT- / cos sx(x - y) qx(y) gx(y) dy

Using equations (6 la) through (6 2a), it is possible to obtain the
s s

following representative order properties Let a = —-1—-• and t = =—

h
where s = s +i s, *

r i

(6 3a) §1(x) = cos 8;L(x +b) +0J|s|"x ea(b+x) juniformly for -b^[ x < 0s^. - -^

Equation (6 3a), for example, may be verified in the following manner Let

G(x) =gl(x) e-a(b+x> and C = max

-b<x< 0
G(x)

Therefore by equation (6 la)

G(x) = cos 8;L(x +b) e~a(b+x) + —i_ / Sin s(x _y) G(y) -(y)
1 1 -b x x

We shall write g]L(x) =0[e0^+x)
for large |s| ,1 g^x) e"a(b+x) '
interval -b ^ x ^ 0

e-cf(x-y) dy

• uniformly for -b ^ x < 0 to signify that

< M , where M is independent of x m the
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By taking the absolute value, we^-have

< i ♦ -r^- £ "Kw

and consequently

C <
r i ° i
i - is |v / k,(y)

lsil h -b ' x
dy

dy

-l

provided the denominator is positive This is certainly true if |s| is large

Consequently g±(x) e_c^ +x' < M,where M is independent of x Using this
in equation (6 la) we have equation (6 3a)

The following order properties for large |x| can be obtained in a

manner similar to that used by Titchmarsh h.8, p 98J

(6 kc)
i s x r

5x(x) = e Jr(s) +o(l)

as -x tends to infinity (complex s) , where

R(s) =
0 -i s, y

2 i sn 2 i s. *1
I e qx(y) g-^y) dy ,

(6 5c) *,(x) = u_(s) cos sx x + vL'(s) sin s, x + o(l)

as -x tends to infinity (real s) , where
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1 °
^(s) - iTx- / sin siy My) My)dy «* \(*) - 4" - rV ;

1 1 - c*o 1 1 J. -

cos bx y qx(y) g^yjdy ,

(6 6c) g2(x) = e x js(s) +o(l)|

as -x tends to infinity (complex s) , where

1 1 0 -i sx y
s(s) = - g" - 2± s k ^ e *L^y) M3^ dy »

1 1 - oo

(6 7c) gg(x) = Ug(s) cos sx x + v^(s) sin s., x+o(l)

as -x tends to infinity (complex s), where

1 °Ug(s) = -1 + fl k / sin 8± y qx(y) g2(y) dy
1 1

and

0

%(*) = b—k~ I cos sl y^l^) s2^ dy »
1 1 - £XP

-i s0 x r ^
(6 8b, c) h1(x) = e * Jp(s) + o(l)|

as x tends to infinity (complex s ) , where

CO

i i »o ^ sg y
P(s) = - g-Tig" "2is2 kg / e %»(y> Vy) dy >
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(6 9b, c) k,(x) = u.(s) cos s2 x + v,(s) sin s. x + o(l)

as x tends to infinity (real s), where

and

• CX}

Vs) = —s k / sin s2 y ^(y) V3^7

1 1 ^^v1(s) = — + -^—g / cos Sg y qg(y) h^y) dy ,

•• d. s x

(6 10b, c) h„(x) = e 2 JQ(s) + o(l)

as x tends to infinity (complex s), where

i i po s2 y
Q(s) =-g - g ts k / e gg(y) hg(y) dy ,

(6 lib, c) b_(x) = Ug(s) cos s» x + vp(s) sin s2 x + o(l)

as x tends to infinity (real s), where

Ug(s) = -1 - s k / sin Sg y qg(y) hg(y) dy

and

CO

V2^S^ = s k ^ cos s2 y My) M7) dy
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The following equations can be derived in a straight forward fashion

from the above definition and order properties

(6 12c)

(6 13c)

(6 ikh, o)

(6 15b, c)

(6 16c)

(6 17b, c)

R(s) . | [^(s) -iv^s)] =
2 i s. 0{\s\-2}_

8(b) .I [^(s) -ivg(s) = -| +0{isp1}

P(s)

Q(«)

= g- ^(s) +i vx(s)

"I [U2( s) + i v0(s)

u^s) v2(s) -V^S) Ug(s) = -|-

"-^ +° (i»r2}"
-I ♦ 0(|s|-X}

u^s) v2(s) -vx(s) Ug(s) = -i-

Let us now consider the existence of solutions to the R and S

differential equations which are bounded even when s (or p ) is complex

Since the methods are similar consider only the case of a solution bounded as

x tends to infinity We previously let h(x) = A b-(x) +B hg(x) Using

equations (6 8b, c) and (6 10b, c), we have

-i Sg x
h(x) = A e «fisjp(s) +o(l)} + B e

•i s2x £q(b) +o(l)J

as x tends to infinity When e± ^ 8 > 0 ,it is apparent that h(x) can

not be bounded as x tends to infinity unless A(s) P(s) + B(s) Q(s) =0 Therefore
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we put A = Q(s) and B = -P(s) Consequently, we have

(6 18) A = Q(s) and B = -P(s) , h(x) = Q(s) h^x) -P(s) hg(x)

i s2 x ^ 2-hr2 +p<8> I +2T Sgkg /
0

-i Sg y
qg(y) h(y) e dy

+ e

-2i sg x x oo i so y

2 x S2 k2 x
/ e <3g(y) My) dy

It is possible to verify directly that the right hand side of this equation

satisfies the S differential equation
-i s x

Now let H(x) ss.e h(x) and let C = LUB H(x)
x>0

absolute values, we obtain from equations (6 18)

S XH(x)|< ^(s)-^ + P(s) -§| + g|sX|k / qg(y) |H(y)|dy +

Therefore

1 <s<:' I I2|ig]kJ / q2(y)|H(y)|dy

Taking

c < k(s) -|t + #p(s)I +2i • 2 —I • 2kg|s C / <Jp(y) dy ,
21 0

and
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o< |«(.) -s +rp(.)| [i- ypij^- j %(y)

provided the denominator is positive This is certainly the case if jsI is big
g

enough By equations (6 ll»b, c) and (6 15b, c) we can see that IQ(s) -^t + k2- P(s)
2i 2

is bounded for large IsI Consequently

h(x) =oj|s| -1 -TX Ie > uniformly for x ^. 0

Using this order property along with equations (6 l*rt>, c) and (6 15b, c), we obtain

(6 19b, c) h(x) = I +^l"1}]^ * [-hV°{I•!"*}'
0 J s

-2
i Sg x

2 1 s

1 ± 82 X [\
e 1 + o{m-1};

1

2 +

In a similar fashion, the following equations can be obtained Let E = S(s)

and F = -R(s)

i s., x

(6 20c) g(x) = S(s) g;L(x) -R(s) gg(x) = e X

-S(s) 5^4— + R(s) i+
2i 8. 2- 2i4rkT ; My>g(y) e x'dy +

1 1 X

0 i s, y

2i 8;L x 1 x -21 s y "j
21 e, k,B / e ^ 8(V) dy [,
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(6 21c) g(x) =
-i 8^ x

2i s,
1 + o{H-1}

Equations (6 19b, c) and (6 21c) indicate that h(x) and g(x) not

only are bounded but also tend to zero respectively as x and -x tend to

infinity, provided |s| is large enough In the case of complex s it would be

desirable to eliminate the requirement that Is| be large The writer has been

unable to do this directly Using Titchmarsh's results 18, p 19J this may be

accomplished in the following indirect fashion

Now h(x) = Q(s) V*> -Iff} V*']
the previous order properties that

{*• lim
V*) ni(b)
SgTbT = h"-%^ hgW

It is easily seen from

h^bjeos P+hx(b) sin B
fc-^c^kgtb) cos B+hgHb) sin 6

If we let I (b, s) = -

satisfies the boundary condition

h_(b) cos 6 + bJ(b) sin 6

hg(b) cos P+hg»(b) sin B then Mx> + ^b' 8> Mx>

h^b) +j>(b, s) hg(b) Jcos B+ [h^b) + £(b, s) h£(b) sin p = 0

Using Titchmarsh's results 18, p 2lJ we can conclude that for every value of
2 I 12

p. = -s other than real values h(x) is Lebesgue integrable Further as

Titchmarsh has shown 18, p 22J for any fixed complex p. and X
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lim [h(x, u) h'(x, p) - h'(x, u) h(x, p)l = 0
X —~^oo

The last result is the one which will actually be used in investigating the

properties of the roots of the characteristic equation

Likewise g(x) satisfies

lim |~g(x, u) g'(x, B) - g(x, B) g'(x, u)~| = 0
X^

In the sections dealing with equi-convergence proofs we need the order

properties of the characteristic equations For case (a) we can obtain by using

order equations of the type (6 3a) the relation

(6 22a) to. + crfo IW^ = -s W_ + 0 V e I uniformly for -b ^ x ^ a ,

where W is defined in connection with equation (5 1) For case (b) we can

obtain the relation

(6 22b) M =

K^/ k.

2i / k.

2 , K2 \ n I. i-l crsin si + p- cos s1 ) + 0 -l Is| e

uniformly for x > -1 For case (c) we can obtain the relation
•7

(6 22c) W =

uniformly for all x

1

5is h/^+K2y/h 1 + 0
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In case (b) we also need the order property for N

K, VV Kp /K ( Q „
(623b) N = - 2x* cos Sl + 2^ X sin sx +0J |s|"^ e°

7 The characteristic equations Before considering the equi-convergence proof

we need to consider whether the characteristic equations have any zeros And,

if there are zeros we need to investigate their number and location

First let us show that there are no complex zeros |i for any of the

three cases Consider the following "Sturm-Liouville" type systems which determine

the characteristic equations

(7 x) kl Uxx " [? +ql(x) ] u(x' V) = 0 (x < 0) ,

(7 2) k2 Uxx " (v + %) u = ° (x > 0) ,

(7 3) u(0", u) = u(0+, u) , (7 k) T^ ux(0", u) = Kg ux(0+, u) ,

(7 5a) ux^"b^ = 0 = ux(a) , (7 5b) \(-l) = 0 ,u bounded ,

(7 5c) u bounded

Taking complex conjugates we obtain also
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*1 Uxx " ^ + 'h) u = ° ' k2 u " ^ +^ u = ° >
XX

u(0", u) = u(0+, u) , Kj_ u(0", u) = Kg u*(0+, u)

ux(-b) = 0 , ux(a) = 0 , ^(-1) = 0

Eliminating q1(x) and qg(x) between corresponding differential equations,

we obtain

[un u-u" u] = --|- ux uu (x < 0) , [un u-u" u] = -|- ux uu" (x >0),

where u is the imaginary part of u Integrating these two equations, we have

T---I0 0Ki[u' u- u' uj_b = - 2Ul / gi u(y) u(y)dy , [u'u-u'u]* =

a Kg
-2U, / r- u u dy ,

1 0 k2

r - - -i° ,° *i r - - -T° ->Ko -u' u - u' u = -2a / ^i u u dy , u' u-u' u = - 2U, / r^ u u dy ,
L J-l 1-1K1 L J0 x0k2

r--"i° 0Ki_ ~~ o«kp_[u' u - u« uj . - 2ux / j- uudy , [u'u-u'u] = - 2^ J g2- uudy
0 0 2

In case (a) if we apply equations (7 3), (7 k), and (7 5a) and their conjugates we

have
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-2u,

0 Kx a Kg
/ r ««4y + / — uudy
-b *1 0 *2

= 0

In case (b) we note that the only possible bounded solution of equation (7 2) are

given by constants times h(x) Using equations (7 3), (7 k), and (7 5b) and the

result

lim fh(x, u) h»(x, X) -h'(x, u) h(x, X)~| = 0 ,
x->—L J

we have

-2u,
0 K± ^ Kg
/ r- u u dy + / r uudy
-1 Kl 0 K2

0

In case (c) ma similar fashion

h K2

-2u,
0 K± _ Kg

/ r— u u dy + / r- uudy
-~>kl 0 k2

= 0

If r1 tt- > 0 , which is certainly true in the physical case, then for case (a),
Kl K2

(b), and (c), u± = 0

Next let us show that there are no positive roots u of the characteristic

equations Since q(x) ^ 0 , equations (7 1) and (7 2) indicate that u and

u always have the same sign In case (a) it is easily seen that u^x) is

unable to satisfy the requirement of vanishing at both a and -b This is
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apparent since both u(x) and u'(x) are monotone functions on the interval

-b -^ x -^ a In case (b) it is again apparent that u(x) and u'(x) are

monotone functions with the same sign Consequently u(x) can not satisfy the

condition of being bounded as x tends to infinity A similar argument shows that

there are no positive roots of the characteristic equation in case (c)

In case (b) and (c) we can show that when u is negative, i e , s

is real, that the characteristic equations have no zeros In case (b) let us

suppose that M = Kg Q(s) g^O, s) -^ P(s) gx(0, s) has areal zero a

Then for this value a ,Kg Q gx(0) =1^ P gx(0) Multiplying by P ,the complex

conjugate of P ,we obtain Kg QP g^O) =^ PP gx(0) Since the right hand

side of this last equation is real for real a , the imaginary part of Q P must

equal zero Now kl -[q Pj= I|(ug +ivg) (i^ +iv^j = i^ Vg -Ug vx
This latter quantity u_ vg - Ug v ,however, can not equal zero since by equation

(6 17) it is equal to —

In case (c) let us suppose that W=-K2AF +KLBE =Kg Q(s) R(s) -

Kj^ P(s) S(s) has areal zero or vFor this value of a , ^ QR=L PS

Consequently Kg QEP S=^ PS P S and KgQRPS is positive In particular

lJKgQRPs|=0 Making use of equations (6 12c) through (6 17), we have

8QRPS = (ug + i v2)(u1 - i TjKu^ - i v^KSg + i r2) =

(U1 "2 + Vl V2>(\ \ +\ v2} - )L-LH
0"

+ i

K \ + vl v2>
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By equations (6 l6) and (6 17) P , Q R and S can not be zero for finite a

Since I-KgQRPsi =0 and KgQRPS is positive,

AT
"i ^ + vi t2 - -y-E[- (ai \ *vi ^

and ,
/k k

(ul U2 +Vl V2} (ul U2 +Vl V2} > ^2—

These last two relations give

\ .„ „ _ _2 . v/kl k2 '
k7 K U2 + Vl V2) > 2
1 o

This is obviously a contradiction We can conclude there exist no zeros of W when

s is real

We still must consider case (a) when u is negative, i e , s is real

From equation (6 22) we have

uniformly for -b -^ x ^ a , where again

*1 . ,. "2

1

=89-

K£
W (s) = ——t- cos s« a sin s. b + ——r cos sn b sin s0 a
ov ' r,— 2 t ' n P
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Now when |j, is negative s. , and consequently a and t , vanish The

characteristic equation becomes

w- = - s„ Iwfsj + o ) |s„riM =0'f - "Sr [V8r> +° {l^r1}]
For large |sr| the zeros of Wf are therefore approximately those of W (s )

The equation WQ(sr) =0 may be written in the simpler form sin 8 = K sin C5,

where

C =

It is clear that the value 5 = g- (2n + 1)« ,n an integer, does not satisfy this

last equation It is also clear that there exists one and only one 5 between

5= g- (2n + l)n and 5= g- (2n + 3)« which does satisfy the equation W (s )=0

We next shall show that the zeros of W (s) are simple Let s be a
o n

root of WQ(s) =0 It is easily seen from the differential equations involved that

»

[g±(x, s) gx(x, sn) -gx(x, sn) gx(x, s)] = (s -sQ) gx(x, sn) g±(x, s)

and

and
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[hx(x, s) hx(x, sn) -h£(x, sn) h^x, s) J = (s -sj h^x, sn) h±(x, s)

Integrating these last expressions and using the end and interface conditions,

we can obtain using the notation of section 5 >

1 a
(s ~ sn} VoAo) Wo) Wo(s) = I X(y' s) p(y) X(y> sn)dy

-b

Consider now the result of taking the limit on both sides of this equation as s

tends to s Since s is a zero of W (s) and W (s) is an entire function
n n ox o

of s because g,(x, s) , g,'(x, s) , h±(x, s) and h'(x, s) are, the left
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side of the equation becomes cp (o) t (o) W From function theory we have,
^ onv ' onv 'on J '

since g (x, s) , g,'(x, s) , h..(x, s) and h'(x, s) are continuous in x and s

together and therefore bounded provided s is bounded, that X(x, s) converges

uniformly to X(x, s ) Consequently we can interchange the order of taking the

a 2
limit and integrating on the right hand side and obtain / p(y) X (y) dy It

a 2 -b
follows that <Pon(o) *on(o) WQn =/ p(y) xAy) dy and WQn ^0 The zeros of

-b

W (s) are therefore simple

8 The equi-convergence proofs In rough language the equi-convergence properties

for case (a), (b) and (c) result from using limiting processes on certain integrals

For case (a) we shall start with the contour-mtegraJ (2jti) / w(x, u.)du ,
(Pn)

where the path (Pn) is the simple closed curve determined by the two large parabolas

2 2 2 2 2 2
u. = a (a - ti ) and u =a(a +n), where
*i n v n 'r' Hi nv n ^r' '



2M + 1 / b a
a = — '

8 • - '^

For case (b) and (c) we shall start with the integral

.. r+ie

- / w(x, |i)du , where e > 0
n -r+ie

Since our order properties are expressed in terms of s , we desire

integrals in the s-plane corresponding to the above two integrals in the u.-plane
2

Recalling that n = -s , we have as an equivalent integral for case (a)

-(iti) / w(x, -s )sds ,
(Hn)

where the path (Hn) consists of the three lines s. = a where -a < s ^ a ,
i n n^r^-n*

8r =an where °^ 8i < an a^d sr = -aQ where 0 < a± ^ a For case
(b) and (c) an equivalent integral is

- ~ J v(x, -s )sds ,
* (H)

where (H) is the path made up of the lines s. = (R + 5) where -(R + 5)^ s < -6

and sr =-(R +5) where 5< s± ^ R+5,with 8= g/| +&i > 0
Since m case (a) the equivalent integral results from merely a change of

complex variables, we can write
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(8 1) -(ni)"1 / w(x, -s2)sds = (2rti)_1 / w(x, u)du ,
(Hn) (Pn)

provided w(x, p.) is analytic along the path (Pn) This last condition is

fulfilled for large n since (Pn) was chosen to pass between the zeros of W ,

1 e , the zeros of W„

In case (b) and (c) the lines making up path (H) map into portions of

2 2
the two parabolas \x. = k(H + 5)

(R + 8) + ^

,2 2 ,,- .,2(R + 8) - ur and ^ = k(B. + 8)
2 2

Considering large R and small 8 , put r = (R + 8) - 8
2

The parabolas in the p-plane thus contain the points u = -r + 1 e , u = 2i(r + 8 )

and (i = r + i e This path in the |i-plane is equivalent relative to the integral

- / w(x, u) d^ ,

to the original straight line path of the integral between u = -r + l e and

u = r + l € This follows directly from the Cauchy-Goursat integral theorem

provided that w(x, \i) is single-valued and analytic within and son the simple

closed curve formed by portions of the above two parabolas and the straight line

path between u = -r + i e and r + i e This will be the case if w(x, n) is

analytic in the upper half of the |i-plane

Now gx(x, n) = gx(x) ,g2(x) ,hx(x) and hg(x) , along with their

first derivatives <7ith respect to x , were previously noted to be continuous in x

and s together and analytic in s for each finite x region and bounded \i region

Using equation (38) it follows that in case (b) w(x, \x) may have singularities only
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at the singularities of P(s) or Q(s) and the zeros of M(s) It is apparent

from equations (6 8b, c) and (6 10b, c) that P(s) and Q(s) have at most

branch points at u = 0 We previously showed that M(s) has no zeros Using

equation (3 9) it follows that in case (c) w(x, u) may have singularities only

at the singularities of P(s) , Q(s) , R(s) or s(s) and the zeros of W(s)

From equations (6 kt), (6 6c), (6 8b, c) and (6 10b, c) it follows that P(s) ,

Q(s) ,R(s) and s(s) have at most branch points at u = 0 W(s) was previously

shown to have no zeros Consequently w(x, u) is analytic in the upper half u-plane

for both case (b) and (c) Therefore

(8 2)
.. r+i€

- / v(x, u)du =
-r+ie

— / w(x, -s )s ds
* (H)

^ Before substituting in the right hand sides of equations (8 1) and (8 2)

we may make use of the order properties for large |s| of the functions which
2

make up w(x, -s ) In case (b), using euqation (3 8) we can obtain

(8 3) w(x, u) =
0 k2

i Sg y

21 s. f2(y)dy cos Sl(l + x) M~-1

/ -JT ^(y) cos sx(l +y)dy M~X *L K„

21 s0 COS 81 X +IT sin s1 x

/ 4- m*)
x kl x

h K„

21 sn COS Sl y + -2T sm s y dy / » -1COS 8.(1 + x) M-

0(1 s|-2 T
<- 0

e""^ dy + 0 ||s|-2 /* e^y"x)dy

0||s|-2 / e^X-y) dy (-1 < x < 0)
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0 *1 1w(x, u) = - / g- cos sx(l + y) fx(y) dy -gj-
-1 "1

i82X „-l
"o

i\b cos s, COS s, y-«i / 57
~~1 1 **"2" -1x sin s2 y f2(y)dy ^— e M„sin s

is^x

2i s,.

ex, , ^ iSgy r
x-q 2Ti; e f2(y>dy \\ cos 8i cos Sg x - KL / c— sin s. sin Sg x H

-2 ,° oy-tx , ] _ I I |-2 fX r(x-y) . ,e ^ dy}-+0^|s| J eVJj,dyJ.+o {_!•!•*/

o l|sr2reT(y-x) ay (x > 0)

In case (c), using equation (3 9), we can obtain

(8 4) w(x, u) =

x ± e"i8ly / ^ Kg
' -£7 -2ri7 fi(y)dy I 2TT: cos 8ix + „.
-c>o i X \ <s X

•isxx Q

2i s
1 x

/ 4-^(7)
*1

(Ule) (K^/k^ +

i-2
«<?

+ o Jlsp / •flX-Tyay^+ 0,1

' is2y -*sxx

{r2 f2(y) k-q ^^ +

sin sx x

*L
21 s„ COS Sl y + 2s,

*2 sin s. y dy

^x/^x")
-1

2,° -cx(y-x)|b|-"/ dy

+o[|Sr2 C*"*0^} (x < 0)
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w(x, u) = r° *l
-is y is y is y

t x / e e l=>01 e

{^5- fi(y) -2TTT 2i-s- dy + x"k- 2T7g- f2<y>dy

^ cos s2 x--g- sin sg xj +/ -i- f2(y) ^ cos s2 y-g^-sin Sgyy*1 *2 *1

dy

iSgX
e
2i s„

(-4is) (^/k^ +Kg^)"1 +0|| i-2 , oy-TX , is j / e * dy I +

0̂ |s|"2 / e^y"x) dy | +0J|s|-2 fV^ dy (x > 0)

In case (a), using equation (3 7) we can obtain

(8 5) w(x, u)
a Kg
/ ir- fp(y) cos s„(a-y)dy cos sn (b + x)
0 2 x

,° *1x -l+ / £~ f±(y) (cos Sg a cos sx y+K" sin Sg a sin s., y)dy cos s,(b+x)

*1+ / g- ^(y) cos sx(b+y)dy (cos s2 acos sx x+K~ sin Sg asin Sgj

r

W s +0
ox-xys |- / eux-fy dy L+ 0 J |b|^ / e^y'X' dy I +o(y-x)

2 ,° or(x-y) .e v J dy
x

w(x, u) = -

oU°ri (-b < x < 0)

0 K,

I \T fi(y) cos s-iO3 + y)dy cos s0(a - x)
-b n. x x 2

*2+ ^ k~ f2^y^ ^cos sl bcos Sg y-Ksin 8± bsin Sg y)dy cos s2(a -x)
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co K„
+ / :— f„(y) cos s_(a - y)dy (cos s.. b cos s. x - K sin s± b sin s2 x)

+of| sl"2 J° e0y-Txdyl+ 0jlsf2 /' e^1 dy J- +

0^ |s|-2 / eT(X-y>
x

1 1

1 , "2,2
k.where again K = K. KU k.. ^2

The relations (8 3), (8 k) and (8 5) hold under the assumption that

f(x) is bounded and integrable They can be easily verified by using the various

order properties

We see that the first three terms on the right hand sides of each equation

in relation (83), (8 k) and (85) are exactly what we obtained for the cases where

q(x) is identically zero, i e , the right hand sides of equations (5 1), (5 2), and

(5 3)

-1 2
Consider the contribution to -(jti) / w(x, -s )s ds as n tends

C -, (Hn)
to infinity of the OJ [terms in relation (85) Taking absolute values and

using the 0j jterms for -b ^ x ^ 0 ,we obtain

dy (0 < x ^ a) ,

•Ui)-1 / '°Koa e*x-Tydy( +0 [|S|-2/ ea(y"X> dy} +
(Hn)

0
,-2 fu a(x-y) .sl / e v *' dy

_4fD-

'} s ds



< *_1 /
(H»)

8 -1 s"1 (1 -a-Ta)j +0f|3I"1 a"1 (1 -a"''11"')

Each of these last terms three 0( ] terms gives acontribution of order

0 I an f For examPle>

^o(i.i-vu-.~>}m -«{^£
n

d sr i. +

a

-i , n -i

Since aQ = (n+ )( + a )" ,it follows that the three original
/k, /k_

0 j I terms converge uniformly with respect to x to 0 as n tends to

infinity

If we substitute the 0/ Xterms of either equation (8 3) or (8k)
in the right hand side of equation (8 2), we can show in a similar way that the

0J I terms converge uniformly with respect to x as r (or R) tends to infinity

The equi-convergence properties now follow directly In case (a) for

each large n the right hand side of equation (8 1) is equal to the sum of a

finite number of terms of the right hand side of the equations in the relation

(k 3) This follows from the residue theorem At the same time upon substituting

from equation (8 5) the right hand side of equation (8 1) is equal to the

corresponding sum of a finite number of terms of the right hand side of equation (5 Ij.)
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plus a term of order 0 J a ^ Consequently the expansions given by

relations (^3) and (5 k) behave in the same way as regards convergence

In ease (b) and (c) let us formally consider

. r+ie

IJ lim lim ^ / w(x, u)du -
[_€ -> 0 r->«*> "r+ie __,

Assuming the limits exist and recalling that the 0 J" "I terms of equations

(83) and (8 k) contribute nothing when r tends to infinity, it is also clear

that no contribution is made by using either equation (8 3) or (8 k) to the above

expression when \i is positive The above expression therefore gives formally

the right hand sides of equations (5 5) and (5 6) respectively when we use

equations (8 3) and (8 k)

Again assuming the limits exist the above expression is equal to

1 00

J / M w(x, n) \ du[w(x, u) I

Using equations (3 8) and (39)* which define w(x, u.) , and the equations which

define P(s) = -B , Q(s) = A , R(s) = -F and S(s) = E , it is not difficult to

show that I I w(x, u)\ =0 when y. > 0 Therefore formally in both case

(b) and (c)

I J
. r+ie

lim lim - / w(x, u)du[. = ± / I \ w(x, u) {- du
e-^^ 0 r-><>~ -r+i€

w(x, u)dul = i / I ) w(x, u)l



The right hand side of this equation was used in obtaining the right hand sides

of the equations in the relations (k k) and (k 5) Consequently the expansions given

by equations (k k) and (k 5) behave respectively as regards convergence in the

same way as the expansions given in equations (5 5) and (5 6) Here of course

the equi-convergence results from letting r tend to infinity

Using equations (6 lUb, c), (6 l6b, c) and (6 17), we can obtain

M M =
1

I^Tm} =-I K.KgSg

I {h(x)M} =*| «2 [kjl gx(0) \(y) -Kg gx(0) hg(y)]

\ g{(0) ^ -K2 gx(0) UgJ 2+ ^ gx(0) vx -Kg gx(0) Vgl
C r

Using equations (6 12$) through (6 17b, c), we can obtain

I W g(y) h(x) = I , [Kg QR-Kx PSJ [s gx(y) -Rgg(y)J [q h^x) -Phg(x) L

(3)bx(x) gx(y) +g-^ [i] hg(x) gg(y) -JL {2}hg(x) gx(y)

- 4j {2) VxWy)] >
IJWg(y) [1^ Bgg(x) +Kg Agx(x)l i =

Bp- |[3]Kggx(x) gx(y) +-jL {l]gg(x) gg(y) -[2]gg(x)gx(y) -^Jg^ggJ

l\/kl
B —T
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kxkg

and

W W =

where

e -

I2}

and

I -Mr h(x) K± E hx(y) + Kg F hg(y)

M K^ \(x) hx(y) +-|- |lT h2(x) h2(y) -[2] h1(y)hg(x) -£sj hx(x)hg(y)

Kg Q R - Kx P S Kg Q R - Kx P S

Kg K^
uj (s) v2 (s)

KL

1nAl1^ (x}{3}-{2}(2}>5 kT

*2

«2

~2 ( \ ~2 / \u.^ (s) + vx (s)

K± K2
i^Ug + vxv2

K1K2
^"2 + V1V2

Q-
K-

°2 + v.
h /v2 /v2

u2 + v2

2 -

These results may be used to write equations (k k) and (k 5) in a form which will

be obtained later by the method of separation of "variables

The results may be summarized in the following theorem

EQUI-COHVERGENCE THEOREM Let f(x) be bounded and integrable and let q(x) be

a function greater than or equal to zero which is continuous except possibly at

x = 0 and whose integral exists then
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(a) the right hand sides of equations (k 3) and (5 k) are equi-convergent,

(b) the right hand sides of equations (k k) and (5 5) are equi-convergent,

(c) the right hand sides of equations (k 5) and (5 6) are equi-convergent

In order to verify the relations (k 3), (k k) and (k 5) it thus suffices,

subject to the above hypothesis, to verify the relations (5 k), (5 5) and (5 6)

The situation then corresponds to verifying that a function is equal to its ordinary

Fourier series expansion and thus is equal to its ordinary Sturm-Liouville series

expansion

9 A verification of the expansions in the case q(x) -= 0 In order to verify

the expansions given by equations (5 k), (5 5) and (5 6) we may make use of the

standard procedures [6j involving the inversion of the Laplace transform Specifically

we shall use one of Churchill's theorems [6, p 159] in essence this theorem
allows us to conclude that a certain inversion integral gives the inverse Laplace

transform even at t = 0 , provided the Laplace transform satisfied a certain order

property Since the procedure is standard only a condensation of the verification

will be given The details of the procedure may be found in an earlier paper fl6l

Suppose U(x, t) is equal to the inversion integral of u(x, \x), ie ,

•y+iB

<9 x) u<x> *> - rrr lim / &ilt w(x> n)*- ,

where 7 > 0 is a fixed constant In case (a) the contour of the inversion

integral may be completed by the arc C of the parabola r = a2 esc2 - 9
n n 2 '

/ b awhere as usual u=reie and an =Sf-i (-JL. +-• J"1 For large n
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we know that C passes between the singularities of w(x, u) , i e , the zeros

of WQ(s) The right hand side of equation (5 k) can be obtained formally by

using the residue theorem, letting n tend to infinity and letting t equal

zero The inversion integral when t equals zero will thus be equal to the

inversion series, i e , the right hand side of equation (5 k) if the integral over

the added contour tends to zero as n tends to infinity

In case (b) and (c) because of the branch point at u = 0 we can

complete the contour of the inversion integral by adding a curve A' B'C'D'EDCBA

The curve A1 B' C D' E D C B A consists of the arc A' B' C1 of a circle of

large radius r and center at n = 0 starting at u = y - i£ and ending at

u = r e where e is a small positive angle, the straight line CD'

starting at u= r_ e" ^n~e) and ending at u= r„ e-1'*-^ ,the arc D' E of a

circle of small radius r and center at u = 0 starting at u = r e~ ^5t-€' and

ending at u = r , and the reflection of each of these in the real axis By the

Cauchy-Goursat theorem it is apparent that

/ eu w(x, u)du = / e^ w(x, |_)d|i
7-ip (A'B'C'D'EDCBA)

In the usual procedure for the Laplace transform when n = 0 is a branch point

the integral of e1"1 w(x, u) over the circular arcs A* B' C , D' ED and C B A

tends to zero as the radius r tends to infinity and r_ tends to zero
Xi s

Granted that this is true for every fixed e > 0 , then when we take the limit

as e tends to zero of the integral of e^1 w(x, u) over the lines CD9 and

D C , we formally obtain from equation (9 1)
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U(x, t) =
2jti

-rt
/ e
0

Upon setting t = 0 , we have

f(x) =
2*i

•i« ijtxw(x, re"151) - w(x, rei5t) dr

f
0

w(x, re"ijt) - w(x, reijt)l dr

2
Letting r = s it is easily confirmed that this is equivalent to equation (k 2)

from which we derived the expansions given by equations (k k) and (k 5)

The first step in verifying the above formal procedure consists in

showing that the inversion integral is equal to U(x, t) in all three cases

It proves advantageous in obtaining the order properties needed in order to

apply Churchill's theorem to use integration by parts for the integrals on

the right hand sides of equations (5 1), (5 2) and (5 3) In order to write down

the resulting equations and to insure convergence of all integrals, we shall assume

that f(x) is continuous and absolutely integrable for the range of integration

and that f»(x) is bounded and integrable for the range of integration By

assuming that f(x) is continuous, it also follows that f, (0) = fp(0)

Upon carrying out the details for each case one can show that v(x, u) =

*(x, u) -u f(x) is of order 0 J u~3'2 1 uniformly with respect to x for

the x-interval for the region r ^ p and -rt + e^ 0^ it - e ,where p is

a fixed positive number and where e is a fixed positive angle which is chosen

as small as desired With this order property and Churchill's theorem it follows

that the inversion integral of v(x, u) is equal to zero at t = 0 in each of
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the three cases Consequently the inversion integral of w(x, u) is equal to

f(x) when t = 0

Next it is necessary to investigate the relationship between the

inversion integral of v(x, s) at t =f0 and in case (a) the inversion series

and in case (b) and (c)

(2«i)-X /
0

w(x, re ) w(x, rexn) dr

For case (a) this consists of showing that the integral of v(x, u) over the

path C tends to zero as n tends to infinity With proper care using

previously obtained order properties for v(x, |j.) and its components l6 this

can be shown to converge to zero uniformly in x

For case (b) and (c) one needs to investigate the value of the integral

of v(x, \x) over the previously indicated curve A'B'C'D'EDCBA By

using v(x, n) = w(x, n) - u~ f(x) it is not difficult to- show that the integral

of v(x, n) over D'ED is equal to (2jt - 2e)i f(x) when r tends to zero

X - G -±/kChoose cos —g— = r Using the obtained order properties it can be shown

that the integral of v(x, u.) over A' B' C and C B A tends to zero when r
JLf

tends to infinity As r tends to infinity e tends to zero It follows that

L" \ v(x, 11) f(x)
2*i

-lit mNv(x, re ) - v(x, re ) dr

Since L^" iv(x, n) I=0 and v(x, re~U) -v(x, reU) =w(x, re"ijt) -w(x, reljt) ,
one obtains the desired relationship
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f(x) =5T / [w(x' re"ifl) "w<x> rei5t) ] <*

The results may be summarized in the following theorem

EXPANSION TaKOKKM If f(x) is continuous, is absolutely integrable and has

a bounded and integrable derivative then the expansions given by the right

hand sides of relations (k 3), (k k) and (k 5) converge uniformly to f(x)

In light of the Equi-convergence Theorem the right hand sides of the

relations (5 k), (5 5) and (5 6) converge uniformly to f(x) under the same hypothesis

10 The method of separation of variables We shall now obtain by the classical

method of separation of variables the solutions and expansions for the boundary

value problems given by the equations (2 1) and (2 7c) Let U(x, t) = X(x) T(t)

where X(x) = Z(x) when x < 0 and X(x) = W(x) when x > 0 We obtain

(10 1) -qxfcc) +^ JfL =A- , (10 2) -qgU) +kg -^EL =A- ,

(10 3) Z(0) . W(0) , (10 k) K^ Zx(0) m Kg wx(o) ,

(10 5a) Zx(-b) = 0 , Wx(a) = 0

(10 5b) zx^'1^ = ° ' z(*) bounded , (10 5c) Z(x) bounded .

The members of equations (10 1) and (10 2) may be put equal to a constant -s2

Let the solutions of kx Z^ =|qx(x) -s2 Z and kg W^ =1" qg(x) -s2 1W be
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designated in the same fashion as they were in Section 3> ± e > let g(x)'s be

solutions of the Z differential equation, let h(x) ?s be solutions of the W

differential equation, for case (a) let g..(-b) = 1 , g'(-b) = 0 , h-(a) = 1 and

b'(a) =0 ,for case (b) let gx(-l) =1 ,g±(-l) =0 ,1^(0) =1 ,hg(0) = -1 and

h^O) =0 ,and for case (c) let g^O) =0 ,g±(0) =1 ,gg(0) = -1 ,g£(0) =0 ,

hx(0) =0 ,hx(0) =1 ,hg(0) = -1 and h^O) =0

The solutions to the above differential equations subject to the finite

end conditions can be written as

(a) X(x) = Z(x) = A gx(x) (-b < x < 0)

= W(x) = B^(x) (0 < x < a) ,

(b) X(x) = C g±(x) (-1 < x < 0)

= D h.(x) + E h2(x) (x > 0) ,

(c) X(x) = F gx(x) + G gg(x) (x < 0)

= H hx(x) + J hg(x) (x > 0) ,

where A, B, C, D, E, F, G, H and J are independent of x , although they as

well as the g's and h's may be functions of s Writing X(x) = X(x, s) and

using the interface conditions (10 3) and (10 k) we obtain
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<a) ABjiO, s) = B1^(0, b) , K^ Agx(0, s) = K2 Bh£(0, s) ,

(b) Cgx(0, a) - -E , Kjl Cg^(0, s) . Kg D ,

(°) G = J , K^ F = Kg H

It is now necessary to treat each case in a separate but parallel fashion

For case (a) A and B are non-trivial only if s satisfies the characteristic

equation

K± g^(0, s) h(0, s) -Kg gx(0, s) h'(0, s) =0 We can attach positive

integers n (n = 1, 2, 3, ) to the assumed simple positive roots The

characteristic function corresponding to the characteristic number s is
n

X(x, sn) = Xn = Zn = <pn(0) gn(x) = qpn(0) gx(x, -s2) (-b < x< 0)

W
n

y0) hn(x) = y0) h^x, -s2) (0 < x< a),

where either ?n(0) =hn(0) and *n(0) =gjo) or q>n(0) =Kg h^O) and f(0) =
Kl gn^ ' either choice being equivalent for each n ,unless for a particular n

both hn(0) and gn(0) are zero or both h^(0) and g^O) are zero, in which
case the non-zero pair is chosen

Paralleling Sturm-Liouville theory we now obtain orthogonality conditions

for the characteristic functions Eliminating q (x) and qjx) from
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Zn " W " <> Zn = ° and

and

Wn " <*2 ~ 8n> ¥n = ° and

Z"
m

(q. - s ) Z = 0 ,
vul mm '

W" - (q.. - s ) W = 0 ,
m v^2 m' m '

and then integrating, we obtain

and

2 2 ° 1
(s - s ) f -r— Z (z)dz
v m n' •'- k, n

-b 1

Tz1 Z - Z Z* 1|_ n m n m J

2 2 a 1 r
(s - s ) / -i- W W dz = W1 W
vm nn kp n m Lnm

- W W* I
n m J

-b

0

Applying the end and interface conditions (10 3), (10 k) and (10 5a), it follows that

f 2 2\(S - 8 )
v m n'

OK ~ »*>
J r=ZZdz + f r^WWdz

\ n m

a Kg

Now if n / m , we obtain the orthogonality condition

(10 6) / p(z) X(z) X (z) dz = 0 ,
-b m n

n m
= 0

kl k2
where p(z) = =r- when -b < z < 0 and p(z) = =- when 0 < z < a

h Kr
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We assume that U(x, t) and f(x) can be expressed as

U(x, t) = Z cnxn(x) ."»
n=l

s2t
and f(x) = Z C X (x)

s ' , n nv '
n=l

Still proceeding formally multiply the members of this last equation by p X
m

and integrate We obtain

-b

p X f dz =
m

a

/ P Xm f X C Xn ) dz
-b m U=l n n

If we interchange the order of integration and summation and use the orthogonality

condition (10 6), the right hand side of this last equation reduces to

:» £*< dz

The solution and expansion therefore become

(10 7)

(10 8)

U(x, t) o I
n=l

a

/ p(z) X (z) f(z)dz
_-b n

/ p(z) 3^(z) dz
_ -b n

-1

-s2t
Xn(x) e n

>

(x) - ¥
n=l

a

/
_-b

-

p(z) Xjz) f(z)dz
a

/
-b

p(z) X^(z) dz
-]L

X (x)
nx '
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This last equation is seen to be the same as equation (k 3) if we use the res'ult

at the end of section 7

For case (b) we obtain using the interface conditions the characteristic

functions

X(x, s) = C(s) gx(x, s) (-1 < x < 0)

= C(s) g~ g£(0, s) h^x, s) -gx(0, s) h^x, s)

(x > 0)

We shall therefore assume that U(x, t) and f(x) can be expressed as

•s2tU(x, t) = / C(s) X(x, s) e~B ds and f(x) = / C(s) X(x, s)ds

Since the parameter s occurs as -s , X(x, s) = X(x, -s) , and we are therefore

assuming that

f(x) = /
0

C(s) + C(-s) X(x, s)ds

In order to find C(s) formally, first multiply both sides of the equation

f(x) = / C(s) X(x, s)ds by p(x) X(x, r) , where p has the usual meaning Upon
-CX3

integrating the result, we obtain

-iQfl.-



(10 9) r P(z) X(z, r) f(z)dz = r° p(z) X(z, r) [ T C(s) X(z, s)ds[I

-i h.

o K,
lim /

Z ^e>o
O

0 2

I C(s) gx(y, s) g±(y, r)ds
l_ -co

dz +

r

llLK2
gx(0, s) h^z, s) - gx(0, s) h2(z, s)

*1f- gx(0, r) h^z, r) - gx(0, r) hg(z, r)

It is easy to verify using the Z differential equation that

dz

-jT- gx(z, s) gx(z, r) = (s -r )" g^(z, r) gx(z, s) - gi'(z> s) gx(z, r)

Upon integrating and using the end condition at x = -1 we have

dz

\ ~\ gl(z' 8) gl(z' r)dz = (s2 -r2)-1 |ei(0,r) gx(0,s) -gx(0,s) gx(0,r)

Similarly we have

O , r- -

/ —^ h^s) hx(z,r)dz =(s2 -r2)"1 |jxx(zo,r) h^s) -1x^,8) h1(z0,p)J ,

/ -^ hx(z,s) h2(z,r)dz =(s2 -r2)"1 [h^(zo,r) hx(zo,s) -h^z^s^U^+l]

and
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/ -T- h (z,r) h (z,r)dz
0 *2 * d

i 2 V1(s - r ) h2(zo'rc) h2(Vs) "k2(Vs)h2(Vr)

Upon interchanging the order of integration on the right hand side of equation

(10 9) and simplifying we obtain

/ p(z) X(y, r)dz = lim / C(s) K2 Jgx(0, s) g±(0, r)
-1 Z ^ co _ oo

O

k^V r) n2(zQ, s) - b^(zQ, s) bg(zQ, r)

a^V r) hx(zQ, s) - hx(zQ, s) \(zQ, r)

h^(zQ, r) h1(zo, s) - hx(zQ, s) bg(zQ, r)

^

+[| ) «i<0' s> *H°> r)

Kljf1 gx(0, s) gx(0, r)
2

K

jT g{(0, r) gx(0, s)

h{(z0> r) bg(zo, s) - h2!(zQ, s) hx(zo, r) (*'
V1 ar ) ds

In order to evaluate the above limit we may substitute various order

properties of the g's and h's for large z For example, using equation

(6 11) and the corresponding equation for hl(x) we obtain

h2^V r^ VV S^ " h2^26fB) MV r^
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'2 -Ug(r) sin r2 zq +Vg(r) cos rg zq +o(l) Ug(s) cos Sg zq +Vg(s)sin SgZo+o(l)|

l^-Ug(s) sin SgZo +Vg(s) cos SgZo +o(l)J |_Ug(r) cos rgZQ +vg(r) sm r2zQ +o(l) ,"82 L^
KB) sin Sg

where
82 =

8

^2
and r_ =

Rearranging terms, we have

h2(Vr) h2<Vs) "h2(zo'8)h2(zo^] - Sjt1 [^(»)Vr) "VB^v2<p)]

S2 + r2

s« + r„sin zo(sg +r2) + 2g2 L(s) Ug(r) +Vg(s) Vg(r) sin zq(sg - r2) +

u2(s) v2(r) -ug(r) v2(s)J cos zQ(s2 -r2) -

Ug(B) vg(r) +Ug(r) Vg(s) cos zo(Sg +r2) + o(l)
s2 -r2

The other bracketed quantities above can be written in a similar fashion

We now may make formal usage of two closely related formulas which involve

Dirichlet type integrals These are

lim / F(x) cos kx dx = 0 and lim / F(x) sin k\z " x)dx =*F(z)
k >oo -oo k > CPO - z " x
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Noting that gx , g*, vl and u are even in s , while v and vp are odd m

s , we obtain the formal result,

I p(z) f(z) X(z, r)dz = |
-1 d

C(r) + C(-r)
K_

r

sl (°* r) yx^r) +v^x)

,Tlgi ) gx2 (0, r) u^r) +v2(r) -2 ^ gx(0,r) g±(0,rj u^rju^r) +vx(r)v2(r)

* K2
C(r) + C(-r) *1gi gx(0, r) u1(r) -gx(0, r) Ug(r)

K.

gi gx(0, r) vx(r) -g^O, r) v£(r)
L 2

It may be noted that this result may be obtained in a speedier fashion from equation

(10 9) if we interchange the order of integration on the right hand side and use

the order properties before performing the inner integration The solution and

expansion therefore become

(10 10) U(x, t) = -

r

K,

/
0

/ p(z) f(z) X(z, s)dz
-1

< g- gx(0, s) u^s) - gx(0, s) Ug(s)

K„

- g£(0, s) vx(s) -gx(0, s) v2(s) X(x, s) e ds
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(10 11) J\f(x) =| f° rr° p(z) f(z) x(z, s)dzi ^

g- g{(0, s) u^s) -gx(0, s) Ug(s)

Klg- gx(0, s) vx(s) -gx(0, s) Vg(s) X(x, s)ds

This last equation is seen to be the same as equation (k k) if we use the results

obtained in Section 8

For case (c) the interface conditions give the characteristic functions

X(x, s) = F(s) Kg gx(x, s) + G(s) gg(x, s) (x ^ 0)

= F(s) Kx ^(x, s) + G(s) hg(x, s) (x > 0)

We shall therefore assume that it is possible to express U(x, t) and f(x) as

and

oo

U(X, t) = /

f(x) = /

F(s) Xx(x, s) +G(s) X2(x, s) J e~ "ds•s2t

F(s) Xx(x, s) +G(s) Xg(x, s) ds ,
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where X±(x, s) =Kg g^x, s) when x < 0 and X±(x, s) =1^ h±(x, s) when

x ^ 0,and where Xg(x, s) =gg(x, s) when x < 0 and Xg(x, s) =hg(x, s)
when x ^ 0

In order to find F(s) and G(s) formally we may proceed in a fashion

similar to case (b) First multiply both sides of

f(x) = /
-CXO I—

F(s) X±(x, s) + G(s) Xg(x, s) ds

by p(x) X±(x, r) ,where p(x) has the usual meaning Upon integrating the

result, we obtain

(10 12) f° p(z) Xx(z, r) f(z)dz = f° p(z) X±(z, r) -j f° F(x)X±(z,s) +

G(s) X2(z, s) ds > dz

lim / P(z) J /
oo

F(s) X±(z, s) +G(s) X2(z, s) Xx(z, r)ds I dz

Interchanging the order of integration on the right hand side of the equation leads to

/° p(z) X±(z, r) f(z)dz =

r z z
<=o o o

lim / Jf(s) / p(z) X1(z,s)X1(z,r)dz + G(s) / p(z)Xp(z,s)X1(z,r)dz y ds
Zn > C=xd -oo) -Z -Z
o ^ L ° °
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Using the Z and W differential equations it is easy to show that

z
o

/ p(z) X1(z, r) Xx(z, s) dz =
-z

o

Kl A 2X2 \-^zo' r) gl(~V s) +gx(_V s) gl("V r)

+K2 K* -g-^-g ["hf(V r) h^s ,s) -hx(zo, s) h(z r)I ,
s - r L_ —I

z
o

/ p(z) Xg(z, s) Xx(z, r)dz =
-z

o

Kl *2 2X 2 "gi(-V r) M'V 8) +g2(~V S) gl("V r)

h. *2 S^S [k^o' r> Vzo' 8> -h2<V S> Vzo' r> J

Similarly to case (b) we may substitute the various order properties for

large z and make use of the two formulas

and

<5X=>

lim / F(x) cos kx dx = 0
k ^ <=»o - <5>0

11, f°F(x) Bln,t(V X? *^ = «F<Z)k^ >,—~ Z - X
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Wow the u's and v's obtained by substituting the order properties have the

feature of the u's being even in s and the v's being odd in s Using

these properties and formulas, we obtain formally

Kg Kx
/ p(z) X±(z, r) f(z)dz = F(r) * u±(r) + vx(r)

O f12 Mu^r) +v^(r)J >+G(r)J-^l |ux(r) u^(r) +v^r) Vg(r)J

K2 Kx r-

X

u^r) Ug(r) + vx(r) Vg(r) = F(r) rt J1 I + G(r) n J2 t ,

where the meanings of ]li and i2I are the same as those given in Section 8

Proceeding in a similar fashion it is possible to show that

G(r)n

+ F(r) jt

/ p(z) Xg(z, r) f(z)dz =
- CXO

K- K,

u2 (r) + v2(r)

ux(r) u2(v) + v^(r) Vg(r)\K2

(r) « {2]= F + G(r) it 13

-11SL-
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Solving for F(r) and G(r) , we obtain

$3~\ f° p(z) f(z) X(z, r)dz - {2} 7°p(z) f(z) Xc(z, r)dz
F(r) = i LJ — _ J -^ ^

&} 0} - w w

[l] / p(z) f(z) X2(z, r)dz - [2} /°P(z) f(z) ^(z, r)dz
G(r) = - ^2 Z22.

w y - {.0 &

Since [lj , {2} , [3J , F(r) , G(r) , X^x, r) and Xg(x, r)
are all even in r , the assumption that

is equivalent to

00

t=xz>

|F(s) Xx(x, s) +G(s) X2(x, s)lf(x) = / F(s) X (x, s) + G(s) Xp(x, s) ds ,

f(x) = 2 f3 |f(s) X^x, s) + G(s) X2(x, s)l ds

The solution and expansion therefore may be written as

(10 13) U(x, t) =2 f° [f(s) Xx(x, s) +G(s) Xg(x, s)l e"s2t ds ,

(10 Ik) f(x) =2 T [f(s) X^x, s) +G(s) Xg(x, s)l ds ,

where
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F(.) - i

and

a(s) . 1

3f / p(z) f(z) 5L(z, s)dz - J2J / p(z) f(z) Xg(z, s)dz
• -' - OO - CO

(1} {3} - {2} \?}

Jl] f° p(z) f(z) X^z, o)dz - ^SJ /** p(z) f(z) X^z, s)az
-o& - OO

{x} {3} - [a] (aj

Equation (10 Ik) is seen to be the same as equation (k 5) when we take into account

the results in Section 8

11 Observations The Expansion Theorem takes care of the major step in the

procedure for verifying that the solutions obtained really satisfy the original

boundary value problems The remaining steps, eg, uniqueness of the solutions,

may be verified using the standard procedures

The conditions given to insure the validity of the expansions are clearly

sufficient rather than necessary ones It is obvious therefore that the expansions

hold under weaker restrictions and that weaker restrictions could be obtained without

much more work

It is possible, of course, to use the Laplace transform inversion

procedures indicated in Section 9 to establish directly the general expansions given

by equations (10 8), (10 11) and (10 ik)

It seems likely that one can show quite directly that the expansions

converge uniformly to f(x) , provided sufficient restrictions are placed upon

f(x) and q(x) [9, pp 273-276 J
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When we let ^ = Kg ,k± = kg = 1 and q(x) be continuous at x = 0

we obtain expansions for the continuous cases For case (a) we obtain

where

f(x) = Z
n=l

a a

/
_-b

X (z) f(z)dz /
_ -b

X2 (z)
n x '

dz

Xn(z) = gn(z) = hn(z) for -b < z <

XQ(x) ,

a

where n (n = 1, 2, 3, ) is, as usual, the integer attached to the n-th

simple positive root sn of the characteristic equation g*(o, s) lu(o, s) -

h{(o, s) g(o, s-) =0,and where gx(x, s) and h^x, s) are solutions of the
equation X^ - q(x) - s x(x) = 0 which satisfy respectively X (-b) =0

and Xx(a) =0 Since gx(x, s) h^x, s) -h£(x, s) g±(x, s) can be shown to
be constant by using the differential equations it follows that g'(a, s) = 0 =

h£(-b, s) are other ways of writing the characteristic equation The above

expansion is, of course, a conventional Sturm-Liouville expansion When q(x) == O

we have

f(x) =
a + b

/ f(z)dz +
-b

cos

a + b
E
n=l

/ f(z) Cos -22— (z + -b)dz
-b a + d

nfl

a + b
(x + b) ,

-122-



the ordinary Fourier cosine expansion of f(x)

For case (b) the expansion in the continuous case is easily seen to

give known results N-9* P 101 J It may be noted that g,(x, s) = g,'(o, s) h.(x, s)

- g, (o, s) h.(x, s) for x ^ -1 For real valued s , g. (x, s) has the form

g, (x, s) = u(s) cos s x + v(s) sin s x + o(l) as x tends to infinity Consequently,

u(s) = g±(o, s) u1(s) - gx(o, s) Ug(s)

and

v(s) = gx(o, s) vx(s) - gx(o, s) Vg(s)

The expansion therefore becomes

f(x) =
2

/
0

r
-l

f(z) gx(z, s)dz
-1 -1

u (s) + v (s) ?x(x,s) ds

In case q(x) = 0 this reduces to the ordinary Fourier cosine integral representation

f(x) I T
* 0

/ f(z) cos s (l + z)dz
-1

cos s (l + x)ds

For case (c) in the continuous case, it is clear that g, (x, s) = ii.(x, s)

and gp(x, s) = hp(x, s) for all x The expansion for f(x) may therefore be

written as
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f(x)=| /
* 0

where now

and

rg1(x,s)|37-g2(x,s)[27]/^g1(z,s)f(z)dz+fg2(x,B)|iJ-g1(x^
,3_s

# {3} - I2) «

«U = tL^s) + Vx(s) + U^s) + Vx(s) ,

(-2J = "l^ U2^ + Vl^8^ ^s) + "l^ ^^ + M8) v2^8^ '

j3} = U2^ + T2^S^ + ^2^s) + v2^s^

When q(x) = 0 this reduces to an ordinary Fourier integral representation

f(x) =
1

it
/
0

<5>0

/ f(z) cos s (z - x)dz ds

The Equi-convergence Theorem also applies to the continuous cases

It would be desirable to find conditions under which the expansions

given by equations (5 k), (5 5) and (5 6) are equi-convergent respectively with

the ordinary Fourier series, Fourier cosine integral and Fourier integral type

expansions

The conditions q(x) > 0 is clearly not necessary for the application

of the method used in this chapter When q(x) is allowed to be negative new

characteristic numbers and functions may arise
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Proceeding in the manner of Section 10, it is not difficult to obtain

formally expansions where the interface conditions take the form

bx U(o", t) + bg Ux(o", t) + b U(o+, t) + b, U(o+, t) = 0

and

b U(o", t) + b6 Ux(o", t) + b U(o+, t) + bg U(o+, t) = 0,

provided the b's satisfy certain moderate conditions Likewise expansions can

be obtained when the end conditions for case (a) take the form

ax U(-b, t) + a2 Ux(-b, t) = 0

and

a3 U(a, t) + &k Ux(a, t) = 0 ,

and for case (b) the form

ax U(-l, t) + a2 Ux(-1, t) = 0
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It is also possible to obtain formally expansions which involve a

finite number of sets of interface conditions It seems certain that this type

of expansion, along with equi-convergence theorems, can be established in the

manner of this chapter

-126-



APPEHDIX A

CYLIUDER

Composite Cylinder with Finite Cross Section Let us consider the temperature

distribution U(r, t) in an infinite cylinder with a circular cross section made

up of two materials The boundary value problem under consideration is defined

by the following equations

(11) Ut(r, t) = k^U^. + |Ur) (0 < r< a,t>0) ,

(12) U(r, 0+) = fx(r) (0 < r < a)

(15) Ut(r, t) = k2 (Un + iUr) (a <r< b,t>0) ,

(1*0 U(r, 0+) = f2(r) (a < r < b)

(1 5) U(a+, t) = U(a", t) (t > 0) ,

(16) Kx Ur(a", t) = K2 Ur(a+, t) (t > 0) ,

(1 T) U(b", t) = 0 (t > 0)
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Let U(r, t) = R(r) T(t) , Where R(r) = X(r) when 0 < r< a

and R(r) = Z(r) when a < r < b The substitution for U in equations

(1 1), (1 3), (1 5), (l 6) and (l 7) leads to the following equat:

(1 8) k
(Xw +iXJ** , T
rr r r' t

"I X

(Z +-Z)
(19) k0 " „ r r . Jl

2 Z T

T^

;ions

(1 10) X(a) = Z(a) , (l 11) Kx Xr(a) = K2 Zr(a) ,

(1 12) Z(b) = 0

The members of equations (l 8) and (l 9) must equal some constant -s2 The

solution which satisfy in r equations (l 8), (l 9) and (l 12), and a boundedness

condition at the origin are given by

(115) E(r)sX(r) = AJo {-f=-r)

= Z(r) = B L(r, s)= B * fe) '•&*) ">° (t* ^
In order that A and B be non-trivial when conditions (1 10) and (l 11)

are applied, s must satisfy the characteristic equation
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s ""{&) b\ J.

Jh J ^
- J.

*1 a\ L(a, s)

We can attach positive integers n (n = 1, 2, 3, ,) to the assumed positive

roots Corresponding then to the eigenvalues s we have the characteristic

function

(mo E = R(r, s )
n v ' n'

A cp J ,
Yn o

n

<K

A *n Lo <r' 8n>

where either cp = L (a, s ) and \|/ = J | - a] or
rn o* ' n' 'n o1

<fii~

K„

(0< r< a) ,

(a< r < b) ,

<P.n

K
b J,

<K J \^~2

J°*) Hx*
and

-1291-



*1 - / Snj, __ a

n ^T XVA

either choice being equivalent for each n , unless for a particular n both of

a pair are zero, in which case the non-zero pair is chosen

It is easily verified in the usual manner that the orthogonality

condition becomes

b

/ p(r) rRm(r) R^r) dr = 0 (sffl + sn) ,
0

where p = _ when 0<r<a and p = r— when a < r < b If then
1 2

we assume that

(115) f(r) = r aE(r) ,
n=l n n

we can obtain formally that

/ p r R f dr
n

(1 16) a = P,
n b 2

/ p r R dr
0

Consequently, we have

s2t
(1 IT) U(r, t) = T an e n R(r) ,

n=l n n

where the aQ are defined by equation (l 16) and the R (r) are defined in

equation (l 1*0
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Composite Cylinder with Infinite Cross Section Consider equations (11) through

(1 6) and again let U(r, t) = R(r) T(t) , where R(r) = X(r) when 0 < r < a

and R(r) = Z.(r) when a < r This substitution leads again to equations

(1 8) through (l 11) When we set the members of equations (l 8) and (19) equal
2

to the constant -s , we can obtain using a boundedness condition at the origin

R(r) = X(r) = A J

== Z(r) = B J + C Y_

°[&
The interface conditions require that

A J. = B J.

7^2
a\ + C Y

°W^

and

*i / s
A —— J,

fr 'V^
*2

These conditions are satisfied if we let

K„

A a

>£T
a\ Jn

*2 _
n a s
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K,
B m

I \K
a Y

s

kg J ^kg
i , a Y.

V^x" / 1V\^2
s*(«)

and

C=4L Jj-T^a) Jx * J. f-^=- a^\ J, /IJJL. a\ = *(9)V
^ °w^ j ^S )

The characteristic function is given by

Bg(r) = R(r, s) == X(r, s) = X(s) JQ

(118)

s Z(r, s) = 0(s) j/—3^^ + f(s) Y,
0 \^

In this case we assume that

f(r) = / a(s) R(r, s)ds = / b(s) R(r, s) ds
0

where b(s) = a(s) - a(xs) Proceeding in the customary fashion, we have
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ro
/ p(r) r f(r) R(r, d)dr = lim / p(r) r R(r, d)
0 r —t*=x?0

o

/ b(s) R(r, s)ds
.0

lim / b(s)
r —?oo o

o

lim / b(s) Kr
r —>oo o

o

(— r

/ p(r) r R(r, a) R(r, s)dr
0

ds

r
o

~2 2~
s - tf

Z(rQ, s) Z'(rQ, o)

Z'(ro, s) Z(rQ, &) ds

Kr

dr

lim r Hs)
r —><x> o

o

o

-£ 2"
s - &

- oZ(rQ, s) Zx(rQ, o) +

sZx(rQ, s) Z(rQ, o) J ds

where Z.(r , s) = 0(s) J, r\ + t(s) Yx
2 J W "2

In order to evaluate this last expression it is possible to use the

following asymptotic formulas of the Bessel functions for large values of the

arguments

V*' =
cos

J\"
£. and

where 9 =x - (p +?>) | , -* <arg x < «

,13>

Yp(x)

and a > 0

sin cp

1

2 rtXJ



Using these asymptotic formulas, we can obtain

-a z(rQ, s) Zx(rQ, a) +sZ^, s) Z(rQ, o)1^ -1

s f~0(s) 0(a) cos N(cr) sm N(s) - ty(s) i(a) sin N(o) cos H(s)

-0(a) ijr(s) cos N(o) cos N(s) + 0(s) \|r(a) sin N(s) sm N(a)J

- a|_0(s) 0(a) cos H(s) sm H(a) - \|r(s) \Jr(a) sin N(s) cos N(a)

- 0(s) \|r(a) cos N(s) cos K(a) + 0(a) ^(s) sin N(a) sin N(sf] f

"k '
k2
s a

"k '
k2

it r / sa
cos [n(a) + N(s)] [0(a) t(s) + 0(s) \(r(o)] (a - s)

+ cos |jf(s) - N(a)J [-0(a) \jr(s) + 0(s) ^(o)] (a + s)

+ sm [js(ff) + N(s)] £-0(s) 0(a) + *(b) f(c)] (a - s)

+ sin [h(s) - H(o)] [0(s) 0(a) + i|r(s) ♦(«)] (a + s) T ,

where N(s) =

I
n

lo " IT

-13*-



and

We now apply formally the formulas

lim / F(x) cos k x dx = 0

i T° t,i \ sm k(z - x) , „/ \lim / F(x) — _K '- dx = « F(z)
z - x

We obtain using the above results that

(119)

/ p(r) r f(r) R(r, a) dr = b( a)
K„

0

n 02(d) + *2(a)

The solution of the boundary value problem is therefore given by

U(r, t) = / e b(s) R(r, s)ds ,
0

where R(r, s) is defined by equation (1 l8)eand where

b(s) = ii^2— r V(r) rR(r, s)drit Kg Q
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APPEHDIX B

SPHERE

Finite Composite Sphere We now wish to consider the temperature distribution

V(r, t) in a sphere of radius b made up of two materials The problem being

considered is defined by the following equations

(2 1) Vt - kl<\r + |V

(2 2) V(r, 0+) = gx(r)

(2 3) Vt = k2<Vrr + IV

(2 k) V(r, 0+) = ggtr)

(2 5) V(a , t) = V

(2 6) Kjl Vr(a", t) .

(2 7) V(b", t) = 0

-136-

(0 < r < a, t > 0) ,

(0 < r < a) ,

(a < r < b , t > 0) ,

(a < r < b) ,

(t > 0) ,

(t > 0) ,

(t > 0)



First let U(r, t) = r V(r, t) Equations (2 l) through (2 7) then

become

(2 8) Ut = klUrr '

(2 9) U(r, 0) = r gx(r) = t^v) ,

(2 10) Ut = k2Urr >

(2 11) U(r, 0) = r g^r) = f (r)

(2 12) U(a+, t) = U(a", t) ,

(2 13) \ [_a Ur(a", t) - U(a", t) = K„ a Ur(a ,t) U(a+, t)

(2 14) U(b", t) = 0

Next let U = E(r) T(t) , where R(r) = X(r) when 0 < r < a and

R(r) = z(r) when a < r < b This substitution in the above homogeneous

equations gives

(2 15)
XT. Z T.

v -H - J- (2 16) k -££-_**!—- — > ^ lb> k2 ~ ~ T
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(2 17) X(a) = Z(a) , (2 18) K± [a X'(a) - X(a)] =

^ [a Z'(a) - Z(aj]
(2 19) Z(b) = 0

We set the members of equations (2 15) and (2 l6) equal to the constant -s N

Applying condition (2 19) and the boundedness condition for V at r = 0 , we

can obtain

E(r) = X(r) = A sin

= Z(r) = B sin _f_ (b - r)

In order that A and B be non-trivial when conditions (2 17) and

(2 18) are applied, s must satisfy the characteristic equation

Kx sin •r^_- (b - a) s s 8
a l cos —^=- a - sm — • a

L fil sf\
s s

a —=- cos —=—(b - a) + sinsm

\fc V^2

s T. s s
a + K_ a — cos — a

(b - a)

= sin (b - a) (K2 -K^) sm
N^x" ^x" \^x~ J

cos • (b - a)

K
v „ S SKg a •- sin —7=- a

Vk2 V*i

h138-

= 0



We attach positive integers n (n = 1, 2, 3> > ) to the assumed positive

roots Associated with the eigenvalue s is the eigenfunction

(2 20) Rn(r)

where either cp = sm —• (b -
n

and

*n " K2

If = K,
rn 1

R(r, s ) = A cp sin
x ' n n

n

A t sin . (b - r)

r) and f = sin —,— r or
' n

a —?=- cos —~— (b - a) + sin —;=— (b - a)
k^

cos
n

a + sin
n

either choice being equivalent for each n , unless for a particular n both

of a pair are zero, in which case the non-zero pair is chosen

In the usual manner the orthogonality condition can be shown to be

/ p(r) Rm(r) Rn(r) dr = 0

where p has the customary meaning The assumption,
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(2 21) f(r) = Z a B (r)
n=l n n

therefore leads formally to

b

(2 22) a =
n

f p R f dr

0

b g
/ pEndr
0

Consequently the solution becomes

2
co -St

U(r, t) = Z a e n R (r) ,
n=l n n

where the a^ are defined by equations (2 22) and the R (r) are defined in

equation (2 20)

Infinite Composite Sphere Consider equations (2 15) through (2 18) where the

members of equations (2 15) and (2 16) are set equal to the constant -s2 This

time when we apply the boundedness at the origin but do not apply condition (2 19)

we obtain

B(r) = X(r) = A sm s

^
r

s
+

s

J% K
= Z(r) = B sm j r + C cos —-— r

-Jj^O-



From the interface condition we have

and

A K,

K„ B

s s s
A sm —==r- a = B sm — a + C cos —=- a

K

a cos a - sm

^2
a cos a - sm

fc J \JS

cos

These conditions can be satisfied by letting

K,.

A =

v^

C - - K„

•s= X(s)

s s
a cos — a

^2

1 £

s \ s

sm ' a l sm —-rrr- a +

^

S / S S S 1 ./ \
K, sm a /—• a cos —• a - sm —=- a = tv.s; >

v/kg

-l)fl-

~ 1 s s
C [— a sm — a +



B = Kg ( , asin , .a + cos —§=- a^ sin —1=- a +

rr S / S S
K cos ——r- a —• a cos

V^ ^2 ) sFl

a - sm ——— a] = 0(s)
\^

The characteristic function is given by

(2 23) R(r, s) = X(r, s) = X(s) sin

= Z(r, s) - 0(s) sin 8 r + f(s) cos

We assume that

o»

f(r) / a(s) R(r, s) ds = / [a(s) +a(-s)] R(r, s)ds

If we proceed in the standard fashion we can obtain

/ p(r) f(r) R(r, t) dr = lim / ° p(r) R(r, a)
0

/ a(s) R(r, s)ds

lim / a(s)
rQ—^— -oo

1 ©o

/ p(r) R(r, a) R(r, s) dr
LO

ds

dr

lim / a(s) Kg —g-
o

s - a
,o~)\Z(r ,s) Z»(r ,a) - Z'(r ,s)Z(r ,a) ds

-1^2-



lim /
r —-?<=>o - oo

o

a(s)

sm (s - a)

K„

r
sin —==- (s + a)

^L_ [+(s) t(o) _0(S) 0(a)]

cos .— (s+a)

s - a
[0(s) 0(a) +*r(s) t(a)]

s + a

r

cos (s - 0)
fk7

s - 0

[0(s) f(a) + 0(o) 1r(s)]

[0(s) f(a) - 0(0) t(sj] > ds

At this stage, we apply formally the formulas

and

lim / F(x) cos k x dx
k—^<=*<' - •o°

= 0

lim / F(x) ain,,k(.V X) dx = «F(z)
k ^00 - 00

z - x

We then have

/ p(r) f(r) R(r, o)dr
0

2

_-1^3--

+ •(0) + 0(o)J [a(a) + a(-a)J ,



J

where we have made use of the fact that t is an even function in t and 0 is

an odd function of t

The solution of the boundary value problem is therefore given by

°-» 2

(2S*> V(r, t) = i / e_S * [a(s) +a(-s)] E(r, s)ds ,

where B(r, s) is defined by equation ( 23) and where

/k"~ °° _1[a(s) +a(-sj] =| "±2 j p(r) rg(r) R(^ g)dr ^2^ +^2(s)J
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