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PREFACE

This text in elementary reactor
theory is the outgrowth of a course
given by the writer to a group of
Phillips Petrolleum Co. employees in
training to be operators of the MTR.

The author is indebted to the

members of this class for their

encouragement with respect to the
lectures, as well as in the writing
of this report which contains the
subject matter of the course.

I am particularly indebted to
Charles Cagle, who supplied me with
a careful set of notes on the lectures.

The notes were of great help in the
preparation of the text.

The principal reports consulted
regarding the various proofs were:

1. H. Soodak and E. C. Campbell,
Elementary Pile Theory, AECD-2201.

2. S. Glasstone and M. C. Edlund,
The Elements of Nuclear' Reactor Theory,
Parts I, II, and III, TID-384, -385,
and -386.

3. C. R. McCul lough et al., Summary
Report on Design and Development of
High Temperature Gas-Cool,ed Power
Pile, Appendix F, MonN-383 (Sept. 15,
1947).

4. M. J. Nielsen and J. W. Webster,
Solution of Kinetic Equations of
Cylindrical Liquid Fuel Reactor, ANP-68
(Sept. 18, 1950).

The aim throughout the writing was
to present in as much detail as
possible the derivations and basic
formulas the physicist or nuclear
engineer needs to do the necessary
"nuclear calculation" for a reactor

design. These necessary "nuclear
calculations* seem to be (1) critical
mass calculations, (2) flux and power
distributions, (3) reactivity effects
of temperature, depletion, and fission-
product poisons, (4) control rod
effectiveness, and (5) kinetics.

An attempt has been made to make
clear the way in which the individual
derivations of the fundamentaj. quanti
ties (for example, ff, jf +, j_, q)fit
into the over-all plan of the develop-
mentof the basic formulas for critical

size, etc. It is very easy to become
buried in the lengthy search for the
formula for £ , for instance, and lose
sight of the reason for wanting such
a quantity. It seems well to treat
as incidental the fact th ajt formulas
for quantities like j+ and j_ are very
useful in their own right.



INTRODUCTION

The purpose of this writing is to
provide a practical type of text in
reactor theory for the use of nuclear
engineers engaged in reactor design.
Methods are derived for calculating
critical mass; power distribution;
reactivity effects of temperature,
depletion, and fission-product poisons;
the necessary number of control rods
to compensate for these effects; and
the kinetic behavior of flux and

temperatures in a reactor with regard
to reactor stability and self-regulation.

It is the opinion of the author
that methods in the field of reactor

theory must be short and simple in
application if they are to be of real
assistance to reactor design. An
answer that can be obtained in a day
or two with an accuracy of 50% is
often very useful to a designer,
whereas one that is accurate to within

10% but takes a month to obtain may be
obsolete and utterly useless by the
time it is presented to the designer
by the physicist.

An understanding of fundamental
ideas such as cross section and mean

free path are assumed here. An
excellent reference for such definitions

is Part I of TID-384 by Glasstone and
Edlund.(1)

The subjects discussed in this
report, in the order listed, are:

1. The one - group theory for the
calculation of critical mass and power
dis tr ibut ion. The one-group model is
very crude and is given partly for
pedagogical reasons, but it does have
practical usefulness.

S. Glasstone and M. C. Edlund, The Elements
of Nuclear Reactor TheoryPart I, TID-384 (Nov.
1950).

2. The Fermi age theory for calcu
lating critical mass. The Fermi age
theory is one of the most useful
approaches to critical mass determi
nation, in spite of the fact that it
can be applied only to unreflected
reactors. The reflected reactor can

be approximated by an equivalent un
reflected reactor, as discussed in
chap. 2. The formulas obtained by
Fermi age theory are simple and
relatively accurate for reactors
moderated with beryllium or carbon,
and a modification of the formulas can

be applied to make the method reasonably
accurate for hydrogen-moderated
reactors. "'

3. The two-group theory for calcu
lating critical mass and power distri
bution. The two-group model can be
used in conjunction with the Fermi age
method by determining the core constants
for the former by means of the latter.
This will be discussed in chap. 3.

4. The effect of temperature,
depletion, and fission-product poisons,
such as xenon and samarium. These

effects act to decrease the effective

neutron multiplication constant, and
therefore the fuel inventory must be
sufficient to ensure criticality when
these effects are at their maximum.

5. The necessary number of control
rods (shim rods) to offset the virtual
supercriticality that exists in a
reactor at startup when the effects
de scr ibed in item 4 are at a minimum.

6. The kinetic behavior of flux
and temperatures in a r eac tor. The
kinetic self-regulation, stability to
accidents, and response to control rod
(regulating rod) motion must be in
vestigated for a reactor design
proposal.



Chapter 1

CRITICALITY BY ONE-GROUP THEORY

The simplest formulas for obtaining
critical mass or size and spatial
power distribution are obtained from
a mathematical model in which all

neutrons are considered to be at one

energy. The one-energy assumption is
very crude, because reactor neutrons are
actually spread in energy from about
107 ev down to around 0.25 ev (in a
cold reactor). Since cross sections
vary with energy and the energy distri
bution of the neutrons is not usually
known, it is difficult to choose good,
average values for the constants.
Therefore the results obtained are not

generally in good agreement with experi
ments. However, the one-group model
does have application, and because
of its simplicity it is an excellent
subject to start with in discussing
the methods of reactor physics.

The simplest geometrical arrangement
is the bare (unreflee ted) reactor,
which is a completely homogeneous,
one-region mixture of fissionable
material, moderator, and diluents.

BARE REACTOR

The fundamental equation of reactor
theory is the neutron-balance equation.
This is a differential equation which
states that if a reactor is critical

(that is, if there is just enough
uranium concentration for a given size
to sustain the chain reaction), the net
flow of neutrons out of a volume

element per second added to the number
of neutrons absorbed per second in the
element must equal the number of
neutrons produced per second in the
element.

three terms are discussed in the

following sections of this chapter.
Leakage. The net flow of neutrons

per second, a scaler quantity, from a
cubical element of volume is easily
obtained if the net neutron current,
a vector quantity, is known at each face
of the element. It is necessary to
sum the differences between the net

current in a face and the net current

out of the opposite face for three
pairs of parallel faces. The neutron
current is a quantitative measure
of the rate of diffusion of neutrons.
The theory of neutron diffusion is the
basis of reactor theory.

Diffusion of Neutrons. It is
instructive and interesting to draw an
analogy between heat conduction and
diffusion of neutrons, provided the
analogy is not carried too far, since
both are examples of transport phe
nomena. In heat conduction, the
kinetic energy of the molecules is
transported because of the temperature
difference between neighboring volume
elements. Temperature is an index of
the average kinetic energy of the
molecules in a volume element; there
fore in the volume element of high
temperature, the faster moving molecules
collide with the slower moving mole
cules of the adjacent cooler volume
element and impart energy to them.
Energy, or heat, is spatially trans
ferred. In neutron diffusion, the
quantity corresponding to temperature
is neutron density, N. The quantity
that corresponds to Q, the Btu's of
heat energy transported across an

(Leakage per sec per cm ) + (Absorption per sec per cm3)
- (Production per sec per cm ) = 0

The mathematical expression for the area per second, is j, the net number
first term is by far the most diffi- of neutrons that move across an area
cult to obtain. The formulas for the per second.

.§



Consider a siab of thickness Ax that

has one face at temperature 6 and the
other face at temperature 6 + At9.

TEMPERATURE-Q TEMPERATURE = 9 + A0
AREA OF FACE=4

~-Ax-

The heat flow (Btu) in unit time is
proportional to A and to tSd/kx. That
is

A0

or, in the limit at any point,

dd
Q = -kA — ,

dx

where k is the conductivity, which
depends on the material and on the
temperature.

Now consider the section of a slab

that lies between two parallel planes
and contains neutrons of concentration

n per cubic centimeter at one plane and
n + An at the other plane.

—A*—

n+An (NEUTRONS/cm3)
4=AREA OF FACE

Then, the net number of neutrons
flowing through an area A is pro
portional to A and to An/Ax:

An

j "A Tx •
or

-DA
dn

~dx~

where j is the net number of neutrons
that move across area A per second and
D is a constant, called the diffusion
constant, which plays the same role
as the conductivity in heat transfer.
The value of D depends on the material

and the velocity of the diffusing
neutrons.

Thus the expression for the diffusion
of neutrons is precisely the same in
form as that for the diffusion of

heat. The attempt here is to make the

formula for j seem reasonable in the
light of a more familiar example of
the transport phenomenon. In a subse
quent section of this chapter the
formula will be derived in a more

rigorous manner.
In neutron diffusion, as opposed to,

say, heat diffusion in solids, one
is interested in the physical movement
of neutrons from one place to another.

It follows from the formula for j that
there is a net flow of neutrons toward

the left in the above diagram of the
slab. This net flow results simply
because there are more neutrons

present at the right (n + An) than at
the left (n). Since all neutrons have
velocity (assumed the same for all
neutrons, in this chapter) and are
traveling randomly (in direction), a
net flow exists in the direction of

lower concentration. Diffusing
neutrons frequently collide with the
nuclei of the medium (about one colli
sion in every inch in an average
medium). The velocity of the nuclei
can usually be considered negligible
compared with that of the neutrons.
To get a geometrical picture of dif
fusion, consider 100 neutrons, with
velocity, released at a point in a
two-dimensional stationary lattice
of nuclei, and suppose that these
neutrons are restricted to move only
north, east, south, or west. Then
the number of neutrons moving along
any path is about as shown in the
picture below. The stationary nuclei
are represented by the regular array
of circles. At the instant of release,
there are 100 neutrons at the center

of the picture. A moment later there
are 25 neutrons traveling in the four
different directions as shown. After

each neutrons collides with the



nucleus in its path, each group of 25
divides into groups of approximately
6 neutrons moving away in the four
directions from the point of collision,
etc. It is clear that the 100 neutrons

are rapidly spreading out from the
point of their release. If the con
centration of neutrons being maintained
is higher atone point than at another,
a net flow will exist toward the

point of lower concentration.

5 6

25
'

6

•

1

1 6 25

6

n - 3

. 1
25

25

6

The density of the nuclei is very much
greater than the density of neutrons;
therefore collision of neutrons with

nuclei is the important event; col
lisions of neutrons with neutrons are

so rare that they can be neglected.
For example, in beryllium there are

2 3
10 atoms per cubic centimeter
Suppose that the scaler flux (total
centimeters traveled in one second

by all neutrons in a cubic centimeter)
is

neutron"cm
nv = 10 14

cm * sec

Then, since v, the velocity of neutrons
at thermal energy, is equal to about
0.22 x 10 cm/sec, the neutron density
corresponding to this flux is

10 14
neutron•cm

cm3 *sec

0.22 x 106
cm

sec

= 5 x 108
neutrons

cm

Thus for each neutron in an average
reactor there are about

10 23
= 2 x 1014

5 x 108
nuclei against which the neutron can
collide. A qualitative picture of
the diffusion of neutrons may be
obtained by visualizing these particles
as moving in excess of 5000 mph in a
medium containing 10 obstacles per
cubic centimeter with which they may
collide and rebound randomly (in
direction).

There are many useful problems in
heat conduction that can be solved by
using the formula of Fick's law

-kA
dQ

The following problem is an example
of the application of Fick's law.
Consider a fuel tube in a reactor such

as the ANP sodium-cooled reactor,
which is designed for a power of 200
megawatts. There are 15,000 fuel
tubes; each tube has the cross section
pictured below, and each tube is sur
rounded by sodium coolant.

STAINLESS STEEL JACKET

URANIUM SOLUTION

We wish to determine the drop in
temperature through the stainless
steel jacket of the fuel tube as part
of an investigation of the peak fuel
temperature. Each fuel tube must
generate 13,333.33 watts (average),
which is

200 x106 (watts)

15,000 (tubes) '

However, ljoule/sec = 1 watt and there
are 4.18 joules per calorie; so the
heat generated per tube is



——— (cal/sec)
4. 18

1 (watt)

= 3200 (cal/sec)
That is,

Q = 3200 cal/sec (for each tube)

dd
-kA-

dr

x 13,333 (watts)

dd

~dr~
= -k 2nrL

and integrating this differential
equation we obtain

6.-6 Q 1 ^log
klnL & r.

where r. is the inside radius of the
stainless steel jacket, r is "the
outside radius, and L is the length
of the tube. For the fuel tube being
considered, k is 1 cal/sec*cm*°C (for
stainless steel) and the dimensions
of the fuel tubes are L = 90 cm,
r. = 0.1 cm, and r = 0.1524 cm. Thus,

e
3200 (cal/sec)

1 (cal/sec-cm-°C) x 2n x 90 (cm)
0.1524

x log
0.1

2.4°C ,

which is the temperature drop through
the j acket.

A practical problem involving
Fick's law for neutron diffusion is

solved in the following illustrative
example.

Example 1. It is desired to know the net

flow of neutrons per unit area across the

interface between core and reflector of a

spherical reactor that has a solid core of

uranium mixed homogeneously with beryllium

and a solid beryllium reflector. Since only

a very rough answer is desired, the flux can

be calculated on a one-group model. The flux,

4>, has been found to be

<t>(r) = 10 13

•n

sin — r
60

where

<t> - nv — the product of the neutron velocity
and the neutron density at a distance r
centimeters from the center of the core.

The radius of the core is 45 cm.

The net flow of neutrons is given by

dn
j = -AD

dr

It will be shown later that

v K
D

3Nn o-
Be tr

where

AL = atoms of beryllium per cubic centi
meter,

cr = microscopic transport cross section.

A. = transport mean free path,

Thus we can write

v A. dn X.tr d{nv)
til —
3 dr

j = -A-
dr 3 dr

Since the problem is to find the net flow

through unit area, A = 1 cm . The density of
3

beryllium is 2.7 g/cm and cr is 5.5 barns.
Therefore,

N
2.7

x 0.6 x 10
24

Be

K.

2 4 3
0.18 x 10 atoms/cm

,-243 x 0.18 x 1024 x 5.5 x 10

r — cos r

60 60

= 0. 33 cm

•n

sin — r
60d4>

dr
= 10

13

and

10
13

r = 45

x 0.707
4

(45)'

0.707

-1.17 x 10
10

Thus j = 0.33 x 1.17 x 1010 = 0.38 x 1010
neutrons/cm -sec, which is the net flow per
unit area through the interface.

Derivation of Fick's Law. It is
hoped that the preceding section has



made plausible the formula for the net
flow of monoenergetic neutrons in the
z direction:

-* dn
j = -DA

dz

However, it is well to take a careful
look at the mathematical assumptions
made in the derivation. Also, a very
useful formula arises in the deri

vation that gives the actual current
of neutrons in the positive z direction,
as well as that in the opposite
direction, as opposed to just the net
flow(which is the difference of the
two) as given by Fick's law.

Consider an element of area ds at

the origin in the x,y plane of a
three-dimensional region (Fig. 1.1).
We wish to find an expression in
terms of the flux at the position of
ds for the number of neutrons passing
through ds per second in a downward
direction. To do this, we pick an
element of volume dv above the x,y
plane, find the number of collisions
taking place there per second, find
what fraction of these deflected

neutrons starts in the direction of

ds, and finally find what remaining
fraction survives the journey to ds
without being deflected by collision.
The number of collisions in dv depends
on the flux at dv. However, the flux
at the point of dv can be expressed
by Taylor's expansion in terms of the

Fig. 1.1

flux at the origin (position of ds).
Thus, integration can be carried out
over all volume elements lying above
the x,y plane, and the desired ex
pression for the current through ds
per second, in the downward direction,
in terms of the flux at the position
of ds is obtained.

It is convenient to use a spherical
coordinate system, as shown in Fig. 1.1.
The number of collisions per second in
the volume element dv at (r,6,\p) is
<p(r,6 ,</>)2 dv. It is assumed at this
point that scattering is i sotrop ic;
that is, neutrons coming out of col
lision in dv are spherically symmetric
in angle. This is not a good assumption
for light elements, and a correction
will be made later.

If a sphere were drawn with center
at the volume element dv with the

pbint (0,0,0) lying on the surface,
it is clear that the projection of ds
on the sphere in the direction of r
is cos 6 ds, to within first-order
differentials. From the assumption of
isotropic scattering, it follows that
the fraction of neutrons scattering
in dv that start toward ds is equal to
the ratio of the projected area of ds
on the postulated sphere to the entire
area of the sphere, that is,

cos 6 ds

477r2

The fraction of these that actually
reach ds without collision is e'^r,
where 2 = 2 + 2 , in which 2 is the

a s

the total macroscopic cross section in
cm" and is equal to the macroscopic
absorption cross section (2 ) plus the
macroscopic scattering cross section
(2 ). The exponential form follows
from the fact that 2 is the proba
bility that a neutron will make a
collision in 1 centimeter. In going
an incremental distance dr, the change
in beam strength, dn, would be

dn = -N 2 dr ,

and, hence, integrating from r = 0 to
r ,



N _ _£r expansion; that is,
e

N0 (30
4>{x,y, z) = 0

is the fraction surviving collision in ' ° \3*
going a distance r. / /

Now, putting these facts together + |— ^ + (^
+ y\^ + «r • (1.2)and noting that \<bvo \3z,

dv = AB AC dr , This is an important approximation to
where bear in mind; as a matter of fact, it

-ttt „ ,, is rather surprising, a priori, that
AB = r sin 6 dw , , . i , u . r

r ' it works at all. However, because of

AC = r dd , the factor e"^-r in the integrand of
and thus Eq. 1. 1, the magnitude of the integrand

, 2 a ja j / j drops off sharply for values of rdv = r sin a do d\b dr , c . i » •
•.. r i i • .i .. .i i r ^ greater than two or three mean free
it iollows that the number of neutrons , ... .

. , ,i • ,_ tv • paths, so that it is only necessary
passing through ds owing to collisions f, _ , . r „ , „ ,

• that the approximation ot Eq. 1.2 be
in dl) is i j r r • i L j-

valid lor a lairly short distance.

—4>{r,6,^) 2s e-2rcos 6 sin 0 dr <*/- ^ . The approximation says, then, that <p
4w * is changing slowly within a distance

This expression is then integrated of two or three mean free paths
over the half-space lying above the (several inches). This is true if
x,y plane. Thus, j _, the current per the position for which cp0 is being
unit area in the negative z direction, evaluated is not close to a concen-
is given by:

ds z*00 rn/2 /*aw £rj ds =—2, I I f <p{r,6,4j) e-^r cos 6 sin 6 d^ dd dr . (1. 1)

Up to this point, the formulation
is rigorous (to within the approxi- trated source, the control rods, or
mation that the scattering is iso- the external boundary of the reactor,
tropic), since nothing has been said Ifc is only near such sources and
about <p(r,6,\p). However, we are sinks that the shaPe of the flux wil1
seeking a differential equation (the var* substantially from that predicted
neutron-balance equation) that involves bV thls formulation.
the flux at an arbitrary point. A Although much is made of the fact
general solution of this differential that this so-cailed "asymptotic flux
equation will be obtained, and when distribution" is not correct near
the boundary conditions of a particular sources and sinks, obtaining the
geometrical assembly are applied, it correct flux at such points is so
will be possible to find <p as a general extremely difficult that it has been
function of (r,6,\p). Thus it appears customary to use the asymptotic flux
that to evaluate J_ , it is necessary in engineering applications,
to know <^i,r,6,\p), but we are attempting To Set back t0 the derivation, it
to find j (Fick's law) so that we can is necessary to put Eq. 1.2 in terms
determine 4>(r ,6,\p). of spherical coordinates; that is,

To proceed further, then, <p{x ,y, z) x = r sin 6 cos </< ,
is expanded in a Taylor's series about y = r sin 6 sin 41 > (1.3)
0(0,0,0) = cpQ, and an approximation z = r cos 6 .
is made that it is sufficient to keep Upon substituting Eq. 1.2 in Eq. 1.1
only the f ir s t- or der terms of the and incorporating Eq. 1.3, it is found



that the terms in x and y drop out
upon integration over </> from 0 to 2tt. ^tr »| 9
Upon carrying through the remaining \ 1 - —
integration and canceling ds from \ iA
both sides of Eq. 1.1, the result is where A is the mass number of the

v V / -a-a scattering nucleus. Equations 1.7,
-• « , s { °*P \ 1.8, and 1.9 become
j = 0„ + -— I . (1. 4)J- 42^° 6Z2\dz/0 • -
If a similar derivation is carried 7" _ = —- _—7^ (-7— ] , (1.10)

through for the flow upward, j+, it
is found that

Zs 2s /<*0\ 7 =_jl __ll |_| (1.n)

'••i*--ffU • (1-5)
—»

The net flow upward, j, then, is

- - - ^ fd*\
j = j + —j - — I 1 .(1.6)

322 \dzl These important equations will be
^ used in the work to_, follow.

^For most assemblies, 2s >> 2a, The units of j > 7+f and 7 are
2~2s, and since 2^ = l/\f , where \} ne ut r ons/cm 2 • s ec . It is well to
is the mean free path for scattering, emphasize that these are vector
Eqs. 1.4, 1.5, and 1.6 can be written, quantities. The fact that the vector
only slightly more approximately, as quantity j has the same units as the

1 ^- /dcb\ scaler quantity 0 causes a good deal
= —0O +— (— ] . (1.7) of confusion. The quantity 0 is the

total number of centimeters traveled

per second by all the neutrons in a
* j dP] cubic centimeter regardless of direc-

" tion. The units of 0 are then neutrons
times centimeters per second divided
by cubic centimeters, and upon simpli-
cation (at the expense of clarity)
this becomes neutrons/cm "sec, which

4 ° 6 \dz

4 6

- J. = -— — • (1.9)

4 6 (Si J

tl
4 . 6 ©. *

J + -J. =
3

/c#

\d7j = j+-j. = --^-7- • (1.12)

unfortunately is the same as the units
Since the assumption that scattering for 7. As a matter of fact| if a thin
is isotropic is not good for most foil of area j cm2 is placed in a
problems of interest, a corrected kg reactor in which the flux (scaler
can be used to account for the am- fluXf not current) is 1013 neu-
sotropy of the scattering. It has been t ron s/cm2 . se c, the foil will feel
shown* by transport theory, in which %x 1Q13 neutrons/sec passing through
neutron direction is included as a it> counting both sides - the sum of
variable in addition to position, that g j jq j j jj
this corrected \f , called kfr (the The* following example is intended
transport mean free path), is given tQ illustrate the use of Eq. 1.10 (or
b? Eq. 1.11).

Example 2. One design for the ARE (Air-

A. M. Weinberg and L. C. Noderer, Theory craft Reactor Experiment) has liquid fuel, and
of Neutron Chain Reactions, Vol. I. Diffus ion and .• t 1 ....k-,. „„t„„j ^„ „ „„^t^„„i .!;..„,.•-;„.,„, . . , „ „„«, _~ c, r Vo (u ic the fuel tubes extend in a vertical directionSlowing Down of Neutrons, OHNL CF-51-5-98 (May 15,
1951). through a sheet of boron carbide that lies



horizontally at the top of the core. (The

purpose of this is to make the reactor self-

stablizing. When the power increases, the

temperature of the fuel increases and some of

the fuel goes into the boron carbide layer
where it is ineffective in supporting the
chain reaction; therefore the power tends

to decrease, and thus gives a stablizing
effect. )

The designer wants to know how much heating

will occur in the boron carbide owing to the

exothermic neutron-capture reaction in B so

that he can decide whether the core coolant

flowing through holes in the boron carbide

will provide adequate cooling.

The neutron capture reaction in B is

eB
10 I _ , .7Li7 + -He4 + (2.60 Mev)

avg

where the 2.60 Mev is the kinetic energy of
the recoil particles and can be considered as
heat release at the point of capture. The
problem is, then, to find the number of
neutrons captured in the rod.

Let us suppose that the boron carbide
layer is thick enough so that it is "black"

to thermal neutrons (captures all thermal
neutrons that enter) but is transparent to
above-thermal neutrons.

Equation 1.11 will give approximately the
number of thermal neutrons entering per unit
area per second if ^ is the thermal flux at

the face of the boron carbide. Only the
asymptotic flux is known. Here is a case in

which the answer obtained will clearly not be

exact. As was pointed out, the approximation
leading to Eq. 1.11 is not valid near a strong
absorber. However, only a rough answer is
wanted. An error of a factor of 2 is probably
not serious inasmuch as the designer will

probably overdesign by more than this to be

on the safe side.

It is found, by methods to be described

later, that at the face of the boron carbide

the thermal flux and slope of the thermal

flux have the values

*tk - 2 x 10
12

neutrons cm

d<t>
th

dz
= -0.4 x 10

12
neutrons cm

sec cm cm

based on the asymptotic flux. From the

properties of the reactor, it is known that

A. = 1.73 cm. Thus the number of thermal

neutrons entering the boron carbide per square
centimeter is

.12
2 x 10J 1.73

] +
12\(-0.4 x 101*)

0.6 x 10
12

All the thermal neutrons that enter are

captured and each results in a heat release

of

2.60 Mev
2.60 x 106 x 1.6 x 10"12

10'

4.15 x 10"13 joules

Thus the heat release in a portion of the
boron carbide layer having a facial area of

1 cm2 is 0.6 x 1012 x 4.15 x 10" 13 = 0.25
watts. Since this is a rather small rate of

heat release,the designer can thus be assured
that the core coolant, which flows through
holes in the boron carbide about 3 3/4 in.

apart, will provide adequate cooling of the
boron carbide.

Use of Fick's Law to Obtain the
Leakage per Cubic Centimeter. To
review briefly, we are attempting to
obtain a differential equation that
declares a balance between the creation

and loss of neutrons at an arbitrary
position in terms of the flux at this
position:

Leakage Absorption Production2_ + *L = 0 %
sec'cm3 sec cm3 see'em3

When boundary conditions of a particular
problem are applied to the general
solution of this differential equation,
formulas are obtained for the critical
size (or critical mass) and, in turn,
the flux or power distribution.

We are seeking the expression for
the first term, the leakage or net
flow of neutrons out of a cubic

centimeter per second. It is easily
obtained now that the formula for the

net current is known.

Consider an element of volume as

shown in Fig. 1.2. According to Fick's



law, the net flow up through the
bottom of the volume element is

A.tr /d<p\
dx dy - ~~T\Tz)z dxdy •

The net flow up through the top is

ktr/d<p\jz+dz dx dy --— \Yz)^di dx dy •
The difference is the net loss of

neutrons per second by leakage from
the top and bottom of the volume
element:

{J z+di t) dx dy
k

tr d0

dz
z+d z

d0

dz
dx dy.

(1.13)

The quantity (dcp/dz) +, is now expanded
by Taylor's series about z,

{d±
\dz

z+dz

d0\

dz),
d2<p

dz2

with terms after the second discarded.

Equation 1.13 becomes, with this sub
stitution ,

I-* —\ *-tr d2<p
lw ~jz) dx dy ="~r ~^rdx dydz-

In a similar way, the net loss of
neutrons per second by leakage from the
front and back of the volume element is'

/- -. \ ^tr d2<p
[Jx+dx- J*) dy dz ="1" T"I dx dy dz,

(x,y,z,),0
(x + dx,y + dy, z + dz)

Fig. 1.2
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and, from the left and right sides,

(W~>y) dx dz =
>^tr d2Cp

—r dx dy dz
3 dy2

The total loss of neutrons per second
by leakage from the volume element is
the sum or

d24> d2<p d24>\
+ + ) dx dy dz

dx* dy2 dz2 '
_Kr

3

Since dv dx dy dz, the leakage can
be expressed on a unit volume basis as

wh«

V20

k
tr

V20

d2<p d2<p
—Z_ + z.

d2<p

dx2 dy2 dz2
Formula 1.14 is the result we have

been seeking - the first term of the
neutron-balance equation. The rather
lengthy derivation leading to this im
portant expression uncovered some formulas
that are very useful in their own right,
such as the expression for j_, j+ , and
Fick's law j.

Formula 1.14, with the coordinate
system used in Eq. 1.15, is suitable
only for assemblies of parallelepiped
shape. However, it is not necessary
to repeat the derivation for the two
other useful geometries: spheres (in
spherical coordinates) and cylinders
(in cylindrical coordinates). Formula
1.14 is perfectly general, with the
understanding that in spherical co-
ordinates(2 ^

(1.14)

(1.15)

V20 =
d2cp 2 d<p

+ , (1.16)
dr* r dr

and in cylindrical coordinates

W - ^ +-i ^ +^ .
dr2 r dr dz2

Absorption. The second term of the

neutron-ba1 ance equation follows
easily. The number of neutrons absorbed

.(1.17)

(2) H. Uargenau, and G. M. Murphy, The Mathematics
of Physics and Chemistry, Chap. V, Van Nostrand,
New York (1943).



per second per cubic centimeter is 02fl,
where 2 is the macroscopic absorption

° • • -l
cross section in cm .

Production. The third term of the

neutron-balance equationisalso easily
expressed. The number of neutrons
produced on our one group model is
02flfe, where k = v2/./2Q and is the
number ofneutrons produced per neutron
absorbed in any reactor material; v is
the number of neutrons per fission
(2.5 for U23 ) and 2, is the macro
scopic fission cross section.

The definition ofk here is different
from that given in the older literature,
for example, that given by the so-
called "four-factor formula." The

four-factor formula was originated
with the theory of heterogeneous
natural uranium reactors. The four-

factor definition of k is not con

venient in the theory of the enriched
power reactors that are receiving the
emphasis in the present military era
in reactor development.

Balance Equation in Differential

Form. The differential equation
expressing the conservation of neutrons
can now be written:

Leakage Absorption Production2_ + L = o
.3

sec cm' sec cm sec cm'

kt
- —• V20 + 02 - 02 k = 0 (1.18)3 ^ a a

where V20 represents either Eq. 1.15,
1.16, or 1.17 according to whether the
reactor is a parallelepiped, a sphere,
or a cylinder.

Equation 1.18 can be rewritten as

V20 + B2<p = 0 , (1.19)
where

B"
Ia (k - 1)

a

tr

3

(1.20)

which is of the form of the wave

equation, or of Hemholtz' equation.
The quantity B2 is called the " buckling,"
because it determines the degree of
curvature of the flux. The quantity

A. k /3 is often denoted by L2, and
hence B2 = k - 1/L2, where L2 is
called the migration area. It will be
shown in Chap. 2 that L has a simple
interpretation in terms of the crow-
flight distance a neutron travels to
the point of capture.

General Solution. The general
solution will be written down for four

geometries: slab, parallelepiped,
sphere, and cylinder. In all cases,
the buckling, B2, has the definition
given by Eq. 1.20.

Slab. Equation 1.19 for a slab
takes the form

<*20
—- + B20 = 0 , (1.21)
dx-

where x = 0 is the middle of the slab

(Fig. 1.3), which is finite in the x
direction and infinite in the y and z
directions. The general solution of
Eq. 1.21 is clearly

0 = A sin Bx + C cos Bx . (1.22)

I

I
1__.

x=0
I
I
I
I

Fig. 1.3

Parallelepiped. Equation 1.19 for
parallelepiped takes the form

B20 B20 B20

Bx' V
+ B20 = 0 (1.23)

where the origin is at the middle of
the parallelepiped (Fig. 1.4). The
general solution is

0 = (A cos ax + C sin ax) (£ cos fix +F sin fix) (G cos yx + H sin yx) (1.24)

11



where

a2 + fi2 + y2 = B2 .

Z

^ • /
1 J

>'
y 1

«

X 1

/ i_

/ /
/

/

Fig. 1.4

Sphere. Equation 1.19 for a sphere
takes the form

d24> 2 dcp , ,
+ + B20 = 0 , (1.25)

dr' r dr

with r = 0 at the center (Fig. 1.5).
The general solution, as can be verified
by differentiation, is

0
sin Br cos Br

A + C (1.26)

Fig. 1.5

Cylinder. Equation 1.19 for a
cylinder takes the form

B20

12

1 B0
+ — +

B20
—- + B2cp = 0 ; (1.27)

Br2 r Br Bz2
with r = 0, z = 0 at the geometrical
center (Fig.' 1.6). Equation 1.27 is
solved by the method of separation of
variables. The substitution is made

that

<p(r,z) = R(r) Z(z) , (1.28)

where R is a function of r only and Z

is a function of z only, as a trial to
see whether the partial differential
equation in r and z can be separated

into an ordinary differential equation
in r only and an ordinary differential
equation in z only. This is a valuable
method for solving partial differential
equations, and if it happens to be the
student's first knowledge of it, he
should take time to understand clearly
Eqs. 1.28 through 1.35.

Fig. 1.6

By substituting Eq. 1.28 into Eq.
1.27, one obtains

Z(z) R"(r)

+ - Z(z) R'(r) + R(r) Z"(z)
r

+ B2 R(r) Z(z) 0 (1.29)

and by dividing through by Z(z) R(r),
the result is

R"(r) 1 fi'(r) _ Z"{z)
R(r) r R(r) Z(z)

+ B2 = 0 .

(1.30)

Equation
form

fT'(r)

1.30 can be rewritten in the

1 R' (r) 2 Z"(z)
+ +B =

R(r) r R{r) Z(z)
(1.31)

In Eq. 1.31, the left side is a function
of r only, and the right side is a
function of z only. Now, this equation
must hold for all points (r,z). Suppose
it holds at a point, say (r1,z1). Then
let r vary but hold z constant. The
right side of Eq. 1.31 has not changed,
and the left side must not change from
the condition of equality. Since the
new choice of r was perfectly general,
it follows that the left side must

equal a constant for all r; that is,



the left side equals a pure constant.
It follows that the right side equals
this same constant. Denote this con
stant by y2. Then,

Z"(z)

or

and

= y*
Z(z)

Z"(z) + y2 Z(z)

fl"(r) 1 R'(r)

R(r) + r R(r)

R2(r) = —
TT

B4

(1.32)

7A (1.33)

0.57722 + In (— J0(/xr) ~
TT

Let y} = B2 - y2 . Then Eq. 1.33 be
comes

R"(r) + ±R'(r)+ /x2 R(r) = 0.(1.34)
The attempted separation of variables
is successful in this case. The
solution of Eq. 1.32 is easy:

Z(z) = A cos yz + C sin yz . (1.35)

The solution of Eq. 1.34 is not
easy; however, this equation'has been
widely studied for many years by

This series is denoted by the notation
J0(fJ.r), much like the series

(whi ch

= 0) is denoted by sin x.

X X

x + ...
3! 5!

is a solution of (d2y/dx2) + y

Since Eq. 1.34 is an ordinary dif
ferential equation of order 2, it
possesses two independent solutions.
The other series solution is

n = l

(-1)" (/xr)

(n!)2 2

In

1+T+-+7
(1.37)

This series is denoted by Y0(/xr) or,
sometimes, N0(fj.r).

The values of J0(/j.r) and Y0 (/xr) are
tabulated in various places'4' for
values of the argument /xr.

The general solution of Eq. 1.34
can be written, then, as

R(r) = E J0((J.r) + F YQ(/ir) , (1.38)
where E and F are arbitrary constants.
Since (p(r,z) =R(r) Z{z) by definition,
it follows that the general solution
of Eq. 1.27 is

4>(r,z) = [A cos yz +Csin yz] [e J0(/J.r) +FY0(/xr)] . (1.39)

mathematicians. The properties of
this equation - Bessel's equation of
order zero - and related equations and
the properties of the solutions have
formed the subject matter for many
large books. ' The equation is solved
by a series method, the terms of which
are obtained by recursion formulas (the
method of Frobinius). One series
solution is the following:

fl,(r) = 1 "
irirY (rir)*

+ (-D*

22 24

(/xr)2fc

22fc(fe!)2

(2!):

(1.36)

<3>,G. N. Watson, A Treatise on the Theory of
Bessel Function, Cambridge Univ. Press (1944).

Boundary Conditions. The boundary
conditions that apply to the problem
of determining the critical size of a
bare reactor are as follows:

1. The flux must remain finite at
all points.

2. The flux must be symmetrical
around any points, lines, or planes of
symmetry that exist in the geometrical
setup.

3. The flux must be nonnegative at
all points.

4. At the external surface, the
return current must be zero.

The fourth boundary condition makes
use of Eq. 1.10 (or Eq. 1.11). To

(4) E. Jahnke and F. Emde, Tables of Funct ions
with Formulae and Curves, Dover Publications,
New York (1945).
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illustrate, suppose we wish to write
that the return current at the right
face of the slab in Fig. 1.3 is zero.

This says

r^il +hn(^) =0
4 6 \dx

(1.40)

where x0 is the half thickness of the
slab. By writing this in the form

rf0

dx

30(xo)

2k
t r

(1.41)

it is seen that this is a condition on
the slope of the flux at the surface
such that the flux extrapolates to zero
at a distance 2/3 kfr outside the
surface.

The condition 1.40 may seern^ to be
somewhat artificial, since ;'. was
derived on the basis of a scattering
medium and since condition 1.40 is
supposed to be a statement regarding
the current coming back from a void.
It may be a little more palatable if
one thinks of condition 1.40 as

1 im
x~*x „

0(x) ktr dcp(x)
dx

= 0 (1.42)

In any event, Eqs. 1.10 and 1.11 are
based on the assumption that the flux
is slowly varying (can be represented
by a Taylor expansion to first-order
terms only). This assumption is not
good near the reactor surface. It is
clear that the flux distribution
obtained by applying these boundary
conditions to the general solution of
the preceding section will not be a
true representation near the surface.
It has been shown'1' by transport
theory, however, that if a slight
correction to the extrapolation dis
tance is made, the flux distribution
that is obtained will have the proper
shape and magnitude a distance of a
few mean free paths from the surface.
This corrected condition is:

"^ *<*°> (1.43)
dx 0.71 \tl

14

The extrapolation distance 0.71 kfr
is approximately correct for all
reactor geometries if the curvature of
the outer surface is not too great.
The fact that the predicted flux
distribution is not correct close to
the surface does not seriously affect
the critical mass estimate if the
reactor is not too small.

An approximation to Eq. 1.43 can
usually be made without serious error;
that is,

0(xo + 0.71 \tr) = 0 . (1.44)
In summary, then, the boundary

conditions for the bare reactor

problem are
1. finiteness,

2. symmetry,
3. nonnegativeness,
4. 0(xQ + 0.71 \tr) = 0

for slabs,
0(ro + 0.71 ktr) = 0

for a sphere,
0(fl + 0.71 \fr> z) = 0.

and

0(r,-^ +0.71 ktr) =0
for a cylinder, where xQ is thecritical
half thickness of the slab, r0 is the
critical radius of the sphere, R is
the critical radius of the cylinder,
and H is the critical height of the

cylinder.
Application of Boundary Conditions

to General Solutions. The boundary
conditions will be applied to the
general solutions in two geometries -
slabs and cylinders - and the spherical
geometry will be left as an exercise.

Slab. The general solution for the
flux in the slab was

0(x) = A sin Bx + C cos Bx ,
where

B =-
fUk - 1)

k X
a t r

The first boundary condition that the
flux must be everywhere finite is not
necessary in the slab geometry, since
the sine and cosine are everywhere



bounded functions. The second boundary where
condition that the flux must be x0 = the half thickness of the
symmetrical about any planes of critical slab,
geometrical symmetry, however, requires ka = the mean free path for absorption
that we drop the sine term; that is, = 1/Ncr ,
set A = 0, because x = 0 is at the N = number of nuclei per cubic
middle of the slab, the cosine is an centimeter of reactor mixture,
even function, and the sine is an odd cr = an average microscopic cross
function. No combination of the sine section for elements in the

and cosine can ever be symmetrical reactor mixture,
about the origin. The solution k = the transport mean free path
reduces, then, to = 1/Ncr ,

0(x) = A cos Bx . (1.40) °~tr = the average microscopic trans-
rr, . . , , . port cross section,
Ine constant A depends on the power , ^- *-
ii i • , , • • « = v2,/2 ,
level at which the reactor is operating 0 t r° Tr235
j-iitir i • v=z.DtorU ,

and will be left as an arbitrary con- 5" - l A
stant. It is not necessary to specify "
A in order to find the critical di- / NUaf'
mension. This checks with physical NV = atoms of U Per cubic centi
reasoning,because the critical size meter,
and critical mass do not depend on the af = ^"oscopi^ fission cross
power level at which it is desired to section of U
operate the reactor. When the reactor is made up of a

The flux distribution is already mlxture of several elements, the
determined completely by Eq. 1.40. It Quantities are best evaluated as

, . , • , ..l.. i follows:remains only to decide at what value

of x to terminate the cosine function 1 ,_ _ „
u • -u • * • i l i r ..u • i — = 2 - N cr + N cr + N cras being the critical hall thickness, \ a x ax y ay z az '

x0. The third boundary condition ,
^ .. ..u - ..l ii ^ l ^- wherestates that the ilux cannot be negative,

and hence ^x = atoms Per cubic centimeter of

,2 3 5

77 elemen t x, etc.

o - 2B ' VI.41^ aax ~ microscopic cross section of
el ement x, etc.,

since n/2B.is the first root of cos Bx.
On the other hand, the fourth boundary
condition says that the flux goes to 1 _ _ _ / 2
zero at the extrapolated boundary; \ tr~xsx\ 34
that is,

0(xo + S) = 0 , (1.42)

here 8 is the extrapolation distance, y'Tsy I-1wnere o is trie extrapoi acion distance, " y sy \~ 04

0.71 k. . Since there are no roots of \ y
t r

cos Bx less than rr/2B, it follows that

+ Ncr (l+ §S— =—N/— — z sz [ 3A

and

tr

or , 1.1.4<5; where Ax is the atomic mass number of
element x, etc.

' Cylinder. The general solution for
the flux in the bare cylinder was

0(r,z) = [A J0(/Jir) +CY0(/J.r)] [e cos yz +F sin yz] , (1.44)
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where

B2 = fj.2 + y2 .
From boundary condition 1 that the
flux is finite everywhere, it follows

that C must be zero, since
lim YQ(/j.r) = oo .
I—>o

From boundary condition 2 that the
flux must be symmetrical, it follows
that F = 0, since z - 0 was chosen to
be at the center of the reactor (Fig.
1.6). The expression for the flux
distribution reduces then to:

4>{r,z) = A J0(/xr) cos yz , (1.45)
where AE has been replaced by simply
A, since the coefficients are arbitrary.

The radial component, /J.2, of the
buckling, and the longitudinal com
ponent, y2 , are not determined in
dependently by the reactor composition.
Only the sum is determined

3(fe - 1)
ix1 + y* = B

k \,
(1.46)

Thus there is an infinite set of pairs
(/j.2,y2) that determines flux distri
butions in the infinite set of critical

cylindrical reactors of given compo
sition and buckling. These reactors
all have the same uranium concen

tration, by hypothesis, but not the
same critical mass (which depends on
the volume). Suppose for a given
composition, and hence for B2, we
choose a value y2 (y2 < B ) and thus
determine a corresponding /j.2 = B2 - y2.

As in the slab geometry, the half
length H/2 must be such that y(H/2) <
77/2, since the flux must be everywhere
nonnegative. From boundary condition 4,

<f>[r> "7+ y = o

and since the cosine has no roots less

than 7t/2, it follows that

or
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H 0 77
j— + § =—

2 2

77

n - 0'71 Ktr2y tr

(1.47)

Similarly, since fxy = 2.405 is the
first root of J (fir), it follows that

/i(R + 8) = 2.405 ,

2.405
R - 0.71 \

M
tr

From Eqs. 1.46, 1.47, and 1.48,

2.405\2 77

R + S 2lf'»
= B2

3(fe - 1)

(1.48)

(1.49)

which determines the infinite set of

critical cylindrical reactors of given
composition. The square cylinder is
the cylindrical geometry of most
applications. If R -* &, it is seen
that Eq. 1.49 becomes Eq. 1.43, that
is, the cylinder becomes a slab.

REFLECTED REACTOR

A reflector is by definition a
layer of material surrounding the
active core of the reactor that

contains no fissionable material.

Its purpose is to "reflect" neutrons
back into the core by single or
multiple scatterings. Since no
fissioningtakes place in the reflector,
the balance equation reduces to

Leakage Absorption
0

cmJ'see cmJ * sec \

where here the leakage is negative;
that is, there is a net inward flow
into the volume element. The differ

ential equation is

-^A^R +^aR =0, d.50)
or

where

V20fl - *20fl = 0 ,

2 _ "

^trR^aR
B

(1.51)

and the quantities with an R subscript



refer to the reflector

buckling is -BR.
The differential equation in

core is, as in the bare reactor,

The reflector

the

V
V20 +02 -02 k = 0

The same plan is followed
obtaining the formulas for critical
size of reflected reactors as is

followed for bare reactors. The

general solutions are obtained, the
boundary conditions are set down, and
the boundary conditions are applied
to the general solution. The last
step leads to the critical size
formulas. As before, the procedure
is carried through for the slab and
cylinder geometry and the sphere is
left as an exercise.

General Solutions

Slab. The general solution in the
core is the same as in the bare slab.

0c(x) = A sin Bex + C cos Bcx , (1.52)
where

3(fe-l)

fo:

*l k kt
ac trc

(1.53)

and the origin is chosen as before,
at the center of the core (Fig. 1.7).

REFLECTOR „__ REFLECTOR
CORE

I

-6-

Fig. 1.7

where the hyperbolic functions arise
because the buckling in the reflector
is -B2R instead of being positive as in
the core. It will be recalled that

.BRx

sinh BRx = -i sin iBRx

and

cosh BRx = cos i^x
BDx

+ e
-B„*

Cylinder. The problem of a reactor
with cylindrical core and all-around
reflector cannot be solved analytically,
but the reactor with cylindrical core,
jacket reflector, andno end reflectors
is soluble. An approximation to the
former case will be discussed later.

The assembly to be solved is shown in
Fig. 1.8.

REFLECTOR (JACKET)

CORE

Fig. 1.8

The general solution in the core is
the same as for the bare cylinder:

0e(r,z) = Ue J0(fJ-er). + Cc Y0(yer)][Ee sin yez + Fe cos yez] , (1.56)

The differential balance equation where
in the reflector is a2 + y2 = B2

r~c ' c c

d20fl(x) The differential balance equation
-£20fl(x)=O, d.54) in the refl

dx2

and the general solution is

ector is

B20 1 B0 B20
-— + —— + ——- B20 = 0 , (1.57)

0fl(x) = E sinh BRx + F cosh BRx , (1.55) Br2 r Br Bz2

17



where

*\
kaRktrR

Equation 1.57 is solved by separation
of variables, as in the case of the
bare cylinder equation. It is found
that the solution is

wh<

R = radius of core,

T = reflector thickness,

8 = extrapolation distance,

= 0.71 \...

<pR = [AR I0(/J-Rr) + CR K0(riRr)][ER sin yRz + FR cos yRz] , (1.58)

wh(lere -fi'R
+ longitudinal buckling = total
buckling). It is to be noted that
the radial component of the buckling
has been denoted by -[xR, rather than
+/xR thus making lir positive. The
differential equation in the variable
r that results from the separation-
of-variables technique therefore has
the modified Bessel's functions, J.
and K0 as solutions, where

yl - -BR (radial buckling
or

<PR(R + T + 8,

Reflector ends

~dcpR(r,z)'

z) = 0 (1.62)

dr
(z=H/2)

= —, (1.63)
<PR(r,H/2)

I0(f^Rr) = 1 +
(riRr)- Oflr)4 (LiRr)>

(1.59)
22(1!)2 24(2!)2 26(3!)

VMflr) 0.5772 + In
r^R

CD

(n\) 2 / \1 + 2 +
+ —

60)

The functions I. and KQ are tabulated
in various places.^5^

Boundary Conditions. The first

three boundary conditions are the
same as for the bare reactor:

1. The flux is everywhere finite.
2. The flux distribution is sym

metrical about any points, lines,or
planes of geometrical symmetry.

3. The flux is nonnegative.
4. The fourth boundary condition

is the surface condition, which for
cylinders is:

a. Jacket

d4>R(r, z
dr

(r = R+ T)

4>(R + T,Z)
(1.61)
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n = l

where H/2 is the half length
reactor, or

0fl[r,(///2) + 8] = 0 .

c. Core ends

or

<#>c(r,z)

dr
(z=H/2)

4>e(r,H/2)

0„[r,(///2) + 8] = 0

(1,

of

(1.

the

64)

(1.65)

(1.66)

(5)British Association for the Advancement of
Science Mathematical Tables, Vol. II. Bessel
Functions, Cambridge Univ. Press.



These equations are derived in the
same manner as for the bare-reactor
extrapolation conditions. The value
8 = 0.71 k is approximately correct
for any surface that does not have
too much curvature and is satisfactory
for thermal and intermediate energy
reactors.

For slabs the fourth boundary
condition is

dpR(x)

dx <«««0+r> 1

0fl(x(, + T) 8
T-, (1.67)

. where

the half thickness of the core,
T = the thickness of reflector,

or

a. cp(R) = 0„(i?)

k
t re

B0e(r,z)"

k
trR

(r = fl)

B0fl(r,z)~

(r = fl)

(1.71)

(1.72)

Application of Boundary Conditions

to General Solutions. It now remains

to apply the boundary conditions- to
the general solutions. Formulas
for the critical size for a given
composition or the critical uranium
concentration for a given size will
r e su 11.

Slabs. The general solution in
the core was

0fl(xfl + T + 8) = 0 . (1 68) <£e(x) = ^ s*n ^cx + ^ cos V ' (1-73)

5. The fifth boundary condition is
the continuity condition. The flux
density and the current must be
continuous across the interface
between core and reflector.

For slabs this condition is:

The second boundary condition requires
that A = 0, so that we have

*.<*.> -**<*o>

b.

\
t re

dcpe(x)

dx <*=*„)

k
trR

d<pn(x)

<«-«0)

0 (x) = C cos fix (1.74)

The general solution in the reflector

(1.69) 0fl(x) = E sinh BRx + F cosh £flx.(1.75)

Applying boundary condition 4 to
Eq. 1.75,

(1.70)

0 = E sinh BR(x0 + T + 8)
+ F cosh Bfl(xQ + 7• + 8)

and thus

(1.76)

For cylinders this conditionis: F = -

E sinh BR(x0 + T + 8)

cosh BR(x0 + 7 + 8)
(1.77)

The reflector flux becomes

f

0fl(x) = M inh B

sinh [BR(xQ + T + 8)] cosh BRx

cosh [BR(xQ + T + 8)]
sinn ddx -

Boundary condition 5a requires that

A cos B x„
C 0

sinh^(x0 + T + 8)

coshBR(x0 + T + 8)
sinh BRxQ -

J

cosh BRxQ

(1.78)

(1.79)
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and boundary condition 5b requires that

k
t r c

-A B sin B x.3 e eO
trR

BR cosh BRx0

sinh Ba(x0 + T + 8)
BD sinh BBxn

cosh BD(xn + T + 8) fl * °
(1.80)

Equations 1.79 and 1.80 can be regarded
as two simultaneous homogeneous
equations in A and E. These two
constants can thus be eliminated by
solving for A/E in one and substituting
in the other to yield an equation that
isthe final critical size relationship.
It is somewhat more general, however,
to use the mathematical theorem that,
if there are n homogeneous equations
in n unknowns, then in order for a
nontrivial solution to exist for the

unknowns, the determinant of the
coefficient must be zero. When applied
to Eqs. 1.79 and 1.80, this yields
the final equation.

necessary to specify the x Q and
determine the T or to specify the T
and determine the xQ . On the other
hand, it is possible to specify both
x and T and solve for the uranium

concentration by trying various concen
trations until the associated B is

c

found that satisfies Eq. 1.81. (The
critical mass is, of course, infinite
in the slab geometry.)

Once the criticalityis established,
the expressions for the flux are given
by Eqs. 1.74 and 1.78, wherein Eq. 1.78

cos B x.
c u

sinh BR(x0 + T + 8)
sinh Bax. — cosh BBxn

R ° cosh BAxn + T' + 8) * °

k
'tril

sinh BR(xQ + T + 8)
= 0 ,

t r c

B sin B x.3 « eo :osh BDxn -
R ° cosh Bfl(x0 + T + 8)

sinh BRxQ

where

_ 3(fe - 1)
k kt

ac t r c

*1
kaR ktrR

For the reflected slab in which

the composition is known, it is

(1.81)

E is replaced by its value in terms
of A from Eq. 1.79 (or Eq. 1.80). This
determines 0 to within the multi
plicative constant A, which depends
on the power level at which the reactor
is operating.

Cy Under s. The general solution
in the core was

<pe(r,z) = [Ae J0(/xer) + Cc yo (^r)] [£e sin yfz + F{ cos yez] . (1.82)
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The first boundary condition that the
flux be everywhere finite requires
that Cc = 0. The second boundary
condition regarding symmetry requires
that Ee = 0. Thus the expression for
core flux reduces, then, to

4>e(r,z) = Ae J0(fMer) cos yez , (1.83)

where AcEe is replaced by just A ,
since the constants are arbitrary.

The general solution in the reflector
was

cpR(r,z) = [AR I0(fj.Rr) + CR KQ(fJ,Rr)]

x[ER sin yRz + FR cos yRz].

(1.84)

Thesecond boundary condition regarding
symmetry requires that ER = 0. The
boundary condition 4a requires that

0 = {AR I0Ujlr(R + T + 8)]

+ CR K0[y.R(R + T + 8)]} FR cos yRz

(1.85)

or

I0[rlR(R + T' + 8)]

• c'°- A'k.1^b * t * M • <1M)
where

R = radius of core,
T = reflector thickness.

The reflector flux is, then,

and, similarly, in Eq. 1.87

•A + y\ - -Bl • (1.89)

As in the bare cylinder, only the sum
of the radial and longitudinal com
ponents of the buckling is determined.
If the composition is specified (and
hence B2), some value is chosen for
y2, and /j.2 is thus determined from
Eq. 1.88. °With ye fixed, the longi
tudinal core flux distribution is

fixed as cos y z, and from the boundary
conditions that the flux cannot be

negative and that 0 (r, (H/2) + 8) = 0.,
it follows that

ye =

77

"~2 '
the first root of the cosini

77

»(!♦»

(1.90)

Thus

where 8 = extrapolation distance
= 0.71 k . The assumption is made
that the extrapolation distance at
the ends of the reflector is equal to
that at the ends of the core. Since

by hypothesis the reflector is of the
same length as the core, it follows
that

77

7« = yr

2['f +8
(1.91)

<PR(r, z) = A{
I0[fJ.R(R + T + 8)]

Io(/i'r) -*>,(!. +T+ 8)] *«I*«(r+r+8)] • cos yRz , (1.87)

where ARER has been replaced by just
AR, since the coefficients are arbitrary.

In Eq. 1.83, there is the additional
condition that

m« + y\ = Bl . (1.88)

After a length is chosen for a
reactor of given composition, the
continuity conditions are Used to
determine a relation between R and T

for criticality. The jacket reflector
thickness is then usually specified
and the critical core radius determined.

21



Boundary condition 5a requires that

Ac W»> - V
!„[/*(* + T + 8)]

^, (1.92)

in which the longitudinal components cancel because they are the same on both
sides. Boundary condition 56 requires taking the derivatives with respect to r
of the expressions for the core and reflector fluxes given by Eqs. 1.83 and 1.87.
If the series J0(fir) is differentiated term by term, the series that results is
denoted by

f t x fir (fir)3 (fir)5 (fir)7
J^fir) =— + + ••• '

2 232! 252!3! 273!4!

Similarly,

where

and

in which

dl0 (A^r)

dr
= + fil^fir) ,

ar (fir)3 (fir)sIt(fir) =£- + — +— +
2 232! 2S2!3!

dK0(fir)

dr
- fiK^fir ) ,

l + 2n

KAfir)---?, All Jlog^ +0.577 -I f .-» -1 t -
lV/^ £J n\(l + n)\ \ 2 2 Zj 2 <-J

n=0 •=! «=1

fhus boundary condition 56 results in the equation

k.
-A

trc
k

trRfleJ1(flcR)^AR—^-flR^
I0[fiR(R + T + 8)]

(1.93)

As in the slab core, there are two homogeneous equations in two unknowns: A and
AR. If solutions are to exist for Ag and AR, it is necessary that the determinant
of the coefficients vanish
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J0(yeR)
I0[fiR(R +7+8)]

= 0:

k I0[fiR(R +7+8)]

f"-JM> ^^Y^^^y^R +T+̂ K^R +T+S)]

this is the criticality equation.
To summarize, the procedure in the

case in which the composition is
specified is to fix the length of the
core (= reflector length) and then
evaluate

M, B2-y
3(fc - 1)

c k kf
ac tr c

77

_2(
/R
— + 0.71

V2 *")J
2 _

3

R

kaRktrR
A = Bl + y.

77

2 - + 0.71 \,p
2 • tr

(1.95)

( 1. 96 )

By using these values in the elements
of the determinant, one can specify
R (the core radius) and solve for
7 (the reflector thickness) by trial
and error or specify 7 and solve for R
by trial and error. It is also
possible, of course, to specify R, 7,
and H/2 (fix the size and shape
completely) and solve for the critical
uranium concentration (and hence
critical mass) by trying various
concentrations until the corresponding
fi2, as given by Eq. 1.95, is found
that satisfies Eq. 1.94.

Once criticality has been es
tablished, the expressions for the
flux are given by Eqs. 1.8 3 and 1.87.
In Eq. 1.87, AR is replaced by its
values in terms of A from Eq. 1.92

(1.94)

(or Eq. 1.93). This determines 0 to
within the multiplicative constant
Ac, which depends on the power level
at which the reactor is operating.

An additional remark is in order

concerning the solution for the critical
mass of a square cylinder or cubical
reactor that is completely surrounded
by a reflector. Neither of these
important cases is analytically
soluble. An approximation can be
made, however, based on two facts:
(1) a critical, bare, square cylinder
of the same composition as a bare
sphere has about 15% more volume and
uranium mass than the latter; (2) it
has been determined experimentally
that the square cylinder surrounded
by a very thick reflector has about
6% more volume and uranium mass than
the sphere of same composition with a
thick reflector. Thus with the usual

reflector a figure of 10% difference
between cylinders (or cubes) and
spheres is reasonable. Usually the
size of the reactor is specified by
conditions of heat transfer and

shielding. The procedure is then to
reduce the volume by 10% and solve for
criticality with the reflected sphere
having this reduced volume. This
critical sphere wi 11 have approximately
the same uranium concentration as the

reflected cylinder (or cube) would
have. The critical mass of the actual

reactor is then 10% greater than that
of this critical sphere.

PROBLEMS

1. Consider a O.l-in.-dia spherical ball

of uranium surrounded by a 0.03-in.-thick
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layer of copper. If neutron bombardment is

causing a heat release of 40 cal/sec, what is
the drop in temperature through the copper

such that this heat is carried away?

2. A solid spherical reactor with graphite

core and graphite reflector has a core flux,

calculated on a one-group model, of

77r

0(r). = 10 13
80

The radius of the core is 60 cm; the cr

used was 4 barns; the density of the graphite

is 1.7 g/cm . Find the total net number of
neutrons escaping from the entire core per

second.

3. A bare, spherical reactor is con

sidered that is composed of beryllium, which

has a microscopic cross section of 4 barns at

thermal energy, and a low concentration of

uranium. The critical diameter is 3 feet.

Find a rough answer for the leakage of

thermal neutrons per second from the surface

24

of the reactor. The properties of the

asymptotic flux at the surface are

<Pth = 10
13

•#,*
dr

-0.2 X 10
13

4. Derive the formula for the radius of

the critical, bare, spherical reactor.

5. For a given composition, what is the

ratio of extrapolated radius to length for

the critical cylinder of least critical mass?
6. What is the critical mass of a square

cylinder of pure U ? Take a = a, = 1.34
/ * 3barns, a = 6.4 barns, p = 18.6 g/cm . For

these cross sections it is assumed that the

neutrons remain at fission energy. (Note:

The one-group model is roughly applicable

here, but diffusion theory is not very

accurate for small assemblies. The answer is

roughly too large by a factor of 2.)
7. Derive the determinant condition for

criticality in a reflected sphere of given

composition.



Chapter 2

CRITICALITY BY FERMI AGE THEORY

In chapter 1, a method was developed
for getting the critical size or
critical mass of a fissionable material

assembly by making the simplifying
assumption that all neutrons were at
the same energy. This was anadmittedly
crude model, since neutron energies
are actually spread from about 107 ev
to about 0.025 ev (for a room-tempera
ture reactor). Since cross sections

vary widely with energy and since the
energy distribution of the neutrons is
not generally known, it is difficult
to choose good average values for the
constants. In this chapter, a method
is derived for calculating critical
masses (or sizes) of unreflected
reactors that accounts for the fact

that neutrons exist in a reactor at
all energies from fission to thermal.

The formulas take an especially
simple form when most of the fissioning
is caused by thermal neutrons (thermal
reactors); this case is discussed first.

THERMAL REACTORS WITH NO APPRECIABLE

ABOVE-THERMAL ABSORPTION

Reactors are considered for which

the simplifying assumption can be made
that there is no above -thermal ab

sorption, that is, nei ther nonproductive
capture in any reactor material nor
absorption to produce fission. The
plan of the derivation of the criticality
formula for thermal reactors is the

following:
1. Derive the formula for £, the

average loss in the logarithm of the
neutron energy per collision.

2. Establish the relationship be
tween the slowing-down density, q(E),
the number of neutrons slowing down
past energy E per second per cubic
centimeter, and the flux per unit
energy. This involves cf.

3. Derive the differential equation
(called the age equation) for q(E),
which involves the quantity defined as
the age, r(E).

4. Solve the age equation for qtt,
the number of neutrons becoming thermal
per second per cubic centimeter.

5. Set up the balance equation
for thermal neutrons. The source term

is qth.
6. Apply the boundary conditions

to obtain the criticality formula
expressed in terms of the age-to-
thermal, Ttn, and the thermal dif
fusion "area," L2.

Following the derivation, a dis
cussion of the physical significance
of rtfi and L is given.

Formula for £. It will be shown in
this section that the average loss in
log energy per collision, £, is a
constant (independent of the incident
energy of the neutron) that can be
expressed simply in terms of the atomic
mass number of the nucleus with which

the neutron collides. The plan of the
derivation is:

1. Denote by v0, the velocity with
which the neutron is approaching the
nucleus in the laboratory system of
coordinates. The nucleus is considered

to be stationary.
2. Find expressions for the velocity

with which the neutron and nucleus

approach the center of mass in terms
of v0.

3. Prove that the receding veloci
ties after collision in the center-of-

mass system are the same as the incident
velocities of (2).

4. Find, in terms of vQ, the
velocity of the neutron after collision
in the laboratory system by adding
vectorially the velocity of the neutron
in the center-of-mass system and the
velocity of the center of mass. The
velocity after collision is found to
be a function of the scattering angle
in the center-of-mass system, 6.

5. Find the ratio of the energy of
the neutron after collision to its

energy before collision, from (1) and
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(4). Th, cancels out of this

expression.

6. Find P(6)dd, the probability
that the neutron will scatter at an

angle between 6 and 6 + dd, in the
center-of-mass system.

7. FindP(£0,£), the probability
that a neutron of energy EQ before
collision will have energy in the unit
energy range around E after collision.
Since £ is a function of 6, from (5),
it is possible to write immediately
that P(E0,E)dE = P(6)dd, and the
expression for P(E0,E) follows.

8. Find £ by integrating P(E0,E)
(In E - In E) over all energies below

V
Incident Neutron Energy, Laboratory

System. The definition is made that
v0 is the velocity with which the
neutron is approaching the nucleus in
the laboratory system of coordinates.
The velocity of the nucleus is assumed
to be negligible, compared with that
of the neutron.

Incident Velocities, Center-of -
Mass System. In the laboratory system,
the picture is as shown in Fig. 2.1.
The neutron of atomic mass number 1

and the center of mass are moving to
the right toward the nucleus of atomic
mass number A.

X
NEUTRON

—*/>—|

CENTER OF MASS

\ c-—NUCLEUS
\ (STATIONARY)

Fig. 2.1

From the definition of the center

of mass it follows that

(A + 1) xc„ = A xA + 1 x„
or

26

x = x , + x
<=» A + 1 A A + 1 n

By taking the derivative with respect
to time to find the velocity of the
center of mass, it is found that

dx dx

dt A + 1 dt A + 1 u

since the nucleus is stationary, which
makes dx /dt = 0.

On the other hand, in the center-
of-mass system the picture is as shown
in Fig. 2.2.

z

o
a.
\-

i±j

z

c/>

V)

s

Id

UJ
O

3

O

3

Fig. 2.2

The velocity with which the nucleus
moves toward the stationary center of
mass in this system is the same as the
velocity with which the moving center
of mass moves toward the nucleus in

the laboratory system. Thus,

1
Incident velocity of nucleus = -

A + 1 °

1
Incident velocity of neutron = v -

0 A + 1 V°
A

v„
A + 1 ° '

Receding.Velocities. The proof
that in the center-of-mass system the
velocities after collision are thesame

as the velocities before collision

follows from the principle of conser
vation of energy and the principle of
momentum.

The principle of momentum states
that the rate of change of momentum is
equal to the force, or, as a special
case, if there are no external forces,
the momentum of a system remains un
changed. The momentum of the system



consisting of the neutron and nucleus
is, before collision,

-a4tv° +a4tv° • ° •
and since there are no external forces,
the momentum after collision mus t like

wise be zero.

By defining v as the velocity of
the neutron after collision in the

center-of-mass system and v as the
a

velocity of the nucleus after collision
in the center-of-mass system, it is
found that

1 v + A v = 0 . (2.1)
n a

From the principle of conservation of
energy,

1
— • 1
2

+ —A v\

1 1 A 2
" 2 (A + l)2 V°

+7T^ , 1 ,2 "o -<2-2)2 (A + l)2 °

Upon solving for vn and va in Eqs. 2.1
and 2.2, it is found that

A

A + 1

and

0 A + 1

which in absolute value are the same

as the incident velocities.

From the principle of angular
momentum and the fact that there is no

torque, it is seen that the angular
momentum must be zero after collision

since it is zero before collision;
that is, the neutron and nucleus move
in exactly opposite directions after
collision in the center-of-mass system.
Thus the picture is as shown in Fig. 2.3.

Velocity of Neutron After Collision,
Laboratory System. The definitions are
made that 6 is the scattering angle of
the neutron in the center-of-mass

system and 0 is the scattering angle

Fig. 2.3

of the neutron in the laboratory
sys tern.

The velocity of the neutron after
collision in the laboratory system, v,
is found by adding vectorially the
velocity of the neutron relative to
the center of mass and the velocity
of the center of mass, as shown in
Fig. 2.4. It follows from the law of
cosines that

(A + l)2 (A + l)2

2v\

(A + l)2

VELOCITY OF CENTER OF MASS

A cos 6 . (2.3)

INCIDENT DIRECTION OF NEUTRON TRAVEL

Fig. 2.4

Ratio of Energy After Collision To
Energy Before Collision. It follows
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from Eq. 2.3 that the ratio of the
energy of the neutron after collision
to the energy before collision is

A2 + 1 2A

EQ (A + l)2 (A + l)2

The definition is made that

A - l^2

\a + 1
and Eq. 2.4 becomes

d (2.4)

(1 + a) + (1 - a) cos 6

(2.5)

Thus the more the neutron is deflected

from its original direction, the more
the energy loss. If 6 = 0, Eq. 2.5
gives E/EQ = 1; that is, there is no
energy loss. If 6 = 180 deg, the
neutron suffers the maximum energy
loss, that is,

rain

Et
= a

A + 1
(2.6)

Equation 2.6 is an important formula
that is worth remembering.

For neutron collision with a

hydrogen atom, Eq. 2.6 says the neutron
can lose all its energy; for beryllium
collisions, it can lose a maximum of

1 -
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9-1

,9 + 1,

of its energy; for graphite, 28% of
its energy.

Expression for P(d) dd. To get an
expression for P(6) dd, the probability
that a neutron will scatter at an

angle in the center-of-mass system
between 6 and 6 + dd, the assumption
is made that scattering is isotropic
(spherically symmetric) in the center-
of-mass system (a very good assumption).
Therefore P(d) dd is simply the
fractional area of the incremental

band between d and d + dd on the
sphere drawn around the nucleus, as
shown in Fig. 2.5. The area of the
band is

277r sin d r dd .

1 - 0.64 36%

indr s

Fig. 2.5

Then the fractional area of the

incremental band between d and d + dd
is

277r2 sin d dd
P(d) dd

and from Eq. 2.5

dd _
dE

477r2

= — sin 6 dd . (2.7)
2

Expression for P(E0,E). From Eqs.
2.7 and 2.5, an expression can be
obtained for P(E0,E), the probability
that a neutron of incident energy E0
will have energy in the unit energy
band around E after collision.

Since P(EQ,E) and P(d) are both
distribution functions, they are of
the nature of derivatives, dn/dE and
dn/dd, where dn would be the fraction
of neutrons scattering into dE and dd,
respectively. It can then be written
immediately that

-P(E0,E) dE = P(d) dd ,
where E and d are related by Eq. 2.5.
The negative sign is used because E
decreases as d increases.

It follows that

P(E0,E) =P(d) (--^ ) ,
dE

En (1 - a) sin d
(2.8)



From Eqs. 2.7 and 2.8,

P(En,E)
E0 (1 - a) (2.9)

It is important to note that P(E ,E)
is independent of E. From Eq. 2.6, it
is clear that the denominator of Eq.
2.9, E0 - o.E0, is the range of possible
energy loss (see Fig. 2.6), and, since

dE
P(E0,E) dE

E0 ~ "So

the fraction of neutrons degraded into
dE is independent of E, it follows
that the neutrons are spread uniformly
in energy between EQ and o-E . The
fraction of neutrons being degraded
into any subinterval of energy in EQ
to a£Q is just the width of the sub-
interval divided by the total interval
of possible energy loss, E0 - a.E0,
regardless of where the subinterval is
located in the total interval. For

hydrogen nuclei, a = 0, and it follows
that neutrons are spread uniformly
from the incident energy E to zero
energy. Hence, on the average, a
neutron loses one-half its energy upon
a collision with a hydrogen atom.

Formula for g. The formula for cf,
the average loss in log energy, follows
easily from Eqs. 2.9 and 2.5.

RANGE OF POSSIBLE

ENERGY LOSS FOR

A NEUTRON OF

INCIDENT ENERGY f0

--£> (ENERGY OF FISSION)

^ dE-E

af„

^En

Fig. 2.6

J (In E0 - In E) P(EQ,E) dE

fE°
E) dE

dE
(In En - In E)

• EQ (1 - a)

If the integration is carried out,
this becomes

e - i +
a

1 - a
In a

(A - I)2 A - 1\
= 1 + In , 2.10)

2A \A + 1/

which was the formula to be derived.

When ^ is evaluated for some common
moderating elements, it is found that

<fu = lim 1 +
<x-»0 1 - a

= + lim (a In a)
a-»0

1 + lir
a

a-»0 1

a

In a

1 + lim (-a) = 1,
a->0

for hydrogen;

^Be = 1+T?lnn=0'206'
for beryllium;

a' ii

for carbon.

It is to be emphasized that £ is
defined as the average of the log and
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not the log of the average. Students
sometimes erroneously conclude that,
since cfH = 1, then the ratio of neutron
energy after collision with hydrogen
to neutron energy before collision
must, on the average, be 1/e. As
previously stated, the neutron loses,
on the average, one-half its energy
upon hydrogen collision.

Relationship of Flux and Slowing-

Down Density. The slowing-down density,
q(E,r), is defined as the number of
neutrons slowing do-wn past energy E
per cubic centimeter at the position
point r_. If q can be determined, that
is, if q(EtL,r_) in particular can be
determined, the source term for the
thermal-neutron balance equation is
then known.

A differential equation can be
written for q(E,r^), but it involves
<p(E,r_) the flux per unit energy at r_.
(This will be shown in the next

section.) An auxiliary relationship
between q(E,r) and <p(E, r) is therefore
needed.

First, an integral equation in
(p(E, r_) is established by writing that
the number of neutrons being degraded
into the energy interval dE per cubic
centimeter at r_ by scattering at
higher energies (the possible energies
are E to E/a, as can be seen from
Eq. 2.6) is equal to the number being
lost from dE (by degradation through a
scattering collision or by spatial
leakage), that is,

k.

0(£,r) £, dE -
tr

V2 0(E,r) dE

30

E/a4>(E' ,r) 1 (E') dE' dE

•I E' - aE'
(2.11)

It is to be recalled that it was

assumed that there was no absorption
above thermal energies. The net
leakage term on the left is small
compared with the scattering term, and
therefore Eq. 2.11 can be written,

approximately, as

0(£,r) 2
e/a0(£,r) 2 (£') dE'

{

fE/a

_

E' - aE'
(2.12)

after dividing out the dE from both
sides.

This integral equation is satisfied
by

cp(E,r) Zs =-^- , (2.13)
~~ s E

as can be verified by substitution,
where C is an arbitrary constant.

On the other hand, an expression
for the slowing-down density can be
written as

E - aE'
q(E,r)-\ <P(E',L)Z(E')— dE',

s E -aE

(2.14)

since q(E,r) is made up of neutrons
making collisions at r_ at energies
above E that are degraded below E.
The integration limits of Eq. 2.14 are
E to E/a because it is seen, from the
formulas for maximum energy loss, that
only neutrons of energy E to E/a can
be degraded below E. Since neutrons
making collisions in dE' are evenly
distributed from E' to aE' (see Fig.
2.7), it follows that

E -aE'

E' ~ aE'
is the fraction landing below E; this
fraction is the integrand of Eq. 2.14.

-r EF

E/a

- E'

— E

-- aE

Fig. 2.7



By substituting Eq. 2.13 in Eq. 2.14
it is found that

q(E,L) = C£ . (2.15)

Then by eliminating C from Eqs. 2.13
and 2.15, the desired relationship
follows:

q(E,L)

&&m
= 0(£,r) . (2.16)

Differential Equation for q(E,r).
The differential equation for q(E,r)
is obtained'by writing that the slowing-
down density at E + dE must equal the
slowing-down density at E plus the net
loss of neutrons from the cubic

centimeter at r^ due to diffusion, that
is,

k
tr

q(E + dE,r_) =q(E,r) V2 0(£,_r) dE .

(2.17)
When .the left side is expanded in two
terms of a Taylor expansion about E,
Eq. 2.17 reduces to

ktr , tq(E,r)
- v2 0(£,r) = H '- . (2.18)

3 oE

By substituting Eq. 2.16, Eq. 2.18
be comes

k tr 1
V2 q(E,r)

*q(E,L)

3 <f£2 3£

(2.19)

The fundamental constant, called the
age1' is defined as

r(E) •r
Fks ktr dE

3? F
(2.20)

where EF is the fission energy (assumed
to be monoenergetic, as an approxi
mation). Definition 2.20 will be'

discussed further in later sections.

Upon differentiating Eq. 2.20, it is
seen that

k kt
s t r ._dr

dE • 3££

and by using this in Eq. 2.19, the
latter becomes

or

dr 'dq(E.r)7. ,«.r) --1^. (2.n)

3(7 (r, r )V2 q(r,r) - H '- = 0 . (2.22)
OT

Equation 2.22 is.called the "age
equation."

Solution for qtn- Tosolve Eq. 2.22,
an attempt is made to separate the
variables by writing

q(r,L) = R(L) T(r) , (2.23)

and substituting this into Eq. 2.22,
which then becomes

dT(r)
V2 R(r) dr

R(r) T(r)
0 . (2.24)

Solution for Ener gy-Dependen t
Component. Since the first term
involves only r_ and the second term
involves only r, both terms must be
equal to a constant, say fi . Thus

^^ + fi2 T(r) = 0 , (2.25)
dr

the solution of which is

T(r) = A e-^r . (2.26)
From Eqs. 2.23 and 2.26 it follows that

q(r,r) = R(r_) Ae'^T . (2.27)
Evaluation of Spatial Component in

Terms of <Pth- From definition 2.20 it
is clear that the age of virgin neutrons
is zero, and, from Eq. 2.27, the
slowing-down density at fission energy
(the assumption here of monoenergetic
fission neutrons causes no great error

in thermal reactors) is

q(0,r) = R(L) A . (2.28)

On the other hand, the slowing down
density at fission energy is just equal
to the number of neutrons being produced
by fission, which is

<t>th^)Za ktk ,
where 0 , (r_) is the thermal flux at r_
and kth is the average number of

31



fission neutrons produced per ab
sorption of a thermal neutron, that is,
2.5 2//2fl, for U23S. Hence
q(0,r) = R(L) A = 0tfc(r) 2fl kfh .

(2.29)

Equation 2.27 now becomes

q(-r,L) =0tfc(r) 2a kth e-P2r , (2.30)
and the source term for the thermal

group is

g^.r) =0t/l(r) 2a kth e-^rth.
(2.31)

Balance Equation for Thermal Neutrons.

The balance equation for the ab
sorption, leakage, and production of
thermal neutrons.can be written in the
manner described in chapter 1;

k<
tr

V2 +tkU + *th& \

•e2r.

B2 =

in which

^('"•^-0
tr

32a *
The constant L2 is called the thermal
diffusion area. More will be said

about this fundamental constant later.
The constants B2 and fi2 of Eq. 2.34

are actually the same constant, as can
be seen from the following. From
Eq. 2.29

2 kth
fi(r) = ' * 0tA(r) , (2.36)

but from Eq. 2.24 it follows that

V2 R(r)

R(r)
-R2

•32

tth^Za kthe" '^ - ° •

(2.32)

which can be written as

V2 0tfc(r) + B2 0tfc(r) = 0 ,

where

(2.33)

(2.34)

(2.35)

(2.37)

By substituting Eq. 2.36 in Eq. 2.37,
the following expression is obtained:

V2 *th(L) ,2
*th(D : P '

Hence from this equation and Eq. 2.33,

it follows that

fi2 = B2 .
Therefore Eq. 2.34 becomes

1 / -b2t..
B2

or

th -B2r
th

1 + L2 B2

This equation is the thermal reactor
criticality equation.

Flux Distribution. Since Eq. 2.33
for 0fft is a differential equation of
the same form as was obtained for 0 in
the one-group bare-reactor treatment,
it follows that the solutions for 0(l
are the same in form as those for 0.
Thus, for slabs

. <ptn(x) = A cos Bx ;
for spheres

, . , A sin Br
<Pth(r) = ;

for cylinders

4>th(r,z) = A J0(fir) cos yz ,
where fi2 + y2 = B2. The constant A in
all cases depends on the power level.

Since q(r^,r) and 0tj,(.r) are spatially
proportional, as can be seen from Eq.
2.30, it follows that q(r^,r) has the
same spatial distribution as 0ti«
Therefore for slabs,

q(x,r) = T(r) cos Bx ;
for spheres,

, x sin Br
q(r,r) = T(r) ;

r

for cylinders,
q(r,z,r) = T(r) JQ(fir) cos yz ,

where T(r) is a function of the age
and the power level..

From Eq. 2.16 it 'then follows that
the flux per unit energy above thermal,
0(£,r_), for all £, likewise has a
spatial distribution, such as given

- 1

1 (2.38)



above for the thermal flux; that is,

for slabs,

0(£,x) = V(E) cos Bx ;

for spheres,

sin Br
0(£,r) = V(E)

for cylinders,

4>(E,r,z) = V(E) J0(fir) cos yz ,

where V(E) is a function of the energy
of the flux in question and is, also,
a function of the power level at which
the reactor is operating. In each
case, B is given by Eq. 2.38.

Critical Size. The boundary con
ditions are the same as for the bare-

reactor one-group model.- By the
arguments of chapter 1, the first root
of the solution of Eq. 2.33 (for each
geometry) determines the critical
size. Thus, for slabs,

where x is critical half thickness,

S is extrapolation distance, that is,
0.71 X., ;

t r

for spheres,
77

where R is the critical radius;
for cylinders,

B'<
2.405V
R + 8

77

2lf +

(2.40)

(2.41)

where R is the critical radius and H

is the critical height. In each case,
B is given by Eq. 2.38.

Physical Interpretation of L2. The
quantity k k /3 that was denoted by
L2 in the thermal criticality equation
has a simple physical interpretation
in terms of the average of the square
of the crow-flight distances that
thermal neutrons diffuse before

capture. To find this average, the
distribution of the thermal capture
density (or the flux, which is pro
portional to it) due to a point source
is needed. The neutron-balance

equation affords the required dif
ferential equation for the flux.

Consider a point source in an
infinite, three-dimensional space with
neutrons diffusing away from it. The

neutron-ba1ance equation for points
away from the source is that for a
nonproducing medium. The spherical
coordinate system is chosen because
the source is easily located at r = 0.
The equation is, then

d20 2 rf0 1

~dr~2 ~r~~dr~ L2
0 . (2.42)

This is the same equation as was
previously obtained for the reflector
of a spherical reactor. The general
solution was

sinh — cosh -=—

0(r) = A, + C, . (2.43)
r r

This can be written in a more con

venient form for the present case as

e-r/L er/L
0(r) = A + C . (2.44)

r r

It is clear that C = 0, for, otherwise,
the flux would increase without bound

as r increases. Thus Eq. 2.44 becomes

0(r)
,-r/t

(2.45)

The number of neutron absorptions
per cubic centimeter per second at r
is then given by

e-r/L
0(r) 2a = A 2a , (2.46)

which has the appearance
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However, the quantity of more interest
is the relative number of captures per
unit r at different radii, that is,
Eq. 2.46 weighted by 477r2:

/( r) = 477r2 0(r) 2 = AirAr2 2
,-r/L

(2.47)
The physical interpretation of L2

is obtained by finding r2, the average
of the square of the crow-flight
distance a neutron diffuses before
capture:

r r2 f(r) dr

f^r ) dr

/CO

2 4,-rrr2A

J inr2A

and thus

,-r/L

,-r/L

2 dr
a

2 dr
a

2 _

= 6L-

(2.48)

(2.49)

or L is one-sixth the average of the
square of the crow-flight distances
neutrons travel from the point they
become thermal to the point at which
they are captured.

Students often ask why not simply
determine r from

/_ o
r

r f(r) dr

f f(r) dr

2L

This does indeed provide further
understanding of L, but since the
quantity appears in the criticality
formula in the square form, L2, the
interpretation Eq. 2.49 is the one
usually given.
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It is well to bear in mind the

appearance of the distribution of
Eq. 2.47.

The most probable crow-flight diffusion
distance before capture is r = L.

Physical Interpretation of 7- ,. The

physical interpretation of the age
from fission energy to thermal energy,
rtn, is quite similar to that for L .
It is found that t fc is one-sixth the
average of the square of the crow-
flight distances neutrons diffuse from
the points of birth to the points at
which they become thermal neutrons.
(The quantity r is in units of area
and, perhaps unfortunately, it is not
denoted by a squared symbol such as
that for the thermal diffusion "area,"

L . Some early authors did use the
notation L2 but the symbol r ., seems
to have been more widely adopted!)

It is required to find the distri
bution of neutrons becoming thermal
from a point source of neutrons at
fission energy. The differential
equation for q as a function of r,
previously derived, is

V2 q(r_,r) =
^q(r,r)

3r
or, in spherical coordinates,

22q(r,r) 2 ^q(r,r) ^q(r.r)
+ —•

r3r2ir' r 3r ~br

The solution to this, which can be
verified by substitution, is

q(r,r) = A
e-r /*t

(477T)3/2

(2.50)

(2.51)

(2.52)

For neutrons of age r = r h, Eq. 2.52
becomes

-r /4T

1th^
th

(477Tt/l) 3/2
, (2.53)



which has the appearance

The distribution with respect to r
(the fraction of neutrons that became
thermal in the shell between r and
r + dr) is really Eq. 2.53 weighted by
477r2, that is,

f(r) = 477r2 qth(r) = 477r2A ,
(477Ttfc)3/2

(2.54)
which has the appearance

The average of the square of the crow-
flight distance that neutrons travel
from the source to the point at which
they become thermal neutrons is

r2 f(r) drr

f. f(r) dr

I r2iTrr2A

f. -
«4> (*nrth)3/2

•' /«T«J

(irrrth)3/2

~r/*rtl

dr

6t
th'

dr

(2.55)

Thus

th 6 '

which is the physical interpretation

oiTth'
Physical Interpretation of Components

of Thermal - Reactor Criticality E-

quations. It is necessary to return
to Eq. 2.38 for a moment and to note
the physical interpretation of the
component parts of the equation. The
equation is

kth -B2r
t h

1 + L2B2d2
(2.38)

First, it will be recalled that fc . is
the average number of neutrons produced
per absorption of a neutron in any
core material. The component

-R2r
th

can be interpreted as the probability
that a neutron will not be lost by
leakage while slowing down from fission
energy to thermal energy. This can be
seen most easily from Eq. 2.31, which
states that the slowing-down density
at thermal energy is equal to the
number of neutrons (with fission

energy) born per second multiplied by
the factor

-B t t h

that is,

q(rth,r_) = 0t/,(r) 2a kth e

It follows that

-B2r
th

-B2r
t h

(2.31)

is the "leakage escape probability."
The factor 1/(1 + L2B2) can be

interpreted as the probability that a
neutron will not be lost by leakage
after it has become a thermal neutron.

Since a thermal neutron has only two
possible fates - either it is lost
through leakage or is absorbed - the
factor 1/(1 + L2B2) can also be

35



interpreted as the probability that a
thermal neutron will be absorbed.

This interpretation is clear if the
substitution that

V20th + B2cpth = 0

or

Ba
V20tJ

<t>tl

is made, that is,

1 1

2d2

The quantity

k
-B2r

th
th

1 + L2B2
is called the effective reproduction
constant and is denoted by k •

-B2r
th

th

'ff 2D21 + L'B

1 + L2B
V^t)

<Pth

k kt
a t r ^0ti

0ti
1 + V 1 +

^th^c absorptions/cm3,sec

^ th o

t r

V20t/
(absorptions/cm 'sec) + (leakage/cm "sec)

+ "•

It follows that 1/(1 +L2B2) represents
the fraction of thermal neutrons being
absorbed, or the probability that a
thermal neutron will be absorbed, or
the probability that a thermal neutron
will not be lost by leakage.

When these facts are put together,
the physical meaning of the criticality
equation (Eq. 2.38) becomes clear. For
each thermal absorption, kffl neutrons
start out at fission energy. Of these
neutrons,

• B T

th
t h

survive fast leakage to become thermal
neutrons. Of the thermal neutrons

~B2r u
k e thRth e

1 + L2B2

survive total leakage and are absorbed.
If this quantity is exactly one
neutron, the neutron population
remains constant - the reactor is

critical.
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It is clear that if kett > 1, the
reactor is supercritical; if k ,, < 1,
it is subcritical; and if ke*, = 1, it
is critical.

A further quantity in common use is
the excess reproduction constant
denoted by k . It has the definition

-Br

k .. - 1 =
th

th

- 1

1 + L'B2D2

Therefore there is a positive, zero,
or negative kgx, respectively, in the
supercritical, critical, orsubcritical
reactor.

The term "reactivity" is used in
connection with the above two equations.
Several authors have defined the term

differently in the literature, and
considerable confusion has been

associated with the word. It is often

used to mean k However, it now
iff

appears that the most commonly accepted
definition is



Reactivity = p
eff

This is the definition that will be

used in chapter 6, "Kinetics," where
reactivity plays a prominent role.

It is worthwhile to note that the

thermal Fermi age formalism degenerates
to the one-group formalism if

-B2r
t h

that is, if there is no leakage of
neutrons while slowing down. Thus
for the bare reactor in the one-group
model,

_ k
keff = 1 + L2B2

kex = Kff 1 ' 1 + L2B2 •

It will be recalled that in the one-

group model, the B2 was introduced by
the definition

3(fe - 1) 2,

k
tr

or

B'<
k - 1

from which the bare-reactor one-group
criticality equation follows:

2d21 + L'B

REACTORS WITH ABOVE-THERMAL NEUTRON

CAPTURE BUT NO APPRECIABLE

ABOVE-THERMAL FISSION

Relationship Between <p(E,r_) and
q(E,r_) in an Absorbing Medium. Earlier
in this chapter, a relationship (Eq.
2.16) between the flux per unit energy
and the slowing-down density, in a
medium in which neutrons slow down

without appreciable absorption was
derived. This relationship was

<?(£,£.)

££2,
= 0(£,r) . (2.16)

When appreciable absorption is present,
it has been shown that more accuracy
is obtained if Eq. 2.16 is replaced by

q(E, r)
'- = 0(£,r) , (2.56)

s£^-T

where 2 is the total macroscopic cross
section. Equation 2.56 is still only
approximate, but it is an improvement
over Eq. 2.16.

No attempt wi-11 be made here to

really justify Eq. 2.56, but it can be
made plausible by going back to the
derivation of Eq. 2.16 and seeing what
changes need to be made for the ab

sorbing medium and finally showing
that it holds for one particular case.
The integral equation for the flux
(Eq. 2.12) would become

0(£,r) 2, •/
E/a 0(£',r) Z(E') dE'

E' - aE'

(2.57)

and the expression for the slowing-
down density (Eq. 2.14) remains

E/a E - aE'
0(£',r)2 (£') dE' .q(E,r_) •I. £' -aE'

(2.14)

The procedure is, clearly, to solve
for the flux in Eq. 2.57 and then
evaluate the slowing-down density from
the knowledge of 0(£,r_) obtained from
Eq. 2.14. However, Eq. 2.57 is not,
in general, easy to solve. On the
other hand, it is easily shown that

Eq. 2.56 follows from Eqs. 2.57 and

2.14 for a hydrogenous medium with

constant cross sections. This will be

shown, and the demonstration will be

taken as a plausibility argument that
Ea. 2.56 is approximately correct for
slowing down in other moderators, such
as deuterium, beryllium, and carbon.
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For hydrogen, Eq. 2.57 is

rw<p(E',r) 2 IE') dE'

±~^-l0(£,r) 2T(£) =

(2.58)

and Eq. 2.14 is

/q(E,r) = £
0(£,r) 2s(£,r) dE'

E'

(2.59)

By differentiating Eq. 2.58, with the
restriction that the cross sections

are constant, the equation becomes

0(£,r_) 2,
2r 0'(£,r) = --

inhere

Then

0'(£,r)

£

30(£,r)

B£

0'(£,r) Zs 1
0(£,r) 2T £

-2 /2
0(£,r) = CE *' T . (2.60)

When Eq. 2.60 is substituted in
Eq. 2.59,

q(E,rJ -E^C^E'-^^-1 dE'

or

^ -2/2T 2t
£C2S£ s T —~

2„

-^ATfiCS^fi «' ''' . (2.61)
When C is eliminated from Eqs. 2.60
and 2.61, it follows that

0(£,r) =
£2,

0(£,r) =
££2T ' (2.56)

since £ = 1 for hydrogen. Equation
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2.56 is taken as plausible when the
moderator is not hydrogen.

Differential Equation for q(£,_r).
When absorption is present at above-
thermal energies, the balance equation
comparable to Eq. 2.17 is

q(E + dE.r) = q(E,r) + 0(£,r) 2Qd£

ktr
V2 0(£,r) dE , (2.62)

o

where 2 and X. are, of course,
functions of energy. When the left
side is expanded in two terms of a
Taylor's expansion about £, this
equation reduces to

-hi v20(£,r)+0(£,r)2:a =̂ ^!.
3 " " a 3£

(2.63)

When Eq. 2.56 is substituted in Eq.
2.63, the equation becomes

A.trV2q(£,r) q(£,r) 2a dq(E,r)
- + = .

3££2T ££2r dE
(2.64)

Solution for qth' An attempt is
made to separate variables by writing

q(E,r) = R(r) T(E) . (2.65)

By substituting this into Eq. 2.64 and
dividing by q(E,r_), the result is

V2fl(r) 32a 3£<f2r 1 dT(E)
R(r)

t r
kfr T(E) dE

(2.66)

The separation of variables was
successful, and, for reasons now
familiar, both sides must equal a
constant, say -fi . The two ordinary
differential equations that result
are:

V2R(r) + fi2R(r_) = 0 (2.67)

(2.68)



Upon solving this equation, the result is

»E

T(E) = A exp ( - | —^r- dE J exp I- fi

Now by defining the age in an absorbing
medium to be,

JE 3£cfr(£) = dE , (2.70)

and defining the "resonance escape
probability" P(E) to be

P(E) = exp

Eq. 2.69 becomes

T(£) = A P(£) e '^ . (2.72)

Definition 2.71 is an important one.
The symbol P and the name "resonance
escape probability" appear quite
frequently in the literature.

Upon substituting Eq. 2.72 into Eq.
2.65, the latter becomes

q(£,r) =R(r) AP(E) e~T^ , (2.73)
or, since r = 0 when £ = £ ,

dE), (2.71)

-tjB'

q(Ef,r) = R(r) A (2.74)

However,
q(EF,L) = <pth 2o *tfc , (2.75)

th

and therefore

R(L) A = <ptk 2a *|fc . (2.76)
t h

Hence,

q(E,L) - <pfh 2 * P(E) e-rfi2 .
t n

(2.77)

In particular, the source term for the
thermal group is

(2.78)

Criticality Equation. The procedure
in getting the thermal Fermi age
equation when above-thermal absorption

(2.69)

is present, by beginning with Eq. 2.78
as the therma 1 - group source term,
parallels the development of Eqs. 2.31
to 2.38 for the case of no above-

thermal absorption. If the steps are
repeated, it is found that the thermal
criticality equation for resonance
absorption is

kth Pth e
~TthB

2B21 + L2B
1 (2.79)

where ktk is the number of fission
neutrons produced per thermal neutron
absorbed (2.5 2//2(j, forU235), Pth is
the probability of escaping resonance
absorption while slowing down, rt^ is
the age-to-thermal, L2 is the thermal
diffusion "area," and B is the
"buckling," which is related to the
critical size by formulas 2.39, 2.40,
and 2.41.

Equation 2.79 is most applicable to
the reactor in which the uranium is of

low enrichment - a significant amount
of U238 present. A further improvement
can be made for this type of mixture
by introducing the quantity e to
account for the fact that U has a

significant cross section for fission
for neutrons of energy greater than
1 Mev. The e has the following
definition: total number of fission

neutrons due to the absorption of
neutrons of all energies divided by
the number resulting from the ab
sorption of thermal neutrons only.
With this improvement, Eq. 2.79 becomes

,2

kthPth e e
~TthB

1 . (2.80)
1 + L2B2d2

Several reports exist in the
literature that give methods for the
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determination of e;^1) the problem will
not be taken up here. The value of e
never differs greatly from unity; it
is usually around 1.03 in natural
uranium reactors.

Another case in which thermal

reactor theory can be used with
reasonable accuracy is that in which
the reactor is almost, but not quite,
thermal and there is no appreciable
U238 or other resonance absorption;
there may be considerable 1/v ab
sorption. In this case, the following
form of the criticality equation can
be used:

,2

k P e
th th

-TthB'

1 + L2B2

+ *«fc(l -*,*> «
~TthB

= 1 ,

(2.81)

where the absorption in the fissionable
atoms and other 1/v absorbers makes
Ptu significantly different from unity.
The assumption involved in the second
term of Eq. 2.81 is that the absorption
of and fissioning by epithermal neutrons
is due to neutrons that are very close
to thermal, and therefore the full
age-to-thermal as well as the thermal
k is used in this term.

REACTORS WITH ABOVE-THERMAL NEUTRON

ABSORPTION AND FISSION

The method of determining the
critical size (or critical mass) of an
intermediate-energy reactor will be
taken up in this section. The plan of

-k

q(E + dE, r) - q(E,r_) V2 0(£,r)

the derivation is as before, but the
balance equations become more compli
cated and the solution for the critical
size is much more time-consuming.

Heretofore the simplifying assumption
has been made that fission neutrons

are all born at the same energy. In
large thermal reactors, leakage of
neutrons is rather small, and neutrons
that cause fission attain a long age,
so that the monoenergetic fission
assumption at some average energy
gives good results and the results are
not too sensitive to the choice of

fission energy. On the other hand, in
smaller reactors in which part of the
fissioning is due to above - therma1
neutrons, the leakage of neutrons from
the reactors is large and the proper
average energy for an assumption of a
monoenergetic source varies with each
reactor. It is therefore necessary to
take into account the fission spectrum
of neutrons, that is, the energy
distribution of neutrons emerging from
fission. The distribution of fission

neutrons is given best on a logarithmic
scale. The fission spectrum in
histogram form is given in Table 1, in
which the variable called lethargy, u,
defined as

107
u = In

where £ is energy in electron volts,
is introduced.

Balance Equations. The neutron
balance equations for above - therma1
neutrons of energy between £ and £ + dE
and for thermal energy take the form

dE + 2a 0(£,r) dE

- v /(£) dE

Xco

2y 0(£',r) dE'
-th

, (2.82)

H. Castle, H. Ibser, G. Sacher, and A. M.
Weinberg, The Effect of Fast Fission on k, CP-644
(May 4, 1943).
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k

q(Eth,L)
tr

th

V2 *,fc<r>

+ 2a 0th(r) , (2.83)
t h



TABLE 1. FISSION SPECTRUM IN HISTOGRAM FORM

Au A£ (ev) FRACTION OF FISSION

NEUTRONS

0 to 0.5 107 to 6.07 x 106 0.0210

0.5 to 1.0 6.07 X 10 6 to 3.68 X 106 0.1040

1.0 to 1.5 3.68 X 106 to 2.23 X 106 0.2070

1.5 to 2.0 2.23 X 106 to 1.35 X 106 0.2310

2.0 to 2.5 1.35 X 106 to 8.21 X 10s 0.1830

2.5 to 3.0 8.21 X 10s to 4.98 X 10s 0.1170

3.0 to 3.5 4.98 X 10s to 3.02 X 10s 0.0670

3. 5 to 4.0 3.02 X 10 s to 1.83 X 105 0.0350

4.0 to 7.0 1.83 X 10s to 9.12 X 103

Total

0.0350

1.0000

where f(E) is the fraction of fission
neutrons born in unit energy range
around £. Equation 2.82 can be
simplified by expanding the first term
on the left in two terms of a Taylor's
series about E and then dividing
through the equation by dE. The result
is

3q(£,r)

B£~

/\,
tr

V2 0(£,r) + 2Q 0(£,r)

- v /(£)

and by using Eq. 2.56, this becomes

Separation of Variables. The
geometry will be restricted to that of
a slab, and the sphere and cylinder
will be an exercise for the student.

For slab geometry,

d2<b(E,x)V2 0(£,r) = ^L-L-L ,
dx2

/ „ <$>th^J +
th

/» 00

*tk

2/ 0(£',r) dE'

3<?(£,r)

B£

tr

3 ££2,
V2 q(E,r) +

££2,
q(E,r_)

- v /(£) 2f l 0fh(r) +
th

q(E',r) dE' (2.84)

as before,

tr

lUtk'O =—^v24>th(r.) +\th 4>th(L) (2.83)
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and a change of variable is introduced,
that is,

107
u = In ;

£

u has been called "lethargy," presumably
because from the definition it is clear
that when a neutron has little energy
it has a lot of lethargy. The energy
107 evis chosen here as an arbitrarily
convenient number above the fission

spectrum. In changing the variable
from £ to u, the equations become

and

*.r
t h

B2*tl + 2 4>th = q(itk)
t ft

(2.90)

A unique value of B exists that
satisfies Eqs. 2.89 and 2.90, and a
method of finding it will be given
below. Hence a solution of the form

of Eqs. 2.87 and 2.88 does, in fact,
exis t.

tr 'o2q(u, x) +

3^r Bx2

2a ^u'x) 2q(u,x)
&n 3u

v f(u)
'ftl f0f/i(x) +

*h 2y q(u' , x)
du' (2.85)

and

trth d2cf>tAx)

dx'
+ Vl Vth^

th

q(uth,x) . (2.86)

An attempt is made to obtain a solution
by letting

q(u,x) = q(u) cos Bx ,

4>th(x) = 4>th cos Bx

(2.87)

(2.88)

and substituting into Eqs. 2.85 and
2.86 to see whether a relation in B
results; if such a relation does exist,
it will determine a value or values of

B such that solutions of the form

of Eqs. 2.87 and 2.88 do, in fact,
exist. The substitution of Eqs. 2.87
and 2.88 into Eqs. 2.85 and 2.86 gives,
after dividing through by cos Bx,

To find the value of B2 that
satisfies Eqs. 2.89 and 2.90, the
following procedure (used by the ANP
Division, ORNL) may be used. The
quantity in brackets in Eq. 2.89 is
proportional to the fissions per
second (per cubic centimeter), which
depends on the power level at which
the reactor is operating. Since the
critical size does not depend on the
power level, the quantity in brackets
may be set equal to any convenient
definite number, say unity. This
amounts to fixing the power level at a
definite value. It is then required

that

/uth 2/ *(«')

(2.91)

ktr B2q(u) 2a9(«) dq(u)
+ + = vf(u) "fth ^" •f

/, 2^q(u' )

£2T
du' (2.89)

&, &T du
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and the equations become

ktr B2q(u) Sa q(u) dq(u)
3 £2T cf2T + du

and

\
t r

= v f(u)

(2.92)

t h

B20tj + 2
t h

*tl <?(«tn) •
(2.93)

A trial value of B2, say B2, is now
selected, and the q(u) (a function of
lethargy) and 0tt are determined
numerically from Eqs. 2.92 and 2.93.
If the q(u) and 0 h corresponding to
Bj satisfy Eq. 2.91, the trial value
of B2 = B2 is the correct value. If
they do not, further guesses at the
value of B2 are made until the correct
value has been determined to within an

accuracy appropriate to the data.
The numerical procedure for finding

the q(u) and <Pth, from Eqs. 2.92 and
2.93, that correspond to any B2 is the
following. The lethargy range, u = 0
to u = utn, is broken up into a finite
number of intervals. The ANP Division

of the Oak Ridge National Laboratory
has found that about 25 to 30 sub

divisions, depending on the thermal-
neutron temperature, are appropriate.

u= 0

-f—

u.

U„

'n-1

where

UN = Un ~ "»-!'
A(u) = any function of the cross

sections,
B(u) - any function of the cross

sections,

A. i- f • A(u) du, in which the

ln-l

integral may be evaluated by
Simpson's rule,

- 1 Can
B = —— I B(u) du, in which the

un-l

integral may be evaluated by
Simpson's rule.

With the use of Eq. 2.95, Eq. 2.94
becomes

^N + 9n - <?„_! = ^jv •

where

(2.96)

z'mJ
f(u) du

'n-1

The approximation is now made that

qN , (2.97)

u = u
th

When Eq. 2.78 is integrated over the general interval un,1 to u , the result is

-I q(u) du + I -^ du = I v/(u) du . (2.
7 «/u du Ju
' n-l n-1

94)

The approximation is made that
and the definition is made that

(2.98)fU" A(u) • B(u) du = A • B U„ ,
Ju , "

(2.95)

'ktrB2 2a

c^lii2T+ii;
V

N
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When Eqs. 2.97 and 2.98 are used,
Eq. 2.96 becomes

cjy(9n_! + qn) = q„.i - qn + "z,

or

i + c„
(2.99)

Equation 2.99 provides a recursion
relation for obtaining q(u) at u = un
in terms of the value of q(u) at
u = u ,, for which one starts with

n - 1 ' .

the fact that q0 = 0 (ufl = 10 ev is
above the fission spectrum, by choice).

After successive solutions down to

qth, the <pth is obtained from Eq. 2.93,
according to the following:

*th -
qth

k
tr

B2
(2.100)

th

ath 3

In summary, by starting with the
condition that there was one fission

per second per cubic centimeter, the
solutions for q(u) and 4> t n were
obtained. If the trial value of B2
(related to the size) was the correct
one for criticality, then the number
of fissions per second per cubic
centimeter that would result from

these values of q(u) and 0tfc should
equal unity. The procedure is then
to determine the left sideof Eq. 2.91:

If k
'ff

k<ff " *fj*> •2
AT

1, the trial value of B'
was correct. If k_tt f 1, a new value

?//
of B., say B,, is chosen and the
fe,, (%\) *s determined. Usually
about three guesses for B2 and a plot
of the results, that is, keff (B2) vs.

2 i„ „.. t fi „i „„ * t- „ determine theB is su ffici ent to

critical buckling (the B such that
keff (B2) = 1).

A sample calculation form that is
used by the Physics group (ANP Division)
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of the Oak Ridge National Laboratory
for finding the ke, . corresponding to
a given trial for B2 is shown in the
appendix. The form also provides for
the calculation of the lethargy
distribution of neutrons causing
fission (£„) and the lethargy distri
bution of the flux. From the F's,
the median lethargy (or energy) for
fissioning can be found; this is a
useful index of the neutron spectrum
of the reactor.

Equations 2.89 and 2.90 were based
on the assumption of slab geometry;
however, exactly the same equations
are obtained for the other soluble

geometries.
General Solutions. In the case of

the slab geometry, assumptions as to
the form of the flux or slowing-down
density such as

q(u,x) = q(u) sin Bx , (2.102)

(2.103)tf'tht*) = <t>th sin Bx

would have worked just as well
general solution is therefore

q(u,x) = q(u) [A cos Bx + C sin Bx],

The

0th(x) = <pth [A cos Bx + C

where 0,l, as used here,
constant.

(2.104)

sin Bx] ,
(2.105)

is a pure

^l

9»

From Eq. 2.56,

q(u)

{/., (2.101)

0(u,x) =
^1

A cos Bx + C sin Bx

(2.106)

In the case of bare, spherical
geometry, the general solutions are

Br
q(u,r) = q(u)

sin Br cos
A + C

(2.107)



0(u, r) =
q(u)

^t/,(r) " ttk

sin Br cos Br
A + C

(2.108)

, sin Br cos Br
A + C

(2. 109)

In the case of bare cylinders, the
general solutions are

For slabs,

q(u, r) - A q(u)
sin Br

0(u, r) = A
q(u) sin Br

m^r~

<^/,(*> = A ^th
in Brsin Br

(2.116)

(2.117)

(2. 118)

q(u,r,z) =q(u) [{A J0(fir) +Cyo(/i.r)}{B cos ez +£ sin ez}] , (2.110)

[{A J„(/i.r) + CyQ(/Lir)}{Z) cos ez +£ sin ez}] , (2. Ill)0(u,r,z)
q(u)

<pth(r,z) =0th [{A J0(/ir) +CYQ(fir)}{D cos ez +£ sin ez}] , (2.112)

where

B2 = fi2 + e-

Boundary Conditions. The boundary
conditions of the problem are:

1. The flux must be finite every
where in the reactor.

2. The flux must be symmetrical
around points, lines, or planes of
symmetry in the geometrical set-up.

3. The flux must be nonnegative
at all points in the reactor.

4. At external surfaces, the flux
at all energies extrapolates to zero
at the same point. The extrapolation
distance S = 0.71 k is actually
different for each energy interval
because k is a function of energy,
but an average value of k is selected
and S is taken as a constant for flux

at all energies, including thermal
flux.

Application of Boundary Conditions

and Determination of the Critical

Size. Boundary conditions 1 and 2
reduce the general solutions im
mediately to

q(u,x) = A q(u) cos Bx ,

q(u)
0(u,x) = A cos Bx ,

0th(x) = A <pth cos Bx .

(2.113)

(2.114)

(2.115)

For spheres and cylinders,

q(u,r,z) = A q(u) JQ(fir) cos ez ,
(2.119)

0(u, r,z) = A
qU) JQ(fir) cos ez ,

(2.120)

4>th(r,z) A 0th JQ (fir) cos ez ,

(2.121)

where

2 _B fi2 + e:

In all these equations
the value that makes k , , = 1, ac
cording to the procedure given above;
the q(u) and 0fh are from the normali
zation Eq. 2.91, and A depends on the
power level at which the reactor is
operating. In fact, A is equal to
the fissions per second per cubic
centimeter at the center of the

reactor, since q(u) was normalized for
one fission per second per cubic
centimeter and the distribution

functions,

sin Br
cos Bx, , and JQ(fir) cos z ,

r

are all equal to unity at the center.
The critical size follows from

boundary conditions 3 and 4. In the

(2.122)

the B has
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case of slabs, boundary condition 4
states that

cos B(xQ + 8) = 0 (2.123)

where xQ is the critical half thickness
and 8 is the extrapolation distance.
From boundary condition 3, the non-
negative condition

B(xr
rr

»).T. (2.124)

which is the first root, is obtained.
Therefore

TT

= 2B~

rr

R = 8
B

(2.125)

For spheres it follows, similarly, that

(2.126)

where R is the critical radius. For

c ylinde r s the relation between the
critical dimensions is given by

B2 =
2.405

R + 8
+ -

77

H
- + 8
2

(2.127)

In the above procedure it was
assumed that the reactor composition
was given and the critical size was
to be determined. The converse

problem also exists in practice,
perhaps even more frequently — the
size is given, and the ratio of the
fissionable material to moderator and

structure is to be determined. The

B2 is then immediately fixed by
Eqs. 2.125, 2.126, or 2.127, and
various trials are made for the

uranium mass, which affects the
macroscopic cross sections, until
k .. = 1 in Eq. 2.101.

EVALUATING THE CONSTANTS

Averaging Constants in the Thermal

Group. Up to this point, thermal
energy has been considered as if all
thermal neutrons were at one energy.
Actually, however, the thermal neutrons
(neutrons that have slowed down to
the point where they feel the energy
of the moderator nuclei and are just
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as likely to gain energy from a
collision as to lose energy) are
spread in energy in a distribution
that is given approximately by the
Maxwell-Boltzmann function. If the

Maxwell-Boltzmann function for velocity
distribution is denoted by M(v), one
can write

M(v) v2 e—v'l/2kT (2.128)

where

m = mass of the neutron,
k = the Boltzmann constant,

8.6170 x 10"s ev/°K,
T = the temperature of the medium in

degrees Kelvin.

In terms of energy, the equivalent
statement is

M(E) « nHF e-E/kT . (2.129)
The energy given by £ = kT corresponds
to the peak of the velocity distri
bution, or the energy corresponding
to the most probable neutron velocity.

Actually, because of the 1/v behavior
of most absorption cross sections, the
thermal neutrons with lower energy
tend to be absorbed to a greater
extent than those with higher energy,
and the distribution is shifted

slightly in the direction of higher
energies than that given by the
Maxwell-Boltzmann distribution. Thus

the statement is sometimes made that

the "neutron temperature" is somewhat
higher than the thermal temperature
of the medium. However, because of
the extreme difficulty in obtaining
the correct distribution for any
given reactor, the Maxwell-Boltzmann
distribution is usually used as an
approximation in obtaining average
thermal cross sections.

The two thermal cross sections

needed are 2a and 2tr(h. In regard
to 2a , the appropriate average is
obviously the one that, when multiplied
by 0 h (the total thermal flux) and by
the atomic concentration, gives the
true number of absorptions per second
per cubic centimeter. Therefore one
can write



~t h a
th

= r°°0th(£) 2a(£) d£ (2.130)

or

f°4>tAE) 2a(£) d£
th

(2.131)
/CO

(£) dE

Since

0th(£) = n(E) v °= £ e~E/kT,
assuming n(E) °° A/(£), one can write

th

r°°2a(£) £ e-£/tr
Jo

r°°£ e'E'kT dE
(2.132)

which is the appropriate average
absorption cross section for the
thermal groups. It is an important
fact that if 2a(£) °c 1/v (which_is the
case for many elements), then 2fl is
the cross section at the kT energy
(0.025 ev for room-temperature re
actors) divided by 2//tF = 1.128. This
can be verified by carrying out the
above formula for 2a , with the
assumption that 2a(£) =*2a(feT) VkT/£.
Usually, thermal cross-section data
are quoted at the kT energy.

On the other hand, in respect to
2tr , it is the thermal leakage that
is to be represented accurately. Thus
it is written that

k f*ktAE)

3 o * (2.133)
but

therefore

VVth = -^t„.

-f >-**> i
<*ktr(E)

B2 <Pth(E) dE

Then, by assuming

0th(£) - E e-E/kT
as before, it follows that

/CD

1
1 "• 2tr(£)

£ e~E/kT dE

2., A. /• CO
trth "J*°°£ e-E'kT dE

(2.134)

thus for 2tr h it is the reciprocal
1/2 (£) that is averaged over the
flux/

Usually, the 2 (£) is constant
enough so that one can choose a 2tr ,
by inspection from the cross-section
curve and not bother to carry out the
above averaging process (which may be
time-consuming) .

Effect of Heterogeneity on the

Constants. Up to this point, the
composition of the reactor has been
considered to be a homogeneous mixture
of atoms of fissionable material,
moderator, and, possibly, diluents.
Actually, almost all reactors are
designed in a cellular or lattice
like form. The fuel elements may be
in plate form with the uranium alloyed
with possibly aluminum or zirconium,
and then clad (picture-frame con
struction like that of the MTR and

STR); they may be in the form of
smal1-diameter (~0.1 in.) cylinders
of enriched UO„ (for example) in a
mix (the intermediate-energy submarine
reactor design); or, in the case of
natural uranium reactors, they may be
large cylinders (~2 in.) in a can
(the ORNL graphite reactor). The
moderator may exist also in definite
separated regions, and coolant flows
between the moderator and the fuel

e lements.

Clearly, the critical mass and
size will be affected to a greater or
lesser degree by the "lumping. " In
some enriched-fuel reactor designs,

47



the thickness of the different regions
is small enough to make the lumping
effect negligible. An assumption of
complete homogeneity causes little
error. At the other extreme, in a
natural uranium reactor the effect

may make the difference between
predicting that a mixture can be made
critical or that it cannot be made

critical (as may be seen in Problem 5
for graphite and uranium).

The heterogeneity effect is in
corporated in the criticality formulas
by adjusting the constants. In the
thermal reactor equations, the constants
in question are L2, T ., k ,, and P,.
The r . can usually be assumed to be
unaffected by the heterogeneity;
however, the L2 is altered somewhat.
A good discussion of L2 in the heter
ogeneous reactor is given by Plass.'2)
A special problem in heterogeneity
with respect to leakage is given by
the reactor in which air passages
penetrate, without steps, completely
through the reactor. Neutrons tend
to "stream" from the holes and cause

an additional effect over and above

that resulting from the decrease in
over-all density. Methods have been
worked out for taking into account
the "streaming effect." A good
reference is the work of Behrens,' '

The effect of heterogeneity on
P.. can be calculated, but the procedure
is complicated and will not be taken
up here. A good reference is the
work of Dancoff and Ginsberg. ^*'
Qualitatively, the increase in P .
that results from the lumping of
natural uranium is due to two effects:

(1) some of the neutrons are completely
slowed down belowthe capture resonance

(2)
'G. N. Plass, The Diffusion Length and the

Utilization of Thermal Neutrons in a Heterogeneous
Pile, CP-992 (Oct. 6, 1943).

( 3 )
D. J. Behrens, The Effect of Holes in a

Reacting Material on the Passage of Neutrons,
vith Special Reference to the Critical Dimensions
of a Reactor, AERE-T/R 103 (May 24, 1949).

* 'S. M. Dancoff and M. Ginsburg, Resonance
Absorption in Lumps and Mixtures, CP-1589 (Apr.
17, 1944).
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(that is, below about 10 ev) while in
the moderator region and thus enter
the fuel slug with a more favorable
chance of causing fission as opposed
to being captured; (2) the resonances
of U238 apparently exist in rather
sharp peaks and a neutron entering
a fuel slug between peaks has an
excellent chance of passing right on
through without being captured, since
it is not moderated in energy to any
extent by the heavy nuclei of the fuel
region. Upon a few such fortuitous
entries, with periods of moderation
between, the neutron will have been
degraded below the resonance energies.

The effect of heterogeneity on the
k , can usually be calculated in a
straightforward manner.'5' The kth,
as defined here, can be written

kth = -nf >

where

2,
V = v

'-f
2fl (fuel) '

v = neutrons per fission
(= 2.5 for U235),

2, = macroscopic fission
cross section,

2a(fuel) = macroscopic absorption
cross section for the

fuel material (for uranium
this includes U235 and
U238),

/ = the thermal utilization
2„ (fuel)

2o(total)
2Q(total) = macroscopic absorption

cross section for all

core material.

The core of the heterogeneous reactor
can usually be partitioned into
identical cells. For example, if
the structure consists of fuel plates
separated by a layer of water (coolant
and moderator), the cell would consist
of the slab having one face at the

'E. P. Wigner and G. N. Plass, On the Utili
zation of Thermal Neutrons, CP-103.



mid-plane of the fuel plate and the
other face at the mid-plane of the
adjacent water layer. If the structure
is fuel-slug cylinders separated with
moderator, the cell would consist of
the square parallelepiped assignable
to a particular fuel slug (Fig. 2.8).
This parallepiped can be approximated
by a cylinder for calcu1 ation a 1
purposes.

o o o

o o o
Fig. 2.8

In any event, the flux distri
bution within acellwill be irregular.
The flux will be depressed in the
center of the fuel and perhaps bulged
up in the moderator. The depression
of the flux in the fuel element

because of the attenuation of the

entering neutron current by absorption
in the outer nuclei is called self-

shielding. The self-shielding effect
is pronounced in any localized material
of large absorption cross section. The
irregular behavior of the flux in a
cell will not affect r\, but it will
change the ratio of absorptions in
fuel to absorptions in other material
and hence will affect the thermal

utilization factor /.
As an example, the procedure for

getting / in the slab-like cell will
be indicated. Suppose the structure
is as shown in Fig. 2.9; the fuel
plates are of thickness t and the
moderator layers are of thickness
s. The assumption is made that no
slowing down takes place in the fuel
plates and that qtAx) is a constant
at all points in the moderator. Both
assumptions usually fit the facts
reasonably well. The balance equations

FUEL-
MODERATOR

Fig. 2.9

in the fuel and moderator are therefore:

d24>tl
F 1 *

LF

= o, (2.135)
dx2

d2<Pt,

dx2 I 2 <Ptl
3<?t/
k

0, (2.136)
tr

where F refers to the fuel region and
M refers to the moderator region.
In obtaining Eqs. 2. 135 and 2. 136,
the assumption has been made that the
diffusion theory is applicable.
Usually the absorption in the fuel
plates is strong enough to cause the
simple theory to be somewhat in error.
However, as was stated in the section
on "Derivation of Fick's Law," chap. 1,
itis so complicated and time consuming
to apply more accurate methods that
the simple diffusion theory is usually
used even in such cases as this in

which it is only approximately correct.
The general solutions of Eqs. 2.135

and 2. 136 are

1
x

F

cosh

<£*/./*) Ar sinh
C L,

+ C, — x , (2.137)

<^/./x) =ku sinh y~

+ Cu cosh —
3gt,

tr,

(2.138)
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The boundary conditions are
1. symmetry

= 0

4- M5J-M*

dx j
t/2 v 'x^t/2

If these boundary conditions are
applied to the general solutions,
equations result from which Ac, C„,
A„ , and C„ can be determined as
functions of L2., LM, qth, and ktrM
(the constants).

is then

t/2

actually absorbed as compared with
the number that would be absorbed if

there were ho self-shielding. The
cross sections for the moderator,
etc. above thermal can usually be
taken at their actual value. The

2 - and 2, -effective cross sections
a f

of the fuel obviously depend on the
shape and size of the fuel elements.
The reference that gives the formulas
for getting these effective cross
sections from the true cross sections

is the work of Bartels.'6'

REFERENCES FOR CROSS-SECTION DATA

Now that methods have been intro

duced that require the knowledge of
cross sections at various energies,
it is perhaps well to give a list of
references where cross-section data

may be obtained. The following is
not intended to be a complete list,
but is merely a suggestion of some
sources that have proved to be valuableThe thermal utilization

given by

/ =
X' 4th. {x) 2a„ dx

(2.139)

r 4th (*> zaJx
(t + »)/2

^t/2
4thu(x) tn dx

In general, as the heterogeneity gets
more pronounced, the P h increases
and / decreases. The problem of
natural uranium reactors is thus to

determine a lumping arrangement such
that the product fPfk is a maximum.

In intermediate- energy enriched
reactors a certain amount of self-

shielding exists even for above-
thermal flux. It is not convenient

to compute a flux distribution through
out a cell for flux of all energies;
so a method has been worked out for

finding the ratio of effective to
actual absorption and effective to
actual fission microscopic cross
section for the fissionable material

by assuming neutrons to enter the
fuel element in a cosine direction

distribution and finding the fraction
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and indicative of the type of sources
that give cross-section data. The
various physics journals, for example,
Reviews of Modern Phys ics, as well as
the progress reports of the national
laboratories, give continuing articles
on current cross-section measurements.

Some of the older sources are:

1. C. D. Coryell e t a I. , The
Science and Engineering of Nuc lear
Power, Vol. I, ed. by C. D. Goodman,
Addison-Wesley Press , Cambridge, Mass.,
1947.

2. N. M. Smith, KAPL Cross Section
Curves for Xe-135, U-235 and U-238,
Y-F10-51 (Apr. 17, 1951).

W. J. C. Bartels, Self-Absorption of
Monoenergetic Neutrons, KAPL-336 (May 1, 1950).



3. G. Haines and K. Way, Graphs
Showing Neutron Cross Sections as
Functions of A, Z or N, ORNL-144
(Oct. 4, 1948).

4. K. Way and G. Haines, Thermal
Neutron Cross Sections for Elements
and Isotopes H-Bi, AECD-2138.

5. K. Way and G. Haines, Tables of
Neutron Cross Sections, MonP-405

(Oct. 31, 1947).
6. G. Haines and K. Way, Tables of

Neutron Cross Sec t ions for Elements
Po-Cm, ORNL-86 (Sept. 9, 1948).

7. K. Way, L. Fano, M. R. Scott,
and K. Thew, Nuclear Data, NBS Circular

No. 494 (January 1950).
8. S. Bernstein etal., Phys. Quar.

Prog. Rep. Dec,, Jan., Feb., 1948-49,
ORNL-325, P. 6-68.

9. H. R. Kroeger, "Thermal Neutron
Cross Sections and Related Data,"
Nuc leonics 5, No. 4, 51-54 (October
1949).

10. H. H. Goldsmith, H. W. Ibser,
and B. T. Feld, Rev. Mod. Phys. 19,
No. 4, 259 (October 1947).

11. R. K. Adair, Rev. Mod. Phys.
22, No. 3, 249 (July 1950).

12. S. H. Turkel, Neutron Cross
Sections, NEPA-851 (Dec. 5, 1948).

Two recent (1952) sources are:

13. D. J. Hughes et al., Neutron
Cross Sections, A Compilation of the
AEC Neutron Cross Section Adv i sory
Group (unclassified), AECU-2040
(May 15, 1952).

14. D. J. Hughes et al., Neutron
Cross Sections, A Compilation of the
AEC Neutron Cross Section Advisory
Group (classified), BNL-170 (May 15,
1952).

CRITICAL MASS AND SIZE RESULTS

Figures 2.10 through 2.20 give the
results of some criticality calcu
lations made by the reactivity group
of the NEPA Division of Fairchild

Engine and Airplane Corp. The results
were compiled by Mooneyham.'7' No
structural material or fission-product

poisons are present in these reactors.
The temperature of all components is
70 F. The assemblies considered are

homogeneous, gas-cooled, enriched,
cylindrical reactors containing
hydrogen, beryllium oxide, beryllium
carbide, graphite, or iron. No
reflection is present and the method
of calculation was the Fermi age model
of the thermal- or intermediate-energy
type.

The free-flow ratio, B,,, refers
to the fraction of air (or void).

PROBLEMS

1. The Materials Testing Reactor
(water moderated) has the following core

2 2 1constants: r , = 64 cm ; L = 3.64 cm ;

k = 0.8 cm; k . - 1.606 (unpoisoned). What
are the critical sizes of the equivalent
bare-spherical, cubical, and square-cylinder
reactors (that is, the unreflected reactor

having the same composition as the core of

the reflected reactor)? Note: Strictly
speaking, the two-group theory gives more

accurate results than does the Fermi age

theory for water-moderated reactors.

2. In the depleted and poisoned MTR,

k , = 1.37. If r , and L remain unchanged,

what must be the new critical dimensions of

the soluble geometrical shapes?

3. If a spherical mixture is pierced by

uniform cooling holes to the extent that

Rff (free-flow ratio) is the ratio of volume
of void to the total volume of material plus
void, find by what factor the critical

extrapolated radius must increase for

criticality to be maintained. By what factor

is the critical mass increased?

4. Find the most probable crow-flight
distance for neutrons to travel from birth to

the point at which they enter the thermal

group.

5. Can a homogeneous mixture of graphite
and natural uranium (ratio of atoms of U

to atoms of U of 1:140) be made critical?

What ratio of Ns. to N., gives the largest

( 7 ) A. 0. Mooneyham, Comparative Critical
Conditions in Simple Nuclear Reactors, NEPA
No. 1100-EAR-R13 (Aug. 1, 1949).
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k .,7 Use the following data in obtaining
an answer:

Density of graphite, p„ = 167 g/cm ,
e = 1.0,

a (carbon) = 0.045 (V77/2) barns for £=£..
a —— t n

(the factor V77/2 is discussed

at the end of chap. 2),

(carbon) =4.5 barns for E = E,

(carbon) = 4.8 barns for E =

(carbon) = 0 barns for E > E

(U238)

tr

a
s

a
a

a

• th'

'th1
th'

(U23S)
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- 0 barns for E > 450 ev and

for 0.025 < E < 14 ev,
= 22 barns for 14 < E < 450 ev,

= 2.58 (V77/2) barns for £ =£<h,
=640 (t/tt/2) barns for E=E h,
= 0 barns for E > E fcl

cr, (U23S) = 540 (>/77/2) barns for E = £ ..
/ t n

6. Start with Eqs. 2.82 and 2.83 and show

that Eqs. 2.89 and 2.90 are the same for

spheres and cylinders as for slabs.

7. By using the data given in Table 2

and the Fermi-age, bare-reactor, calculation

form given in the appendix, calculate the

k ,, of the bare reactor with the following

volume composition:

UF4-NaF (80 lb U235) 7.83%
Beryllium oxide. 57.15%

Stainless steel 11.38%

Sodium 23.64%

The size of the reactor is such that

B" 0.00240957

8. Calculate the flux for each energy

interval, based on the condition of one

fission per second per cubic centimeter.

9. Make a plot of the normalized fission

spectrum, that is, the fraction of neutrons

causing fission verus u that have lethargy in

the unit lethargy range around u. Indicate

the thermal neutrons causing fission by a
block of unit lethargy width and proper
height. Determine the median lethargy of the

fission-producing neutrons and from this the

median energy of fission-producing neutrons.

10. Plot the flux per unit lethargy vs.

lethargy. Determine the median energy of the

flux.

11. Determine the size of the square
cylinder that has the buckling used in

problem 10, and then determine the average

scaler thermal flux per cubic centimeter and

the average total flux per cubic centimeter

in this square cylinder if the total power

output is 200 megawatts. Use the relationship

that 1 watt = 3.15 X 10 fissions per

second.

12. The spatial power distribution in the

bare square cylinder is given by

P(r,z) = A J.
2.405

R + S

77

H + 28

Find the ratio of the peak power per cubic

centimeter to the average power per cubic
centimeter in the reactor.
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Chapter 3

CRITICALITY BY TWO-GROUP THEORY

Chapter 2 presented the Fermi age
treatment of criticality in which the
slowing down of neutrons is taken to
be continuous. The Fermi model is an

excellent method of determining
critical size (or mass) because of its
relative accuracy and brevity. Even
the intermediate-energy reactor problem
can be solved in a couple of days.
Unfortunately, however, the Fermi
model is applicable only to reactors
that are uniform in composition; that
is, it cannot be applied to reflected

•reactors or reactors with control rods.

Since almost all reactor designs have
reflectors, it would seem that the
Fermi model would indeed be limited.

However, most reflected reactors can
be represented by equivalent bare
reactors for determination of the

rough critical mass by simply extending
the core of the given reactor a distance
that is approximately equal to the
reflector thickness (for reflector
thicknesses of up to about 5 or 6 in.).
A little experience with reflected
reactor calculations makes it possible
to guess fairly well the inches of
core extension equivalent to a given
thickness of reflector. Although the
fissionable material is then treated

as being throughout the entire extended
bare reactor, it is, of course, only
the fissionable material in the central

or core region that is called the
critical mass of the actual reactor.

Numerous "reflector-savings" vs.
reflector-thickness calculations have

been reported in the literature.
Figure 3.1 shows these quantities
plotted from data obtained by two-
group calculations. It is to be
noted that reflector saving is about
equal to reflector thickness, up to
5 or 6 in., for reflectors that are of

A. 0. Mooneyham, Comparative Critical
Conditions in Simple Nuclear Reactors, NEPA
No. 1100-EAR-EU3 (Aug. 1, 1949).

10 15

REFLECTOR THICKNESS (in.)

Fig. 3.1. Reflector Savings vs.

Reflector Thickness for various

Moderators and Moderator Ratios; Free-

Flow Ratio = 0.

about the same composition as the core.
Reflectors usually have somewhat more
moderator than the core (because of
the decreased coolant requirement in
the reflector), and thus the reflector
savings are roughly equal to reflector
thickness for even greater thicknesses
than 5 or 6 inches.

It is clear though that the method
of the equivalent bare reactor cannot
be used to predict the spatial power
(or flux) dis tr ibut ion in the reflected
reactor; also, it cannot be used to
handle the critical mass calculation

if the reflector is thick (>6 in.) or

if the reflector is radically different
in composition from the core or to
calculate a reactor with control rods.

The one-group model described in
chap. 1 can be used for such problems.
In the one-group method, however, all
neutrons are considered to be at some

average velocity, and therefore the
method is not at all accurate or

reliable because one needs to know the

answer, so to speak, in order to select
an appropriate average velocity for
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the neutrons that will give good values
for the constants. Also, it is not
possible to obtain the correct power
distribution with the one-group model.
The""Two-group model, which is an
improvement of the one-group model, is
the subject for this chapter.

In the two-group model, all neutrons
with energy above a certain value are
classed as fast neutrons and the

associated constants are given average
values. All neutrons with energy below
the dividing energy are classed as slow
neutrons and, again, the associated
constants are given average values.
The dividing energy does not have to
be taken as thermal energy, but this
is the usual practice because the two-
group model is most suitable for thermal
reactors.

The case of the reflected reactor

in which there is absorption of and
fission by above - thermal, as well as
thermal, neutrons is the primary topic
of this chapter. The bare reactor and
the completely thermal reactor are
special cases of the following treat
ment.

BALANCE EQUATIONS

The neutron-balance differential

equations in the core are

\
tr

fC V2 <pfAr) + cp.Ar) I,

and

k
tr

3 '/c ^' ' *fc

+ <pf (r) £ - d> (r) 2 k
fc

~4{c(r) \fe kf - 0 (3.1)

V2 <p (r) + d> (r) £

- dy, 2c = 0 , (3.2)
where

k. = an average transport mean
'e free path in the core for the

fast group,
2 = a fictitious cross section

c

that represents the proba

62

bility per centimeter of a
fast core neutron dropping
into the slow core group,

2 = an average macroscopic ab-
' c sorption cross section for

core neutrons in the fast

group,

2q = an average macroscopic ab-
sc sorption cross section for

core neutrons in the slow

group,

k = an average transport mean free
sc path in the core for the slow

group,

fe„ = number of fission neutrons
produced per absorption of a
slow neutron in any core
materia 1

= v2F /£ ,
s c s c

" 2-p - an average macroscopic fission
sc cross section for core neutrons

in the slow group,
fe j- = number of fission neutrons

per absorption of a fast
neutron in any core material

fc fc

2-p - an average macroscopic fission
'c cross section for core neutrons

in the fast group,
4>f - fast-group flux in the core,

' I 2
neutrons/sec * cm ,

<PSC = slow-group flux in the core,
neutrons/sec" cm .

The balance differential equations
in the reflector are

k
tr

and

k
tr

/A

sR

V2 4> (_r) +0ffl(r) 2fl
'/*'

+ <pfn(r) 2 =0 (3.3)
Jn - afR

*' *.«<!> + *.*<!> \
sR

- cpfR2R = 0 , (3.4)

where the definitions are analagous
to those for the core quantities.



GENERAL SOLUTIONS

Equations 3.1, 3.2, 3.3, and 3,4
will now be written with more compact
notation: for the core,

V2^/C(l> + «e *fc^
+ br <p,Ar) = 0 (3.5)

c r s c —

and

V20sc(r) + dc d>,Ar)
+ ec <PfAr) =0 , (3.6)

and for the reflector,

V2 4>fR(r) + aR <PfR(r) = 0 (3.7)
and

V* ^fl(l) + dR 4>sR(r)
+ eR 4>fR(r) = 0 , (3.8)

a s <- 2. - 2
7c

6. ~ 2 fe.

d = - 2.

e a £ —"
c c X.

tr .

+ ^ fe/)
7c /' k

"tr
/c

tr .

tr

aR = (- 2fl + 2 ) ,
trfR

dR ~ ~ 2 —
tr

/«

efl _ 2fl A
tr

/«

, (3:9)

/c

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

The general solutions of Eqs. 3.5,
3.6, 3.7, and 3.8 will now be obtained
for the three geometries: slab,
sphere, and cylinder.

Slab. For the slab, the core Eqs.
3.5, and 3.6 take the form

d2 4>fAx)
+ ar 4>fe(x)

+ bc 4>sc(x) = 0 (3.16)
dx

and

d2 4>.Ax)
+ d„ </>(*)

dx'

+ ec <pfAx) = 0 , (3.17)
and reflector Eqs. 3.7 and 3.8 take
the form

d2 4>fR(x)

dx'

+ aR <pfR(x) = 0 (3.18)

and

d <£„ d(x)

dx2
+ dR 4>gR(x)

+ eR d>fR{x) = 0 . (3.19)
For the core, solutions of the fol
lowing form are tried:

^fc{x) = Cc cos Bcx (3.20)
and

<P„Ax) = Ac cos Bcx (3.21)
to see whether a relation in B results

that gives a value or values of B such
that solutions of the form 3.20 and

3.21 exist. By substituting Eqs. 3.20
and 3.21 into Eqs. 3.16 and 3.17 and
dividing through by cos B x, the
results are

- C B2 + a C + bA =0 (3.22)
c c c c

and

- AB2 + dAr + e C = 0 , (3.23)
C C C C

or

C (-B2 + a ) + A b =0 (3.24)

and

C e + A (-B2 + d ) = 0 . (3.25)
c c c c
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For a nontrivial solution for A and Also,
c

Cc to exist requires that the determi- j, / \
nant of the coefficients be zero: 'c

cos iB2cx

cosh B2cx
-BL + a

= 0. (3.26)
-B2 + d

This is clearly a quadratic equation
in B that determines two values of

B such that solutions for Eqs. 3.16
and 3.17 of the form 3.20 and 3.21

exist. For a reproducing medium
(core) the roots are real; one root
is always positive and one negative.
The positive root will be denoted by
B\ and the negative root by

and

*.c<*> • Al

„ cos B. x
C 1 c

, cos B, x
c J. c

-B2c. Then

(3.27)

(3.28)

which form a pair of particular solu
tions for the fast and slow flux. From

Eq. 3.25, it follows that

B - d.

lc
(3.29)

and hence Eqs. 3.20 and 3,21 can be
written as

>2 ,

<Pfc(x) - Au
7

and

<Psc(x)

4>fAx) = Alt

B
lc

lc

cos Blcx (3,30)

cos B,_x
1 c

(3.31)

>B2 - d '
1 c c

cos Blcx + A2c

= C
2c

Blc - d.

2c cosh B, *
^ c

and

4>.Jx)

4>fc(x)=A3i

4>sc(x)

and

<t>fc^-*U

<*>(*)

A0 cosh Bf
* c

'B2
1 c - d.

sc s~ ' "2c ^2C

form another pair of particular
solutions.

On the other hand, if the sine had
been tried instead of the cosine in

Eqs. 3.20 and 3.21 the procedure in
Eqs. 3.22 to 3,26 would have been just
the same and the same B's would have

been determined. Hence, there are two
further pairs of particular solutions:

sin B. x
l c

(3.32)

(3.33)

l3c in Bux

(3.34)

(3.35)

'-Blr~drSI c c

sinh B0 x (3.36)
* c

Aic sinh B2c* (3.37)

The general solution is the sum of
the particular solutions, and there
fore the general solution of the core
equations is

'-B
2c

- d.
cosh B2 x

+ A
3c

'B2 - d '
1 c c

sin Bux + Aic
-B2 - d '

2 c c
sinh B.x (3.38)

I C

^sc^x) = Alc COS BlcX + A2c COsh B2CX + Aic Sin BlcX + A4c sinh B2c*' (3-39)
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The same procedure is used for obtaining the general solutions of the reflector
equations. If solutions of the form

and

'Pyfl = C cos BRx

<PsR = A cos BRx

(3.40)

(3.41)

are tried in Eqs. 3.18 and 3.19, it is found that the determinant equation f
the two values of B2 is

tor

~BR + AR

-B2 + dt
- 0. (3.42)

It develops that both values of B are negative in anonreproducing medium. The
values will be denoted by -B2R and -B2^. The general solutions of the reflector
equations are

<PfR(x) = A1R '~B\r ~ V
'lR*

+ A
'-b\r ~«V

2R -I cosh B2Rx + A3R
'~B\R ~ dR^

sinh B.Rx

+ A
'-B\r ~ dR^

iR sinh B2RX (3.43)

and

^iJl**) = A1R cosh B1RX + A2R cosh B2RX + A3R sinh BlRx + AiR sinhB x. (3.44)
2R

However, from the determinant equation in B2 (Eq. 3.42), it can be seen that the
two solutions for B2 are

(3.45)

and

-B
IR ~ '"R

-B2 = +d'2R

+a,

R (3.46)

Hence, the second and fourth terms in Eq. 3.43 become zero, and the general solu
tions reduce to

4>fR(x) = AlR
'-B\r ~ dRS

cosh BlRx + A3R
-B1R ~ dR^

linh BlRx (3.47)

and

^sR^*) = A\R Cosh B1RX + A2R cosh B2RX + A3R sinh B1RX + AiR sinh B2RX ' (3.48)
Sphere. By aprocedure analagous to that used for the slab, it is found that

the general solutions of the core equations of the reflected spherical reactor
are
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(B\c - dc\ c°s Slcr f~Blc "dc\ c°sh B2cr
*/.(r) =Alc (— — +^2c ' '

dan

c / \ c

}2(B\c - d\ sin Blcr l-B\c - d\ sinh B2cr

cos B1 r cosh B2cr sin Blcr sinh B2cr
*.e(r) - Au ;— +42C ; + A*c — + 44c - (3-50)
where the two solutions of the core buckling are B2 and -B2 (as given by Eq.
3.26).

The general solutions of the reflector equations are

(~b\r ~ dR\ cosh Blfir (~bIr ~ dR\ sinh Bmr
*/*<'> =air —~ :— + A>* —1 : (3-51)eR / r \ eR

and

cosh BlRr cosh B2Rr sinh BlRr sum "2R<
*.*<'•) "AiR ; +A2R ; +azr ; + AiR <3-52)
where the two solutions of the reflector buckling are -B^R and -B2R (as given by
Eq. 3.42).

Cylinder. The reactor with a cylindrical core and an all-around reflector is
not soluble by analytical means. However, the case of a cylindrical core with a
jacket reflector and no end reflectors is soluble, and this useful geometry will
be treated here.

The general solution of the core equations in cylindrical coordinates is

(B2 - d ,
lc c'

0/c(r'Z) =[ "«c / lAle-J,(All«r)
+A3c Y0^lcr)} [cos euz +Ele sin e^z]

:) [A2C I0(M2cr)
(-Bl - d

+A*c V^2cr)] [cos £2c2 +£2c sin £2cz] (3«53)
and

^sc(r'2) = [Ale J0^lcr)

+A3C V^lcr)] [cos 6lcz +£lc sin £lcZ]
+ [A2c I*^2cr)

+Aic K0(-rJ-2cr)] [C0S £2cZ +£2c sin £2cZ] > (3«54)
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where

B\c - Ac + eL . <3-55>

~B\c - -Ac + e2c . <3'56>

and B2 and -B2 are the positive and negative root of Eq. 3.26. Actually, e2
= €2e, as will be discussed further, because the reactor was chosen to be uniform
in composition in the axial direction.

The general solution of the jacket reflector equations in cylindrical coordi
nates is

f-B\R - dR\
4>fR(r,z) = I I \AlR I0{LilRr)

and

d>,R{r'z) = [A1R I0^iRr)

+A3R K0(fMlRr)j [cos e1Rz +ElR sin elflZ] (3.57)

+A3R K0(nlRr)} [cos e1Rz +ElR sin elflz]
+ [A2R I0(M2flr)

+^4^ ^0^2flr7 [cos e2Rz + E2R sin e2Rz\ ' (3.58)
where

~B\r = ~Ar + Ar . (3.59)

~BIr = -Ar + e2fl • (3.60)

and -B2 and -B2 are the two negative values of the buckling that result from
the reflector determinant Eq, 3.42. Actually,

£2 2 2 = 2 (3 fils
£lfl €2fi £lc £2c ' \J.D1'

because the jacket reflector is the same length as the core. This equality
will be discussed further in a later section.

BOUNDARY CONDITIONS

The boundary conditions of the problem are:
1. The fast and slow flux must be everywhere finite.
2. The fast and slow flux must be symmetric about any points, lines, or

planes of symmetry in the geometrical setup.
3. The fast and slow flux must be nonnegative at all points in the reactor.
4. The fast and slow flux must extrapolate to zero at the external surfaces

of the reflector.

5. The flux and the current must be continuous across the interface between
core and reflector.

For slabs,

^/c(*o) = <^)fR{xo) , (3.62)
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<£sc(*o> = ^s/?(*o) .

t r
/c '«#/c(*> tr

/«
d<PfR(x)~

dx dx

k
tr d<psc(x)- k

tr d<psR(x)

dx

where x is the half thickness of the core.

For spheres,

k
tr

/c

A
t r

<£/c(fl) = $fR{R) •
$sc(R) - 0sc(B) ,

^/c(r)
dr

•=i?

tr
/*

A
tr

d0yfl(r)

d7

d<psR(r)

• = fl

dr
• = R

dr
r = R

where R is the radius of the spherical core.
For cylinders (jacket reflector, no end reflectors),

k.
fc

k
tr

4>fc(R,z) =4>fR(R,z)

4>sc(*.z) = 4>sR(R,z)

for all z

>• over the

length,

*4>fc(r,zj k
tr ^4>fR (r ,z)

^sc^]
3r

fR

'tr. B^sfl(r.z)

3r

r = R

r = fl

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

where B is the radius of the cylindrical core.

APPLICATION OF BOUNDARY CONDITIONS TO GENERAL SOLUTIONS FOR THE CRITICAL SIZE

Slab. Upon application of boundary condition 2, the general solutions, Eqs.
3.38 and 3.39, for the fluxes in the core of the reflected slab reduce immedi

ately to
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*„<*> =Au

and

<B\ - d
lc <

cos Blcx + A2c
'-B\r ~ dJI c c

cosh B, x
2c

(3.74)

^sc^x^ = ^lc cos Blc* + 42C cosh B2C* • (3.75)
Boundary condition 4 can be satisfied by choosing A3R and AiR so that the flux
expressions in the reflector, Eqs. 3.43 and 3.44, become

4>fR(x) = Au
/-BlR - dR\

cosh Bjd*

cosh B1R(xQ + T + 8)

sinh BlR(xQ + T + S)
sinh BlRx (3.76)

and

<^,sfl(*) = A1R
cosh ^ifl(*o + ^ + 8)

COSh B,„X ; ; ; = — sinh B.pX'IRJ sinh B1R(x0 + T + 8) 'lfl'

+ A
2R

cosh B2fl(*0 + T + 8)
cosh B0Dx — — ; —2R sinh B2R(x0 + T+ 8) sinh B2Rx , (3.77)

where T is the reflector thickness and 8 is the extrapolation distance. Boundary
condition 5 provides the following four homogeneous equations in the four unknown

constants ^lc, ^2c» AlR> an<* A2R:

lc

fB2 - d \
lc c

cos Blcx0

+ A.

>-B2 - d \
2c c

cosh B2c*0 -A1R
'~B1R ~ <V

cosh BjdXq

cosh BlR(x0 + T + 8)

sinh BlR(x0 + T + 8) sinh Blflx0

4lc cos Blc*0 + A2C cosh B2C*0

- 4
lfl

- A
2R

cosh B, i>Xn -
cosh Bir(xq + T + 8)

"*• _sinhBlfl(x0 +T+ 8) Slnh Bl«X°
cosh B2R(xQ + T + S)

sinh B2fl(xfl + T + 8)
cosh B2RxQ - sinhB2i,x0

0 , (3.78)

0 , (3.79)
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k

A, B,
lc lc

tr .

+ A
\R

n BjSI c*0

k
tr

-B?D - dB\ Kt'lfl /«

T~ BlR sinh BlRx0

cos h BlR(x0 + T + 8)

sinh Blfl(x0 + T + 8)
cos h Blflx(

*tr

~ A2cB2c 3— Sinh B2CX0 + A1R 3— Blfl
sinh BlRx0

tr

= 0 , (3.80)

cosh Blfl(x0 + T + 8)

sinh Blfl(x0 + T + 8)
cosh Bj^x0

iA

+ ^2* 3 B2fl sinh B2Rx0

cosh B2R(x0 + r + 8)
— —— cosh B,Bxn

sinh B2R(x0 + T + 8) 2fl °
0 . (3.81)

If nontrivial solutions are to exist for Aj , ^je' ^lfl' an(^ A2R *n these homo
geneous equations, the determinant of their coefficients in Eq. 3.78 to 3.81 must
be equal to zero. The determinantal equation involves xQ and Tand is the criti
cality equation. One can either specify x0 and solve for T, by trial and error,
or specify T and solve for x0.
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The determinantal criticality equation is

*l ~ <*c\ "",.

BJe - d,
cos Blcx0

-B,, - d,
cosh B2c*0

B'xr + rffl :osh B1R(x0 + T + 8)
cosh B.-x. - —;—; 7"r sinh B,.x.

1R ° sinh Blfi(*0 + T + 8) 1R °

cos Blcx0 cosh B2cx0
cosh BlfiU0 + T + 8)

sinh BlflU0 + T + 8)
sinh fi^Xg _ cosh Blflx0

cosh BJfi(x0 + T + 8)

sinh B2flU0 + T + S)
sinh B2Rx0 "~ cosh B2Rx0

Ble sin BlcxQ — B2c sinh B2c*0
B?« +d*\Kt'fn

Bl«

Bi, sin B j cjc0 sinh B2cx0 'IB sinh B i/|*o

In review, the procedure for getting the critical size when the composition
is given is to evaluate a , 6 , d , e , an, dB, and e„ from the macroscopic cross-

c c c c n r* . n o t\ 0
section averages by using Eqs. 3.9 through 3.15, obtain Ble and -d2c as the roots
of Eq. 3.26, obtain -B21R and -Bjr as the roots of Eq. 3.42, speci fy the reflector
thickness T, and solve the determinantal equation, Eq. 3.82, fo rthe critical half
thickness of the core, xQ, by trial and error.

The converse problem is, as before, to have the xQ andT given and the uranium
concentration as the unknown. The procedure is then, clearly, to make trial solu
tions with various uranium concentrations until the set of constants, ac , be , d ,
e ,is found that, together with aR, dR, and eR and the resulting buckling con
stants, satisfies Eq. 3.82. Once criticality has been established, threeof the
constants A. , A , A1R, and.42ft can be solved for in terms of the remaining con
stant by using Eqs. 3.78 to 3.81. The remaining constant is the power constant.
By substituting the constants thus obtained into Eqs. 3.74 through 3.77, the fast
and slow fluxes in the core and reflector can be evaluated to within the one un

known constant, which depends on the power level at which the reactor is operating.

cosh BlflU0 + T + 8)
r— cosh B,Bxnsinh BlflU0 + T + 8) 1B °

sinh B1Rx0

cosh B1R(*0 + T + 8)

sinh B1BU0 + T + 8)
cosh BiR*0

sfi

'2R
sinh B2Rx0

cosh B2fi(x0 + T + 8)

sinhB2fl(,0 +rTT) coshB^o

Sphere. Upon application of boundary condition 1, the general solutions Eqs.
3.49 and 3.50, for the fluxes in the core of the reflected sphere reduce immedi

ately to

(B\e - de\ sin Blcr [-B\e - d \ sinh B2J
—- +A4c( (3.83)0/c(r) = A3c

and

*.,>> = A3C
sin B. r

l c

+ A
sinh B2cr

4c
(3.84)

Boundary condition 4 can be satisfied by choosing A3R and AAR so that the re
flector flux expressions, Eqs. 3.51 and 3.52, become

cPfR(r) ~Blft ~ dR
lfl

cosh B1Rr cosh B1R(.R + T + 8) sinh BlRr

r sinh B.AR + T + S) r
(3.85)

(3.82)

71





and

^/?(r> = A1R
cosh B.Br cosh B1B(R + T + 8) sinh B,„r

* rf in In

sinh B1R(R + T + 8) r

+ A.
cosh B2,r cosh B2R(R + T + 8) sinh B2„r

(3.86)2R sinh B2ft(B + T + 8)

where T is the reflector thickness and 8= 0. 71 k is the extrapolation distance.
Boundary condition 5 provides the following four homogeneous equations in the

four unknown constants A3e, <44c , A1R, and A2R.

Blc - dc\ sin BlcB -B\c - dc\ sinh B2CB
3c R 4C V e / R

cosh B1RR cosh B1R(R + T + 8) sinh B1RR

+ A

A1R
'~B\r ~ dR

R sinh Blfi(fl + T + 8) B

3c

3c

sin BlcR
+ A

4c

sinh B2cB

R

- A
IR

cosh BlftB cosh Blft(B + T + 8) sinh BlflB

B sinh Blfl(B + T + 8) B

cosh B2RR cosh B2fi(B + T + 8) sinh B2RR
- A

2R
R sinh B2„(B + R + 8) B

'Bic " dc\ trfc RBlc cos BlcR - sin BlcB

B5

'-Blc ~ dc\ X'r/C BB2c cosh B2cR - sinh B2cB
+ A

4c

B5

- A
~B1R ~ dc\ trfR BBlft sinh BiftB - cosh BlRR

lfl

RJ

cosh B,„(B + T + 8) flB,„ cosh B1DB - sinh B,BR
An In In lfl

sinh Blfi(B + T + 8) B:

0 , (3.87)

0 , (3.88)

= 0 , (3.89)
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k tr

'3 c

RB, cos B, R - sin B, B
1 c 1 c 1 c

R'

X.
tr

\
tr

+ A
4c

RB2c cosh B2cB -sinh B2 cB

B5

- A
sfi

lfi

BBlft sinh BlflB - cosh BlRR cosh B1B(fl + T+ 8) BBlfl cosh BlftB - sinh B1RB
sinh B (B + T + 8)

1 n
B2 B'

\
tr

sfl RB2R sinh B2flB - cosh B2RR Cosh B2fl(B +T+ 8) BB2fi cosh B2RR - sinh B2flB

B2
0 , (3.90)2fi sinh B2R(R + T + 8)

As in the slab geometry, if nontrivial solutions are to exist for A3 , A A
and i42fi, the determinant of their coe ff icients in Eqs. 3.87 through 3.90 must be
equal to zero. The determinantal equation involvesBand T and is the criticality
equation. One can either specifyB and solve for T, by trial and error, or specify
T and solve for B.

The determinantal criticality equation is

B\c - d,
iin B, R

1 C

sin BlcR

B\ -d
1 C I r/«

flBlecosBlefl

sin B, R\
1 c J

— [RBlc cos BlcR - sin B1cr]

-B

-Kc-d,

*t,

sinh B, R
2 C

sinh B2cR

fc
[RB2c coshB2cR

inh B„ r]
2c J

BB2c cosh B2c/} - sinh B2cfi

Bifi + dB\ [ cosh Blft(B + T + 8)
I cosh B B - , . — sinh B,„R

lfl sinh Blfi(fl + T + 8) 1B

cosh Blfl(fl + T + S)
—:—•— — — sinh B,BR - cosh B,~Rsinh B1R(R + T + 8) 1R 1R

B\n + d„\ ^/«
RB1R sinh B1RB - cosh B,RB

^t,

cosh Blfi(fl + T + 8)

sinh B1R(B+ r+8) (i?B'« COSh B^ "Sinh B>«R)

cosh BlftB - BBlflsinh B1RR

cosh B1R(B + T + 8)

n^7lfl(B +r+8) (sinh B>«fl ' Mi* cosh *if>

^r

cosh B2fl(fi + T + 8)

sft

. , „ ,„ — sinh B,„B - cosh B2.flsinh B2R{R + T + 8) 2fl 2B

cosh B2ftB - BB2B sinh B2RR

cosh B,.(B + T + 8)
_ (sinh B2ftB - BB2B cosh B2RR)

sinh B (B + T + 8)

0 . (3.91)
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As in the slab case, the procedure
for getting the critical radius of the
spherical core when the composition

and reflector thickness are given is
to evaluate the constants a , b , d ,

c ' c ' c '

ec, a„ , cL , and efi by using Eqs. 3,9
through 3.15, obtain B2 and -B2 as1c _ £ c
the roots of Eq. 3.26, obtain -B1R and
-BjB as the roots of Eq. 3.42, and
solve the determinantal equation, Eq.
3.91, for the critical core radius, R,
by trial and error.

For the converse problem in which
R and T are specified and the uranium
concentration (critical mass) is un

known, it is, of course, necessary to
make trial solutions with various

uranium concentrations until the set

of constants a , b , d , e is found
c c c c

that, together with a , d , and e and
the resulting buckling constants,
satisfies Eq. 3.91.

Once criticality has been es
tablished, three of the constants A ,

3 c

i44c, A1R, and A2S can be solved for in
terms of the remaining constant by
using Eqs. 3.87 through 3.90. The
remaining constant is the power con

stant. Ey substituting the constants
thus obtained into Eqs. 3.83 through
3.86 the fast and slow fluxes in the

core and reflector can be evaluated to

within the one unknown constant, which
depends on the power level at which
the reactor is operating.

Cylinder with Jacket Reflector and

No End Reflector. Upon application of
boundary conditions 1 and 2, the general
solutions, Eqs. 3.53 and 3.54, for the
fluxes in the core of the cylindrical
reactor with jacket reflector and no
end reflectors reduce to

<t>fc(r,z) = Au

ind

B2 - d \
1 c c

J0(ftlcr) cos

+ A
2c

From boundary condition 4, it follows

that

cos eicly + 8

cos e
2c

— + 8 0 ; (3.94)

and from boundary condition 3 and the
arguments of chap. 1, it follows that
the first root of the cosine is set

equal to the arguments of the cosines

in Eq. 3.94:

'n
\c

H
+ S = e

2c
+ 8 =~

and hence

'lc

TT

•2c

„!♦.
(3.95)

eic2

-Blc - dc
I0^2cr) cos e2cz (3.92)

$scKr>z) = ^lc J0(^lcr) C0S £.lcZ + A2c 7t>2cr) COS 62c
Z . (3.93)
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Equations 3.92 and 3.93 for the core fluxes then become

*/«<r.z) = 'lc

B2 - a '
1 c c

J0(/J-lcr)

+ A 2c

-B? - a '
2c c

loO^c1")

<£sc(r,z) = [Alc J0(^icr) + A2c I0^2cr)] cos 777

By the same argument, it follows that

£lfl 62fl 2,f+8
(= e

lc £2C)-

7TZ

.if ♦«
(3.96)

(3.97)

a- ♦ 5

(3.98)

Furthermore, boundary condition 4 can be satisfied by choosing A1R and A2_ so that
the reflector flux expressions, Eqs. 3.57 and 3.58, take the form

^/«(r'z) = A3«

and

*..<»•.*> '3ft

-*2« - V A-0[^lfl(fi + r + §)]

I0[/x1R(fi +T+8)] 7o^i„r>

+ #0(^,flr)l cos 7TZ

■(?♦»
r /f0[^1B(fl + r +-s)]

1 Jo^i/i** +r +§)]

K0[fM2R(R + r + 8)]

Io(^iBr) +^o^ifl^^ cos
7TZ

2(t+s
7TZ

+ A
4ft I0[M2fl(B + T + 8)] J0(^2fir) + K0(^2ftr)r COS

2(|+s

(3.99)

(3.100)

where T is the thickness of the jacket reflector and 8 = 0.71 k is the extrapo
lation distance.

Boundary condition 5 provides the following four homogeneous equations in
the four unknown constants, Ale, A2c, A3R, and A4fl (after dividing through by
cos tt/2l(H/2) + 8j , which is common to all four flux expressions):

'B\e - dt
lc J0(fileR) + A

~B2c ~ dc
2c *<>2c*)

- A
'~B\n ~dn\ f *•>„<« + T+8)]

3ft I0l(*lR(R +r +8)] Jo(^i«fi) +^o^iflfi)| 0 , (3.101)
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K0[f*1R(R + T + 8)] K0[A62B(B + T + 8)]
Alc J0(/xlcfl) +Aae Io(M2cfi)^3fl|- Jo[^fl(fi +r+8)] I,</^)+*o(/*i,M -*4. |- r [m (fl +r+§)] V^> +*,>,„*) - 0 , (3.102)

\

- Au
'B2. - d\ ktr.

1 c C \ f c

Mle ^i(Mi^) + ^2,
'-B* - d \ Ktr.2 c c \ f c

Mac -Ti(M2cfi) + ^
*?. " d*\ trfR K^lfl(B + T + 8)]

3R

/fi

.V^TTTTTw1^^^^^;-0 ' (3.103)

- 4
1 c

«r.e "sft (K0[fi1R(R + T + S)] •) ktr fKAfM2AR + T + B)] ~)—y.lc JA^R) +A2c——^2c lA»2cR)+A3R—7-^fl[J>ifl(fl+ T+ 8)] I>la*> +̂ (^lftB )j +44fi -y- ,x2fl [tj^^TTTTT] '^^ +*>2«B)j =° ' (3"104)
As before, ifnontrivial solutions are to exist for Alc, A2 c, A3R, and AA the
determinant of their coefficients in Eqs. 3.101 through 3.104 must be equal to

zero. The determinantal equation involves B and Tandis the criticality equation.
The determinantal criticality equation is, then,

file - dc
JA»lcR)

-B2c ~ dc\
I0^2CR)

V^c*> J<>2efi>

filfi + dR K0[pi1R(R + T + 8)]

W"^„(i.tru)]I>M

If^nlH + 7+8)]
i Em (b + r + 8)3 Jo(^Bfl) -^o(mibb)

0 In

K0[fx2R(R + 7+ 8)]

0 "^H

0 . (3.105)

-B? + d \ ktrtlc c \ f c

'tr

Mlc Jl^lcR)

MIC J-A^leR)

-B\r ~ d2 C < fc

M2c I,<Macfl)

M2c I,(Macfl)

-Bli^^. ^o^fi(^r +8)]
«« / 3 MlflW^«(«+ T+ 8)]

+«iV

:rs« p0^lfl(B + T+ 8)] trsfl (K0b2RiR + r+ s)]
3 M2fl|IjM,0(B + T+ 8)] Ji(^flfl)

0 U^2R

+^1(M2flB)
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To summarize again, the procedure for
getting the critical radius of the
cylindrical core when the composition,
length, and jacket reflector thickness
are given is to evaluate the constants

ac> bc dc> ec- aR> dR> and eR bY
using Eqs. 3.9 through 3.15, obtain
Blc and -B~e as the roots of Eq. 3.26,
obtain -Blfl and ~B2R as the roots of
Eq. 3.42, evaluate elc - e2 = e1R =
e2R = tt/2[(H/2) + 8], evaluate fiie
and fi2e by using Eqs. 3.55 and 3.56,
evaluate /J,1R and /J-2 R by using Eqs.
3.59 and 3.60, and solve the deter
minantal equation, Eq. 3.105, for the
critical core radius, B, by trial and
error.

It is clear that Eq. 3.105 and the
other defining equations can be used
to solve for any one of the following
quantities when the others are speci
fied: R, T, H, or critical uranium
concentration (or critical mass).

Once criticality has been es
tablished, three of the constants

Aic' A2C> A3R' and A4R can be solved
for in terms of the remaining constant
by using Eqs. 3.101 through 3.104.
The remaining constant is the power
constant. By substitution of the
constants thus obtained into Eqs. 3.96
through 3.100, the fast and slow
fluxes in the core and reflector can

be evaluated to within the one unknown

constant, which depends on the power
level at which the reactor is operating.

REDUCTION TO SECOND-ORDER DETERMINANT

The criticality equation evaluated
in the preceding sections for the

22 '1 1 22 '21

'12 *3 1 '12 *3 1

three different geometries has, in
each case, turned out to be a fourth-
order determinant. The first two

columns involve only core constants
and the last two columns involve only
reflector constants, with two zeros
in the last column.

It is not difficult to show that

the determinant of this fourth-order

matrix can be replaced by the determi
nant of the product of a 2 by 4 matrix
that depends only on the reflector
constants and a 4 by 2 matrix that
depends only on the core constants.
Since the product of a 2 by 4 matrix
and a 4 by 2 matrix i-s a 2 by 2 matrix,
the result is a reduction of the

original 4 by 4 determinant to a 2
by 2 determinant.

If the second and third rows are
interchanged in the original 4 by 4
determinant (criticality equation) as
it has been written, a determinant of
the type

Ml

*2 1

J3 1

l4 1

x12

122

*3 2

l4 2

"1 1

A21

A
n3 1

*4 1

0 (3.106)

3 2

M 2

is obtained in which the a's depend on
the core constants and the j4's depend
on the reflector constants. It is then

easy to verify that the following
equation, which is a second-order
determinantal equation, is equivalent
to Eq. 3.106:

'12

'22

= 0 (3.107)

l3 2

'4 2
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Equation 3.107 is somewhat easier to and
evaluate for each trial of R, T, or
N as the case may be.

EVALUATING THE CONSTANTS

The remarks at the end of chap. 2
about "Averaging Constants in the
Thermal Group" and "Effect of Hetero
geneity on Constants" are applicable
in the two-group problem also. However,
certain problems in evaluating the
constants that are peculiar to the
two-group model will be discussed.

Thermal Reactors. If the reactor

is a thermal reactor (most of the
fissioning caused by thermal neutrons)
and if no appreciable quantities of
resonance absorbers are present,
the two-group equations take a par
ticularly simple form. Equations 3.1
through 3.4, for the fast and slow
flux in core and reflector, immediately If
reduce to

v2<*\„c(-r) --r*.*.<i>

ktr, 32
+ — — <p. = 0 . (3.111)

kt kt *c
trthc trfc

If neutron diffusion away from a
point source of fast neutrons is
described by a two-group model, the
balance equation for the fast neutrons
in a cubic centimeter away from the
source is the first part of Eq. 3.110;
that is,

V2 <fife(r) -
32

X rf<
<£, (r) = 0. (3.112)

'tr
fc

k
tr

-V2 cpfAr) +0/c(_r) 2e

k.
2 = fc

3Z
(3.113)

- *,ke(r) 2athefetfc = 0 (3.108) Eq. 3.112 becomes

and

k
t r

the3 V2 ^thc(L)+cPthc(L)la
-<pfc(r) 2e = 0 ,

the

(3.109)

since 2a, = 0 = fe.if the slow-neutron
group has been selected as the true
thermal neutrons only and the fast-
neutron group comprises all neutrons
with energy above thermal. If each of
these equations, Eqs. 3.108 and 3.109,
is divided through by the diffusion
coefficient, the equations become

31

V2 4>fAr) -_f_*/e<r>
tr

fc

k
trth kth

k trf L' *t he
0 (3.110)
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V2 0, (r) 4>fAr) = 0 . (3.114)
'" 7T/C

The solution of Eq. 3.114 in the
spherical coordinate system is

cpfc(r) = A
'/ L j

(3.115)

If the average of the square of the
crow-flight distances that the fast
neutrons diffuse before dropping into
the slow-neutron group is evaluated,
it is found that

r* — e-r/Lf
I 47rr2T2/l2 dr

J c r
0

r°° e'r/LfJ 47rr2/l2c dr

2 _
r = 6L2

(3.116)



However, in chap. 2, it was shown
that 6t fc = r , also, in the continuous
slowing-down theory. Thus Lf has the
same signi fie ance as r t h, and 3Sc/A.tr,
can be replaced by 1/rt , in Eqs.
3.110 and 3.111. These equations then
become

V2 4>fAi) 4>fAr)
the

and

trthc th

k. I 2
t r , L

fc c

*thc - ° (3-117>

V2 *thAr) - — 4>thAr)

l tr fc
cp( = 0 . (3.118)

T_ k. fe
the t r

the

Hence, in the notation of Eqs. 3.5
and 3.6, it follows that

1

thi

"trM, fe . ,
the t h

k
tr

f c c

1

'tr
fc

r.. k.
the tr

the

(3.119)

(3.120)

(3.121)

(3.122)

A good average value for ktr, can
usually be chosen by inspection,
because 2tr is usually fairly constant
for most elements. However, it is
perhaps preferable to average kfr , (E)
over the fast flux distribution. If

the reactor is large enough for the
leakage to be small, q(E) is essentially

a constant (assuming no epithermal
absorption). It follows that

and

k
tr

fc

and

tr
fc

£22 E

rF i

E f° E
'th

. (3.123)

rEF d!E_
f ~E~

th

A somewhat better scheme, perhaps, is
to take

q(E) « e-*2^c<*> (
where B is evaluated from a best

guess as to the size of the equivalent
bare reactor. Then

ME)
B2re

£&.

r F e

I ktrfW~
JF. fc

B't.(E)

th
£**

S
E„ e'D 'c-B2r (E)

•dE
F <f£2
Eth s

dE

(3.124)

Similarly, for the reflector

1
*r - ~- ,

' thR
(3.125)

(3.126)

X.
fit

R TthR kfr
(3.127)

thR

and A.tr can be evaluated by inspection
or as in Eq. 3.123.
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Epithermal Reactors. In epithermal
reactors the lower limit of the fast-

neutron group (upper limiting energy
of slow-neutron group) will, in general,
be some energy above thermal, and the
slow-neutron group will consist of
thermal neutrons, as well as those
with energies from thermal up to the
dividing energy. Absorption of and
fission by neutrons in the fast
neutron, as well as slow neutron, core
group will, in general, have to be
considered. The problem of obtaining
good average values for the constants
in this situation is a difficult one.

The difficulty arises because the
neutron energy distribution is not
known. Various methods of averaging
two-group constants have been proposed
and used, but no method will, of
course, be wholly satisfactory. The
difficulties of cross-section averaging
can be alleviated only by using a
many-group calculation.

Probably the best method of averaging
the core constants in the two-group
model as applied to epithermal reactors
is the following. The simplifying
assumption is made that the spectrum
of the neutrons in the equivalent bare
reactor is the same as that in the

core of the reflected reactor, and the
bare, intermediate - reactor, criti
cality-calculati on form discussed in
chap. 2 is worked out. Then since
the reactor in question is not quite
thermal, a decision is made to let the
slow-neutron group include some of the
lower energy lethargy intervals, for
example,24, 25, 26, 27, 28, 29, 30, 31
(see the calculation form in the
Appendix), as well as the true thermal
group (interval 31 is just above
thermal). The fast-neutron group will

3 1

then be the neutrons in intervals

1 through 23. Then, for example,
ktr, in the two-group equation is
chosen to have the value that makes

the fast-neutron group leakage equal
to that for the first 23 intervals in

the Fermi model; that is,

23
In

Ar= i €k^t'n
U»

k
tr

fc 23

B2 I In
U»

N=l €^~t'n

(3.128)

The other physical quantities are then
ev aluated:

'fc

23

I

'23

9*
U«

ff=i s^t'n

23

" (2°)jv £(2 ) "*N=l Sk^t'n

23
°N

In

U»
u <?(2 ) "N=l S^^T'N

31

u*

(3.129)

, (3.130)

<*>„* + I <*.>,
th

uu
£(V, *N=23

3 1

<t>th + I
9j»

U»
N=23 S^T'N

(3.131)

*th\r.B2 + l {k<r>NB2-jTrru»
N=23 ZK^t'n

In

k
tr
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<t> LB2 + E B2
th U £(2 ) *iy=23 ^^T'N

(3.132)
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3 1
9jV

<t>th?-fthv + I af)Kv~nrT~v»
tn >=23 >K T'N

s

U qN
d> .2 + E (2 )„ U„^th a . . " a'N £(•£ ) Nth N= 23 £\<lt)n

(3.133)

23 9*

jv=i Zk^t'n
. (3.134)

23 %

fl=l ^^t'n

Even less is known a priori about
the neutron spectrum in the reflector.
However, since there is no fissionable
material or nonfissionable isotope of
the fissionable material in the

reflector, the reflector presents, in
general, a small absorption cross
section to neutrons that are slowing
down. It therefore seems reasonable

to consider the slowing-down density
as beinga constant, insofar as finding
average quantities is concerned. This
means that <p(u) is approximately
constant and therefore

K*rtR =~u~i ' ktr{") du • (3.135)/" " I 0

and

where

wKer'e u^ is the lower limit (in units
of lethargy) of the fast-neutron
group; and

2 =— f ' 2 (u) du (3.136)
afR Uj Jo

-* k E''
s r

In

e Ei

(3.137)

1 fui
k = I k (u) du,

ul o

(3.138)

E- = an average fission energy,

El - lower limit (in units of energy)
of the fast-neutron group,

g - average logarithmic energy loss
per collision.

The denominator of the expression for
2fl is the number of centimeters a
neutron travels, on the average, in
slowing down into the slow-neutron
group. The inverse is then the
probability per centimeter of a
fast neutron dropping into the slow-
neutron group.

There is no problem in regard to
the slow-neutron group constants in
the reflector if £j is equal to Eth
(the actual energy corresponding to
the temperature of the true thermal
neutrons), that is, if the slow-
neutron group has been chosen to be
the actual thermal-neutron group. If
E, has been chosen as greater than
E fcJ it is difficult to ascertain a
weighting factor for the thermal cross
section relative to the average cross
section between E k and £j. It can be
written that

k
t r

and

= Ak
t r

+ B

AZ

thR

~u ^v7~)J ktrU) dUyuth ul' u,

(3.139)

t hR

1 ru"> , s+ B- -J ktr(u) du ,
iuth ~ ui} at

(3.140)

where

A + B = 1,
A - fraction of slow-neutron group

flux that is thermal,
B = fraction of slow-neutron group

flux that is not thermal.

An educated guess is made of the value
of A and B. If the reflector is very
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thin, less than 3 in., or nonmoderating,
A and B can be taken as the same as

A and B for the equivalent bare
reactor. If the moderating reflector
is very thick, greater than 9 in., the
value of A will be close to unity
and the value of B will be close to

zero. If the reflector is neither

thick nor thin, an intermediate guess
for A is required.

RESULTS OF CRITICALITY STUDIES

This section presents some graphs
of critical mass, flux., and power
distribution to provide a brief,
quantitative picture of the numerical
values of these quantities in various
kinds of reflected reactors.

Figure 3.2( J shows the critical
mass of "cold, clean," beryllium oxide
moderated reactors for various be

ryllium oxide reflector thicknesses.
These are not practical reactors - they
contain no fission-product poisons or
structural material and they are at
room temperature. When these con
ditions are present, the uranium
investment is much higher, as will be
discussed in the next chapter. It can
be seen from Fig. 3.2 that for a
given core diameter, the reflector is
very effective in reducing the critical
mass. These results were obtained by
two-group calculations.

Figures 3.3(3^ and 3.4(3^ show
experimental results of critical mass
determinations of "cold, clean,"
water-moderated reactors with water

reflectors. It can be seen from

Fig. 3.3 that water-moderated reactors
can be very small - of all elements,
hydrogen has the largest slowing-down
power for neutrons. In the current,
G-E, airplane-reactor design , ad vantage
is taken of the much smaller fraction

of the core volume that must be

(2)
L. L. Gartner, Criticality for Uranium

Dioxide Beryl I iuaOxide Reactors, NEPA No. 949-EAR-
R6 (Mar. 14, 1949).

(3)C. K. Beck, A. D. Callihan, J. W. Morfitt,
and R. L. Murray, Critical Mass Studies Part III,
K-343 (Apr. 19, 1949).
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devoted to moderator when water,
rather than beryllium oxide, for
example, is used. More surface is

Fig. 3.2.

Reactors; Free-Flow Ratio

20

DWG. 20405

CORE DIAMETER (ft)

Critical u2350.

50 100 200

H:U239 ATOMIC RATIO

0.
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BeO

1000

Fig. 3.3. Critical Height vs.
Moderator Ratio; Aluminum Tank; Water

Reflector.
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available for heat transfer to the air

(the GE-ANP design is air-cooled).
Figure 3.5( * shows what the

critical mass of a fast, unmoderated
reactor would be. In the reactor

treated here, 40% of the core volume
is bismuth coolant. The fast, un
moderated design is practical for a
power reactor from a heat transfer
standpoint, but it can be seen that
the uranium investment is so large
that this type of design is unfeasible

(4) D. S. Selengut, Uranium Weight for All
Uetal Reactors, NEPA- IC- 50- 2- 25 (Feb. 10, 1950).

DVTO^^Ws

VOLUME FRACTIONS

Uii&»0.1
Bi.0.4

Mo =0.5

BISMUTH-COOLED REFLECTOR

\- 1
1 "

6 9 12

REFLECTOR THICKNESS (in)

Fig. 3.5. Bismuth-Cooled, Mo

lybdenum, Fast Reactors with Square-

Cylinder Geometry.

a^-^Sfce present time. The calculations
presented in Fig. 3.5 were made by
transport theory.

Figure 3.6^ ' shows the calculated
critical mass of some "operable"
Be2C + 1/3 C moderated, bismuth-
cooled, power reactors. For these
reactors, which would operate at a
temperature of 1600°F, the composition
used for the calculations included

considerable stainless steel tubing
and fission -product poisons. The
calculations were therefore realistic

estimates of the U necessary for
this type of design. It can be seen
that 2.5 to 4 ft is the best size

range for this design.

mm

400

1

TEMPERATURE, 1600°F
DILUENT, 0.125-in. ID, 0.10-in. WALL,

STAIN1 FSS STFFI TURING

VOLUME FRACTION Bi, 0.20
Xe AT EQUILIBRIUM CONDITION

REFLECTOR
THICKNESS

~-_\^==
^^4tn.

3 4

REFLECTOR OUTSIDE DIAMETER (ft)

Fig. 3.6. Requirements for Critical

1

1/3 C.

Bismuth-Cooled UC2 Reactors Moderated
with Be2C +

Figures 3.7(2) and 3.8<2) show
typical thermal- and fast-flux spatial
distributions in beryllium oxide
moderated reactors with beryllium
oxide reflectors, Fig. 3.7 shows a
thermal reactor, and Fig. 3.8 shows a
reactor in which the neutrons that

cause fission have median energy that
is somewhat above thermal energy. It
is customary to find a rise in the
thermal-flux distribution in the core

near the reflector when the reflector

is made of moderating elements.

T. R. Mitchell, Criticality Maps for
Bismuth Cooled Reactors, NEPA-IC-49- 12-36
(Dec. 16, 1949).
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Fig. 3.8. Radial Neutron-Flux
Distribution in a Spherical Reactor.

Figure 3.9(6^ shows the north-south
flux distributions in the MTR for a

thin, slab type of loading of the fuel
elements. The core is H20 and Al.
The first reflector is beryllium and
the second is graphite.

It is to be noted that in thermal

reactors in which nearly all the
fissioning is due to thermal neutrons,
the thermal flux distribution in the

core also gives the power distribution.
In nonthermal reactors calculated by

J. H. Buck and C. F. Leyse, Materials
Testing Reactor Project Handbook, .ORNL-963
(May 7, 1951).
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grWp' methods, the power distribution
must be obtained by summing the
products of the group fluxes and
the respective average fission cross
sections for the groups.

Figures 3.10 through 3.13( * give
the thermal- and fast-flux spatial
distributions for an intermediate,
beryllium oxide moderated reactor
design. These calculations were made
by using a 27-group model on IBM
computing machines. Figure 3.10 gives
the spectrum of the neutrons escaping
from the core. It is interesting to
note the effect of the "window" in the
beryllium cross section at high energy.
Figure 3.11 gives the spectrum of the
neutrons causing fission at various
spatial positions in the core. The
thermalizing effect of the reflector
is apparent. Figure 3.12 is Fig. 3.11
integrated over the core, and Fig. 3.13
is the spatial power distribution.
The rise in the power density near
the reflector is quite pronounced in
intermediate reactors with moderating
reflectors.

Figure 3.14' ' shows the spatial
distribution of flux at different

energy levels (on lethargy levels at
which lethargy u = In 10 /E) in an
intermediate, beryllium oxide moderated
reac tor.

JSfc** PROBLEMS

1. The MTR has the following constants:

1.34 ,

Core (Al + U + H20)

th

L -3.64 cm ,

tr
th

0.263 cm ,

J. W. Webster and 0. A. Schulze, Some
Results of Criticality Calculations on BeO and
Be Moderated Reactors, ANP-66 (Oct. 15, 1951).

(8)C. B. Mills, Statics of the ANP Reactor-A
Preliminary Report, Y-F10-81 (Jan. 8, 1952).
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DISTANCE FROM SLAB CENTER(cm)

MTR Lateral Flux Distribution Calculated as Thin Slab (11 by 60

by

Fig. 3.9.

70 cm).

T , = 64 cm

k
tr .

= 1.243 cm .
3

Reflector (Be)

Thickness ^ 46 cm ,

L2 = 396 cm2 ,

tr
th

— 0.64 cm ,

T = 89 cm ,

k
tr.

= 0.60 cm .
3

Assuming no absorption of or fissioning
by above-thermal neutrons (a good assumption
in the MTR), find the critical size of the

sphere, the cylinder with jacket reflector

only (take the height of core and reflector
as 78 cm), and the parallelepiped with
reflectors on the north and south faces only

(take the length of core and reflector in the
east-west direction as 113 cm and in the

vertical direction as 78 cm).

2. Find the spatial distribution of the

fast and thermal fluxes in the different

geometries of problem 1, and plot the fluxes.
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Ch a p t e r 4

REACTIVITY EFFECTS

When a reactor is operated, it
heatsup thermally, the fissionable
material is consumed, and fission
products, some of which (such as
xenon and samarium) have high capture
cross sections, accumulate. The last
two effects, and in most reactors the
first effect, act to decrease the
probability that a neutron will
produce a fission because they increase
the likelihood of nonproductive
capture or leakage of the neutrons.
The reactor must, therefore, contain
enough fissionable material to ensure
criticality when it is in the hot,
poisoned, depleted condition. It
follows, then, that at startup, when
the reactor is cold, clean, and
undepleted, a degree of virtual or
potential supercriticality will exist
that must be offset by control rods.
Such control rods, called "shim rods,"
are fully inserted at startup and are
gradually withdrawn (if they are
absorber rods) as the temperature
approaches the operating level, the
fission-product poisons build up, and
the fuel is depleted. This type of
control is distinct from the 'fine'

control necessary to make the reactor
momentarily supercritical or sub-
critical when power changes are
required.

No new methods are needed for

calculating the increased critical
mass required to offset the effects of
temperature, poisons, and depletion.
It is necessary only to evaluate the
constants in the light of (1) the
expanded reactor and the higher kT
energy of the thermal neutrons and
(2) the increase of the 2 because of

a

the fission products. Enough extra
uranium must be used to offset the

burnup of fissionable material that
will take place at design power during
the operating time prescribed by the
fuel operating cycle.

This chapter presents a discussion
of temperature, uranium depletion,
and fission-product poisons and their
virtual reactivity effects. (The word
"virtual" is used to indicate that the
effect never really occurs in the
reactor but is always offset by a
repositioning of the shim rods.)
Chapter 5 presents a discussion of the
calculation of the number and size of

control rods needed to offset the

virtual supercriticality present at
startup.

It is clear that since the effect

of the shim control rods is to counter

balance the effects of temperature,
depletion, and poisons, all four
effects should be measured in the same

terms. Much confusion has existed

in reactor physics about the units of
measure for these effects. However,
as far as shim control cal culations
are concerned, the only important
requirement is that the four effects
be expressed by a common measure. It
has been found that in calculating the
strength of a control rod a convenient
procedure is to find the fictitious
value of v (physically equal to 2.5
for U , the number of neutrons per
fission), say, the v that would be

' c a

necessary to make the reactor critical
with the rod inserted. The reactor

may have had a degree of virtual
supercriticality before rod insertion
required a fictitious vcb for criti
cality. The measure of the effective
ness of the rod is chosen to be

c6
x 100% (4.1)

If the control rod has been selected

of just the right size so that the
reactor is made critical when the

control rod is inserted, the effective
ness is given by

- 2.5

x 100% ,
2. 5

cb
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where 2.5 is the physical value of v. and Eq. 4.2 measures a virtual super-
It would be possible to take simply criticality.

(v . - 2.5) or even just v . as the The effect of fission-product
co ** .co t t

measure in this case, but in chap. 6, poisons is given by
"Kinetics," it will be found that a
convenient measure of reactivity d dp_
is kex/ke,f, and it can be easily 2.5
shown that

i where vd is the fictitious value of
'* _ ^'^ ~ vc v necessary to make the hot, clean,

k ,, 2.5 ' undepleted reactor critical. The
e / / . • • i_ • i

uranium concentration in this calcu-

which is the negative value of Eq. 3.1. lation is also
Since calculations of control rod .

rr u - u j t .i N„ (final) + AJV„ (depletion) ,
effectiveness have to be made lor the U vii"° u f »

regulating rods also and the unit of but fche macroscopic absorption cross
measure should conform to that used in sections are for the unpoisoned
the kinetic formulas, the choice was situation.
made to express the effectiveness of The effect of temperature is
the shim rods as well as the effects given bv
of temperature, poisons, and depletion
in the same terms. The fact remains, v. - vd
however, that for the "shim effects" — x 100% , (4.4)
described in chaps. U and 5, it does
not matter how the effect is expressed where y ^ is the fictitious value of
so long as there is consistency. v necesspary t0 make the cold, clean,

It is first necessary to calculate undepleted reactor critical. The Nv
the critical uranium concentration, in this calculation is still
yV„ (final), in the hot, poisoned, . > A , . ,
,u , .. , .. T ... • , , t- A/„ (final) + A/V„ (depletion) ,
depleted reactor. In this calculation u u

the additional macroscopic absorption but tne macroscopic cross sections are
cross section due to the xenon is for the coid, clean situation.
found by the methods to be given in Expressions 4.2, 4.3, and 4.4 are
this chapter. The value of v in this positive and measure a virtual increase
calculation will be its physical in reactivity since we are working
value, 2.5. backward with respect to the life

The effect of the depletion is history of the reactor operation.
given by Enough control rods are then

provided to give control strength, as
*" 5 ~ vd (a o\ measured by Eq. 4.1, to offset the

iUU% , v • effects of temperature, poisons, and
depletion, as given by the sum of

where vd is the fictitious value of Eqs. 4.2, 4.3, and 4.4, that is,
v necessary to make the hot, poisoned
reactor critical with extra uranium ' dp t

added to offset depletion. The 2.5
uranium concentration for this calcu

lation is then

100% , (4.3)

100%

Nv (final) + AWj, (depletion)
DEPLETION

The amount of fissionable material

It follows that v, is less than 2.5, consumed at design power during the
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operating time prescribed by the fuel
operating cycle can be easily found
from the relation

1 watt % 3. 15 x 10 fissions per second.

(This value varies slightly with each
reactor because the energy of the
gammas emitted upon neutron capture
depends upon the reactor composition. )
When this amount of fuel is added to

the concentration, Nv (final), of the
hot, poisoned, depleted reactor in

v

macroscopic cross sections 2, and 2
obtaining the v d of Eq. 4.2, the

will be affected, primarily.

FISSION-PRODUCT POISONS

The fission products that present
the largest capture cross sections to
neutrons in a thermal reactor are

xenon and samarium, wi th xenon present
ing the largest. Xenon arises through
the decay chain

52Te
135

-> 53-
135

6.6h

The half life of tellurium is so

short that the iodine can be considered

as being formed directly from fission.
About 5% of the xenon comes directly
from fission and the rest from iodine

decay. The calculation of the concen
tration of xenon before and after

shutdown .will be discussed in detail

in the following. The samarium arises
through the decay chain

1.7h
60

Nd
149

Pm•* 61
149

The mathematical formulation for the

samarium buildup is quite similar to
that for xenon; so it will not be
given here. The other fission products
can be taken into account, roughly, by
assuming that they add 50 barns' '
(thermal) per fission to the poisons
in the reactor.

J. H. Buck and C. F. Leyse, Materials
Testing Reactor Project Handbook, ORNL-963 (May 7,
1951).

The Xe isotope, which is the
isotope of xenon with the high capture
cross section, comes principally from
decay of I , as indicated above.
An equation for the rate of change of
iodine can be written:

*>! - A^j , (4.5)
dt

where

-> 5 4'
135

of I

9. 2h

135 per unit volume,
Vj - yield of I per fission,

F = fission rate of the reactor in

fissions per unit volume per
unit time,

A.j - decay constant of I - proba
bility of disintegration per
unit time.

The parent of the iodine, tellurium,
which is formed directly from fission,
has a half life so short that the

iodine can be considered as coming

Cs-> 55
135

directly from fission. Upon solving
the differential equation, Eq. 4.5,
and using the boundary condition that
no iodine is present at startup
(t = 0), the following equation
results:

NT
kT

(1 •Xi

47h

-> 62 Sm149 (stable)

(4.6)

For the rate of change of xenon, the
differential equation is

dNv

N^ + Fy
dt

FXt
- NY k~

Xe a<

~ I, *<*> *X crY (£) dE
A e

where
_ c V 1 3 5= a tom s ol . Xe per

volume,

(4.7)

unit
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ypxe - yield of xenon directly from
fission,

A.Xe - decay constant of Xe ,
<p(E) - reactor fluxperunit energy,

cr^AE) - xenon capture cross section
as a function of energy.

The first two terms of Eq. 4.7 account
for the accrual of xenon per unit
time, the third term is the decay per
unit time, and the last term is the
burnout due to neutron capture per
unit time. Equation 4.7 can be
rewritten as

dN
Xe

dt

where

*I^I + ^FXe - NX,kDX, • (4'8)

kDXe " ^Xe +J>(£> CTXe(£> dE • (4.9)
Thus ^-/)Xe * s tne "disappearance"
constant. If Eq. 4.6 is substituted
in Eq. 4.8 and the resulting differ
ential equation is solved under the
boundary condition that Nx = 0 at
startup (t - 0), the following formula
is obtained:

e-^-oXe', (4.10)

where yXe = yx + yF\e = total yield
of xenon per fission. If t is large,
Eq. 4.10 reduces to

JV

Fy Xe

k
DXt

Fy Xe

^Xe + / ^(£) aXe(£) dE
(4.11)

or

*!. - <e kXe + / <p(E) crXe(£) dE

(4.12)
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which says that for equilibrium
conditions the rate of production
of xenon equals the rate of disap
pearance of xenon.

It is interesting to note the form
of this equation for a high-flux thermal
reactor. ' For a thermal reactor,
Eq. 4.12 becomes

^Wx. = W°x.^x.-+^x.> • <4'13)
where

i23SNy = atoms of U per unit of volume,
cr - fission cross section,

4> - the thermal flux,

and all quantities are at thermal
energy. Equation 4.13 can be rewritten
as

*x.°x.

Nvaf y\e
^CTXe

{kXe + ^X.'
(4.14)

If the flux, cp, is very large, </>Oxe *s
much greater than ^-Xe> and the quantity
in parentheses becomes approximately
unity. Equation 4.14 then reduces to

or

N°Y or
Xe Xe

^X,

^xXi
00 AL

(4.15)

(4.16)

Thus in a thermal reactor, the density
of xenon saturates with respect to
increasing flux and depends only on
the uranium concentration when the

flux is large. It follows that the
xenon concentration is uniform over

the core of such a reactor. However,
this is not true in an intermediate-

energy reactor or in a thermal reactor
with low flux in which the burnout is

not necessarily large compared with
the decay per unit time.

(2)
G. Young, Critical Mass Needed to Over-Ride

Xe, MonP-457 (Dec. 29, 1947).



If the xenon reaches its equilibrium density for the fission rate F and the
power is suddenly reduced to fF, the differential equation for the iodine behavior
is

dNt
— • fFVj -N^t • (4.17)

When Eq. 4.17 is solved under the boundary condi tion that N, =N't, the equilibrium
iodine concentration at t = 0, the result is

JVj =-—[fFyAl - e'kl*) + k^l e'kl*] , (4.18)

where

N, - the equilibrium iodine density,

t = time measured from the moment of instantaneously reduced power.

The differential equation for the xenon behavior is

dNX"^-= N^ + fFyFXe - NXe(kXe +ffE<po-Xt dE) , (4.19)
where <p is the flux before the power is reduced. When Eq. 4.19 is solved under
the boundary condition that NXe - NXe at t = 0, the result is

/f7xe ^ " fFyT e-kl* I fFyXe k,N\ - /Fy, \
NXe = + + [N°Xe e-^BXe' , (4.20)

kDXe kDXe ~ kl \ kDXe kDXe ~ kl /

where

kDXe =^Xe + ffg4>(E) *XAE) dE.
If the reactor is completely shut down, Eq. 4.20 becomes

k.N] I krN°r
•Xe \ e'kl* +KeA.v — \T \ A.v — A.T

Xe I \ Xe I

Nv_ =- i-L_e-Xi* + (-V°v. — LJ[_ e-^Xe«

kiNi= N°Xe e-^Xe« +- (e'^i* - e'**.*) . (4.21)
XXe - kl

The first term gives what is left o f the equilibrium xenon at timet and the second
term gives the xenon that has come from decay of the equilibrium iodine.

From Eq. 4.21, the dNXe/dt can be found, and the equation
dN„

Xe

0
dt

can then be solved for t. The result is the time after shutdown at which the maxi -

mum concentration will occur. The result is

1 kl , .t = In * . (4.22)
kr - k„ N° kY
I Ae Xe Xe ,

kXe +— <^I " ^Xe>
N\ k,
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The average cross section of xenon
for thermal neutrons is found by
weighting the Nx ax (E) over the
thermal flux distribution (usually
assumed to be Maxwellian), that is,

Nv CrY
Xe Xe

th

/ NXe crXe(E) Ee'E/kt dE

s E e'E/kt dE

where the cross section of xenon is

given by the Breit-Wigner formula:

CTXe<£> ^2 N E
(E - En)2 +

4

where

r = 0.107 ev,
E0 = 0.0863,
crQ = 3.4 x 106 barns.

The other constants of xenon are

yT = 0.0686,

yFXe - 0.003,
kXe = 2.103 x 10*5 per second,

kt = 2.900 x 10-s per second.
The effect of the xenon (and,

similarly, the other fission-product
poisons) is found by modifying the
Z of the reactor to take into account

a

the macroscopic xenon cross section,

NXeaXe-
A reactor may be designed with

enough uranium in it to override the
xenon poisoning at itsmaximum transient
concentration after shutdown (for
example, the STR), or it may be
designed to only override the xenon
at a somewhat lower concentration,
depending on the operational re
quirements of the reactor (for example,
the MTR). In the latter case, if the
reactor is not restarted within a

short time after shutdown, it is
necessary to wait for a period of time
to allow part of the xenon to decay
to cesium before the reactor can be

restarted.
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TEMPERATURE

Increasing the temperature of a
reactor has three effects: (1) it
raises the energy of the moderator
atoms and hence raises the average
energy of the thermal neutrons, with
the consequence that the effective
cross sections for thermal neutrons

are changed (sometimes called the
thermal-base effect); (2) the reactor
expands and the atomic density of the
constituents is reduced; and (3) the
reactor size is increased.

Since the temperature is changed,
the first effect results in a new

Maxwell Boltzmann distribution M(E),
which is given by

M(E) E „•£/*!•

The effective thermal cross sections,
as given by

.00

and

th

/ a (E) E e'E/kT dE
•>n a

J E e-E/hT dE

1 /o -<r(£>
E e'E/kT dE

tr
t h

-co

/ £ e-E/kT dE

will thus be changed.
The second effect will result in

decreased atomic concentrations. The

third effect will result in a changed
jB in the case of Fermi age formulas
and, simply, changed dimensions in the
case of the group determinants.

RESULTS OF CALCULATIONS ON

REACTIVITY EFFECTS

Figures 4. 1, 4.2, and 4.3 show the
results ' of calculations made of the

virtual reactivity effect of fission-
product poisons and depletion in the

w;J. H. Buck and C. F. Leyse, Materials
Testing Reactor Project Handbook, ORNL-963 (May 7,
1951).



8 12 16 20

TIMEOF OPERATION (days)

Fig. 4.1. Reactivity Loss in the
MTR Owing to Xe135, SmM9, U235
Depletion, and Build-up of Low Cross-

Section Fission Products as a Function

of Time of Operation.
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Fig. 4.2. Reactivity Loss in the

MTR Owing to Xe13S, Sm135, U235 De
pletion, and Build-up of Low Cross-

Section Fission Products as a Function

of Time of Operation up to 36 Hours.

MTR. The quantitative data given are
typical of thermal reactors. The
effect of equilibrium xenon, for
example, is usually about 4% in
Sk/k (- Av/v). It is interesting to
note the magnitude of the effect of
the after-shutdown xenon growth in
this high-flux, thermal assembly.
The effect is so large that the MTR
was designed with only enough fuel to
enable the reactor to be restarted

within about 30 min after shutdown.
If not started within 30 min, the

0 10
0.08
0.06
0.04
0.02

0
-0.02
-0.04
-0.06
-0.08

24 32 40 48 56

TIME AFTER SHUTDOWN (hr)

Fig. 4.3. Extra Reactivity Change
in MTR After Shutdown.

reactor must lie idle for about two

days, as can be seen from Fig. 4.3.
Figure 4.4 shows the results of

some calculations ' of the virtual

reactivity effects for various airplane
reactor proposals that have various
neutron spectra. In each case the
operating temperature is 1286°F, the
power is 200 megawatts, the moderator
is beryllium oxide, the coolant is
sodium, and the tubing is stainless
steel.

Figure 4.5 shows the after-shutdown
xenon growth for various fractional
power reductions from 200 megawatts
in a slightly epithermal reactor.

PROBLEMS

1. Use the therma 1, Fermi age criticality
formula to find the effect of temperature,
depletion, and xenon poisoning at equilibrium
and maximum transient density in a bare,

graphite reactor, 5ft in diameter, consisting
235

only of carbon and U . The temperature at

startup is 70 F. The constants have the
values;

r h = 337.7 cm ,
cr (C) = 0.001 barn (0.025 ev),

"th

(4)
B. T. Macauley and J. W. Webster, Results

of Some Bare Pile Calculations of Critical Mass
and Reactivity Effects, Y-F10-22 (Dec. 1, 1950).
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Fig. 4.4. Reactivity Effects as a

Function of Reactor Spectrum.
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Cr (C) - 4 barns,

a_ (U) = 640 barns(0.025 ev),
'th

(U) = 10 barns,
'th

af (U) = 550 barns (0.025 ev),
' th 3
i°c70oF = 1-61 e/cm

Assume throughout the problem that T h is
unaffected. The power level is 600 megawatts
and the reactor operates for 24 hours. The
reactor is a bare, square cylinder. The

operating temperature is 2200 F.

10.0

9.0

ivJSo^i

irT

ng 8.0

8. 70
(A

I 6.0

5 4.0

o 3.0
z
o

2.0

1.0

\f'0

S(»0.25

/•0.50s-.

, —

ORIGINAL POWER LEVEL
NEW POWER LEVEL - 200 f megawatts

1 1 1 1 1 1
10 20 30 40

TIME AFTER POWER CHANGE (hr)

60

Fig. 4.5. Behavior of Xenon Con

centration After Reduction in Reactor

Po«£>ii»Level.

In calculating the thermal base effect

assume that the absorption and fission

cross sections are proportional to 1/v and
that the scattering cross sections are

constant. For the expansion, assume that the

coefficient of linear expansion is

a = 7.86 X 10*6 per °C .
In connection with the xenon,

constants as having the values:

cr (Xe)
a

*Xe

yFXe
k

Xe

kT

take the

= 3 X 10 barns,

= 0.0686,

= 0.0716,

= 0.003,

= 2.103 x 10*S
hr),

= 2.900 x 10*5
hr).

per sec (_ 0.0757 per

per sec (= 0.1044 per:

2. Derive formulas for the concentration
of samarium before and after shutdown.



Chapter 5

CONTROL RODS

In chapter 4 it was pointed out
that when a reactor operates it heats
up, fission-product poisons accumulate,
and the fissionable material is

gradually consumed. All these things
tend to increase the probability of
nonproductive neutron capture or
neutron leakage. It is thus neces
sary to build into the reactor enough
extra uranium to ensure that the chain

reaction is still self-sustaining when
these effects are at their worst.

However, with all this extra uranium
in the core, the reactor will be
supercritical - to the greatest degree
at startup - when the effects are
absent, unless shim control rods are
provided. If shim control is obtained
by absorber rods, these rods would
normally be fully inserted at startup
and then gradually withdrawn as the
reactor heats up, the poisons ac
cumulate, and the fuel burns out.
The shim control rods are thus normally
used to keep the reactor critical.
The regulating rods are used to intro
duce a small amount of k for power
changes.

Several means of obtaining shim
control are available: absorbers,
fuel removal, and moderator or reflector
removal. In reactors which are thermal

or near-thermal, however, the most
control for a given volume and mass
movement is usually obtained by absorber
control rods. The discussion here

will be restricted to the absorber

type of control rod. Calculations of
the effect of fuel, moderator, or
reflector removal are usually best
done by perturbation theory. ' ' ' '

'^'U. J. Nielson, Bare Pile Adjoint Solution,
Y-F10-18 (Oct. 27, 1950).

(2) H. J. Nielson, The Adjoint Equat ions and
Perturbation Theory for a Reflected Reactor,
Y-F10-31 (Jan. 18, 1951).

(3) H. Brooks, A First Approach to Computing
Control Effectiveness for Fait Piles, A-4269
(Dec. 2, 1946).

In chapter 4, the effect of tempera
ture, fission-product poisons, and
depletion was measured by the expres
sion

2-5 - v4„

J!- • <5-n
where v. . is the fictitious value of

apt

v necessary to make the reactor
critical in the cold, clean, undepleted
condition. In this calculation, the
uranium concentration is taken as

Nv = Nv (final) + A/Vy (depletion) ,
where Ny (final) is the necessary
concentration in the hot, poisoned,
depleted reactor and AA^„ (depletion)
is the uranium per cubic centimeter
that must be added to take care of
depletion.

Expression 5.1 therefore measures
the degree of virtual supercriticality
that will exist in the reactor at
startup. The problem is then to find
the necessary quantity, size, and
pattern of shim (absorber) control
rods that will give a virtual decrease
in reactivity that is equal in magni
tude and opposite in sign to the
virtual supercritica1ity given by
expression 5.1. The reactor to be
used for the calculation is the cold,
clean, undepleted (startup) assembly
with

Nv = Nv (final) + Ny (depletion)
and v = v. . for criticality. The

dp t '
effectiveness of any trial pattern of
control rods is therefore

Vdpt -. Vc
(5.2)

V

where v is the fictitious value of
c

v necessary for criticality after the
rods are inserted. When v equals

(4)
S. Glasstone and H. C. Edlund, The Elements

of Nuclear Reactor Theory (2d ed., unpublished at
this date), Van Nostrand, New York.
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2.5, a correct array of control rods
has been found.

The calculation of the effectiveness

of the regulating rods, which is
necessary for prescribing their size
and location, can be done by the same
methods. With respect to the reactor
condition for this calculation, it
is perhaps best to use the hot,
poisoned, depleted assembly with
Nv = Nv (final) and hence v = 2.5.
The effectiveness of the regulating
rod would then be given by

2.5 - v

—rr"-- <5-3)
where v is the fictitious value of

c

v necessary to keep the hot, poisoned,
depleted reactor critical with the
regulating rod inserted. The quantity
5.3 is equal to the actual (as opposed
to virtual) reactivity, ^ex/^etf> that
the regulating rod can create in the
reactor, as can be seen from the
thermal, Fermi age formula,

ff

'ff

'ff
1 + L2B2

The v for criticality is clearly
given by (ve/v) ^ett ~ It and hence
k ,, = v/v . Therefore

kcff - 1 -c - 1

'ff
V

V
c

V - V 2.5 - v

v 2.5

which is sometimes denoted by Ajv/v.
Still another way of writing the same
thing (for a thermal reactor) is

th th Afe
(5.4)

th

wh« is the physical value of the
th

thermal reproduction constant and k %n
c

is the fictitious value of fe .., neces-
r ft
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sary for criticality after the rod
is inserted. The notation L\k/k for
definition 5.4 is rather commonly used
in the literature. The expressions
5.3 and 5.4 are equivalent, and both
are equal to k /k if an actual

L '11 ,
reactivity change as opposed to a
virtual reactivity effect is being
considered. Some of the results of

control rod calculations reported in
the literature are given simply by
Afe - kth - kfh . In such a case, it
is necessary to know the k . of the
reactor to interpret the results in
terms of expression 5.4 or the equi
valent expression 5.3.

It is well to be on guard with
respect to the notation Afe/fe. For
example, if the virtual effect on
reactivity of a uniform poison is
being expressed, the effect is some
times measured by the actual change

fe h divided byin the

since

Afe
th

th

- v

V

th«
t h

or,

"2
A2

ai

by the change in the macroscopic
absorption cross section divided by
the macroscopic absorption cross
section. (In the above equation,
if kfh on the left is the kf, without
the poison, then the 2o on the right
is the 2 of the clean reactor plus
the AZ of the added poison. ) These
physical changes Ajz./Zz , and AS /£
r ' ° t h' t h a' a

are only approximately equal to the
reactivity change as given by expres
sions 5. 4 or 5.3, the condition for
them to be accurate being that the
neutron leakage probability shall
have been unaffected by the uniform
poison. This condition is only satis
fied for a small amount of uniform

poison or for reactors in which the
leakage is small. Expression 5.3



then is in the units that will be

used in the kinetic formulas of
chap. 6, as it should be, since the
regulating rods are associated with
the time-dependent behavior of the
reactor.

The best mathematical method for
determining the v for use in expres
sions 5.2 or 5.3 is that devised by
Nordheim and Scalettar.(SJ The best
and most complete description of
their method is that written by the
Power Pile Section of ORNL in 1947.(6)
Two cases will be discussed here:
(1) the single, cylindrical, axial,
control rod in the cylindrical-reactor,
two-group model; and (2) the pattern
of seven cylindrical rods in the
cylindrical-reactor, two-group model.
(These seven rods are arranged symmetri
cally as shown in Fig. 5.1.) The
discussion of the second case is

similar to that presented by the Power
Pile Section.{6>

Fig. 5.1.

Considerable simplification is
is achieved if the given reflected
reactor is replaced by its equivalent
bare reactor (the bare reactor with

R. Scalettar and L. W. Nordheim, Theory of
Pile Control Rods, MDDC-42 (June 17, 1946).

C. R. McCullough, Summary Report on Design
and Development of High Temperature Gat-Cooled
Power file, Appendix, HonN-383 (Sept. 15, 1947).

the same composition as that of the
core of the given reflected reactor)
for control rod calculations. Agree
ment between the calculated effect of

control rods in a reflected reactor

and its equivalent bare reactor is
good. Thus, the first step for any
pattern of rods is to reduce the given
reflected reactor to its equivalent
bare reactor.

SINGLE, AXIAL CONTROL ROD

The problem is to calculate the
effectiveness, along the longitudinal
axis of a bare, cylindrical reactor,
of a cylindrical absorber rod of a
given diameter. The two-group theory
provides the most suitable model for
the calculation. Fermi age cannot
be used because the reactor is not

uniform in composition. One-group
theory would be too crude, and the
calculations with more than two

groups would be numerically too com-
plicated.

Balance Equations. The two-group
differential balance equations are

V2 (pf(r,z) + a cpf(r,z)
+60 (r,z) = 0 (5.5)

s

and v

V2 <ps(r,z) + d cps(r,z)
+ e 4>f(r,z) = 0 , (5.6)

as discussed in chap. 3. The quantities
a and 6 have

2,

and

involved in their definitions, in
general, and they are thus functions
of v (that is, v ), which is now the
unknown of the problem. Equations 5.5
and 5.6 can be rewritten as

V2 d>f(r,z) + a(vc) cpf(r,z)
+ b(v ) 4> (r,z) = 0 (5.7)
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and

72

chap. 3. The power constant has been
so chosen to make the coefficient of

the second term of (p equal to unity.
In Eqs. 5.9 through 5.13, the B2 and

/la have been written B1(v ), llAvc),
etc. to emphasize.that they are
functions of the unknown of the

problem, v . This makes the argument
LL .(v )r of the Bessel functions
yo[/j.j(v )r] a li'ttle confusing, un
fortunately.

Boundary Conditions. The boundary
conditions of the problem are:

1. d> (R + 5) = <ps(R + 8) = 0 ,

V2 (pAr.z) + d <ps(r,z)
+ e 4>{(r,z) = 0 (5.8)

to emphasize the dependency of a and
6 on v . The d and e are pure con-
s t an t s .

Remarks are given in the following
section on boundary conditions con
cerning the proper energy to select
as the upper limit for the slow group
(lower limit for the fast group).

General Solutions. The general
solutions of Eqs. 5.7 and 5.8 for the
radial components of the fluxes are .

(B\(vc) - d\ • I
4>f(r) =AI : — 1J0\.n.x(v-) r] +(

b\(vc) -cr
VM"e>.r]

'-B\(vc) - d
+ C

'-B\(vc) - d-
I^2(ve) r] + D )Ko^2(vc) r3 (5.9)

and

<ps(r) = AJ0[LiAve-) r] + Y0[nAve) r] + Cl^(vJ r] + DKQ[^2(vc) r] , (5.10)

where B2(v ) and -B2(v ) are the roots
of the determinantal equation

-B2(v ) + a(v )
C C

M?(v) -B\(vc) -

and

'-ft* ) •-B\W,)-

b(ve)

-B2(vc) + d
= 0

(5.11)

and hence functions of v . The ll.(v )
c * c

and rL2(v ) are obtained from the
equations

2
TT

(5.12)

2,i+s

TT

-. (5.13)

2[£+8

where Wis the lengthof the equivalent
bare reactor. Equations 5.9 through
5.13 follow from the derivations of
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where

R = the radius of the equivalent bare
reactor,

8 = extrapolation distance3 0. 71 A.
2. The fast flux is finite at the

rod axis, r = 0; that is, the rod is
transparent to the neutrons in the
fast group.

3. The slow flux extrapolates to
zero at a certain distance inside

the rod, that is,

where

•l_d^

0. dr

r0 = radius of the rod,
§„ = the extrapolation distance inside

the rod.

If cadmium rods are used (or any
other material that has a sharp drop
in cross section at a certain energy),
it is clear from boundary condition 2
that the slow group should be defined



to include all flux below the cadmium

cut-off and the fast flux should include

all flux above the cadmium cut-off.

If the rods are boron, however, the
cross section falls off in a manner

inversely proportional to the neutron
velocity. If the boron rod is fairly
thick, it may capture a substantial
portion of the epithermal neutrons that
enter its surface. Probably the best
procedure for this case is to choose
the upper limit of the slow group
to be that neutron energy for which
there is still about an 85% probability
that the average neutron entering the
rod with this energy will be captured;
that is, twice the rod wall thickness
should be about 1.9 mean free paths
for capture at the limiting energy.

The general form for boundary
condition 3 follows from setting the
return current equal to zero. The
proper value of Sfl can be obtained from
the results of the work of Davison and
Kushneriuk( ^ in which values of S„
were determined for various sizes of

"black" cylinders by transport theory
in such a way that the asymptotic
flux of diffusion theory will be
correct in the core except for the
region within two or three mean free
paths of the rod. The latter region
is unimportant because it is small and
the flux density in it is low. Figure
5.2 is a reproduction of Davison and
Kushneriuk's graph. It is best to
interpret the unit of length on this
graph as the transport mean free path.

Application of Boundary Conditions

to General Solution. In regard to
boundary condition 2, it can be seen
from the series expansion for K and
Y0 that

lim KAx) = - lim (y + In—) (5.14)
a--»0 *-.<) 2

(7 ) B. Davison and S. Kushneriuk, linear Ex
trapolation Length for a Black Sphere and a Black
Cylinder, UT-214 (March 30, 1946).
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Fig. 5.2. Extrapolation Length, k,
in Terms of Radius of the Cylinder;
Unit of Length = Mean Free Path of

Surrounding Medium.

and

2 x
lim Y0(x) = — lim (y + In —) ,
x-»o TT x-0 2

where y is Euler's constant,
if D is chosen with the value

B\(vc) - d
2 e

TT ~-B\(vc)-d
e

(5.15)

Thus ,

(5.16)

the second and fourth terms in cp,, as
given by Eq. 5.9, will cancel as
r -* 0 and the 0, will remain finite as
r - 0.

Application of boundary condition 1
determines that

Y0 [fj.Ave)(R + 8)]

J0 [fxAv )(R + 8)]
A = -

and

C

DK0 [fi2(vc)(R + 8)]

I. [fiAvAiR + S)] '

(5.17)

(5.18)

where 8 is the extrapolation distance
at the outer reactor surface. Again
it is to be noted that [(ll1)(R + 8)]
is the argument of Y0 in Eq. 5.17,
for example, and jjl t is shown as
a function of v .
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Finally, application of boundary condition 3 gives

Yq[llAR +8)]
JA^AR +8)] ^J^ro) "/W/W

2 B\-d KA/xAR + 8)]

77" -Bl - d iAfj-AR + 8)]
rL2Il^2r0) -

2 B\-d
TT -B\ - d

^2Ki^2r0)

YQ[isAR + 8)]

JAfJ-AR + 8)] Jo^i -o) V^ ro>

B\-d KA^AR + 8)]

-B2 - dn IAhAR + 8)]
^(Mjr,,)

B\-d

-B22 - d TT
Ko^2r0) (5.19)

where B
i •

B
2 >

functions of v and
c

of the rod.

Equation 5.19 has only one unknown,
v , and is thus the desired equation

c

which determines the new value of v,
that is, v , that will assure criti-
cality of the reactor with the rod
inserted.

In review, the procedure is to
1. select a trial value of V£,
2. determine Bjand -B2 from Eq. 5.11,
3. determine /Xj and \x2 from Eqs. 5.12

an d 5.13,
4. see whether Eq. 5. 19 is satisfied by

these values and repeat the proce
dure until the critical value of vc
is found,

5. use expression 5.2 (or 5.3, in the
case of a regulating rod ) to find the
effect of the rod on criticality.

It is sometimes necessary to deduct
other small effects from the value of
expression .5.2 to get the net effect
of the rod, for example, the effect
of (1) removal of the slug of core Aa flux depression caused by all the
mixture to make room for the rod,

and /U, 2 are all
r0 is the radius

(2) the blockage, when the rod is
inserted, of the streaming of neutrons
down the hole that takes place when
the rod is out, (3) the depression in
flux around the control rod, even when
the rod is out, because of the control
rod thimble, coolant, etc.
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PATTERN OF RODS

Several shim control rods will
usually be needed in a reactor. If
only a very rough estimate of the
effectiveness of a pattern of four
to seven identical rods is desired,
the effectiveness, y, of one of the
rods in the axial position can be
calculated by the method described in
the previous section, and the ef
fectiveness, z, of the pattern of n
rods can then be considered as being
approximately 0.8 ny. The factor of
0.8 provides for a 20% reduction in
the strength of each individual rod.
This, reduction occurs because the

rods are not all in a position of
maximum flux (the effectiveness of a
rod tends to be proportional to the
square of the unperturbed flux at the
point of insertion) and because the
rods tend to "shadow" each other;
that is, any one rod tends to "feel"

other rods. For a pattern of one rod
on the axis and a ring of three to
six rods equally spaced from the axis,
the 20% reduction factor is usually
about right if the placement of the
outer ring is chosen correctly.
Normally, the ring of rods should be
about one third the way out on the



radius of the equivalent, bare,
cylindrical reactor.

It is not too difficult to analyti
cally calculate the combined effective
ness of a pattern, however, and the

Nordheim-Scalletar procedure for this
calculation is given below. A pattern
of seven identical rods - one on the
axis and six in a symmetrical ring
off the axis - was chosen to illustrate

the procedure; however, in principle,
the effectiveness of any number of
rods can be calculated. The more

symmetrical the pattern, the simpler
is the formulation.

The problem is the same as that for
the axial rod. A value of v, that is,
v , is sought that will assure criti
cality of the reactor with the pattern
of rods inserted.

Differential Balance Equations.

The differential balance equations,
5.7 and 5.8, are again the starting
point in deriving an equation which
will determine v :

c

V2 cpf(r,6,z) + a(vc) 4>f(r,6,z)
+ b(vc) 4>s(r,6,z) = 0 (5.20)

and

V2 4>Ar,6,z) + d cpAr,6,z)
+ e <pAr,d, z) = 0 , (5.21)

where a and 6 are functions of v ,
c '

as indicated, and the flux is now a
function of the angle 6, as well as
r and z. The angle 6 is measured
with respect to the base line (or plane,
actually) drawn through the reactor
axis and one of the off-center control

rod axes (the axis of rod number 2),
as shown in Fig. 5.3.

General Solutions. In more general
language, the procedure given in
chap. 3 for solving the balance
equations is to try the relations

Fig. 5.3.

5.23 are solutions of Eqs. 5.20 and
5.21. Substituting Eqs. 5.22 and
5.23 into Eqs. 5.20 and 5.21 yields
the familiar determinantal equation

-B2(v ) + a(v)

•b24>t 1 a^

Br2

b(vc)

-B2(v ) +d
C

22cpf d2<p
'/

W2

± B\<pf = 0
3z2

0

(5.24)

Equation 5.24 is a quadratic in B2
and says that two values of B exist,
BAvc) and -B2(v ), such that solutions
of Eqs. 5.22 and 5.23 are solutions
of Eqs. 5.20 and 5.21. The problem
reduces then to finding general solu
tions for Eq. 5.22 for each value of
the buckling and adding them to get
the general solution of Eq. 5.20 for
the fast flux. Following the same
procedure with Eq. 5.23 gives the
general solution of Eq. 5.21 for the
slow flux. Equations 5.22 and 5.23
written in complete detail are

(5.25)

vv, + BV o (5.22) and

and

vV + bV 0 (5.23)

to see whether solutions exist for B

such that solutions of Eqs. 5.22 and

B20 1 30 1 d2cp

Br2 w-

•d2<p

•bz2

± B2<ps = 0 , (5.26)
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where i = 1, 2. Since Eqs. 5.25 and 5.26 are the same in form, the subscripts

can be dropped, for the moment, and an attempt can be made to separate the

variables by letting

d> = R(r) %(6) Z(z) . ' (5.27)

Substituting Eq. 5.27 into Eq. 5.25 (or 5.26) and dividing by R, 0, Z gives

R" 1 R' 1 0" /Z" A
- + +-2— = - hr + B • (5-28>
R r R r2 6 \Z /

According to the now-familiar reasoning, both sides of Eq. 5.28 must equal a
constant, that is

Z"
— + B2 = m2 , (5.29)

mCl

R" 1 R' 1 0"

T+7T+7^ •-»' • (5-301

2 *" R' 2 2 ©"
r ~R + r~l +»r -~T ' (5-31)

Again, both sides of Eq. 5.31 must equal a constant:

r2~r7 + r~rT+ ^r2 ~ "2 (5.32)
R R

and

0" .

-f ~n • (5-33)
The three equations that determine the components of the general solutions are

Z"+ (B2 - ll2)Z = 0 , (5.34)

©" + n20 = 0 , (5.35)

r2R" •+ rR'+ (/x2r2 - n2)R = 0 . (5.36)
The possible solutions are, then,

B2 - ix2 z ,
(5.37)

(COS N

sin n B2 - fJ.2 z ,

_ [cos nd ,
©' \ . * (5.38)

l^sin nd ,

and

ov\ (5.39)

The most general solution to equations of the type 5.25 and 5.26is therefore

<p(r,9,z) =(f sin ^B2 - /x2 z+Gcos ^B2 - ^2 z) £ {[LnJ„(/^)
n = 0

+*,*„(*•"•)] (4n cos n& +£n sin n£)} , (5.40)
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where F, G, L M A , and E are arbitrary constants and «/ and Y are arbi-
n'nn n • tn n

trarily used instead of In and Kn. A solution of the type given by Eq. 5.40 ex
ists for each solution of the buckling, that is, B2 and -B2. Adding the solu
tions gives the following expression for the most general solution of Eq. 5.21
for the slow flux:

<t>. (r,6,z) =hl sin 1B\ - ll\ z+Gx cos Jfi2 - ^ 2) £ {[LlnJ„(m» r)
^ n=0

+ M Y(/x,r)l + (4. cos n6 +£. sin n£)f
In n * J ln ln J

+(F2 sin ^-B2 +/x2 2+G, cos ^-B2 +ll\ z) £ {K„J,^)

+V2nKn^2r)} (A2n cos n<9 +E2n sin n0)}
n = 0

(5.41)

As before, the ratio of fast to slow flux is known for each buckling; so the gen
eral solution for the fast flux can immediately be written as

B\ - d<pf(r,6,z) =— (fx sin nIB2 - ll\ z
00 r

+Gx cos\B\ -p,\ z) I {K^r)
n = 0

+MinYn^lr)\ (Aln cos n9 +£,„ sin n0)]
-B\ - d

(f2 sin J-B2 +/x2 2

+G2 cos J-B2 +M2a z) l {[i-2„In(M2D
n= 0

+M2nKn^2r)] (-A2n C0S n0 +E2n sin "^ >} ' (5.42)
Boundary Conditions. The boundary conditions of the problem are

1. cp AR + 8)=0s(B+8) = 0. (5.43)

2. The fast flux is finite everywhere, including the rod positions; that is,

the rods are transparent to the neutrons in the fast group.
3. The asymptotic slow flux extrapolates to zero behind each rod surface;

that is,

P=P,

1

3„
(5.44)
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wherep is measured from the rod center
and where p0 is the radius of the
rods. The source for obtaining 8R,
given in the discussion of the axial
rod case, applies here also.

As will be seen later, it is dif
ficult to apply Eq. 5.44 to an off-
axis rod. An approximately equivalent
condition can be attained by finding
for an axial rod the radius (p ,,)

e f f
inside the rod at which d> —6 when

s

Eq. 5.44 is satisfied. The condition
5.44 is then replaced by

4>Apeff) = 0 (5.45)
for the off-axis rods.

Application of Boundary Conditions

to General Solutions. It will be re

called that in the case of the axial

rod the general solution involved the

terms Y0(/j.1r) and K1(pt2r), which goto
-°? at r = 0, and- that none of the
boundary conditions forced their
removal; in fact, they formed the
necessary sink terms for assuring that
the third boundary conditions could
be met. It is of no consequence that
with these functions the slow flux
becomes negatively unbounded and hence
fictitious inside the rod, because it
is only the flux in the active region
that is of physical importance.

The expressions for the flux in a
multirod pattern can be put in a similar
form; that is, a ^ and a KQ term can
be established for each rod. The

radial components of the fast and slow
fluxes for the seven-rod pattern,
shown in Fig. 5.4, are given by the
expressions

4>s(r,6) = £ Jn^1r) (Aln cos nd + Eln sin n6)

+ V0(/V>i> + C Z YAv.lPm)
» = 2

oo

+ £ In^2r) (A2n COS nd + E2n sin n6)

+ DV/V,) + C l DKA^pJ

and

4>f(r,6)

112

n=0

B\ - d
Jj Jn(^A) {Aln cos n6 + E\n sin n6)

n=0

+ r0(/Vi> + c I yo<r*i/°.>
« = 2

-B2 - d

L In^2r) (i42n COS n8 + E2n sin n6)
n=0

+ M.(/*aP1) + C I DK0(»2pa)

(5.46)

(5.47)



Fig. 5.4.

where Bx and -B2
5.24 and functions of vEq.

/j.2 are given

and

A

-A

by

Bl -

-Bi -

are solutions o f

/u.j and

77"

H
- 8

12

and, hence, are also functions of v ;
A, , E, , C, and D are arbitrary con-
stants; p is the distance from the
mth rod center to the point (r,6) in
the two-dimensional radial plane
(Fig. 5.4).

If the quantities Y0(p.1p ) arid
K0(p-2pn) are replaced by their equiva
lent expressions, as given by the
addition theorem for Bessel's func

tions ,

Yo^iPj - yo(/V> Jo^rJ
CO

+ 2 I YMr">JnWA oosnea (5.50)

and

KMpn) - KMr) IA>,2rm)
CO

+ 2 I KAV) I(L,2rm) cos n6m . (5.51)
•=i

With the substitution

nd cos na cos
n

nd

+ sin na_ sin nd

it becomes clear that Eqs
5.47 are solutions of Eqs
5.21, because it is seen that Eqs. 5.46
and 5.47 can be obtained directly from
the radial components of the general
solutions, Eqs. 5.41 and 5.42, by
assigning particular values to some
of the arbitrary constants.

In Eqs. 5.50, 5.51, and 5.52 the
notation is the same as that given
in MonN 383;(6) that is, 6m is the
angle included between the radius
vector through rod m and the radius
vector through the point (r,8), and
an is the angle measured counterclock-

(5.48) wise from the radius vector through
rod 2 to the radius vector through rod
m, as shown in Fig. 5.5.

The following development, which
was worked out by the Power Pile
Section at ORNL, is the same as that

(5.49)

Fig. 5.5.

, (5.52)

5. 46 and

5.20 and
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reported in the appendix of MonN-383,^6^ except for minor changes. Upon sub
stitution of Eqs. 5.50, 5.51, and 5.52 into Eqs. 5.46 and 5.47, the latter two
equations take the form

4>Ar,6) = A10J„(Mlr) + SCY^^r) J0(/i,r.) + V^r)

J (ri1r) (i4j cos nd + Ex sin nd)

and

00

+ I
n=l

+ 2C J\ Y (jj. r) J(/u..r ) (cos na cos n& + sin na sin nd)
« = 2

+ A20IQ(p:2r) + 6DC KQ(fM2r) I9(fi2ra) + DKA^r)

I (ri~r) (A cos nd + E. sin nd)„ Vj1 ' \"2„ 2n

+ 2BC T\ if (M,r) I (u,r ) (cos na cos nd + sin na sin n.0)
mm n * 11 * * * *

• = 2

B2-d
df(r,d) o. A10J0(Mlr) + 6C V/^r) J0(/i,rB) + ro(Mlr)
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CD

n = l

7

E
• = 2

J (p..r) (A. cos n(9 + £. sin nd)
n a x n in

+ 2C Y. Y(u..r) J (u.r ) (cos na cos n(9 + sin na sin nd)
^ n i n 1 • at A

B22-d
A20I0((M2r) + GDC K0(p,2r) I0(p.2rJ + DKA^r)

00

+ I
n = l

IAri2r) (A2n cos n# + £2n sin nc^)

+ 2BC J\ K \u..r) I (u.~r ) (cos na cos nd + sin na sin nd)
*• n ^ n * m • a

« = 2

(5.53)

(5.54)



The first boundary condition, that <ps (R + 8) = <pf(R + 8) = 0, is now applied
and the resulting equations are

4>AR + 8,0) = 0 = A10Jq[llAR + 8)] + 6C Y0[llAR + 8)] •/00iir.) + Yq[,j.AR + 8)]

+ A2oIo^2(fi + 8)] + 6DC K0[ll2(R + 8)]lAri2rM)+DK0[pt2(R + 8)]

7

+ 2C L Yn^i(B +8)] JAtixrm) cos na, +A^I^^R +§)]

+2BC 2) KJ»2(R +8)] Ift(M,rB) cos na, I cos nd

+\ EinJn^i(R +8)] +2C 21 rB[Ml(B +8)] JAntrm) sinna,

+ £2n-r„[M2(fi + 8)]

+ 2DC £ K„[m2(B + 8)] In(ri2r.) sin na. J. sin nd ) (5.55)
. = 2

n "~l •

i = 2
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and

B\-d
cpf(R + 8,0) = 0 = A10 J0\.^i(R + 8)3

116

Bl -a
+ 6C Y0[lcAR •+ 8)3 Jot/^r,)

-B2 - aB2 -d

+ MM* + 8)3 + A20 I0[fJ-2(R + 8)3

-B2 - d
+ 6DC KQ[(x2(R + 8)3 I0(^2rJ

-B\ -d
+ D KQ[fj.2(R + 8)3

+-L^-V( 1*i.-'1>1(* +8)]
n = l

7

+ 2C 21 I'.^W + 8)] JA^rA cos no

+ A
2n

-B2 -- d

7

I
• = 2

,(*

n

+ 8)3

[/i2(B

i

d

- d

b\ - d

+ 2BC

7

I
i = 2

+ 1 ^lAW* + 8)3 +2C £ Yn[p.AR + 8)] J. (Mir.) sin na.

-B2 - d

+ £2.-7 *>,(« + 8)3
B2 - d

+ 2Z)C

-B2 - d 7

Bl -d
t KJ^2(R +8)1 In(pi2rm) sinna, I sin nd j

(5.56)



It is seen that Eqs. 5.55 and 5.56 are of the form

0 = aQ + Oj cos d + a2 cos 2d + a3 cos 3d + ...

+ bx sin d + b2 sin 2(9 + 63 sin 3d + .. . ;

that is, they are Fourier series expansion's of zero. From the orthogonal proper-
tiesof the Fourier series, it follows easily that the coeffici ents are all equal
to zero: a. - b. = 0, for all i; that is

0 = A10J0[p.AR + 8)3 + 6C r0LMi(fl + 8)3 J,^,^) + r0 [/*,(** + 8)3

+ A20IQ[fi2(R + 8)] + 6DC KQ[fj.2(R + 8)3 I0(fi2rm) + D KQ[p:2(R + 8)] , (5.57)

Bj - d B\ - d
0 = A10 J0[/i1(fl + 8)] + 6C y0 [//,(/? + 8)3 V^r.)

B2 - d -B\ - d
+ ^o^i^ + 8)3 + A20 I0^2^R + 8)3

-B2 - d -B2 - d
+ 6DC K0[fi2(R + 8)3 IQ(^2rm) + 0 E0Ill2(.R + 8)3 ,

ind, for n = 1, 2, . . . ,

0 = A. J [fiAR + 8)3 + 2C V y [llAR + 8)3 J (/i,r ) cos na
in n ' i Ad n ' a n ' i n •

, = 2

(5.58)

+ 42nInl>2(B + 8)3 + 2DC 21 A'nLM2(B + 8)3 IA^^rA cos na. , (5.59)

0 = AlnJuUi-AR + 8)3 + 2C 21 Yn^i(R + 8)3 JA/x^A cos na,
« = 2

-B2 - d

+ A.— iAu-AR + 8)3
B2 - d

-B2 - d 7

+ 2DC 21 Kn[^2(R + 8)3 IAw m) cos na. ,
BJ - d »=2

0 = £ln JjvAR + 8)3 + 2C 21 Yn^1(R + 8)3 ^(/^r.) sin na.
i = 2

+ £2nInLA62(B + 8)3 + 2BC 21 K.W* + 8)3 IA^r.) sin na, ,
« = 2

(5.60)

(5.61)
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0 = £i„Jn[M* + 8)] + 2C 21 Yn^AR + 8)] JB</i1r.) sin na,
B=2

-B2 - d
+ £2n— IifiAR + 5)3

B2 -d

-B2 - d 7

+ 2Z)C 21 Kn[^2^R + 8)3 I„(^ar.) Sin ^B • (5-62>
B2-d »=2

Equations 5.57 through 5.62 are the equations needed to evaluate ^10> ^jo' ^in'
A2n (" > 0), and £ln and £2n. Thus,

20

1 o

In

2n

In

2n
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6CC K0[ix2(R + 8)3 I0(^2rm) + D KqIll2(R + 5)3

WR + 8)3

6C ^[/^(fl + 8)3 •/0(/iir.) + Wfi + 8)]

J0ir^1(R + 8)3

2C 21 VM* + S>] •/»^ir.) cos "".
«=2

Jn[M,(B + 8)3

2DC Y K IllAR + 5)3 IAll.tA cos na,
i = 2

In[/z2(B + 5)3

2C 21 Yn^1(R + 8)3 ^(^r,) sin na,
• : 2

JnlLiJR + 8)3

2DC 21 Knb2(R + 8)3 JB(AtarB) sin na,
m = 2

IJfiAR + 8)3

(5.63)

(5.64)

(5.65)

(5.66)

(5.67)

(5.68)



Now, by applying boundary condition 2, that the fast flux must be finite at
each rod, directly to Eqs. 5.46 and 5.47, it follows, by the same reasoning as
that given in Eqs. 5.14, 5.15, and 5.16, that

2/ B\~d \
D =- — . (5.69)

77 V-B2 - d)

Thus the A's and £'s are known explicitly at this point, except for the constant
C.

The procedure for determiningC is discussed in the following. Boundary con
dition 3 (Eq. 5.45) says that <Ps(Peff) = 0 for each rod, where Peff is the ef
fective radius of the rod. By applying boundary condition 3 at rod 2 directly
to Eq. 5.46, noting that d = 0 for rod 2 (by definition), and using the notation
of MonN-383(6) that

rJ2 = distance from rod 1 to rod 2 = r2 - r^ ,

r,2 = distance from rod 3 to rod 2 ,

r _ = distance from rod m to rod 2 ,
Jit 2

it can be seen that

0• £ ^n-V/W +V^r!2> +CtV/VW +Y0^r32)
11=0

+ y0^ir42> + V^ir52> + V^r62) + y.0*,r„)]

+ £ 'a.1.^* +*> Wia> +DC lK0(u-2Peff) +«.(/V.a>
n=0

+ ^0^2r42) + K0^2r52) + V^2r62> + V^2r72>] • <5-70>
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Substitution of Eqs. 5.63 through 5.69 into Eq. 5.70 gives

6C Yo[lcJR + 8)3 -V^r,) + Yq[lmJR + 8)3

J0[/jlJR+S)] "JoOW

^ -2C I Yjp.JR + 8)3 JJ^rJ cos na.
= 2

JnifiJR + 8)3
J„^r2)

n=l

+ y.(M,rla) + C Yo^Peff) + I ^(Mi'-.a)
« = 3

2 Bi _d 2 Bi"d
6C K0^2(R + 8)3 J0<Mar.) + VM* + 8)]

TT D2B\ - d 77 -B\ - d

IJlc2(R + 5)3

2 B2-d r
-2C^"^ 21 *,>a<* +8>] V/W COS ™.

77 -B2 _ d .7a

T0(ri2r2)

2 IAllAR + 8)3
I„^ara)

n=l

2 B\ ~ d
+

n -B\ - d *.<AVia> +C~
2 Bl-d

77 -B2 - d
WW.ff) + £ VaV.i>

« = 3

(5.71)

By noting that

cos na2 + cos na3 + ... + cos na? = 0 ,

whenn = 1, 2, 3, ..., because of the angular spacing of the six symmetrical rods
in the outer ring, and solving for C, it is found that

2 B\-d

YJ^{R + 8)] , B\-d •" -B\ - d
-V^i.) + . r ._..,, J.0Vi> --— W„> +-

*.t/x.(fl + S)3

^[^(B + 5)] 77 -B* - d lAfiAR + 8)]
•Jo<M,0

, (5.72)
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qtai&>

L = _

6Y0[nJR + 8)3 J0(^ra)

J0[llJR + 8)3 V^a) + Yo^iPeffK

K>2(fl + 8)3 I0(»2rm)12 *? " d
77 -B\-d

+ 21 V>V.a> -
« = 3 In[M,(B + S)3

C-^2

J0(M2r2)

2 B? " d
+ —

77 -B2a - d

All the arbitrary constants have
now been determined. To get the final
criticality equation, which gives the
desired relation in the unknown, v ,
the third boundary condition is again
applied, this time, to the axial rod,
rod 1. Since (pJPeff) = 0 f°r aH
d, it is legitimate to simplify the
resulting equation by applying the
condition at <p =0. The result is

0 *io + YMiPtff) + 6C yo(M,r„)

'Bl - d"
+ A*o + ~77 ^-B'-d,

Ko^2Peff)

+ 6C —

'B* - d

v-B2-d,
KALL2r) , (5.73)

where i410 is given by Eq. 5.64, A20 is
given by Eq. 5.63, D is given by
Eq. 5.69, C is given by Eq. 5.72,

!!Bf and -B2 are solutions of Eq. 5.24,
/xx is given by Eq. 5.48, -ll2 is given
by Eq. 5.49, and all are functions of

Vc-
To review, then, the procedure for

finding the effectiveness of the
symmetrical pattern of seven rods is
to

1. select a trial value of v£,
2. determine B?and -Bl from Eq. 5.24,
3. determine ll1 and ll2 from Eqs.

5.48 and 5.49,

2 B2 - d 7
V<V.//> +~

-B2 - d ,T3
21 *o^2r.,2>

determine D from Eq. 5.69,
determine A.0 and A2- from Eqs

4.

5.

6

7

5.64 and 5.63,
.determine the C from Eq. 5.72,

see whether Eq. 5.73 is satisfied
by these values and, if not, repeat
the procedure until the required
value of v is found,

c

evaluate the effect of the pattern
of rods from Eq. 5.2.

RESULTS OF CALCULATIONS ON CONTROL RODS

Figure 5.6^ ' shows the effect of
a 2-in., solid B.C, control rod on the
axis of various reactors with fast to

thermal fluxes.

Figure 5.7^ ' shows the effect of
an axial control rod as a function of

the effective radius (peff, Eq. 5.45)
of the rod. This figure presents the
results according to two assumptions:
(1) the rod is black to all neutrons
(captures all neutrons that enter it),
and (2) the rod is black to thermal
neutrons and transparent to fast
neutrons. No control rod material

satisfies the first assumption, of
course; so this part of the curve is
of theoretical interest only.

* T. Bubin, H. E. Stern, and F. W. Heiget,
An Axial Control Rod in Cylindrical Reactors,
NEPA 1207-EAR-R14 (Nov. 15, 1949).

(9) C. R. McCullough, Summary Report on Design
and Development of High Temperature Gas-Cooled
Pover Pile. MonN-383 (Sept. 15, 1947).
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6.6 7.4

RADIUS OF THE SQUARE CYLINDER REACTOR
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Fig. 5.6. Percentage Change in

Reactivity vs. Molecular Ratio for

Removal of 2-in.-dia Axial Slug and

Insertion of 2-in.-dia Boron Carbide

Rod into Cold, Clean, Be2C + 1/3 C
Moderated Reactors.

4 6 8 10 12

EFFECTIVE RADIUS OF ROD (cm)

Fig. 5.7. Effectiveness of Central

Control Rods.

Figure 5. 8( ' shows the effect
of a rod, with Pett ~ 1.35 cm, as a
function of distance off the reactor

axis.

Figure 5.9* ' shows the effect
of an array of seven control rods,
one on the axis and six in a symmetrical

(10) J. A. Wheeler, Principles of Nuclear
Poser - Chapter 22; Control, N-2292.
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Fig. 5.8. Effect of a Single Control

Rod on Reactivity. Effective radius of

rod = 1.35 cm.
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ACTUAL RADIUS OF CONTROL RODS (cm)

14

Fig. 5.9. Change in k for an Array
of Seven Control Rods (Best Spacing).

ring around the axis, as a function
of rod size. It is found that when

the rods get to a certain size they
"shadow" each other to such an extent
that the total effectiveness begins
to be reduced.

In Figs. 5. 7, 5. 8, and 5. 9 the
rod effect is expressed as Afe (cf.,
paragraph following formula 5.4). It
is necessary to divide by kth £ 1.78
to interpret this effect in the units



recommended at the beginning of this
chapter.

Figure 5.10(11) shows the effect
of a pattern of four 2-in. rods in a
ring (no rod on axis) as a function
of distance off the axis. These

calculations were done by one-group
theory and are overestimates. They
indicate the qualitative conclusion
that there is usually a "best place
ment" of any set of control rods.

Figure 5.11(11) shows the flux
distribution in the reactor with the

'j. W. Webster, Control Rod Effects on
Reactivity and Power Distribution, NEPA-IC-50-2-52
(Feb. 7, 1950).
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Fig. 5.10. Effectiveness of Four

2-in. Rods Placed Symmetrically at

Various Distances from the Reactor

Axis. Radius of square-cylinder
reactor = 2.9 inches.

four-rod pattern of Fig. 5.10 for
different placements of the rods.
The placement where the rods are 29.1%
out on the reactor radius results in

the flattest power distribution and
also- in the maximum reactivity ef
fectiveness.

Figure 5.12( ' shwws the effect
of partial insertion of an absorber
control rod, expressed as a fraction
of its total effectiveness.

PROBLEM

1. Calculate the reactivity effect
of a 2-in. control rod which lies on

the axis and is black to thermal

neutrons and transparent to fast

neutrons. For this calculation, use

the reactor described in problem 1 of

chap. 4. Also, calculate the effect of

a pattern of seven such 2-in. rods,

one on the axis and six in a ring off
the axis a distance equal to one third
the reactor radius.
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Chapter 6

KINETICS

The first five chapters have dealt
with subjects that are clearly important
in reactor design; that is, through a
joint theoretical and experimental
program, the critical mass and critical
size must be determined that are con

sistent with heat transfer and shield

ing constraints. The effects of
temperature, fission-product poisons,
and uranium depletion must also be
found, and then the necessary number
of shim control rods needed to offset
these effects can be determined.

In respect to reactor kinetics, or
the time behavior of the power, com
ponent temperatures, and fission-
product - pois on concentration, it is
perhaps not so clear just what the
theoretician should do, that is, just
what concerning kinetics is important
to reactor design.

Perhaps the role of the theoretician
in kinetics could be summarized by
saying that he helps to design a safe
and easily controllable reactor. For
example, some reactor designs are
inherently very stable. If the power
starts to change because of some
inadvertent perturbation, the reactor
automatically restores itself to the
original power. Such reactors have a
large, negative, temperature coef
ficient, that is, the k decreases

. , '11
with increased reactor temperature;
and thus when the power and hence the
temperature increases, the reactor
becomes subcritical and the power
decreases. In a reactor with a negative
temperature coefficient, if a control
rod is withdrawn a short distance and
left there, the power will increase
for a few moments and then become

steady at a new, somewhat higher,
power.

It is clear, then, that a reactor
proposal should be investigated theo
retically to see whether the tempera
ture coefficient is positive or negative
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and to determine its magnitude. The
response of the power and the tempera
tures to various assumed perturbations
should be calculated. Various questions
must be answered, such as, "how fast
should the control rods be designed to
move?"

Probably one of the most thorough
and capable investigations of the
kinetics of a reactor that had been

conducted at the date of this writing
was that for the submarine thermal

reactor (STR). The STR is a water-
cooled and -moderated reactor with

solid fuel plates. The water, which
is heated as it passes through the
core, is used to make steam which runs
turbines for propulsion of the ship.
As the power increases, the average
water temperature increases, and the
associated decrease in water density
tends to decrease the k ,, and to send

the power level down again. As a
consequence, the STR is a very stable
reactor; it has excellent self-
regulation characteristics; and almost
no accident, except that caused by
sabotage, would result in damage to
the reactor.

The report on the STR investi
gation^ ' gives an excellent example
of the kind of theoretical work that

can be done to answer the question " is
the reactor safe?" The following is
quoted from the introduction of the
report:

It is the purpose of this paper to in

vestigate accidents which wi]] affect the

reactivity of the Mark I Submarine Thermal

Reactor (STR) when it is operating in its

designed power range and to estimate the

effect of particular accidents on the over

all power plant. Events which may occur

during the operation of the plant - mal

function of some component or operational

(1) A. F. Henry, Accidents Affecting the Re
activity of the Mark I STR, WAPD-41 (Oct. 1951).



errors - will be examined in considerable

detail. Catastrophes and possible acts of
sabotage will be investigated to the point

of estimating the extent of damage and the

time required for the catastrophe to

develop.

Primary emphasis will be placed on the

results of accidents rather than on the

mechanism by which they may occur or the

probability of their occurring. For

example, the behavior of the reactor

following failure of all coolant pumps will

be examined. It is not intended to imply

by this examination that there-is any

serious probability that such an accident -

or any of the other accidents studied -

will occur and no attempt will be made to

give a quantitative estimate of this

probability. Only qualitative statements

of how such an accident might occur will

be stated.

Table 6.1, which is a reproduction
of a table from the report,^1) suggests
the kind of investigation that can be
made of the kinetics of a reactor

design.

KINETICS EQUATIONS

The equations of reactor kinetics
that are encountered in a study such
as that made for the STR and an indi

cation of how they can be solved will
now be given. The equations that
follow apply in particular to a reactor
with a fixed moderator, a liquid
coolant that flows through the reactor
in one pass, and fixed fuel plates or
tubes. The equations, with slight
modifications, apply to the STR, the
MTR, most of the airplane reactor
proposals, and other reactors.

The simultaneous, first-order,
differential equations will be set
down for (1) the flux, (2) the concen
tration of delayed-neutron emitters,
(3) the fuel temperature, (4) the
moderator temperature, (5) the coolant
temperature (as functions of position
along the reactor length), (6) the
iodine (xenon precursor) concentration,
(7) the xenon concentration, and (8)

the excess keff, which depends on
items 3, 4, 5, and 7.

Flux. In chap. 1, which was on the
one-group theory, it was stated that
there were reasons, over and above the
pedagogical ones, for presenting the
one-group formulation. It does have
practical uses, and the study of
kinetics provides such a use. The
one-group equation and the equivalent
bare reactor are used here. As will be

seen in the paragraphs on "Flux" in
the following section on " Convenient
Transformations," the average neutron
lifetime is the only reactor constant
needed, and therefore it is unneces
sary to average the various constants
entering into the one-group formulas
for criticality. The lifetime should
be calculated by methods more accurate
than the one-group ,method.

It will be recalled that in the

one-group, steady-state case described
in chap. 1 the neutron balance was
expressed- as

-(leakage) - (absorption)
+ (production) = 0 .

It follows that in the nonsteady state

the equivalent statement is

-(leakage) - (absorption)
+ (production) = (rate of

change of neutron density) .

Flux with no Delayed Neutrons. If
all fission neutrons appeared promptly
after fission, the equation for the
flux with no delayed neutrons could be

written as

A.

+—^ V2 <p(L,t) ~<p(r_,t) 2a
^n(r,t)

+ 0(r,t) 2at = ^ , (6.1)
at

where

r_ = the spatial position,
t = time,
n = neutrons per unit volume at _r and

time t.

Actually, some of the fission
neutrons (about 0.76%) do not appear
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TABLE 6.1. SUMMARY OF REACTOR ACCIDENTS

ACCIDENT FIRST EFFECT FINAL RESULTS

APPROXIMATE TIME

BEFORE FINAL

RESULTS COMMENCE

MEANS, OTHER THAN SCRAM, BY
MUCH ACCIDENT CAN BE

CONTROLLED

1. Primary coolant pump failure Coolant temperature surge; no oscil
lations; reactor power falls abruptly

Coolant boils 2 minutes Emergency cooling loop

2. Closing of steam turbine throttle Temperatures in power plant rise
(~25°F); reactor power falls abruptly

Coolant boiIs 10 minutes Emergency cooling loop

3. Regulator rod introduces a step
increase of 0.6% in reactivity

Reactor power increases in ~0,1 sec to
3.5 times its initial value; falls to

2.2 times its initial value in ~0.3

sec

Reactor power approaches a higher

equilibrium value of 1.2 times its
initial value

20 seconds Automatic

4. Shim and xenon rods all move out

at maximum speed
Rise in reactor temperatures of
~1.5°F/sec

Coolant boils 2 minutes Return rods to core at

normal insertion rate

5. Xenon rods lock in position just
as the fully xenon poisoned pile
goes critical

Rise in reactor temperatures of
M).3°F/sec

Coolant boils 10 minutes Return xenon rods to core at

normal insertion rate

6. Emergency cooling loop opens
during normal operation

Some of coolant about to enter the core

is shunted through emergency loop
Reactor delivers power both to
boilers and to emergency loop

10 seconds Close emergency loop valves

7. At a time when only one of the
two boiler loops is operating,
the valves separating primary
coolant from the inoperative
loop are opened, the pumps in
the loops are started, and the
initially operating loop is
closed off

Temperature of primary coolant entering
core falls 60°F/sec for 5 sec; reactor
power increases to 14 times initial
power; no oscillations are to be ex
pected

Power and temperatures return to
initial values

4 seconds Automatic

8. Pressurizer malfunctions so that

pressure in the primary loop
increases

Temperature rises 1°F for 97 psi rise
in primary coolant pressure

Primary coolant system ruptures Dependent on rate
of pressure in
crease

Relief valves in primary line
blow

9. Pressure in primary coolant
system falIs

Primary coolant water temperature
falls slightly

Coolant boils Dependent on rate of
pressure decrease

Repressurize or shut reactor
down

10. Extended boiling in core Reactivity decreases Equilibrium when ""50% of volume of
coolant in reactor is in vapor
phase

Dependent on cause
of boiling

Dependent on cause of boiling

11. All control rods removed from

core at scram rate (sabotage)

Reactivity increases ~3.6% per sec,
reaches prompt critical in 0.2 sec,
then goes as exp (+250 t2)

Pressure relief valves in primary
coolant loop blow; fuel plates
vaporize

0.2 seconds None - must scram in "-0.2

seconds

12. Coolant water removed from reactor Reactivity falls; fuel plates heat up Fuel plates melt 1 minute Return coolant to core

13. A block in the adjacent water
channels causes a fuel plate to
melt

Reactivity falls 0.0006 Average coolant temperature in core
falls ~2°F; channel blocking may
spread

"- seconds None - moreover once the

melting has started, even
scramming will not control
the accident



promptly after fission, but, rather,
they arise after a delay time that is
dependent on the beta decay of various
fission products; hence, they are
referred to as the "delayed neutrons."
It is worthwhile, however, to solve
Eq. 6.1 to see the form of the so
lution, even though the results have
no practical value. The right side of
Eq. 6.1 can be written as

^n(r,t) 1 "dn(r,t)v 1 ^<p(r,t)

Br Br or

(6.2)

then, dividing Eq. 6.1 by 2Q

L2V2 <p(r_,t) + (fe - 1) <p(r,t)

ka dcp(r,t)

gives

v Bt

where, as before, L = k k. /3. The
» ' a t r'

quantity A. /v is the infinite reactor
neutron lifetime (neutron lifetime if

there were no leakage). When X /v is
defined as lQ, Eq. 6.3 becomes

L2V2<fi(r,t) + (fe - 1) cp(LA)

B<p(r,t)
I.
0 Bt

An attempt is then made to separate
the variables by assuming that

<p(L,t) = cp(t) Z(r) . (6.5)

Now, since the approximation of re
placing the reflected reactor by its
equivalent bare reactor has been made,
it follows that

V2 Z(r) + B2 Z(r) = 0 (6.6)

(if the assembly is not too far from
critical), where

B2 =
TT

2(xn + 8)

(6.3)

(6.4)

for slabs, with being the half
thickness of the equivalent, bare,
slab reactor; B2 is equal to the
equivalent expressions for the other
soluble geometries. Equation 6.5
simply says that it is assumed that

the transient, spatial, flux distri
bution remains as a cosine for slabs,
as (sin Br)/r for spheres, and as a
zero-order Bessel's function for the

radial distribution in cylinders.
Substituting Eqs. 6.5 and 6.6 into

Eq. 6.4 and dividing out the Z(r) gives

d<p(t)(-L2B2 - 1 + fe) <p(t) = l0 -^ ,
a t

(6.7)

and dividing through by (1 + L2B2)
gives

2n21 + L2B
- 1 <p(t)

I. d<p(t)

1 + L2B2 dt
(6.8)

The quantity 1/(1 + L2B2) is the
probability that a neutron will not
escape from the reactor, as was pointed
out previously. Thus fe/(l + L2B2) is
the kef, for the one-group model. The
quantity lQ/(l + L2B2) is called the
finite reactor lifetime, which is
denoted here by C, that is,

l0
£ = . (6.9)

2|}21 + L2B

With these substitutions, Eq. 6.8
becomes

' dcp(t)
(fee/f - 1) <P(t) = C-^

tff dt
(6.10)

Since keff= 1 for the critical reactor,
the quantity (fe , - 1) is called
fe-excess; that is,

With this substitution, the solution of
Eq. 6.10 is

jr>../o.t
cp(t) = <p(0) e (6.11)

since, in general, fe is a function of
time. If the case is considered in
which fe remains constant, that is,

' * .
there are no temperature or fission
product poison effects, then Eq. 6.11
reduces to

<p(t) =<£(0) e{k'x/ U . (6.12)
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As was stated in chap. 2, the most
commonly accepted definition of
reactivity is

fe.„
reactivity (6.13)

eff

which is often denoted by the symbol p:

(6.14)

'ff

Thus, the time dependence of the one-
group flux in the equivalent bare
reactor, for which fe is a constant

' e x

because of the false assumption that
there are no delayed neutrons, is
given by

<p(t) - <p(0) e{pk'ff/C)t > (6-15)
which, when Eq. 6.5 is considered, be
comes

4>(LA) =4>(L,0) e(Pk'ff/CU (6.16)
The quantity C//Ofe ,. in the exponent
is called the period, T; that is,

£
(6.17)

pk
eff

Equation 6.17 in the form

Tk
(6.18)

eff

is sometimes called the inhour formula,
under the false assumption of no
delayed neutrons. More specifically,
however, the inhour formula for the
case of no delayed neutrons is

c

Tk

Pih =-
eff

(6.19)

3600 fe
eff

which gives the reactivity in units
called inhours, where 1 inhour is the
amount of reactivity that will cause
the reactor to have a period of 1 hour.

The formulation has, perhaps, been
carried a bit too far under the as
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sumption of no delayed neutrons and a
more realistic treatment will be

given, but it is worthwhile to see that
the reactor has a purely exponential
behavior and that even with a small

amount of fe x the flux would assume
astronomical values in a very short
time if it were not for the damping
effect of the delayed neutrons. For
example, by taking a typical value for
C, say 10"4 sec, and by supposing that
a conservative amount of fe , say
0.002, is injected, the flux would
rise as

. <p(L,t) = 0(r,O) e20T

and in 1 sec would rise by a factor of
10 (if the reactor remained intact).

Flux with Delayed Neutrons. As
stated before, some of the fission
neutrons (about 0.76%) actually do not
appear promptly after fission, but,
rather, they arise after a delay time
that is dependent on the beta decay
of various fission products. These
delayed neutrons have, on the basis of
experimental measurements, been"peeled
off" into six groups. Each group is a
certain fraction, /5. , of the average
number of neutrons produced per
fission.

Each group has a definite, measured,
mean time, I ., for appearance after
fission that is related to the half

life, ri/ji of the fission product
(called the ith-group precursor) which
is the emitter of the ith group by the
usual relations:

1 ln 2

I.

The probability per second for delayed
neutrons of the ith group to appear is

1 I .
i

Table 6.2 gives the experimentally
measured data on the six groups of
delayed neutrons.



TABLE 6.2. DELAYED NEUTRON DATA

GROUP

NO.

B-
i

(fraction of neutrons

per fission)*

(half life of ith-group

precursor, sec)

h
(mean delay time of

ith group, sec)

ki

(probability per second

for appearance of 1th-
-1

group neutrons, sec

1 0.00029 0.05 0.07 14

2 0.00084 0.43 0.62 1.61

3 0.0024 1.52 2.19 0.456

4 0.0021 4.51 6.50 0.151

5 0.0017 22.0 31.7 0.0315

6 0.00026 55.6 80.2 0.0124

Th« total of the neutrons per fission is given by 2 &• = fi = 0.000759.
i = l l

With the definitions

e

/3 = L fi.

with the spatial component separated
out is

i=i
(6-20) <p(t) [kex(t) - /3 keff(t)\

1 £ „ „ dcp(t)

2ai=l * dt

and C-0(r,t) = (concentration of ith
group precursor at position _r and time
t), it follows that the statement that

-(leakage) - (absorption)
+ (production) = (rate of

change of neutron density)

becomes

vhere

C.(t)
1 + L2B2

tr

V2 0(r,O " cp(r_,t) Za + cp(r_,t) la fe(l - jB) + Z Ci0(L.t) kt
i= l

1 B<ft(r,t)

v Bt

(6.24)

(6.25)

(6.21)

An attempt j.s nade to separate the or
variables by assuming that ^,t) rp,t) _ £] fe (t)

4>(L,t) = <Ht) Z(r_) 6
^d (6.22) +_L vK.ZM„ZW±L (6.26)

y 4J i i dtCi0(r., t) = CAt) Z(L) , -a i=l
where where

V2 Z(r) + B2 Z(r) = 0 . (6.23) fe,

It is found that the flux equation
P = (the reactivity) .

eff
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Concentration of Precursors. The

six differential equations for the
concentrations of the precursors of
the six groups of delayed neutrons
express the fact that

(production per sec\ /decay per sec of \

of the ith-group —( the ith-group I
precursor / \ precursor /

(rate of change of concen- \
tration of the ith-group I •
precursor /

Thus

cp(r_,t) Zakr3i - kt Ci0(r,t)

dCi0(r,t)

dt
(6.27)

for i = 1, 2, ..., 6. Using Eqs. 6.22
and 6.23, separating out the spatial
component, and dividing through by

gives1 + L2B2

4>(t) 2a keff(t) {3. - k. CAt)
<CAt)

dt
(6.28)

where i = 1, 2, ..., 6.
Before going on to derive the

equations for the temperatures and
fission product poisons, which de
termine the time behavior of fe it

//'
is worthwhile to consider the special
case in which fe ,, is constant (and

not equal to unity). An attempt is
made to obtain a solution of the seven

simultaneous equations, Eqs. 6.26 and
6.28, by assuming that cp(t) and C-(t)
have solutions of the form

cot<p(t) = A e
and

Ci(t) = D{ eat 1, 2,

(6.29)

•i 6 ,

where A and D • are constants, and by
substituting Eq. 6.29 into Eqs. 6.26
and 6.28 to see whether solutions for

co exist which assure that solutions

for <p(t) and Ci(t) of the form of
Eq. 6.29 exist. The substitutions
yield
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Ae»* (p-fi) kgff +— l k.Dt e"*
i=i

= ZcoA ewt (6.30)

and

.ot cot2.*.///3i " Mi'«
coD . e cot (6.31)

where i 1, 2, ., 6. Upon dividing
out the e0* and solving Eq. 6.31 for
D. , it is found that

Di - A
S fe ,,/3.

CO + k.
(6.32)

Substituting Eq. 6.32 into Eq. 6.30
and dividing out the A eat in Eq. 6.30
gives

(P ~ /3) fee// + fe'eff

6

L

or

pk
eff

or

+ fe
eff

6

I
i= 1

Mi
CO + k

k./3.

o + k,

6 cop

pkeff .-keff ,*,» -;l
or

P -
Zco

eff

6

+ L
i= 1

<»Pi
CO + k.

1

jCO

(6.33)

- /8.)- Ceo ,

(6.34)

(6.35)

(6.36)

For any given reactivity, p, Eq.
6.36 is an equation of the form

co7 + A,co6 + A,ws + ... + Am = 6 .
1 A O

Thus there are seven solutions for co.

If a plot is made of p as a function
of co, it is seen that for p > 0, one

solution of co is positive and the other
six are negative. Furthermore, it is
seen that for any p, the other six
values of co lie between consecutive

values of ~k^, one to each interval.
Let co be the root which is positive

when p > 0, and let cot be the root
lying in the interval

-\s < cox < -k6 = -0.016 ,



and, similarly,

~k3 <C03
~k. < CO.

~k. < COc

~k.

~k.

-k

•104 % ~=-< a. -k

In this way, it is determined that
CO. t

expressions of the form D^ e are
solutions for the flux, and expressions
of the form D• e * are solutions for

the precursor concentrations, where
the coi are those discussed above. The
complete solution is, then, the sum
of the particular solutions. Thus

<p(t) = An e

and

C.(t) = D,.
to

where i

<v + A.
CO, t
; x + A

+ AK e
6

"o* + D
11

+ D ."«'
16

6.

"2*

(6.37)

(6.38)

The D.. can

and, finally, after about 0.2 sec,
all terms after the first will be

negligible compared with the first.
For this reason, l/<^0 in the first
term, which it will be recalled is
positive for p positive, is called the
stable reactor period, T. An obser
vation can be made at this point: if
the flux is differentiated with respect
to time and t is set equal to zero (in
order to find the initial slope), it
is found that the last term dominates

(co6 is very large). Since OJg is close
in absolute value to 1/C, it follows
that the initial behavior of the flux

depends primarily on the neutron life
time; that is, -the flux behaves
initially as if there were no delayed
neutrons. The graphs for this chapter
illustrate this point. The flux climbs
very steeply for a fraction of a
second, and then the delayed neutrons
"catch" it and it begins to round off;
finally, after about 0.2 sec, the
increase steadies into that of the

stable reactor period.
Going back to Eq. 6.36, it can be

seen that since co is a solution of1. 2,
be evaluated from Eq. 6.32; that is, Eq. 6.36,

D.
»;

2 fe ,,/S.
a eff^x

"> + \,

in terms of the A •. The seven A • can

be evaluated from the initial values

of the cp and Cj after multiplying
through by the spatial component. It
turns out that A0

. , 6.j = 1, 2, ..

Even though the constants have not
been evaluated precisely, enough is
known to make some observations on the

behavior of the flux in the special
case where fe r, is a constant and not

e j }
equal to unity. The o>6 is the largest
root in absolute value, and since it
is negative, the last term in the flux
expression will quickly become negli
gible after a time of the order of the
neutron lifetime. The fifth term will

become negligible next, and so on
through the fourth and third terms,

> 0 and Aj < 0, for

Ceo.

eff

6

i=l W0 + ki

A
(6.39)

and since T = l/coQ,

Pih =

Tk

Pi
(6.40)

leff i=i 1 + kj
which relates the reactivity and the
stable reactor period. The equation

Tk
eff

6

^1 1+kiT
Pi

Pi
3600 fe

eff

6

z -
,._, 1 + 3600 k.
i = l i

(6.41)

expresses the reactivity in inhour
units. One inhour of reactivity is
the reactivity which causes a stable
reactor period of 1 hr (3600 sec).
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The preceding discussion was a
digression that was made after ob
taining Eqs. 6.26 and 6.28 to consider
the special case in which fe ,, (and p)
is a constant. Actually, however, in
every reactor, to a greater or lesser
degree, feerx varies with time - even
after the control rod is moved to a

new position and left there. The
change of reactivity with temperature
and with change of fission-product-
poison concentration makes it necessary
to couple additional first-order dif
ferential equations with Eqs. 6.26 and
6.28 (already seven in number) to
account for the variation of fe rr and p.
The equations are written for the
temperatures of the three regions:
fuel, moderator, and coolant. The
reactor is assumed to be cylindrical,
with the coolant flowing longitudinally.
The temperatures are expressed as
radial averages at a variable, longi
tudinal, position z.

Fuel Temperature. The kinetic

equation for the fuel-plate tempera
tures at position z along the reactor
length is

tef(z,t)

b!

where

df(z,t)

dc(z,t)

(p(z,t)

= if 4>(z,t)

[df(z,t) - djz.t)] (6.42)

the radial, average, fuel-
plate temperature at longi
tudinal position z at time t,
the radial, average, coolant
temperature at longitudinal
position z and time t,
<p(t) P(z),

v) 4f [-(•• •0r(z,t) = did, t -

P(z) - the longitudinal, power
distribution normalized

such that

fL P(z) dz = 1 ,
0

L - reactor core length,
if/L - rate of increase of fuel

temperature per unit flux
in the absence of cooling,

k, = rate of loss of temperature
by heat transfer from fuel
plates to coolant per degree
difference in temperature
of fuel and coolant.

The P(z) should be determined by at
least a two-group calculation. The
constants £x and k* can be determined
from the thermal properties of the
materials and the geometrical arrange
ment of the core structure.

If Eq. 6.42 is multiplied by the
heat capacity of the fuel, C,, it is
clear that the first term on the right
is then the heat per second being
supplied to the fuel, the second term
is the heat being transferred to the
coolant per second, and CxCdd*/~dt) , on
the left, is the net amount of heat
accruing in the fuel per second.

Moderator Temperature. The kinetic
equation for the moderator temperature
at position z is

B0B(2,t)

—BT" -'.**•*>
- k [d(z,t) - d (z,t)] , (6.43)

a at c

which is identical in form to Eq. 6.42
and has analogous definitions.

Coolant Temperature. The equation
for the coolant temperature at position
z and time t is

z - z \ „ I . z - z
t - 6A z', t ~ dz'

ea[z', t --Lz_f_)_0e(z.. dz' , (6.44)
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where v is the coolant velocity and
dc(z,t) is the temperature of a slug
of coolant at position z and time t;
the first term on the right is the
temperature at which this slug entered
the core at a time z/v seconds previous
to time t; the second term on the

right is the rise in the temperature
of the slug in moving from z = 0 to
z as a result of heat transfer from

the fuel; and the last term on the

right is the rise in temperature of
the slug as a result of heat transfer
from the moderator. The constant a.
is the coolant temperature rise per
second per unit temperature difference
between fuel and coolant; the constant

a2 is the coolant temperature rise per
second per unit temperature difference
between moderator and coolant. The

constants a and a can be evaluated

from a heat transfer analysis.
Iodine Concentration. The kinetic

equation for the spatial average of
the iodine (xenon precursor) concen
tration is

dA(i)

dt
y cp(t) - kt A(t) (6.45)

where y is the number of iodine atoms

formed per unit volume per second per
unit flux and A. is the decay constant
for I . This equation and the
following equation for xenon are
discussed in chap. 4 (y has a slightly
different definition here than in

chap. 4).

Xenon Concentration. The kinetic

equation for the spatial average of
Xe concentration is

dX(t)

dt
\ A(r) - kx l(t)

crr cp(t) I(t) , (6.46)

where \ is the decay constant for
xenon and cr is the microscopic cross
section of Xe averaged over the
reactor flux spectrum.

The other fission-product poisons,
such as samarium, obey similar equa

tions, which are omitted here for
brevity.

Reactivity. The reactivity, p, and
the feeyy [= 1/(1 - P)] of the reactor
depend on the temperatures of coolant,
moderator, and fuel plates, the con
centration of fission-product poisons,
and the position of the control rods.
The temperatures determined above as
functions of longitudinal position are
averaged over the core length, and the
reactivity is determined from the
averages; the averages are denoted by
Of(t), djt), and 6e(t).

The equation for the reactivity is

Pkeff = kex^t) = S*'C(t>

+ ef[ef(t) - ef(o)]

+ e [0 (t) - 0(0)]

+. ec[djt) - 0c(O)]

+ eJJ(t) - 1(0)] , (6.47)

ex = the change in fe ,, per degree
change in average fuel plate
temperature evaluated at d,
= 0,(0),

e = the change in fe ,, per degree
change in average coolant
temperature evaluated at

dc - ec(o),
e = the change in fe /•, per degree

change in average moderator
temperature evaluated at

6m = ^.(O) and with % = ^(O),
£ = the change in fe ,, per unit

change in xenon concentration
evaluated at 1 = 3C ( 0 ) and

Sfe (t) = the fe introduced by the
c ex '

control rods.

CONVENIENT TRANSFORMATIONS

It is convenient to make certain

transformations of these kinetic

equations. By expressing the quantities
as dimensionless variables in terms of

the values at t = 0, many of the
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constants disappear and the numbers involved are reduced to a convenient magnitude.
Flux. In the flux equation the following substitutions are made:

<p(t) = cpQ + d>'(t) , (6.48)

(6.49)
fe.

ex

P = keff

Cf(t) = Ci0 +C't(t) , (6.50)

where (p0 andC.0 are the steady-state flux and i th-group delayed-neutron-precursor
density for t = 0, and <p (t) and CAt) are the departures from the steady state
values with these substitutions Eq. 6.26 becomes

C^JT =C0° +̂ '{t)]{ke'xO -y8 [l +kex(t)]}
+T~ L Mc»o +C'At)] , (6.51)

a l

and the steady state form becomes

0=0o(-/3) +-£-£ ^Ci0 . (6.52)
a l

Substracting Eq. 6.52 from Eq. 6.51 gives

C°^° =<£0 fe„(t) (1 - P) +<pAt) kejt) - cpAt) /3 - <pAt) f3 kex
l

+^-L ^i CJ(t) . (6.53)

Now, by transforming to the new variables

<£'(*)
<D(t) = 2 (6.54)

o

and

CJ(t)
CAt) = - (6.55)

Wo

and by using Eq. 6.52, Eq. 6.53 becomes

d$(t) 1 1—^- --p(t) kgff(t) (1 - /3) +JP(t) keff(t) *(t) (1 - y8)

-y*(t) +2j~rci - (6-56)
i

Interestingly, the only property of the reactor en tering thi s equation is the neu
tron lifetime.

Concentration of Precursors. If Eqs. 6.48, 6.49, and 6. 50 are substituted in
the equation for the concentration of the ith-group delayed-neutron emitters. Eq.
6.28 becomes
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cC'At)
—^ -^tl +P(t) keff(t)) Ya[4>Q

By using the notations of Eqs. 6.48
and 6.50, the steady state form of
Eq. 6.28 becomes

0 = /3.Za4>0 - k£i0 . (6.58)

Subtracting Eq. 6.58 from 6.57 gives

dC'At)
-jr- = P£a<t>0 Pit) keffu)

+ /3.2a cpAt) + P{lap(t) keff(t)

- k. C'Jt) . (6.59)

By transforming to the new variables
defined by Eqs. 6.54 and 6.55 and by
using Eq. 6.58, Eq. 6.59 becomes

dCjt)
—5T~- MpO *.//(*)

+ P(t) keff(t) $(t)

+ ®(t) - CJt)] . (6.60)

Fuel Temperature. With the sub

stitutions

0/U,t) = 0/o(z) + d'f(z,t) (6.61)
and

dc(z,t) = 0co(z) + d'Az.t) , (6.62)
where 0yo(z) and dc0(z) are the steady-
state fuel and coolant temperatures
for t = 0 at z , and d'Az , t) and d'c(z ,t)
are the time-dependent departures, and
the relationship

4>(z,t) = <p(t) P(z) , (6.63)

wl , P(z) is the longitudinal power
distribution normalized over the

reactor length, L, so that

LLnz) - i , (6.64)

Eq. 6.42 becomes

+ <pAt)] - k.[Ci0 + C'At)] . (6.57)

WUz.t)
—^-r = LA<i>Az) + <pAt)] P(z)

Bt f °

- kf[dfQ(z) + d'f(z,t)

- 8c0(z) - d'Jz.t)] . (6.65)

By using the notations of Eqs. 6.61,
6.62, and 6.63, the steady-state form
of Eq. 6.42 becomes

0 = if<P0 P(z) ~ kf[dfQ(z) - dc0(z)] .
(6.66)

Subtracting Eq. 6.66 from Eq. 6.65
gi ves

B0Wz,t)
—^ = ifcp'(t) P(z)

Bt f

- kf[d'f(z,t) - d'Jz.t)] . (6.67)
By using Eq. 6.54, Eq. 6.67 becomes

Wf(z,t)
—^ =S^>0 <t>(t) P(z)

~ kf[d'f(z,t) - d'c(z,t)] . (6.68)

Moderator Temperature. In a similar

manner and with similar definitions,
it follows that the moderator tempera
ture equation becomes

B0;(z,o
= ia<P0 <*>(*) P(z)

Bt

" km^'jz-^ ~ #c(z>t)] * (°'69>
Coolant Temperature. By sub

stituting Eqs. 6.61 and 6.62 and
subtracting out the steady-state
part, the coolant temperature equation
(Eq. 6.44) becomes
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z - z

t -
dz

Iodine Concentration. By sub-
sti tuting

A(t) = A0 + A'(t) , (6.71)
where <$. is the steady-state iodine
concentration at design conditions and
<X'(t) is the time-dependent departure,
subtracting out the s teady- s tate part,
and transforming to the dimensionless
variable

ru)
at)

a.

the equation for the iodine
tration (Eq. 6.45) becomes

dl(t)

dt
= \7[*(t) - HO]

Xenon Concentration.

stituting Eqs. 6.48 and 6.71 and the
similar equation for xenon, that is,

3Ut) = 1Q + X'(t) , (6.74)
the equation for the xenon concen
tration (Eq. 6.46) becomes

(6.72)

concen-

(6.73)

By sub-

dl'(t)

dt
kz[\ +'r<o] -\X\Z0 + I'(t)]

In steady-state form, Eq. 6.46 is

0 = Mo " Mo -°V*o*o • (6'76)
and subtracting Eq. 6.76 from Eq. 6.75
gives

dl' (t)

dt
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kj &'(t) - kx X'(t)

" cr% cp'(t) 1Q - ax cpAt) X'(t)

- cr^ X'(t) . (6.77)

Transforming to dimensionless variables
by using Eqs. 6.54 and 6.72 and

K [*'. * dz' . (6.70)

X(t) =
X'(t)

(6.78)

as well as Eq. 6.76, Eq. 6.77 becomes

dt I la

- $(t) X(t) - *(t)]

+ ^[$(0 + *(t) Jf(t)] . (6.79)

Reactivity. With the use of the

definitions already introduced, Eq.
6.47 for the p(t) ke,,(t) becomes

p(t) keff(t) = kex(t) = Sfec(t)

+ ef d'f(t) + ec d'At) + e. 0^(0

+ e/Q *(t) . (6.80)

- crs[d>0 + cp'(t)] [1Q + 3C'(t)] . (6.75)

REMARKS ON SOLUTION OF THE EQUATIONS

In solving for the response of the
system to, for example, a sudden
introduction of fe or perhaps a sudden

ex r tr

change of inlet coolant temperatures
by means of these simultaneous first-
order differential equations, a rather
lengthy set of equations must be used.
Often it is possible to reduce the
number of equations by approximations
and by leaving out certain equations
that affect the response only slightly.



For example«***8fee moderator temperature
and the xenon concentration sometimes

change slowly and hence can be omitted
if the interest is only in the behavior
of, say, power for a short time after
a sudden change in fe ,,. Also, the
six precursor equations can be reduced
to one by the following approximation:
The six groups are divided into three
classes, the shortest delay group being
Class A, the next three groups, Class
B, and the longest two groups, Class C.
Class A neutrons are considered as
prompt neutrons, Class C neutrons are
considered as being infinitely delayed,
that is, they are never returned to
the system, and Class B is given an
average decay constant,

K
P2 + Ps + P<

P2l2 + P3l3 + A,<4
Even after such approximations and

simplifications, however, there are
usually several simultaneous dif
ferential equations, the solution of
which is at best a lengthy job. Three
procedures have been used with success
at the various laboratories: (1) An
inexpensive^mit sometimes slightly in
accurate method is to " linearize" the

equations by neglecting products of
departure quantities and then using
the method of Laplace transform to
solve the linearized approximate
equations. This procedure has been
described by Smith et alA2) (2) The

/ 9 )
V'N. M. Smith, Jr., et al., Perturbation

Equations for the Kinetic Response of a Liquid-
Fuel Reactor, ANP-62.

equations can be solved in a straight
forward manner by using simple numerical
techniques and a digital computer such
as the IBM-CPC. This procedure has
been described by Nielson and Webster/ 3 >
(3) The equations can be solved through
the use of analog simulators such as
were used for the kinetic studies of
the STR design.

RESULTS OF KINETIC STUDIES

Figures 6.1 through 6.9(4) are
presented as illustrations of the
kinetic behavior of a stable reactor.

These figures show the response of
flux (or power) and fuel temperature
to step increases in reactivity. The
data for these curves were calculated

by IBM numerical methods for the ARE
design of June 10, 1951. This reactor
was BeO-moderated and sodium-cooled,
and the fuel was in a liquid state in
many small vertical tubes. The fuel
tubes extended upward into a layer of
boron at the top of the active lattice,
and thus if the power were to increase
and the fuel temperature consequently
to rise, part of the fuel would expand
into the boron layer and be lost to
the chain reaction. The result would
be a slight state of subcriticality
and the power level would tend to
decrease. This reactor design is
therefore a very stable one.

( 3)
M. J. Nielson and J. W. Webster, Solution of

Kinetic Equations of Cylindrical Liquid-Fuel
Reactor, ANP-68.

' 'j. W. Webster and M. J. Nielson, Some
Results of Kinetic Studies on the ARE Design of
10 June 1951, ORNL Y-F10-75.
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Appendix A

NUCLEAR DATA

Nuclear data are presented for
(1) the thermal cross sections of the
unclassified elements (Table 1),(1)
(2) the fission and absorption cross
sections as a function of energy for
uranium (Figs. Al through A6),^2^
(3) the absorption cross section as a
function of energy for xenon (Fig.
A7), * ' (4) the xenon cross section
averaged over a Maxwell-Boltzmann
distribution for various reactor

temperatures (Table 2).^ '
Another item of nuclear data fre

quently needed is the fission spectrum.
The distribution of the energies
of the fission neutrons from U

is given by the semi-empirical re-
lation(4)

N(E ) = const sinh
\0.487,

1/2

- l(E /0.974) + (1/2)]
x e

(1)H. R. Kroeger, Nucleonics, Vol. 5, No. i,
51-54 (1949).

(2)
N. M. Smith, Jr., KAPL Cross-Section Curves

for Xe-135, U-23S. and U-238. Y-F10-51 (Apr. 17,
1951).

(3)
J. W. Webster, Xe Effect in an Epi Thermal

Reactor, Y-F10-17 (Oct. 10, 1950).

28

24

20

s'6
b

l\\
SEPTEMBER 15 ,1950 /u

/
1

\
1

4 6 8 10 12 14

Fig.
,23 8

Al. Capture Cross Section of

This formula fits quite well theentire
fission spectrum from 75 kev up to
15 Mev.

( A)
T. W. Bonner, A Study of the Spectrum of

the Neutrons of Lou Energy From the Fission of
,23S

, LA-715 (Dec. 12, 1948).
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Symbols: b =

c„ —

crc

TABLE 1. THERMAL NEUTRON CROSS SECTIONS AND RELATED DATA*

average cosine of the scattering angle relative to the initial direction,
total microscopic cross section for collision,
microscopic cross section for a scattering collision,

aTR = microscopic cross section for a transport collision,
o~. - microscopic cross section for an absorption collision.

ATOMIC

NUMBER,

Z

NAME

CHEMICAL

ATOMIC

WEIGHT,
A

DENSITY, p
(g/cc

at 20°C
760 mm Hg)

NUCLEI

PER cc

(x 10-24),
N

(1 - b)

AVG. LOG

ENERGY

LOSS,

THERMAL (0.025 ev) NEUTRON CROSS SECTIONS, cr
(barns)

THERMAL (0 .025 ev) MACROSCOPIC CROSS
2 = o-N

SECTIONS, THERMAL (0.025 ev) MEAN FREE

(cm)

PATH SLOWING-

DOWN

POWER

MODERATING

RATIO

«rs/aA) x (

ATOMIC

NUMBER,

crT &S CTTil aA 1T S-s Zn *A KT KS kTR \. Z

1 H • 1.008 0.00008 0.00005 0.3329 1.0 46 46 15 0.32 3.33

(H20)
140 1

1 D 2.0147 0.00017 0.00005 0.6662 0.7261 5.3 5.3 3.5 0 1

2 He 4.003 0.00016 0.000025 0.8320 0.4281 1.5 1.5 1.2 0.008 80 2

3 Li 6.940 0.534 0.0463 0.9031 0.2643 66.5 1.5 1.4 65 3.1 0.07 0.07 3.0 0.33 14 15 0.33 0.018 0.006 3

4 Be 9.02 1.84 0.1229 0.9255 0.2078 6.1 6.1 5.6 0.0085 0.75 0.75 0.69 0.001 1.3 1.3 1.5 950 0.156 150 4

5 B 10.82 2.535 0.1411 0.9379 0.1756 719 3.8 3.6 715 100 0.54 0.51 100 0.01 1.9 2.0 0.01 0.094 0.001 5

6 C 12.01 1.67 0.0838 0.9440 0.1589 4.8 4.8 4.5 0.0045 0.40 0.40 0.38 0.0004 2.5 2.5 2.6 2600 0.064 170 6

7 N 14.008 0.00116 0.00005 0.9520 0.1373 11.7 10 9.5 1.7 0.81 7

8 0 16.000 0.00133 0.00005 0.9580 0.1209 4.1 4.1 3.9 0.001 500 8

9 F 19.00 0.00158 0.00005 0.9646 0.1025 4 4 4 0.01 41 9

10 Ne 20.183 0.00084 0.000025 0.9667 0.0967 2.8 10

11 Na 22.997 0.9712 0.02 54 0.9708 0.0852 4.5 4 4 0.45 0.11 0.10 0.10 0.011 8.8 9.8 9.8 88 0.009 0.76 11

12 Mg 24.32 1.741 0.0431 0.9724 0.087 3.0 2.7 2.6 0.3 0.13 0.12 0.11 0.013 7.8 8.6 8.9 77 0.009 0.73 12

13 Al 26.97 2.699 0.0603 0.9751 0.0730 1.6 1.4 1.4 0.22 0.097 0.084 0.084 0.013 10 12 12 77 0.006 0.47 13

14 Si 28.06 2.42 0.0519 0.9760 0.0702 2.5 2.3 2.2 0.2 0.13 0.12 0.11 0.010 7.7 8.4 8.8 96 0.008 0.81 14

15 P 30.98 2.34 0.0455 0.9783 0.0637 4.4 4.1 4.0 0.3 0.20 0.19 0.18 0.014 5.0 5.4 5.5 73 0.012 0.87 15

16 S 32.06 2.0 0.0376 0.9790 0.0616 1.4 1 1 0.4 0.053 0.038 0.038 0.015 19 27 27 67 0.002 0.15 16

17 CI 35.457 0.00295 0.00005 0.9810 0.0558 55 20 20 35 0.032 17

18 A 39.944 0.00166 0.000025 0.9832 0.0497 3 2 2 1 0.099 18

19 K 39.096 0.87 0.0134 0.9828 0.0507 4.0 1.5 1.5 2.5 0.054 0.020 0.020 0.034 19 50 50 30 0.001 0.030 19

20 Ca 40.08 1.54 0.0231 0.9832 0.0495 4 3.5 3.4 0.5 0.092 0.081 0.079 0.012 11 12 13 86 0.004 0.35 20

21 Sc 45.10 2.5 ' 0.0334 0.9851 0.0441 22 0.74 1.4 21

22 Ti 47.90 4.5. 0.0566 0.9860 0.0415 11 6 6 5 0.62 0.34 0.34 0.28 1.6 2.9 2.9 3.5 0.014 0.050 22

23 V 50.95 5.96 0.0705 0.9868 0.0391 12 7 7 4.5 0.85 0.49 0.49 0.32 1.2 2.0 2.0 3.2 0.019 0.061 23

24 Cr 52.01 6.92 0.0801 0.9871 0.0383 6.5 4 4 2.5 0.52 0.32 0.32 0.20 1.9 3.1 3.1 5.0 0.012 0.061 24

25 Mn 54.93 7.2 0.0789 0.9878 0.0363 15.3 2.3 2.3 13 1.2 0.18 0.18 1.0 0.83 5.5 5.5 0.95 0.007 0.006 25

26 Fe 55.85 7.85 0.0847 0.9880 0.0357 13.5 11 11 2.5 1.1 0.93 0.93 0.21 0.88 1.1 1.1 4.7 0.033 0.16 26

27 Co 58.94 8.71 0.0890 0.9886 0.0338 41 5 5 36 3.7 0.45 0.45 3.2 0.27 2.3 2.3 0.31 0.015 0.005 27

28 Ni 58.69 8.9 0.0913 0.9885 0.0340 22 17 17 4.5 2.0 1.6 1.6 0.41 0.50 0.65 0.65 2.4 0.053 0.13 28

29 Cu 63.57 8.89 0.0842 ' 0.9894 0.0314 10.2 7.2 7.1 3 0.86 0.61 0.60 0.25 1.2 1.7 1.7 4.0 0.019 0.075 29

30 Zn 65.38 7.19 0.0662 0.9897 0.0305 4.5 3.6 3.6 0.9 0.30 0.24 0.24 0.060 3.4 4.2 4.2 17 0.007 0.12 30

31 Ga 69.72 5.9 0.0510 0.9904 0.0287 18 16 16 2.2 0.92 0.82 0.82 0.11 1.1 1.2 1.2 8.9 . 0.023 0.21 31

32 Ge 72.60 5.46 0.0453 0.9907 0.0275 9 6 6 2.8 0.41 0.27 0.27 0.13 2.5 3.7 3.7 7.9 0.007 0.059 32

33 As 74.91 5.73 0.0461 0.9910 0.0267 8.8 4.5 4.5 . 4.3' 0.41 0.21 0.21 0.20 2.5 4.8 4.8 5.1 0.006 0.028 33

34 Se 78.96 4.5 0.0343 0.9915 0.0253 28 13 13 15 0.96 0.45 0.45 0.52 1.0 2.2 2.2 1.9 0.011 0.022 34

35 Br 79.916 3.12 0.0235 0.9916 0.0250 11.5 5 5 6.5 0.27 0.12 0.12 0.15 3.7 8.5 8.5 6.5 0.003 0.019 35

36 Kr 83.7 0.00348 0.000025 0.9920 0.0239 27 27 27 0.05 13 36

37 Rb 85.48 1.532 0.0108 0.9921 0.0234 12.6 12 12 0.6 0.14 0.13 0.13 0.006 7.4 7.7 7.7 150 0.003 0.47 37

38 Sr 87.63 2.6 0.0179 0.9923 0.0228 11.3 9.5 9.4 1.8 0.20 0.17 0.17 0.032 5.0 5.9 5.9 31 0.004 0.12 38

39 Y 88.92 3.8 0.0257 0.9924. 0.0225 4.2 3 3 1.2 0.11 0.08 0.08 0.031 9.3 13 13 33 0.002 0.057 39

40 Zr 91.22 6.44 0.0425 0.9926 0.0220 8.4 8 8 0.4 0.36 0.34 0.34 0.017 2.8 2.9 2.9 59 0.007 0.44 40

41 Nb 92.91 8.4 0.0545 0.9928 0.0216 8.2 7 7 1.2 0.45 0.38 0.38 0.065 2.2 2.6 2.6 15 0.008 0.13 41

42 Mo 95.95 10.2 0.0640 0.9930 0.0209 9.6 7 7 2.6 0.61 0.45 0.45 0.17 1.6 2.2 2.2 6.0 0.009 0.056 42

43 Tc 99 0.9932 0.0202 43

44 Ru 101.7 12.2 0.0723 0.9934 0.0197 9 6 6 3 0.65 0.43 0.43 0.22 1.5 2.3 2.3 4.6 0.009 0.039 44

45 Rh 102.91 12.5 0.0732 0.9935 0.0195 155 6 6 149 11 0.44 '0.44 11 0.088 2.3 2.3 0.092 0.009 0.001 45

46 Pd 106.7 12.16 0.0686 0.9937 0.0188 10.5 4.5 4.5 6 0.72 0.31 0.31 0.41 1.4 3.2 3.2 2.4 0.006 0.014 46

47 Ag 107.880 10.5 0.0586 0.9938 0.0186 66 6 6 60 3.9 0.35 0.35 3.5 0.26 2.8 2.8 0.28 0.007 0.002 47

48 Co 112.41 8.65 0.0463 0.9940 0.0178 2500 6 6 2500 120 0.28 ' 0.28 120 0.009 3.6 3.6 0.009 0.005 0 48

49 in 114.76 7.28 0.0382 0.9941 0.0175 192 2 2 190 7.3 0.08 0.08 7.3 0.14 13 13 0.14 0.001 0 49
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TABLE 2. AVERAGE THERMAL-NEUTRON CROSS SECTION OF XENON

FOR VARIOUS REACTOR TEMPERATURES

crXe averaged by the formula

where

where

Xe

/CO

crXe(£) E e-E/kT dE

f *Ee-E/kT dE

r2
a

crxJE)
0 4

p2 N
(E-EQ)2 +-

r = 0.107 ev ,

E0 = 0.0863 ,

rocrn = 3.4 x 106 barns,

T (°F) E = kT (ev) cr ( barns ) x 10" 6

62.5 0.025 2.989

375.9 0.04 2.657

793.6 0.06 2.123

1211.4 0.08 1.674

1286.4 0.08359 1.607

1372.3 0.0877 1.539

1503.9 0.094 1.450

1587.4 0.098 1.378

1629.2 0.1 1.346

1673.1 0.1021 1.316

1712.8 0.104 1.290

1838.1 0.11 1.212

2047.0 0.12 1.097

•The data were taken from the work of S. Bernstein et al. as renorted in ORNL-325.
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Appendix B
CALCULATION FORMS

Calculation Form 1 is for use in

applying the Fermi age theory to bare,
intermediate-energy reactors. The
notations and derivations are given
in chap. 2. Form 2 presents procedures
for solving two-group, three-region
criticality problems for reactors with
parallelepiped geometry and reflectors
on one pair of opposite faces. Similar
procedures can be devised for the other
soluble geometries.

Form 1 was designed by the ANP
Physics Group of the Oak Ridge National
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Laboratory, N.M.Smith, Jr., Chairman.
Form 2 is based on the work of Garabedian

and Householder, as presented in
MonP-202,(1) and modeled after a
similar form prepared by B. Spinrad.
The symbol k in the notation of MonP-
202 is the diffusion coefficient,

that is, ktr/3. The sheets are
specifically designed for thermal
reactors.

H. L. Garabedian and A. S. Householder, The
Two Group Theory of Pi les uith Multiple Re flee tors,
MonP-202 (Nov. 11, 1946).



CODE.
FORM I

FERMI AGE FOR BARE-REACTOR CALCULATION'

OWG. 20652

GROUP
NUMBER

I n m nr

[Hl]il

2 30 3ZE 3zm IX

Vl + In
2

X

2xlxHxIX

XI

%-\ *l

xn

2x11 xEIxIX

XM

Vl x E

~xtv

BALANCE

3zm+x+xi

xz

CHECKS

™ + ?„-1

tot WIT

A M
n n

FISSIONS

XSIE

n±th

rx., xxrx..

FUEL MODERATOR METAL COOLANT VOID

VOLUME
FRACTION

SLOWING-
DOWN

DENSITY

EZ IE N=th

Wp)tt
DENSITY

LEAKAfip ABSOPpTinfJ<:; Try
TEMPERATURE

CLEAN OR POISONED

N 8(pw) m. V2 CN , + C/V '-C# »ZN «n ~N EN Etn AN Atn ®>. Fn tf>/v .
i 52 =

RAninq rm j. rm Al IGMFNTFD 1 FNlTTH

0 V///////A y///////.'////////.V///////.'///////,v//////,'///////, y///////y//////////////////////y//////////////y/^^^^
1 0.25 0.0525

2 0.25 0.2600

3 0.25 0.5175

4 0.25 0.5775

5 0.25 0.4575

6 0.25 0.2925

7 0.25 0.1675 • 1

8 0.25 0.0875 '

9 1.50 0.0875

(0 1.50 0

11 0.70 0

12 0.60 0

13 0.40 0

14 0.20 0

15 0.40 0

16 0.60 0 j \
17 0.20 0 / \
18 0.20 0 / \
19 0.20 0 1 \
20 0.20 0 / \
21 0.10 0 / \
22 0.10 0 / \
23 0.10 0 / \
24 0.10 0 / \
25 0.10 0 / \

Thermal (18.4) 1.00 '///////•'/////// 0 '///////,V//////,y//////,
26 0.10 0 ^x^ ^X^

Thermal (18.6) 1.00 '///////y//////, 0 '///////.v//////'///////, '///////,
27 0.10 0 \ / \ /
28 0.10 0 \ / \ /
29 0.10 0 X X
30 0.10 0 / \ / \
31 0.10 0 / \ / \

Thermal (19.6) 1.00 '//////// y///////, 0 '/////// y//////.y//////, '///////
SUM (18.4) A+B+C+D SUMU84) W "8.4)

* SUM (18.6) A+B+C+D SUM (18.6) W "8.6)
THIS SHEET IS SPECIFICALLY DESIGNED FOR THREE POSSIBLE THERMAL BASES:

u = \n'S- =18.4. i/=18.6. OR </ =19.6. THE NOTATIONS ARE THE SAME AS THOSE
SUM (19.6) A+B+C+D SUM (19.6) keff (19.6)

GIVEN IN CHAPTER 2
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FORM 2. TWO-GROUP MULTIREGION CALCULATION SHEETS FOR SLAB OR

PARALLELEPIPED GEOMETRY

The calculation procedure varies 3. Repeat until the initial and
slightly with the problem. The three the final k values are the same,
particularly important types of Comments. It would seem that the
problems are: procedure given for Case B would be
A. to calculate the uranium content useful for any of these cases — par-

to make a reactor of given di- ticularly when the initial conditions
mensions, core structure, and are far from criticality,
moderator composition critical;

B. to calculate the radius to make a CUKb.
reactor of given core structure Dimensions
and composition (including uranium) H =
critical; / r _

C. to calculate dk for a reactor when

a uniform change is made in the

composition of any region. B2. = (tt/H)2 =
Procedure in Case A

1. Estimate the uranium content 2 = ^7T/L-> ~
and from this compute k and 2 . B2 + R2 =

r as ui u2
2. Carry through the calculation

of /, AB'1, C, and AB^C and in / Constants
leave llq x tan /J.0 t a as a variable. Slow Neutrons

3. Determine the value of u„, 2
'01 a

tan fJ-o ia which makes the eliminant= 0. y
4. Find the value of /j. and the f

associated k corresponding to it. * =
5. Repeat the process with the use v •.

r i iii *r i JCjvaiuate
oi the new k and the new 2- „ computed

*» 2 _ i /r 2
from it. Only / needs to be re- ftoi ~ ' s ~
calculated. Repeat until the initial \ _ n _
and the final k values are the same. 01 s

Procedure in Case B Fast Neutrons

1. k and 2 are known. Calculate m
a s

Half thickness

AB'1, C, and AB'1C. "°2 1/T "
2. Calculate / for several values A. = £), =

j. 02/
of a.

3. Plot the value of the eliminant Solve
vs. a and determine the a which makes

the eliminant vanish. This procedure ^ o oi ' ^ o ~ o2' = oi o2
is also valid in Cases A and C

Procedure in Case C

1. k and 2as are given for the un

Designate the negative and positive
roots of this equation by

perturbed reactor. Put in the uniform oi
perturbation and calculate the fJ-0 1 a
that makes the eliminant = 0. Calcu

;e the k corresponding to this /J,Q j
2. Recalculate / with the use of

i new k and determine ^-01 and k
values which make the eliminant = 0.

A„ . = - F2
o 1

F0 2 * 02

late the k corresponding to this rl01. ll^ x = F21 - B\ - B2

ul2 = F2 + R2 + R2and new k and determine fi01 and k ^02 r02 "1 "2

^01
•Notation is that of MonP-202. ^ ' /J. ,
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Compute

^02^0 2

kkQl klr

\>2 ^0 2 " ^0 2*

Functions

M02a =

Multiply AB'1 and C to obtain

AB'lC =

A A
"ll "l2

) (

A A
*21 ^22

( ) (

tanh U„ „a
^0 2

u„„ tanh u„„a
r0 2 ^0 2

31

( )

( )

The eliminant of

ft1)- «-c '"'
where a = half thickness of core.

Matrix and Critical Relations

/ =

1 1

" \A. tan ^oi" Nx^oa tanh ^02°
(- ) ( )

.) (-

r X02ri^01 "»C„« KotriH-01 ta"h 'W
.(- ) (- )

< )

"an

u—>

160

must be zero. Manipulation of the

eliminant yields the following two-
rowed determinant, which is to equal

zero.

" *-oiMoi tan'ioi0 ^01^02 tanh /i0,o
(- ) ( )

.) (-.

~ *-0Ir1^01 tan ^0 1° K»trJ1l)l tanh M0J°
U- ) (- )i



-) fJ-oi tan ^oia = <-

M01 tan LL01a = (.

-•) ;

-) ;

^0 1

^oia

tan /i0Ja

LLal tan/^01a

^oia

/fo 1

^i

0 1 Mo'i + B, + B2

(-F2 - k2 ) =

(_F2 _ It2 ) =v r 0 1 TC0 2 '

(-F2 - k2 ) (-F2 - k2 )\ rQ1 - «0 j ^ v-r01 -^02'

k2 k2TC0 1 TC0 2

k =.

CONSISTENCY CHECK

co s Moi a =

cosh U„„a =
^0 2

a2 =

r j cosh fJ-0 xa

r„ cosh u„„a
2 r0 2

1 + ~ \>2^>1 tan ^01°
4 1

-1 +
"3 1

\>2^02 tanh/x02a
4 1

c. =1 -A \)2r2^02 tanh /a02o cosh/x02a
A41

\>2 rl
P-oi tan ^oia cos ^oia

4 1

c. = ^01^02 t3nh ^02° COsh^0 2a
22

A
21

"22

V
01

n2 2

h)i tanM01a cos p.01a

The check to assure that critical

conditions have been established is

that the following equality exist:

a2 cosh ri02a - AllCl - A12C2

= ~ cos p-01a .

This does not ensure that the A• . have
lJ

been evaluated correctly.

INNER REFLECTOR

Dimensions

Thickness = 5 =

B\ = (tt/H)

B\ = (tt/L)2 =

B\ +B\

2 _

Constants

Slow Neutrons

k2^ = 1/L2 =

Kx = Ds

/*?. • Mi + B\ + B\ -

P-ix =

LL2^1 2

Mia =

k212 + BJ + B» =

cm
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Fast Neutrons

k212 = 1/T =

^2 " Df -

Constants

Slow Neutrons

k221 = 1/L2 =

Functions sinh cosh

^125

*ai " Ds
lc221 -k221 +BI+ B\ -.

2 1

LL2 = k2 + B2+ B2 =r~2 2 22 1 2 •

*ll<Ml -K2)

k^U

Matrix

M 22

Fast Neutrons

k2 - 1/T -
2 2

^22 = *>/ ••

sinh M,i'S cosh ^ ,5 - cosh Hl3S M12 sinh fi, ,5 - /xt, sinh Mia5

( ) ( ) ( >

AB'

cosh /x, jS

( )

OUTER REFLECTOR

Dimensions

Thickness = t =

Bl = (TT/H)2 =

B\ = (77/L)2 =

B\ + B* =

162

-— (M,, sinh /J. S - 11 sinh M,.S)

( )

Kjs.
(cosh /i^S - cosh fJ-.^S)

cosh M125

( )
^la^n

sinh M,2S

)

" *-i#n sinh/J,2S
( )

cosh fi13S
< )

cm

Functions sinh cosh

M21*

^22*

^(^i -M>>
t. =

X22^22



Matrix

sinh ^22*
( )

sinh lc2 A

( )

C =

~ k2lLL22 cosh fl22t
( )

tj sinh Li22t

- k21jx21 cosh /J-2 j t

( )

0

(. .)

- ^22*1^22 COSn ^22*
( )

DISTRIBUTIONS IN CORE

Coefficients

a. = (from consistency check).

Fluxes

0SO - U1 = cos piQ1X + a2 cosh /i„ 2X

tfo = U2 = ri C0S ^0lX
+ r2a2 cosh p:02X =

Edge Values

\a2 C0SH ^0 2°/ \jj°

cos fJ<oia

( )

a2 cosh M02a

i V

0 so

JS0

*fo

Jfo

( )

( )
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Plots

(D ® *.. */o
X M01* M0 2X COS LL0 A a2 cosh /J.Q 2X ® + (D r, ® + r2©

DISTRIBUTIONS IN INNER REFLECTOR

Coefficients

cosh Mi.0 = .

Cosh rl12a =

sinh M,,a =

sinh A42a =

*i =

b2-

tfoKpu cosh Mua " Jf0 sinh /z12a

\ 2M12s!

Jf0 cosh /^12a - <Pf0k12ri12 sinh ft12a

\2M125X

63 = ^.o cosh/i^a -0
cosh /U.xla

/o e

sinh p...a sinh/z a

- J., — + J,'s0 Kithi f° MxAxj5!
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64 = J
so

cosh M, .o cosh /i a

XiiMlx /0 ^lA

- <£s0 sinh /ina + 0
sinh Mna

'/o

Fluxes

0sl = 6j cosh p.12X + 62 sinh p12X

+ 63 cosh Mj^ + 64 sinh Mir^

^/i = bisi cosh M12* + b2si sinn/"12-^



Plots

1 2

*/l
3 4 5

si

X M12* "11* 6jSj cosh t*12X fcjjj sinh M12* 1 + 2 6, cosh M,,^ 6. sinh fi X
1

3 + 4 + 5

Edge Values (necessary only if there
are more than two reflectors)

0S, = bj cosh fi12 (a + s)

+ b2 sinh fil2 (a + s)

+ 63 cosh Li (a + s)

+ 64 sinh /Xjj (a + s )

Jsl = ^1^11^12 sinh /^i2 (a + s)

+ b2^iiMi2 cosh p12 (a + s)

+ ^3^-!!^!! sinh /ijj (a + s)

+ b4kll(j.ll cosh /^.j j (a + s)

~ : i

0yi = Sjbj cosh /x12 (a + s)

+ s jb2 sinh ll12 (a + s)

Jf\ = ^i^i2siMi2 sinh /i12 (a + s)

+ b2kl2s j/ij 2 cosh/u-12 (a+s)

DISTRIBUTIONS IN OUTER REFLECTOR

Coefficients

(from consistency check);Ci -
(from consistency check).

Fluxes

<ps2 = Cj sinh p.22 (a + s + t - X)

+ C2 sinh yu.21 (a + s + t - X)

4>f2 = tjCj sinh yu.22 (a + s + t - X)
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Plots

® @ @ *S2 */a
X a + s + t - X *21® "22® Cj sinh n21 ® C2 sinh /x21 (1) © +® tj©
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