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PREFACE

This text in elementary reactor
theory 1s the outgrowth of a course
given by the writer to a group of
Phillips Petrolleum Co. employees in
training to be operators of the MTR.

The author is indebted to the
members of this class for their
encouragement with respect to the
lectures, as well as in the writing
of this report which contains the
subject matter of the course.

I am particularly indebted to
Charles Cagle, who supplied me with
a careful set of notes on the lectures.
The notes were of great help in the
preparation of the text.

The principal reports consulted
regarding the various proofs were:

1. H. Soodak and E. C. Campbell,
Elementary Pile Theory, AECD-2201,

2. S. Glasstone and M. C. Edlund,
The Elementsof Nuclear Reactor Theory,
Parts I, II, and III, TID-384, -385,
and -386.

3. C. R. McCullough et al, Summary
Report on Design and Development of
High Temperature Gas-Cooled Power

Pile, Appendix F, MonN-383 (Sept. 15, .

1947).

4. M. J. Nielsen and J. W. Webster,
Solution of Kinetic Equations of
Cylindrical LiquidFuel Reactor, ANP-68
(Sept. 18, 1950).

The aim throughout the writing was
to present in as much detail as
possible the derivations and basic
formulas the physicist or nuclear
engineer needs to do the necessary
““nuclear calculation” for a reactor
design. These necessary ‘‘nuclear
calculations”® seem to be (1) critical
mass calculations, (2) flux and power
distributions, (3) reactivity effects
of temperature, depletion, and fission-
product poisons, (4) control rod
effectiveness, and (5) kinetics.

An attempt has been made to make
clear the way in which the individual
derivations of the fundamental quanti-
ties (for example, £, J,, J_, g)fit
into the over-all plan of the develop-
mentof the basic formulas for critical
size, etc. It i1s very easy to become
buried in the lengthy search for the
formula for &, for instance, and lose
sight of the reason for wanting such
a quantity. It seems well to treat
as incidental the fact that formulas
for quantities like j, and j_ are very
useful in théir own right.

1x



INTRODUCTION

The purpose of this writing is to
provide a practical type of text in
reactor theory for the use of nuclear
engineers engaged in reactor design.
Methods are derived for calculating
critical mass; power distribution;
reactivity effects of temperature,
depletion, and fission-product poisons;
the necessary number of control rods
to compensate for these effects; and
the kinetic behavior of flux and
temperatures in a reactor with regard
toreactor stability and self-regulation.

It is the opinion of the author
that methods in the field of reactor
theory must be short and simple in
application if they are to be of real
assistance to reactor design. An
answer that can be obtained in a day
or two with an accuracy of 50% 1is
often very useful to a designer,
whereas one that is accurate to within
10% but takes a month to obtain may be
obsolete and utterly useless by the
time it is presented to the designer
by the physicist.

An understanding of fundamental
ideas such as cross section and mean
free path are assumed here. An
excellent reference for suchdefinitions
is Part I of TID-384 by Glasstone and
Edlund. (")

The subjects discussed in this
report, in the order listed, are:

1. The one-group theory for the
calculation of critical mass and power
distribution. The one-group model is
very crude and is given partly for
pedagogical reasons, but it does have
practical usefulness.

(I)S. Glasstone and M. C. Edlund, The Elements
of Nuclear Reactor Theory-Part I, TID-384 (Nov.
1950).

2. The Fermi age theory for calcu-
lating critical mass. The Fermi age
theory is one of the most useful
approaches to critical mass determi-
nation, in spite of the fact that it
can be applied only to unreflected
reactors., The reflected reactor can
be approximated by an equivalent un-
reflected reactor, as discussed in
chap., 2. The formulas obtained by
Fermi age theory are simple and
relatively accurate for reactors
moderated with beryllium or carbon,
and a modification of the formulas can
be applied to make the method reasonably
accurate for hydrogen-moderated
reactors. K

3. The two-group theory for calcu-
lating critical mass and power distri-
bution. The two-group model can be
used in conjunction with the Fermi age
method by determining the core constants
for the former by means of the latter.
This will be discussed in chap. 3.

4, The effect of temperature,
depletion, and fission-product poisons,
such as xenon and samarium. These
effects act to decrease the effective
neutron multiplication constant, and
therefore the fuel inventory must be
sufficient to ensure criticality when
these effects are at their maximum.

5. The necessary number of control
rods (shim rods) to offset the virtual
supercriticality that exists in a
reactor at startup when the effects
described in item 4 are at a minimum.

6. The kinetic behavior of flux
and temperatures in a reactor. The
kinetic self-regulation, stability to
accidents, and response to control rod
(regulating rod) motion must be in-
vestigated for a reactor design
proposal.
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Chapter 1
CRITICALITY BY ONE-GROUP THEORY

The simplest formulas for obtaining
critical mass or size and spatial
power distribution are obtained from
a mathematical model in which all
neutrons are considered to be at one
energy. The one -energy assumption is
very crude, because reactor neutrons are
actually spread in energy from about
107 ev down to around 0.25 ev (in a
cold reactor). Since cross sections
vary with energy and the energy distri-
bution of the neutrons is not usually
known, it is difficult to choose good,
average values for the constants.
Therefore the results obtained are not
generally in good agreement with experi-
ments. However, the one-group model
does have application, and because
of its simplicity it is an excellent
subject to start with in discussing
the methods of reactor physics.

The simplest geometrical arrangement
is the bare (unreflected) reactor,
which is a completely homogeneous,
one-region mixture of fissionable
material, moderator, and diluents.

BARE REACTOR

The fundamental equation of reactor
theory is the neutron-balance equation.
This is a differential equation which
states that if a reactor is critical
(that is, if there is just enough
uranium concentration for a given size
to sustain the chain reaction), the net
flow of neutrons out of a volume
element per second added to the number
of neutrons absorbed per second in the
element must equal the number of
neutrons produced per second in the
element.

three terms are discussed in the
following sections of this chapter.

Leakage. The net flow of neutrons
per second, a scaler quantity, from a
cubical element of volume is easily
obtained if the net neutron current,
a vector quantity, is known at each face
of the element. It is necessary to
sum the differences between the net
current in a face and the net current
out of the opposite face for three
pairs of parallel faces. The neutron
current is a quantitative measure
of the rate of diffusion of neutrons.
The theory of neutron diffusion is the
basis of reactor theory.

Diffusion of Neutrons. It 1is
instructive and interesting to draw an
analogy between heat conduction and
diffusion of neutrons, provided the
analogy is not carried too far, since
both are examples of transport phe-
nomena, In heat conduction, the
kinetic energy of the molecules is
transported because of the temperature
difference between neighboring volume
elements. Temperature is an index of
the average kinetic energy of the
molecules in a volume element; there-
fore in the volume element of high
temperature, the faster moving molecules
collide with the slower moving mole-
cules of the adjacent cooler volume
element and impart energy to them.
Energy, or heat, is spatially trans-
ferred. In neutron diffusion, the
quantity corresponding to temperature
is neutron density, N. The quantity

that corresponds to Q, the Btu’'s of
heat energy transported across an

(Leakage per sec per cm®) + (Absorption per sec per cm®)

The mathematical expression for the
first term is by far the most diffi-
cult to obtain. The formulas for the

-
¥,
a

- (Production per sec per cm®) =0 .

-
area per second, is j, the net number
of neutrons that move across an area
per second.

e



Consider aslab of thickness Ax that
has one face at temperature 6 and the
other face at temperature 8 + AG.

TEMPERATURE = 8 + A
AREA OF FACE=4

TEMPERATURE =0

Ax

The heat flow (Btu) in unit time 1is

proportional to A and to A8/Dx. That
is 6(nA.ég
Ax
or, in the limit at any point,
G-k
dx '
where k is the conductivity, which

depends on the material and on the
temperature,

Now consider the section of a slab
that lies between two parallel planes
and contains neutrons of concentration
n per cubic centimeter at one plane and

n + On at the other plane.

n n+An (NEUTRONS /cm?)
A=AREA OF FACE
Then, the net number of neutrons

flowing through an area A 1is pro-
portional to A and to An/Ax:

]“’A—,
x
or
o LA dn
J — dx

where j is the net number of neutrons
that move across area A per second and
D is a constant, called the diffusion
constant, which plays the same role
as the conductivity in heat transfer.
The value of D depends on the material

and the velocity of the diffusing
neutrons.

Thus the expression for the diffusion
of neutrons is precisely the same in
form as that for the diffusion of
heat. The attempt here is to make the

formula for j seem reasonable in the
light of a more familiar example of
the transport phenomenon. In a subse-
quent section of this chapter the
formula will be derived in a more
rigorous manner.

In neutron diffusion, as opposed to,
say, heat diffusion in solids, one
is interested in the physical movement
of neutrons from one place to another.

It follows from the formula for 7 that
there is a net flow of neutrons toward
the left in the above diagram of the
slab. This net flow results simply
because there are more neutrons
present at the right (n + An) than at
the left (n). Since all neutrons have
velocity (assumed the same for all
neutrons, in this chapter) and are
traveling randomly (in direction), a
net flow exists in the direction of
lower concentration. Diffusing
neutrons frequently collide with the
nuclei of the medium (about one colli-
sion 1n every inch in an average
medium). The velocity of the nuclei
can usually be considered negligible
compared with that of the neutrons.
To get a geometrical picture of dif-
fusion, consider 100 neutrons, with
velocity, released at a point in a
two-dimensional stationary lattice
of nuclei, and suppose that these
neutrons are restricted to move only
north, east, south, or west. Then
the number of neutrons moving along
any path i1s about as shown in the
picture below., The stationary nuclei
are represented by the regular array
of circles. At the instant of release,
there are 100 neutrons at the center
of the picture. A moment later there
are 25 neutrons traveling in the four
different directions as shown. After
each neutrons collides with the



nucleus in its path, each group of 25
divides into groups of approximately
6 neutrons moving away in the four
directions from the point of collision,
etc. It is clear that the 100 neutrons
are rapidly spreading out from the
point of their release. If the con-
centration of neutrons being maintained
is higher at one point than at another,
a net flow will exist toward the
point of lower concentration.

0 o 0 0 0 0 0 0

0 0 0 0 0 0 0 0

The density of the nuclei is very much
greater than the density of neutrons;
therefore collision of neutrons with
nuclei is the important event; col-
lisions of neutrons with neutrons are
so rare that they can be neglected.
For example, in beryllium there are
1023 atoms per cubic centimeter.
Suppose that the scaler flux (total
centimeters traveled in one second
by all neutrons in a cubic centimeter)
is

neutron-°cm
nv = 1014 ——
cm3 sec
Then, since v, the velocityof neutrons

at thermal energy, is equal to about
0.22 x 10® cm/sec, the neutron density
corresponding to this flux is

1014 neutron°cm
3.
cm secC
n =
cm
0.22x10°
secC

8 neutrons

5 %10

cm3

Thus for each neutron in an average
reactor there are about

1023
5 x 108

nucleir1 against which the neutron can
collide. A qualitative picture of
the diffusion of neutrons may be
obtained by visualizing these particles
as moving in excess of 5000 mph in a
medium containing 1023 obstacles per
cubic centimeter with which they may
collide and rebound randomly (in
direction).

There are many useful problems in:
heat conduction that can be solved by
using the formula of Fick’s law

Q = -kA i .

dx

The following problem is an example
of the application of Fick’s law.
Consider a fuel tube in a reactor such
as the ANP sodium-cooled reactor,
which is designed for a power of 200
megawatts. There are 15,000 fuel
tubes; each tube has the cross section
pictured below, and each tube i1s sur-
rounded by sodium coolant.

= 2 x 1014

STAINLESS STEEL JACKET

URANIUM SOLUTION

We wish to determine the drop in
temperature through the stainless
steel jacket of the fuel tube as part
of an investigation of the peak fuel
temperature., FEach fuel tube must
generate 13,333.33 watts (average),
which is

200 x 10% (watts)
15,000 (tubes)

However, 1joule/sec = 1 watt and there
are 4.18 joules per calorie; so the
heat generated per tube is



——— (cal/sec)

13,333 (watts)

(watt)
= 3200 (cal/sec)
That 1s,
Q = 3200 cal/sec (for each tube)
d
= _kA._e_
dr
dg
= —k L =2
2ﬂr dr '’

and integrating this differential
equation we obtain

0 r
—— log ,
k2mL r.

Y 1
where r  is the inside radius of the
stainless steel jacket, r_is the
outside radius, and L is the length
of the tube. For the fuel tube being
considered, k is 1 cal/sec*cm*°C (for

stainless steel) and the dimensions
of the fuel tubes are L = 90 c¢m,

6. -6 =

i o

r, = 0.1 cm, and r, = 0. 1524 cm. Thus,
p ) = 3200 (cal/sec)
i7" e 1 (cal/sec-cm-°C) x 27 x 90 (cm)
0.1524 .
x log——— = 2.4°C ,
0.1

which 1s the temperature drop through
the jacket.

A practical problem involving
Fick’s law for neutron diffusion is
solved in the following illustrative
example.

It is desired to know the net
flow of neutrons per unit area across the

Example 1.

interface between core and reflector of a
spherical reactor that has a solid core of
uranium mixed homogeneously with beryllium
and a solid beryllium reflector. Since only
the flux can

The flux,

a very rough answer is desired,
be calculated on a one-group model.
¢, has been found to be

sin — r

0
#(r)y =108 —0uo— |

where

¢ = nv = the product of the neutron velocity
and the neutron density at a distance r
centimeters from the center of the core.

The radius of the core is 45 cm.
The net flow of neutrons is given by

- D dn
j = -AD — .,
dr
It will be shown later that
v Ktr v
D= = ,
3 3NBeUtr
where
Ny, = atoms of beryllium per cubic centi-
€ _meter,
o,, = microscopic transport crosssection.
Atr = transport mean free path,
Thus we can write
- v Ktr dn Ktr d(nv) Ktr d¢
j:_A———-:_A = A PE——
3 dr 3 dr 3 dr

Since the problem is to find the net flow
The density of
beryllium is 2.7 g/cm3 and Tur is 5.5 barns.
Therefore,

2.7

through unit area, 4 =1 em?.

- 24
NBe = 5 x 0.6 x 10
= 0,18 x 102¢ atoms/cm3 ,
D A, 1
v 3 3x0.18 x 102% x 5.5 x 10°%*
=0.33 em ,
T T T
r— cos— r - sin — r
do 13 60 60
—_— 10 R
dr P2
and

3
-—x 0.707 - 0.707

de
ar/ _as

Thus j = 0.33 x 1.17 x 10'° = 0.38 x 10'°
neutrons/cm?+sec, which is the net flow per

(45)2
= _1.17 x 101°

unit area through the interface.

Dertvation of Fick’'s Law., It 1is
hoped that the preceding section has



made plausible the formula for the net
flow of monoenergetic neutrons in the
z direction:

However, it 1s well to take a careful
look at the mathematical assumptions
made 1n the derivation. Also, a very
useful formula arises in the deri-
vation that gives the actual current
of neutrons in the positive z direction,
as well as that in the opposite
direction, ‘as opposed to just the net
flow(which 1s the difference of the
two) as given by Fick’s law.

Consider an element of area ds at
the origin in the x,y plane of a
three-dimensional region (Fig. 1.1).
We wish to find an expression in
terms of the flux at the position of
ds for the number of neutrons passing
through ds per second in a downward
direction. To do this, we pick an
element of volume dv above the x,y
plane, find the number of collisions
taking place there per second, find
what fraction of these deflected
neutrons starts in the direction of
ds, and finally find what remaining
fraction survives the journey to ds
without being deflected by collision.
The number of collisions in dv depends
on the flux at dv. However, the flux
at the point of dv can be expressed
by Taylor’s expansion in terms of the

V4 dv

flux at the origin (position of ds).
Thus, integration can be carried out
over all volume elements lying above
the x,y plane, and the desired ex-
pression for the current through ds
per second, in the downward direction,
in terms of the flux at the position
of ds is obtained.

It is convenlient to use a spherical
coordinate system, as showninFig. 1.1.
The number of collisions per second in
the volume element dv at (r,0,¢y) is
o(r,0,Y)2  dv. It is assumed at this
point that scattering is isotropic;
that is, neutrons coming out of col-
lision in dv are spherically symmetric
in angle. This is not a good assumption
for light elements, and a correction
will be made later.

If a sphere were drawn with center
at the volume element dv with the
point (0,0,0) lying on the surface,
it is clear that the projection of ds
on the sphere in the direction of r
is cos B ds, to within first-order
differentials. From the assumption of
isotropic scattering, it follows that
the fraction of neutrons scattering
in dv that start toward ds is equal to
the ratio of the projected area of ds
on the postulated sphere to the entire
area of the sphere, that is,

cos @ ds

4arr2

The fraction of these that actually
reach ds without collision is e~4T,
where 2 = 2+ 3 , in which 2 is the
the total macroscopic cross section in
cm™! and is equal to the macroscopic
absorption cross section (Za) plus the
macroscoplc scattering cross section
(£,). The exponential form follows
from the fact that 2 is the proba-
bility that a neutron will make a
collision in 1 centimeter. In going
an incremental distance dr, the change
in beam strength, dn, would be

dn = -N 2 dr ,

and, hence, integrating from r = 0 to

r,



N -S,

— = ¢
Ny
is the fraction surviving collision in
going a distance r.
Now, putting these facts together

and noting that
dv = AB AC dr ,

where
AB = r sin 6 4y ,
AC = r d6 ,
and thus
dv = r? sin 6 J6 dy dr ,

it follows that the number of neutrons
passing through ds owing to collisions
in dv 1is

2 cos & sin 6 dr dy db

ds .

— olr,0,¢) Z_ e

4 s
This expression 1s then integrated
over the half-space lying above the
2,y plane. Thus, j_, the current per
unit area in the negative 2z direction,
is given by:

o ds @ m/ 2 27 s
jds = — %, / P(r,0,y) €7 cos 6 sin 6 dy df dr
A ) 0 )

Up to this point, the formulation
is rigorous (to within the approxi-
mation that the scattering is iso-
tropic), since nothing has been said
about ¢(r,0,y). However, we are
seeking a differential equation (the
neutron-balance equation) that involves
the flux at an arbitrary point. A
general solution of this differential
equation will be obtained, and when
the boundary conditions of a particular
geometrical assembly are applied, it
will be possible to find ¢ as a general
function of (r,6,y). Thus it appears
that to evaluate j_, it is necessary
to know ¢(r,6,¥), but we are attempting
to find j (Fick's law) so that we can
determine ¢(r,8,y).

To proceed further, then, ¢(x,y,z)
- 1is expanded in aTaylor’s series about
$(0,0,0) = ¢,, and an approximation
is made that it is sufficient to keep
only the first-order terms of the

that 1is,

¢(xlylz) ’:¢0 t x <'-a_;>o

9P
+ Z<az>o . (1.2)

This is an important approximation to
bear in mind; as a matter of fact, it
is rather surprising, a priori, that
it works at all. However, because of
the factor e 2" in the integrand of
Eq. 1.1, the magnitude of the integrand
drops off sharply for values of r
greater than two or three mean free’
paths, so that it is only necessary
that the approximation of Eq. 1.2 be
valid for a fairly short distance.
The approximation says, then, that ¢
is changing slowly within a distance
of two or three mean free paths
(several inches). This is true if
the position for which ¢, is being
evaluated is not close to a concen-

expansion;

(1.1

trated source, the control rods, or
the external boundary of the reactor.
It 1s only near such sources and
sinks that the shape of the flux will
vary substantially from that predicted
by this formulation.

Although much is made of the fact
that this so-called “asymptotic flux
distribution’ is not correct near
sources and sinks, obtaining the
correct flux at such points 1is so
extremely difficult that it has been
customary to use the asymptotic flux
in engineering applications.

To get back to the derivation, it
is necessary to put Eq. 1.2 in terms

of spherical coordinates; that 1is,
x =r sin 0 cos ¥ ,
y = r sin @ sin Y , (1.3)
z=r cos O .

Upon substituting Eq. 1.2 in Eq. 1.1

and incorporating Eq. 1.3, it is found



that the terms in x and y drop out
upon integration over Y from 0 to 2.
Upon carrying through the remaining
integration and canceling ds from
both sides of Eq. 1.1, the result is

o2, 2, /dd
2 il
J- =5 % e <dz>o

If a similar derivation is carried
through for the flow upward, j,, it
is found that

(1. 4)

. 2, 2, <d¢
j, = —— -— 1.5)
T+ 42 iz 632 dz>o (
The net flow upward, ;, then, 1s
j =j+ _j_ = - - ° (106)
332 \dz 0
For most assemblies, 2 >> Za,

PR 2, and since £, = l/K‘,’where A,
is the mean free path for scattering,
Eqs. 1.4, 1.5, and 1.6 can be written,
only slightly more approximately, as

A

- 1 « [do

= = — (= . 1.7
7- 4¢°+6<dz>o (1.7)
Ly A, [do
Jy = — - — (1.8)

4 6 \dz 0

- - A, [d®
J =J+—J-=—-3— -‘-170 (1.9)

Since the assumption that scattering
is isotropic is not good for most
problems of interest, a corrected Ks
can be used to account for the ani-
sotropy of the scattering. It has been
shown (1) by transport theory, in which
neutron direction 1s included as a
variable in addition to position, that
this corrected A,, called A,, (the
transport mean free path), is given
by

(I)A. M. Weinberg and L. C. Noderer, Theory
of Neutron Chain Reactions, Vol. I. Diffusion and
Sloving Down of Neutrons, ORNL CF-51-5-98 (May 15,
1951).

1

tr 8 ——2—
1 - =
34

where A 1s the mass number of the
scattering nucleus. Equations 1.7,

1.8, and 1.9 become
o P A, [dd
e — -— (=], (1.10)

4 6 dz 0

— ¢0 >\tr d¢ ( )
o= — - — 1.11
T+ T T 6 \dz/,
S e e (2 (1.12)
J J+—J. - 3 dz , .

These important equations will be
used in the work to, follow. .

The units of j_, 7+, and j are
neutrons/cm?-sec. It is well to
emphasize that these are vector
quantities. The fact that the vector
quantity j has the same units as the
scaler quantity ¢ causes a good deal
of confusion. The quantity ¢ is the
total number of centimeters traveled
per second by all the neutrons in a
cubic centimeter regardless of direc-
tion. The units of ¢ are then neutrons
times centimeters per second divided
by cubic centimeters, and upon simpli-
cation (at the expense of clarity)
this becomes neutrons/cm?*sec, which
unfortunately is the same as the units
for j. As a matter of fact, if a thin
foil of area 1 cm? is placed in a
reactor in which the flux (scaler
flux, not current) is 10'3 peu-
trons/cm?+sec, the foil will feel
% x 103 neutrons/sec passing through
it, counting both sides ~ the sum of
Eqs. 1.10 and 1.11,

The following example is intended
to illustrate the use of Eq. 1.10 (or
Eq. 1.11).

Example 2. One design for the ARE (Air-
craft Reactor Experiment) has liquid fuel, and
the fuel tubes extend in a vertical direction
through a sheet of boron carbide that lies



horizontally at the top of the core. (The
purpose of this is to make the reactor self-
stablizing. When the power increases, the
temperature of the fuel increases and some of
the fuel goes into the boron carbide layer
where it is ineffective in supporting the
chain reaction; therefore the power tends
to decrease,
effect.)

The designer wants to know how much heating

and thus gives a stablizing

will occur in the boron carbide owing to the
exothermic neutron-capture reaction in B!? so
that he can decide whether the core coolant
flowing through holes in the boron carbide
will provide adequate cooling. 10
B

The neutron capture reaction in is

B+ gn' = gL’ 4 He® 4 (2.60 Mev)
where the 2.60 Mev is the kinetic energy of
the recoil particles and can be considered as
heat release at the point of capture. The
then, to find the number of

neutrons captured in the rod.

problem 1is,

Let us suppose that the boron carbide
layer is thick enough so that it is ““black”
to thermal neutrons (captures all thermal
neutrons that enter) but is transparent to
above-thermal neutrons.

Equation 1.11 will give approximately the
number of thermal neutrons entering per unit
area per second if ¢ is the thermal flux at
Only the
Here is a case in

the face of the boron carbide.
asymptotic flux is known.
which the answer obtained will clearly not be
exact. As was pointed out, the approximation
leading to Eq. 1.11 is not valid near a strong
absorber. However, only a rough answer is
wanted. An error of a factor of 2 is probably
not serious inasmuch as the designer will
probably overdesign by more than this to be
on the safe side.

It is found, by methods to be described
later, that at the face of the boron carbide
the thermal flux and slope of the thermal
flux have the values

neutrons cm

3 ’

12
¢ =2X10
th sec cm

d¢th 12 neutrons cm
= 0.4 x 10"} —p— ,
dz sec cm” cm

From the
properties of the reactor, it is known that
Atr = 1,73 cm. Thus the number of thermal
neutrons enteringthe boron carbide per square

based on the asymptotic flux.

centimeter 1is

12
- 2x10 1.73
i - (-0.4 x 10'%)
4 6

= 0.6 x 10'?

All the thermal neutrons that enter are
captured and each results in a heat release

of
2.60 x 10 x 1.6 x 10712
107

= 4.15 x 10-13 joules

2.60 Mev =

Thus the heat release in a portion of the
boron carbide layer having a facial area of
is 0.6 x 10'% x 4.15 x 1073 = 0.25

Since this is a rather small rate of

1 cm?
watts.
heat release, the designer can thus be assured
that the core coolant, which flows through
holes in the boron carbide about 3 3/4 in.
apart, will provide adequate cooling of the
boron carbide. )

Use of Fick’s Law to Obtain the
Leakage per Cubic Centimeter. To
review briefly, we are attempting to
obtain a differential equation that
declares a balance between the creation
and loss of neutrons at an arbitrary
position in terms of the flux at this
position:

Leakage ; Absorption Production

3 3 3

sec*cm sec*cm sec*cm

When boundary conditions of a particular
problem are applied to the general
solution of this differential equation,
formulas are obtained for the critical
size (or critical mass) and, in turn,
the flux or power distribution.

We are seeking the expression for
the first term, the leakage or net
flow of neutrons out of a cubic
centimeter per second. It is easily
obtained now that the formula for the
net current is known,

Consider an element of volume as
shown in Fig. 1.2. According to Fick’s



law, the net flow up through the
bottom of the volume element is

A
d
4 '—i dx dy .
3 dz/,

The net flow up through the top is

- Xtr do
Jz4d, dx dy = 3 E; ] dx dy .
2tdz

The difference is the net loss of
neutrons per second by leakage from
the top and bottom of the volume
element:

(7z+dz - —-; z

j, dx d

) dx dy

Ny d¢> dop
) 3 <dz s+d z . <dz> dx dy.

(1.13)

The quantity (d¢/dz)z+dzis now expanded
by Taylor's series about z,

do do d?¢
<dz>z+d <dz> +<d22> dz ,

with terms after the second discarded.
Equation 1.13 becomes, with this sub-
stitution,

- - Nep d3¢
(JZ"'dZ _JZ) dx dy = 3 d22

dx dy dz.

In a similar way, the net loss of
neutrons per second by leakage from the
front and back of the volume element is

- - Ner d?¢
(Jx+dx_ ]x) dy d:z --—3- E_; dx dy dz,

(x+dx, y+dy, z+dz)

(x,.y,z,)_[fij

Fig. 1.2

10

and, from the left and right sides,
G _’)d d M d' oy
j -j x dz =-—— — dxdy dz
yrdy y 3 dy?

The total loss of neutrons per second
by leakage from the volume element is

the sum or
A d? d? d?
tr (46 4%, ¢>dxdydz.
3 \dx? dy? dz?

Since dv = dx dy dz, the leakage can
be expressed on a unit volume basis as

3 (1.14)

where
d? d? d?
¢, AP 47 .
dx? dy? dz?
Formula 1.14 is the result we have
been seeking - the first term of the
neutron-balance equation. The rather
lengthy derivation leading to this im-

portant expression uncovered some formulas
that are very useful in their _own r1ght

, ]+, and

Vi = (1.15)

such as the expression for ]
Fick’'s law J.

Formula 1.14, with the coordinate
system used in Eq. 1.15, is suitable
only for assemblies of parallelepiped
shape. However, it is not necessary
to repeat the derivation for the two
other useful geometries: spheres (in
spherical coordinates) and cylinders
(in cylindrical coordinates). Formula
1.14 is perfectly general, with the
understanding that in spherical co-
ordinates(2)

d’¢ - 2 do
Vip = —— + — —— 1.16
¢ dr2 rodr '’ ( )
and in cylindrical coordinates
2
vig = 42 14 4 (1.7)

dr? r dr dz?

Absorption. The second term of the
neutron-balance equation follows
easily, The number of neutrons absorbed

(2)H. Margenau, and G. M. Murphy, The Hathematics
of Physics and Chemistry, Chep. V, Van Nostrand,
New York (1943).



per second per cubic centimeter is ¢3 ,
where Za is the macroscopic absorption
cross sectien in cm”!,

Production. The third term of the
neutron-balance equation isalso easily
expressed. The number of neutrons
produced on our one group model 1is
$Z_k, where k = sz/Za and is the
number ofneutrons produced per neutron
absorbed in any reactor material; v is
the number of neutrons per fission
(2.5 for U235%) and Zf is the macro-
scopic fission cross section.

The definition of k here is different
from that given in the older literature,
for example, that given by the so-
called “ four-factor formula.” The
four-factor formula was originated
with the theory of heterogeneous
natural uranium reactors. The four-
factor definition of kR is not con-
venient in the theory of the enriched
power reactors that are receiving the
emphasis in the present military era
in reactor development.

Balance Eaquation in Differential
Form. The differential equation
expressing the conservation of neutrons
can now be written:

Leakage + Absorption Production
sec*cm3 sec*cm’ sec* cm?
A

tr
- _E- Vip + ¢Za - ¢2ak =0 (1.18)
"where V2¢ represents either Eq. 1.15,
1.16, or 1.17 according to whether the
reactor is a parallelepiped, a sphere,
or a cylinder,

Equation 1,18 can be rewritten as

Vi + B¥% = 0 , (1.19)
where
S (kR -1)
B? = ———r | (1.20)
>\1.‘r
3

¢=(A cos ax + C sin ax) (E cos Bx +F sin Bx) (G cos yx + H sin yx) ,

which is of the form of the wave
equation, or of Hemholtz' equation.
The quantity B? is called the “buckling,”
because it determines the degree of
curvature of the flux. The quantity
Ay, N,/3 is often denoted by L?, and
hence B? = &k 1/L?, where L? is
called the migration area. It will be
shown in Chap. 2 that L? has a simple
interpretation in terms of the crow-
flight distance a neutron travels to
the point of capture.

General Solution. The general
solution will be written down for four
geometries: slab, parallelepiped,
sphere, and cylinder. In all cases,
the buckling, B%, has the definition
given by Eq. 1.20.

Slab. Equation 1.19 for a slab
takes the form
d2
—E+B2¢>= 0, (1.21)
dx?
where x = 0 is the middle of the slab

(Fig. 1.3), which is finite in the x
direction and infinite in the y and :z
directions. The general solution of
Eq. 1.21 is clearly

& = A sin Bx + C cos Bx . (1.22)
|
[
|
|
|
______ e e ———
. xz=0 X —J—
|
|
|
|
Fig. 1.3

Equation 1.19 for
the form

Parallelepiped.
a parallelepiped takes

32 2 32

%, ¥
9x2  9y? 922

where the origin is at the middle of

the parallelepiped (Fig. 1.4). The
general solution 1is

+ B% = 0, (1.23)

(1.24)

11



where

N

X
Fig. 1.4
Sphere. Equation 1,19 for a sphere
takes the form
d¥¢ 2 d
ﬁ+—£+32¢= 0, (1.25)
dr r dr
with r = 0 at the center (Fig. 1.5).

The general solution, as can be verified
by differentiation, 1is

sin Br c Br
b= A * (1.26)
r r
o]
N ——
Fig. 1.5
Cylinder. Equation 1.19 for a
cylinder takes the form :
32 1 3?2
2,12, —2+qu5= 0; (1.27)
or? r or 9z2

with r = 0, z = 0 at the geometrical
center (Fig. 1.6). Eguation 1,27 is
solved by the method of separation of
variables. The substitution is made
that

¢(r,z) = R(r) Z(z) , (1.28)
where R is a function of r only and Z
is a function of z only, as a trial to
see whether the partial differential
equation in r and z can be separated

12

into an ordinary differential equation
in r only and an ordinary differential
equation in z only. This is a valuable
method for solving partial differential
equations, and if it happens to be the
student’s first knowledge of it, he
should take time to understand clearly

Egs. 1.28 through 1.35.

z

Fig. 1.6

By substituting Eq. 1.28 into Eq.

1.27, one obtains

Z(z) R"(r)

1
+ :—Z(z) R'(r) + R(r) Z2"(2)

+ B2 R(r) Z(z) = 0 , (1.29)

and by dividing through by Z(z) R(r),
the result 1is '

R"(r) . 1R (r) _Z (z) B2 - 0 .
R(r) r R(r) Z(z)

(1.30)

Equation 1.30 can be rewritten in the
form

R 1R (), Z')

R r R(r) Tz sy

In Eq. 1.31, the left side is a function
of r only, and the right side is a
function of z only. Now, this equation
must hold for all points (r,z). Suppose
it holds at apoint, say (r,,z,). Then
let r vary but hold z constant. The
right side of Eq. 1.31 has not changed,
and the left side must not change from
the condition of equality. Since the
new choice of r was perfectly general,
it follows that the left side must
equal a constant for all r; that is,




the left side equals a pure constant.
It follows that the right side equals
this same constant. Denote this con-

stant by y2?. Then,
REACI
Z(z2) ’
or (1.32)
Z"(z) + y2 z(z) = 0 ,
and
R"(r) 1 R'(r)
t = + B? = y? ., (1.33
R(r) r R(r) Y . )
2 2
T 9 .
Let u? = B® = y%. Then Eq. 1.33 be-
comes

R"(r) + ZR'(r)+ u? R(r) = 0.(1.34)

The attempted separation of variables

is successful in this case. The
solution of Eq. 1.32 is easy:
Z(z) = A cos yz + C sin yz . (1.35)

The solution of Eq. 1.34 is not
easy; however, this equation’ has been
widely studied for many years by

P(r,z) = [A cos ¥z + C sin yz] [E Jo(ur) + F Yo(yr)] .

mathematicians., The properties of
this equation ~ Bessel’s equation of
order zero - and related equations and
the properties of the solutions have
formed the subject matter for many
large books.® The equation is solved
by a series method, the terms of which
are obtained by recursion formulas (the
method of Frobinius). One series
solution is the following:

(ur)? (pr)*
Rytr) = 1= =5 ¢ 24 (21)2
2k
et BT L (136)
22k(k!)2

(3)G. N. Watson, A Treatise on the Theory of
Bessel Function, Cambridge Univ. Press (1944).

This series is denoted by the notation

Jo(ur), much like the series
x3 x5
-—t—- ...
31 5! '

(which is a solution of (d®y/dx?) + y
= 0) is denoted by sin «x.,

Since Eq. 1.34 is an ordinary dif-
ferential equation of order 2, it
possesses two independent solutions.
The other series solution is

= n 2n
(-1)" (ur) <1 P . +.E> .

- (n!)? 2 2 n
n=1

(1.37)

This series is denoted by Y,(ur) or,
sometimes, N (ur).

The values of J,(ur) and Y (ur) are
tabulated in various places(%) for
values of the argument ur.

The general solution of Eq. 1.34
can be written, then, as

R(r) = E Jo(ur) + F Y (ur) , (1.38)
where E and F are arbitrary constants,
Since @¢(r,z) =R(r) Z(z) by definition,
it follows that the general solution
of Eq. 1.27 is

(1.39)

Boundary Conditions. The boundary
conditions that apply to the problem
of determining the critical size of a
bare reactor are as follows:

1. The flux must remain finite at
all points,

2. The flux must be symmetrical
around any points, lines, or planes of
symmetry that exist in the geometrical
setup.

3. The flux must be nonnegative at
all points.

4. At the external surface,
return current must be zero.

The fourth boundary condition makes
use of Eq. 1.10 (or Egq. 1.11). To

the

(4)E. Jahnke and F. Emde,
with Formulae and Curves,

New York (1945).

Tables of Functions
Dover Publications,
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illustrate, suppose we wish to write
that the return current at the right
face of the slab in Fig.
This says

¢(x0) Xtr <d¢>
f—I (=) =0,
-4 6 dx x

0
where x, is the half thickness of the

1.3 1is zero.

(1.40)

slab, By writing this in the form
d 3p(x,)
- <—f> - —, (1.41)
dz/, 2n,

0
it is seen that this is a condition on
the slope of the flux at the surface
such that the flux extrapolates tozero
at a distance 2/3 Ktr outside the
surface.

The condition 1.40 may seem to be
somewhat artificial, since j_ was
derived on the basis of a scattering
medium and since condition 1.40 is
supposed to be a statement regarding
the current coming back from a void.
It may be a little more palatable if
one thinks of condition 1.40 as

o [lx)  Mer do(x)
lim +
x"x 4 6 dx

0
In any event, Egs. 1.10 and 1.11 are
based on the assumption that the flux
is slowly varying (can be represented
by a Taylor expansion to first-order
terms only)., This assumption is not
good near the reactor surface. It is
clear that the flux distribution
obtained by applying these boundary
conditions to the general solution of
the preceding section will not be a
true representation near the surface.
It has been shown(!) by transport
theory, however, that if a slight
correction to the extrapolation dis-
tance is made, the flux distribution
that is obtained will have the proper

= 0. (1.42)

shape and magnitude a distance of a
few mean free paths from the surface.
This corrected condition is:

dd P(x,)
- <—"3> - ° (1.43)
dx %,

0.71 \,,
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The extrapolation distance 0.71 A
is approximately correct for all
reactor geometries if the curvature of
the outer surface is not too great.
The fact that the predicted flux
distribution is not correct close to
the surface does not seriously affect

the critical mass estimate if the
reactor is not too small,
An approximation to Eg. 1.43 can

usually be made without serious error;
that 1is,

blrg + 0.TL N, ) = 0. (L.44)

In summary, then, the boundary
conditions for the bare reactor
problem are

1. finiteness,

2. symmetry,

3. nonnegativeness,

4, d>(x0 + 0.71 Ktr) = 0

for slabs,
dD(r0 + 0.71 Xtr)
for a sphere,

R+ 0.71 A, , z) = 0

1§
o

and H
¢(r,—5 + 0.71 Atr) =0

for a cylinder, where x_, is thecritical
half thickness of the slab, r, is the
critical radius of the sphere, R is
the critical radius of the cylinder,
and H is the critical height of the
cylinder.

Application of Boundary Conditions
to General Solutions. The boundary
conditions will be applied to the
general solutions in two geometries -
slabs and cylinders - and the spherical
geometry will be left as an exercise.

Slab. The general solution for the
flux in the slab was

¢(x) = A sin Bx + C cos Bx ,

where
3(k - 1)
SR VA S e
a tr
The first boundary condition that the

flux must be everywhere finite is not
necessary in the slab geometry, since
the sine and cosine are everywhere



bounded functions. The second boundary
condition that the flux must be
symmetrical about any planes of
geometrical symmetry, however, requires
that we drop the sine term; that is,
set A = 0, because x = 0 is at the
middle of the slab, the cosine is an
even function, and the sine is an odd
function. No combination of the sine
and cosine can ever be symmetrical
about the origin., The solution
reduces, then, to

$(x) = A cos Bx (1.40)

The constant A depends on the power
level at which the reactor isoperating
and will be left as an arbitrary con-
stant. It is not necessary to specify
A in order to find the critical di-
mension, This checks with physical
reasoning, because the critical size
and critical mass do not depend on the
power level at which it is desired to
operate the reactor.

The flux distribution is already
determined completely by Eq. 1.40. 1t
remains only to decide at what value
of x to terminate the cosine function
as being the critical half thickness,
5. The third boundary condition
states that the flux cannot benegative,
and, hence,

<= (1.41)

*o =3B

since 7/2B.is the first root of cos Bzx.

On the other hand, the fourth boundary

condition says that the flux goes to

zero at the extrapolated boundary;
that 1is,

P(xy +8) = 0, (1.42)

where 8 is the extrapolation distance,

0.71 Ktr' Since there are no roots of
cos Bx less than 7/2B, it follows that
v i a tr
g 8 =——=—\/[—
2 2 3(k - 1)
or (1.43)
v >\a >\tr -0 71 }\
o T e Vi - T N

P(r,z) = [A Jolur) + C Yo(#r)] [E cos vz + F sin yz] ,

where :
xo = the half thickness of the
critical slab,
Ay = the mean free path for absorption
= 1/No_,
N = number of nuclei per cubic
centimeter of reactor mixture,
0, = an average microscopic cross
section for elements in the
reactor mixture,
A,, = the transport mean free path
= 1/N0'“_,
o, = the average microscopic trans-
port cross section,
E =12 /Ea,
v o= 2.§ for U235,
Za = 1/Ka,
zf = Ny 235 . .
Ny = atoms of U per cubic centi-
meter,
o = microscopic fission cross
section of U?35,
When the reactor is made up of a

mixture of several elements, the

quantities are best evaluated as
follows:
1 p—
X— - za - Nzo-ax * Ny ay * Nzo-az !
a
where
N, = atoms per cubic centimeter of
element x, etc.,
04y = Mmicroscopic cross section of
element x, etc.,
and

(-5)
+ No 1 -—1,
2 sz 34

z

where A, is the atomic mass number of

element x, etc.
Cylinder. The general solution for
the flux in the bare cylinder was

(1.44)
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where

B? = u? + 42,
From boundary condition 1 that the
flux is finite everywhere, it follows
that C must be zero, since

lim Y (ur) = @,

r—0
From boundary condition 2 that the
flux must be symmetrical, it follows
that F = 0, since z = 0 was chosen to
be at the center of the reactor (Fig.
1.6). The expression for the flux
distribution reduces then to:

#(r,z) = A Jy(ur) cos yz , (1.45)
where AE has been replaced by simply
A, since the coefficients are arbitrary.

The radial component, u?, of the
buckling, and the longitudinal com-
ponent, v%, are not determined in-
dependently by the reactor composition.,
Only the sum is determined
u? 4yt - BE - 3(k - 1) .

xa xtr

Thus there is an infinite set of pairs
(2,¥%) that determines flux distri-
butions in the infinite set of critical
cylindrical reactors of given compo-
sition and buckling., These reactors
all have the same uranium concen-
tration, by hypothesis, but not the
same critical mass (which depends on
the volume). Suppose for a given
composition, and hence for B?, we
choose a value ¥* (y? < B?) and thus
determine a corresponding u? = B2- 2,

As in the slab geometry, the half
length H/2 must be such that y(H/2) <
7/2, since the flux must be everywhere
nonnegative. From boundary condition 4,

¢<",{§+ 7) =0,

and since the cosine has no roots less
than /2, it follows that

(1.46)

or (1.47)
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Similarly, since uy = 2.405 is the
first root of J (ur), it follows that

w(R + 8) = 2,405 ,

2.405
=, = 0.71 Ay, . (1.48)
n
From Egs. 1.46, 1.47, and 1.48,
<2.405>2 . i 2
R+ 8
2<ﬂ+ s>
2
3(k - 1
_pr o k- D ,  (1.49)
xa xtr

which determines the infinite set of
critical cylindrical reactors of given
composition. The square cylinder is
the cylindrical geometry of most
applications., If R —- &, it 1is seen
that Eq. 1.49 becomes Eq. 1.43, that
is, the cylinder becomes a slab.

REFLECTED REACTOR

A reflector 1is by definition a
layer of material surrounding the
active core of the reactor that
contains no fissionable material.
Its purpose is to “reflect” neutrons
back into the core by single or
multiple scatterings. Since no
fissioningtakes place inthe reflector,
the balance equation reduces to

Leakage + Absorption

cm3 *sec cm3*sec

where here the leakage is negative;
that is, there is a net inward flow
into the volume element. The differ-
ential equation is

AtrR 2
- -—g—-V ¢B + ¢Bzaﬂ =0, (1.50)
or
V2¢R - B§¢R =0, (1.51)
where
o3
Atrﬂxaﬂ

and the quantities with an R subscript



refer to the reflector. The reflector
buckling is —B:. .
The differential equation in the

core is, as in the bare reactor,

A

trce

—'_?;—-V2¢c + ¢czac - ¢czack = 0.

The same plan is followed for
obtaining the formulas for critical
size of reflected reactors as is
followed for bare reactors. The
general solutions are obtained, the
boundary conditions are set down, and
the boundary conditions are applied
to the general solution. The last
step leads to the critical size
formulas. As before, the procedure
is carried through for the slab and
cylinder geometry and the sphere is
left as an exercise.

General Solutions

Slab. The general solution in the
core 1s the same as in the bare slab.
¢.(x) = A sin B,x + C cos B_x , (1.52)
where

3(k-1)
B2 = — "~ .53
2 - (1.53)
gc tre

and the origin is chosen as before,

at the center of the core (Fig. 1.7).
REFLECTOR CQRE REFLECTOR
|
|
o)
i X T
|
Fig., 1.7

b (r,z) = [Ac Jolp,r) + C, Yo(pcr)J[Ec sin ¥,z + F_ cos ycz] ,

The differential balance equation
in the reflector is

d?¢,(x) ,
— o Bl.(x) =0, (1.54)

dx?
and the general solution is
¢p(x) = E sinh Bpx + F cosh Bpx, (1.55)

where the hyperbolic functions arise
because the buckling in the reflector
is -B? instead of being positive as in
the core. It will be recalled that

eBRx _ e_BBx
sinh Bpx = —-i sin iBpx =

and

cosh an = cos 1Bpx =

Cylinder. The problem of a reactor
with cylindrical core and all-around
reflector cannot be solved analytically,
but the reactor with cylindrical core,
jacket reflector, andno end reflectors
is soluble. An approximation to the
former case will be discussed later.
The assembly to be solved is shown in

Fig. 1.8,

@N

| —REFLECTOR (JACKET)

| _—CORE

O
r
1
t
r\
1
I

r

N
I\
I
|
\

/

Fig. 1.8

The general solution in the core is
the same as for the bare cylinder:

(1.56)

where
pe + i = B

The differential balance equation
in the reflector is
32 32
¢ + iE.?fii' ¢

Bl -0,
or? r or 922

(1.57)
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where

.3

xaﬂxtrﬂ
Equation 1.57 is solved by separation
of variables, as in the case of the
bare cylinder equation. It is found
that the solution is

where
R = radius of core,
T = reflector thickness,
8 = extrapolation distance,

]

0.71 A, ,,

@R = [Ap I (pgr) + Cp Ko(ppr)1[Ep sin ypz + Fp cos gzl (1.58)
where —u?2 + y2 = _B? (radial buckling
+ longitudinal buckling = total ©°F
buckling). It is to be noted that Pp(R+ T+ 8, 2) =0 (1.62)
the radial component of the buckling
has been denoted by —M:. rather than b. Reflector ends
+u? thus making #: positive. The [d¢n(r,zﬂ
differential equation in the variable _—
r that results from the separation- dr _ 1
of-variables technique therefore has (:ZH72) —, (1.63)
the modified Bessel’s functions, I, ¢p(r,H/2) 9
and K, as solutions, where
Apgr)? (npr)? (tgpr)®
I (pgr) = 1+ + LI (1.59)
22(11)2  24(2!)?  28(3!)?

HpT
Ko(#nr) = - [0.5772 + In < 2 >]

The functions I, and K, are tabulated
in various places.(5)

Boundary Conditions. The first
three boundary conditions are the
same as for the bare reactor:

1. The flux is everywhere finite.

2. The flux distribution is sym-
metrical about any points, lines,or
planes of geometrical symmetry.

3. The flux is nonnegative.

4. The fourth boundary condition

is the surface condition, which for
cylinders is:
a. Jacket
[diﬂ(r)z
dr
(r=R+T) 1 (1.61)
$(R + T,2) 5 ' )

18

[« 4] 2n
1 #nr> <1 1 1
I +E T )
o (HgT) < 2 1 2 n

as=] (n!)2
(1.60)

where H/2 is the half length of the
reactor, or

¢plr,(H/2) + 8] = 0 . (1.64)
c. Core ends
[dﬁc(r,Z)}
dr
(2=2H/2) 1
$ (- H/2) iy (1.65)
or
¢ [r,(H/2) + 8] =0 . (1.66)

(5)British Association for the Advancement of
Science Mathematical Tables, Vol. II, Bessel
Functions, Cambridge Univ. Press.



These equations are derived in the
same manner as for the bare-reactor
extrapolation conditions. The value
8 = 0.71 A,, is approximately correct
for any surface that does not have
too much curvature and is satisfactory
for thermal and intermediate energy
reéctors. .

For slabs the fourth boundary
condition 1is '

{din(x)}
dx
(x=xo+T) - 1
3z, 1) =5 (1.67)
.where

x, = the half thickness of the core,
T = the thickness of reflector,

or

Galz, + T+ 8) =0 . (1.68)

5. The fifth boundary condition is
the continuity condition. The flux
density and the current must be
continuous across the interface
between core and reflector.

For slabs this condition is:

a. ¢,(R) = ¢,(R) (1.71)

Ktrc a¢c(r,z)
b.
3 or

(r=R)

NerR [a¢n(r'2)]
. (1.72)
3 or (r=R)

Application of Boundary Conditions
to General Solutions. It now remains
to apply the boundary conditions to
the general solutions. Formulas
for the critical size for a given
composition or the critical uranium
concentration for a given size will
result,

Slabs.

the core was

¢,(x) = A sin B,x + C cos B x .

The general solution in

(1.73)

The second boundary condition requires
that A = 0, so that we have
¢c(x)-= C cos B x (1.74)

The general solution in the reflector
was

¢p(x) = E sinh Byx + F cosh Bpx.(1.75)

a. @ (x5) = dp(x,) (1.69)
' Applying boundary condition 4 to
A pply g y
b.. tre {dcbc(x)] Eq. 1.75,
’  Liemsg) 0 = E sinh B (x, + T + 8)
Nern {dﬁn(1>} L + F cosh By(x, + T+ 8) , (1.76)
T3 dx (2= +70) and thus
x—zo)
E sinh Bn(x0 + T+ 3)
For cylinders this conditionis: F = - . (1.77)
cosh Bp(x, + T+ 5)
The reflector flux becomes
sinh [Bn(x0 + T+ 8)] cosh Bpx
= E inh B x - (1.78)
pp(x) . sinh Bpx —oah [Bn(xo T T+ 8)]
Boundary condition 5a& requires that
sinh B (x, + T + 3)
A cos B x, = E|sinh Bpx, - ‘ cosh Bpx | , (1.79)
coﬁlBﬁxo + T+ 8) )
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and boundary condition 5b requires that

tre ’ >\trli
~A Bc sin ch = E

0 3 {BR cosh ano

sinh BR(xo + T+ 8)

- - B R
cosh Bn(xo + T+ 8)

Equations 1.79 and 1.80 can be regarded
as two simultaneous homogeneous
equations in A and E. These two
constants can thus be eliminated by
solving for A/E in one and substituting
in the other to yield an equation that
isthe final critical size relationship.
It is somewhat more general, however,
to use the mathematical theorem that,
1if ‘there are n homogeneous equations
in n unknowns, then in order for a
nontrivial solution to exist for the
unknowns, the determinant of the
coefficient must be zero. When applied
to Eqs. 1.79 and 1.80, this yields
the final equation.

sinh Bﬁ(xo + T+ §)

sinh Bpx,| . (1.80)

necessary to specify the x, and
determine the T or to specify the T
and determine the x,. On the other
hand, it is possible to specify both
x, and T and solve for the uranium
concentration by trying various concen-
trations until the associated B: is '
found that satisfies Eq. 1.81. (The
critical mass 1s, of course, infinite
in the slab geometry.)

Once the criticalityis established,
the expressions for the flux are given

by Egqs. 1.74 and 1.78, wherein Eq. 1.78

where
, 3k -1
¢ >\ac .>\trc
a3
>\uﬁ >\tr,li

For the reflected slab in which

the composition is known, it 1is

¢, (r,z) = [Ac'Jo(pcr) +C, Yo(pcr)][Ec sin y,z + F . cos 7c2]

20

cos B x, sinh Bpx, - cosh By(x, ¥ T+ 5 cosh Bpx,
=‘0,
tre . Ktrﬁ . sinh Bﬁ(xo + T+ %) .
- B, sin B x, B, 3 [coshBﬁxo I By(s, T T+ D) sinh Bpx,
J(1.81)

E is replaced by its value in terms
of A from Eq. 1.79 (or Eq. 1.80). This
determines ¢ to within the multi-
plicative constant A, which depends
on the power level at which the reactor
is operating.

Cylinders.
in the core was

The general solution

(1.82)



The first boundary condition that the
flux be everywhere finite requires
that €, = 0. The second boundary
condition regarding symmetry requires
that E, = 0. Thus the expression for
core flux reduces, then, to

¢c(r,z) = A, J,(u,r) cos ¥z, (1.83)

where A E_ is replaced by just A,
since the constants are arbitrary.

The general solution in the reflector
was

bp(r,z) = [Ag I (ugr) + Cp K (upr)]
X[EB sin Ypz t FB cos ynz].

(1.84)

The second boundary condition regarding
symmetry requires that E, = 0. The
boundary condition 4a requires that

0 = {4, I, [up(R+ T+ 8)]

t Cp KO[pB(R + T+ 8)]} Fgp cos Va2

(1.85)
or
Io[#B(R + T+ 3)]
C, = - A , (1.86
. R R K, [ug(R + T+ 8)) (1.86)
where
R = radius of core,

T = reflector thickness.
The reflector flux is, then,

1. 87

and, similarly, in Eq.

-up + yi = -B} . (1.89)

As in the bare cylinder, only the sum
of the radial and longitudinal com-
ponents of the buckling is determined.
If the composition is specified (and
hence Bi), some value is chosen for
yi, and pi is thus determined from
Eq. 1.88. With Y., fixed, the longi-
tudinal core flux distribution is
fixed as cos 7,z, and from the boundary
conditions that the flux cannot be
negative and that ¢c(r,(H/2) +68) =0,
it follows that

H T
7c;+3 =5

the first root of the cosine.

(1.90)

Thus

T

’yc = _H_‘)
)
2

where & = extrapolation distance
=0.71 A, , The assumption is made
that the extrapolation distance at
the ends of the reflector is equal to
that at the ends of the core. Since
by hypothesis the reflector is of the
same length as the core, it follows
that

(1.91)

I, [pp(R+ T+ 8)]

¢B(rr 7-) = AR Io(/i‘nr) -

where A E, has been replaced by just
Ap, since thecoefficients are arbitrary.

In Eq. 1.83, thereis the additional
condition that

pi + 73 = B? (1.88)

¢ ’

Ky [ug(R+ T+ 8)]

Ko[pn(r + T+ 8)] pcos Ypz » (1,87)

After a length 1s chosen for a
reactor of given composition, the
continuity conditions are used to
determine a relation between R and T
for criticality. The jacket reflector
thickness is then usually specified
and the critical coreradius determined.
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Boundary condition 5a requires that

I, [ (R+ T+ 8)]
Kjlug(R+ T+ 8]

A, J, (R = Ap< I (ugR) - K, (pR) ¢ (1.92)

in which the longitudinal components cancel because they are the same on both
sides. Boundary condition 5b requires taking the derivatives with respect to r
of the expressions for the core and reflector fluxes givenby Eqs. 1.83 and 1.87.
If the series Jy(ur) is differentiated term by term, the series that results is
denoted by

pr (ur)d N (ur)s (ur)?

Jl(,u.r) ET— -
232! 252131 27314!
Similarly,
dIo(pr)
T——=+,LLII(,LLT) ’
where
3 ( 5
I, (pr) I G (e S e,
2 9391 25213
and
dK,(ur)
= - k)
in which

<#r>l+2n
@© - 1+n
2 pmr 1 1 Sb
= - N7 o+ - -1 - -1
K, (ur) E 1) log 2 0.577 3 m 3 m

n=0 =1 a=1

fhus boundary condition 5b results in the equation

Atre Atrﬂ IO ['U'R(R + T+ 8)]

-A Ty R) = A0 ST (g R) +
‘ N A e A AT R T3]

K [upg(R+ T+ 3)]

(1.93)

As in the slab core, there are two homogeneous equations in two unknowns: Ac and
Ap. If solutions are to exist forAc and A, itis necessary that the determinant
of the coefficients vanish
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I, [ug(R+ T+ 8)]
J R I R) -
o1 R) o (L pR) K i (R+ T+ 8)]Ko(p,,R)
=0;
Nev J (e B) Nern o Io[ug(R + T + 8)] R+ T+ 5]
- e + K + T +
g He1lMe 3 An ) T T R T a1 )
(1.94)
this is the criticality equation.

To summarize, the procedure in the
case in which the composition is
specified is to fix the length of the
core (= reflector length) and then
evaluate

3(k - 1)
2 _ 2 _
pe = Be = TS
ac tre
2
- 7 (1.95)
= .
2<3+ 0.71 A,,
3
2 2 2
Kp = Byt vp =
xaﬂxtrﬂ
2
v
-(1.96)

H
2( 5% 071 A,

By using these values in the elements
of the determinant, one can specify
R (the core radius) and solve for
T (the reflector thickness) by trial
and error or specify T and solve for R
by trial and error. It is also
possible, of course, to specify R, T,
and A/2 (fix the size and shape
completely) and solve for the critical
uranium concentration (and hence
critical mass) by trying various
concentrations until the corresponding
pi, as given by Eq. 1.95, is found
that satisfies Eq. 1,94.

Once criticality has been es-
tablished, the expressions for the
flux are given by Egs. 1.83 and 1.87.
In Eq. 1.87, AB is replaced by its
values in terms of A_ from Eq. 1.92

(or Eq. 1.93). This determines ¢ to
within the multiplicative constant
A_, which depends on the power level
at which the reactor is operating.

An additional remark is in order
concerning the solution for the critical
mass of a square cylinder or cubical
reactor that is completely surrounded
by a reflector. Neither of these
important cases 1s analytically
soluble. An approximation can be
made, however, based on two facts:
(1) a critical, bare, square cylinder
of the same composition as a bare
sphere has about 15% more volume and
uranium mass than the latter; (2) it
has been determined experimentally
that the square cylinder surrounded
by a very thick reflector has about
6% more volume and uranium mass than
the sphere of same composition with a
thick reflector. Thus with the usual
reflector a figure of 10% difference
between cylinders (or cubes) and
spheres i1s reasonable. Usually the
size of the reactor is specified by
conditions of heat transfer and
shielding. The procedure is then to
reduce the volume by 10% and solve for
criticality with the reflected sphere
having this reduced volume. This
critical spherewill have approximately
the same uranium concentration as the
reflected cylinder (or cube) would
have. The critical mass of the actual
reactor is then 10% greater than that
of this critical sphere.

PROBLEMS

1. Consider a 0.1-in.-dia spherical ball
of uranium surrounded by a 0.03-in.-thick
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layer of copper. If neutron bombardment is
causing a heat release of 40 cal/sec, what is
the drop in temperature through the copper

such that this heat is carried away?

2. A solid spherical reactor with graphite
core and graphite reflector has a core flux,
calculated on a one-group model, of

mmr
sin —

80
Ptr) = 1013 ——,

r

The radius of the core is 60 cm; the ey
used was 4 barns; the density of the graphite
is 1.7 g/cma. Find the total net number of
neutrons escaping from the entire core per

second.

3. A bare, spherical reactor is con-
sidered that is composed of beryllium, which
has a microscopic cross section of 4 barns at
thermal energy, and a low concentration of
uranium. The critical diameter is 3 feet.
Find a rough answer for the leakage of

thermal neutrons per second from the surface

24

of the reactor. The properties of the

asymptotic flux at the surface are
- 13
¢th =107,

dP,,
dr

= 0.2 x 10'3 .,

4. Derive the formula far the radius of
the critical, bare, spherical reactor.

5. For a given composition, what is the
ratio of extrapolated radius to length for
the critical cylinder of least critical mass?

6. What is the critical mass of a square
cylinder of pure U2357  Take Oau = O T 1.34
barns, o, = 6.4 barns, p = 18.6 g/cma. For
these cross sections it is assumed that the
(Note:
The one-group model is roughly applicable

neutrons remain at fission energy.
here, but diffusion theory is not very
accurate for small assemblies. The answer is
roughly too large by a factor of 2.)

7. Derive the determinant condition for
criticality in a reflected sphere of given
composition,



Chapter 2

CRITICALITY BY FERMI

In chapter 1, a method was developed
for getting the critical size or
critical mass of a fissionable material
assembly by making the simplifying
assumption that all neutrons were at
the same energy. This was anadmittedly
crude model, since neutron energies
are actually spread from about 107 ev
to about 0,025 ev (for a room-tempera-
ture reactor). Since cross sections
vary widely with energy and since the
energy distribution of the neutrons is
not generally known, it is difficult
to choose good average values for the
constants., In this chapter, a method
is derived for calculating critical

masses (or sizes) of unreflected

reactors that accounts for the fact
that neutrons exist in a reactor at
all energies from fission to thermal.

The formulas take an especially
simple form when most of the fissioning
is caused by thermal neutrons (thermal
reactors); this case is discussed first.

THERMAL REACTORS WITH NO APPRECIABLE
ABOVE - THERMAL ABSORPTION

Reactors are considered for which
the simplifying assumption can be made
that there is no above-thermal ab-
sorption, that is, neither nonproductive
capture in any reactor material nor
absorption to produce fission. The
plan of the derivation of the criticality
formula for thermal reactors is the
following:

1. Derive the formula for £, the
average loss in the logarithm of the
neutron energy per collision.

2. Establish the relationship be-
tween the slowing-down density, gq(E),
the number of neutrons slowing down
past energy E per second per cubic
centimeter,
energy. This involves &,

3. Derive thedifferential equation
(called the age equation) for g(E),
which involves the quantity defined as
the age, 7(E).

and the flux per unit

AGE THEORY

4. Solve the age equation for q,,
the number of neutrons becoming thermal
per second per cubic centimeter.

5. Set up the
for thermal neutrons.
is qth.

6. Apply the boundary conditions
to obtain the criticality formula
expressed in terms of the age-to-
thermal, 7,,, and the thermal dif-
fusion “area,” L2,

Following the derivation, a dis-
cussion of the physical significance
of 7,, and L? is given,

balance equation
The source term

Formula for £. It will be shown in
this section that the average loss in
log energy per collision, &, is a
constant (independent of the incident
energy of the neutron) that can be
expressed simply in terms of the atomic
mass number of the nucleus with which.
the neutron collides. The plan of the
derivation is:

1. Denote by v,, the velocity with
which the neutron is approaching the
nucleus in the laboratory system of
coordinates. The nucleus is considered
to be stationary.

2. Find expressions for the velocity
with which the neutron and nucleus
approach the center of mass in terms
of vy,

3. Prove that the receding veloci-
ties after collision in the center-of-
mass system are the same as the incident
velocities of (2).

4, Find, in terms of vy, the
velocity of the neutron after collision
in the laboratory system by adding
vectorially the velocity of the neutron
in the center-of-mass system and the
velocity of the center of mass. The
velocity after collision is found to
be a function of the scattering angle
in the center-of-mass system, &.

5. Find the ratio of the energy of
the neutron after collision to its
energy before collision, from (1) and
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(4). The v,
expression. .

6. Find P(6)d6, the probability
that the neutron will scatter at an
angle between 6 and 6 + df, in the
center-of-mass system.

7. Find P(E,,E), the probability
that a neutron of energy E, be fore
collision will have energy in the unit
energy range around E after collision,
Since E is a function of &, from (5),
it is possible to write immediately
that P(E,,E)dE = P(6)df, and the
expression for P(E,,E) follows.

8. Find £ by integrating P(E,,E)
(In E; - 1n E) over all energies below
E,.

Incident Neutron Energy, Laboratory
System. The definition is made that
vy is the velocity with which the
neutron is approaching the nucleus in
the laboratory system of .coordinates.
The velocity of the nucleus is assumed
to be negligible, compared with that
of the neutron. ]

Incident Velocities, Center-of-
Mass System. In the laboratory systenm,
the picture is as shown in Fig. 2.1.
The neutron of atomic mass number 1
and the center of mass are moving to
the right toward the nucleus of atomic
mass number A.

CENTER OF MASS
TRON ; NUCLEUS

cancels out of this

NEU
“) (STATIONARY)

o-—-—X,,——-' x

Xem 1

Xa 1

- Fig. 2.1

From the definition of the center
of mass it follows that

A+1)x _=A4A x, t 1z

n
or
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By taking the derivative with respect
to time to find the velocity of the
center of mass, it is found that

dx 1 dx 1

cD n

’

= . = v

dt A+1 dt A+1°

since the nucleus is stationary, which
makes dxA/dt = 0.

On the other hand, in the center-

of-mass system the picture is as shown

in Fig. 2.2,

(73]

(73]

<«

=

w
4 o 17,)
g o )
w
- E =
) 2 o
W w ]
2 o 2
o} ] — 0

Fig., 2.2

The velocity with which the nucleus
moves toward the stationary center of
mass in this system is the same as the
velocity with which the moving center
of mass moves toward the nucleus in

the laboratory system. Thus,
. . 1
Incident velocity of nucleus = - v,
: A+l
. . 1
Incident velocity of neutron = v - v,
O a4+l
A
g 1vo.
Receding Velocities. The proof

that in the center-of-mass system the
velocities after collision are thesame
as the velocities before collision
follows from the principle of conser-
vation of energy and the principle of
momen tum, o

The principle of momentum states
that the rate of change of momentum is
equal to the force, or, as a special
case, 1f there are no external forces,
the momentum of a system remains un-
changed., The momentum of the system



consisting of the neutron and nucleus
is, before collision,

A + A
RSO
and since there are noexternal forces,
the momentum after collision must like-
wise be zero. :

By defining v, as the velocity of
the neutron after collision in the
center-of-mass system and v as the
velocity of the nucleus after collision

in the center-of-mass system, it is
found that
lv, +Av =10, (2.1)

From the principle of conservation of
energy, ’

1 2 1
E-. I E-A v
2
1. A )2
2 (4+1)2°°
1 1
+'E‘A ?Z—:—ISE vg.(2.2)

Upon solving for v, and v, in Egs. 2.1

and 2.2, it is found that
A
Yt T T v,
and
Yo
Yo TFF I

which in absolute value are the same
as the incident velocities,

From the principle of angular
momentum and the fact that there is no
torque, it is seen that the angular
momentum must be zero after collision
since it is zero before collision;
that is, the neutron and nucleus move
in exactly opposite directions after
collision in the center-of-mass system.
Thus the picture is as shown in Fig. 2.3,

Velocity of Neutron After Collision,
Laboratory System. The definitions are
made that & is the scattering angle of
the neutron in the center-of-mass
system and Y is the scattering angle

Fig. 2.3

of the neutron in the laboratory
system.

The velocity of the neutron after
collision in the laboratory system, v,
is found by adding vectorially the
velocity of the neutron relative to
the center of mass and the velocity
of the center of mass, as shown in

Fig. 2.4. It follows from the law of
cosines that
vg A
v2 = + ‘U2
(A+1)2 (A4A+1)2°°
2vg
—_— 8 2.3
+ A+ 1)2 A cos ( )

VELOCITY OF CENTER OF MASS

3¢

8 v B

INCIDENT DIRECTION OF NEUTRON TRAVEL

Fig. 2.4

Ratio of Energy After Collision To
Energy Before Collision. It follows
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from Eq. 2.3 that the ratio of the
energy of the neutron after collision
to the energy before collision is

E_A"+1
E (4 +1)2 (4+1)?
The definition is made that

0
_ <A - 1>’
a = ’
A+1
and Eq. 2.4 becomes

E 1
r) [(1 ta)t (1 -a)cos 6]

0 (2.5)
Thus the more the neutron is deflected
from its original direction, the more
the energy loss, If 6 = 0, Eq. 2.5
gives E/E, =1; that is, there is no
energy loss. If @& = 180 deg, the
neutron suffers the maximum energy
loss, that 1is,

min A - 1>2
= @ =
E, A+1

Equation 2.6 is an important formula
that is worth remembering.

For neutron collision with a
hydrogen atom, Eq. 2.6 says the neutron
can lose all its energy; for beryllium
collisions, it can lose a maximum of

(++3)
1 - -
9+ 1

of its energy; for graphite, 28% of
its energy.. '

Expression for P(6) df. To get an
expression for P(6) df, the probability
that a neutron will scatter at an
angle in the center-of-mass system
between 6 and 6 + df, the assumption
is made that scattering is isotropic
(spherically symmetric) in the center-
of-mass system (avery good assumption).
Therefore P(8) d6 is simply the
fractional area of the incremental
band between 6 and 6 + df on the
sphere drawn around the nucleus, as
shown in Fig. 2.5. The area of the
band 1is

(2.4)

cos O .

(2.6)

1 - 0.64 = 36%

27rr sin 6 r d6 .
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Fig. 2.5

Then the fractional area of the
incremental band between & and 6 + d&
is

" 97r? sin 6 d6

P(6) db =
dorr?
1
= ?; sin 6 d6 . (2.7)
Expression for P(E,,E). From Egs.

2.7 and 2.5,: an expression can be
obtained for P(E ,E), the probability
that a neutron of incident energy E,
will have energy in the unit energy
band around E after collision.
Since P(EO,E) and P(f@) are both
distribution functions, they are of
the nature of derivatives, dn/dE and
dn/df, where dn would be the fraction
of neutrons scattering into dE and d&,
respectively, It can then be written
immediately that :

~P(E,,E) dE = P(6) d6 ,
where E and 6 are related by Eq. 2.5.

The negative sign is used because E
decreases as & increases.

It follows that
dé
P(E,,E) = P(8) (-— |,
dE
and from Eq. 2.5
- de 2

_— = - . 2.8
dE E, (1 -a) sin 8 ( )




From Egs. 2.7 and 2.8,

P(E,,E) = . (2.9)

E, (1 ~a)
It is important to note that P(E ,E)
is independent of E. From Eq. 2.6, 1t
is clear that the denominator of Eg.
2.9, E, - aE,, is the range of possible
energy loss (see Fig. 2.6), and, since
dE

P(EO,E) dE = E————T ’
o — 9L,

the fraction of neutrons degraded into
dE is independent of E, it follows
that the neutrons are spread uniformly
in energy between E, and aE . The
fraction of neutrons being degraded
into any subinterval of energy in E,
to aE, is just the width of the sub-
interval divided by the total interval
of possible energy loss, E, -~ aE,,
regardless of where the subinterval is
located in the total interval. For
hydrogen nuclei, a = 0, and it follows
that neutrons are spread uniformly
from the incident energy E;, to zero
energy. Hence, on the average, a
neutron loses one-half its energy upon
a collision with a hydrogen atom.

Formula for £, The formula for &,
the average loss inlog energy, follows
easily from Egqs. 2.9 and 2.5.

T E¢ (ENERGY OF FISSION)
- EO
RANGE OF POSSIBLE
ENERGY LOSS FOR dE] £
A NEUTRON OF
INCIDENT ENERGY &,
----- acg,
&t
Fig. 2.6

E
f (In E; - In E) P(E,,E) dE
ak

0
¢ = A
P(E,,E) dE
EO
- (In E, - 1n E) ————
a.l:"o 'Eo (1 - a)

If the integration is carried out,
this becomes

3

1 +

lIn a
1l -a

(4 - 1)2 A -1
1+ .
21 In <A " 1) , (2.10)

which was the formula to be derived.

When £ is evaluated for some common
moderating elements, it is found that

. a
gn - ij? <1 ¥ l -a In %)

=+ lim (a 1ln a)
a—0
1
=1+ lim —
a=o0 i
o?
=1+ lim (-a) =1,
a—0
for hydrogen;
2 8
=1+— 1n — = 0,206,
¢ne 16 " 10 206
for beryllium;
=1+ 117 1 11 = 0,158
€e 2¢ 13 %

for carbon.

It is to be emphasized that & 1is
defined as the average of the log and
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not the log of the average. Students
sometimes erroneously conclude that,
since £;=1, then the ratio of neutron
energy after collision with hydrogen
to neutron energy before collision
must, on the average, be 1/e. As
previously stated, the neutron loses,
on the average, one-half its energy
upon hydrogen collision.

Relationship of Flux and Slowing-
Down Density. The slowing-down density,
g(E,r), is defined as the number of
neutrons slowing down past energy E
per cubic centimeter at the position
point r. If g can be determined, that
is, if q(E,,,r) in particular can be
determined, the source term for the
thermal-neutron balance equation is
then known. ,

A differential equation can be
written for gq(E,r), but it involves
¢(E,r) the flux per unit energy at r.
(This will be shown in the next
section.) An auxiliary relationship
between q(E,r) and ¢(E,r) is therefore
needed.

First, an integral equation in
¢(E,r) is established by writing that
the number of neutrons being degraded
into the energy interval dE per cubic
centimeter at r by scattering at
higher energies (the possible energies
are E to E/a, as can be seen from
Eq. 2.6) is equal to the number being
lost from dE (by degradation through a
scattering collision or by spatial
leakage), that is,

A
$(E,r) =, dE - —;— V2 $(E,r) dE

Feg(E' ,r) = (E') dE' dE
E E’

- oF'

(2.11)
It is to be recalled that it was
assumed that there was no absorption
above thermal energies. The net
leakage term on the left is small
compared with the scattering term, and
therefore Eq., 2.11 can be written,
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approximately, as

Efa p(E,r) =, (E') dE'

H(E,r) 2 = T ,

g (2.12)
after dividing out the dE from both
sides,

This integral equation is satisfied
by

SE,r) 5, ==, (2.13)
E
as can be verified by substitution,
where C is an arbitrary constant.
On the other hand, an expression
for the slowing-down density can be
written as

E/a , ,E - aE!
g(E,r) j; PELLIE (B ) s
(2.14)

since q(E,r) is made up of neutrons

dE',

making collisions at r at energies
above E that are degraded below E.
The integration limits of Eq. 2.14 are
E to E/a because it is seen, from the
formulas for maximum energy loss, that
only neutrons of energy E to E/a can
be degraded below E. Since neutrons
making collisions in dE' are evenly

distributed from E' to aE' (see Fig.
2.7), it follows that

E -aE’

E' - aE'

is the fraction landing below E; this
fraction is the integrand of Eq. 2.14.

T “F

th
Fig. 2.7



By substituting Eq. 2.13 in Eq. 2.14
it is found that ’

: q(E,r) = C£ . (2.15)
Then by eliminating C from Egs. 2.13

and 2.15, the desired relationship
follows:

q(E,r) _

?Ez— = ¢(E,L) . (2.16)

s

Differential Eaquation for q(E,r).
The differential equation for g(E,r)
is obtained bywriting that the slowing-
down density at E + dE must equal the
slowing-down density at E plus the net
loss of neutrons from the cubic

centimeter at r due to diffusion, that.

is,

A

q(E+dE,r)=q(E,r) -‘% V2 ¢(E,_r) dE .
(2.17)"

When the left side is expanded in two
terms of a Taylor expansion about E,
Eg. 2.17 reduces to
A
tr aq(E r)
-— g2 . P =
| 3 ¢(E,r) 3
By substituting Eq. 2.16, Eq. 2.18
becomes
X .
1 9q (E,
Sy q(E,r) ='——€——L—)- .
3 §EZS °oE
) - (2.19)

The fundamental constant, called the

“age” is defined as

E
F>\s >\tr dE
T(E) = —_—
A 3¢ E

where EF
‘to be monoenergetic,
mation). Definition \
discussed further in later sections.
Upon differentiating Eq. 2.20, it is
seen that

. (2.18)

(2.20)

is the fission energy (assumed
as an approxi-

_éz ~ X& Xir‘

dE - 3E '’

‘and by using this in Eq. 2.19, the
latter becomes

2.20 will be

dr og(E, r) )
v g,y - 228 (2,21
i e 3E (2.21)
or
3 (7,
vt () - 22T o (g.09)
oT

Equation 2,22 1s called the “age
equation.” - )

Solution for gq,;. Tosolve Eq. 2.22,
an attempt is made to separate the .
variables by writing

q(r,r) = R(r) T(1) , (2.23)
and substituting this into Eq. 2.22,
which then becomes :
: dT(7)
VIR _dr (2.24)
R(r) T(7) | |

Solution for Energy-Dependent
Component. Since the first term
involves only r and the second term
involves only 7, both terms must be

equal to a constant, say S%. Thus
dT(T) '
+ B2 T(r) = 0, (2.25)
dTr .
the solution of which 1s
2
CT(r) = A e PTT (2.26)

From Egs. 2.23 and 2.26 it follows that
q(T,r) = R(r) A eBA'7 ., (2.27)

Evaluation of Spatial Component‘?nb
Terms of ¢,,. From definition 2.20 it

is clear that the age of virgin neutrons
is zero, and, from Egq. 2.27, the
slowing-down density at fission energy
(the assumption here of monoenergetic
fission neutrons causes no great error

. in thermal reactors) is

q(0,r) = R(r) A . (2.28)

On the other hand, the slowing down
density at fission energy is just equal
to the number of neutrons being produced

" by fission, which is

Poalr) 2, kyp s

where ¢, (r) is the thermal flux at r
and k,, is the average number of
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fission neutrons produced per ab-
sorption of a thermal neutron, that is,

2.5 Zf/za, for U%235, Hence

q(0,r) = R(r) A = ¢,,(r) 2, k,y

. (2.29)
Equation 2.27 now becomes
g(7,r) = ¢, (r) S, kyy BT (2.30)

and the source term for the thermal
group 1is

, ) 82y
q(1g,r) = ¢ (r) 2, kyyp e th, .
(2.31)
Balance Equation for Thermal Neutrons.
The balance equation for the ab-
sorption, leakage, and production of
thermal neutrons can be written in the
manner described in chapter 1;

-

tr

3

Vg  (r) + ¢, ,(r) =,

2
BT n

= bunlr) 2 Ry e =0,

which can be written as

V2 (r) + B G, () = 0,

(2.33)
where ) .
1 _p2
B? -5 (k,h P 1) (2.34)
in which '
Xtr
L? = = (2.35)

a
The constant L? is called the thermal
diffusion area. More will be said
about this fundamental constant later.

The constants B? and 82 of Eq. 2.34

are actually the same constant, as can

be seen from the following. From
Eq. 2.29 '
za kth ’

R(r) = ———¢, () , (2.36)
but from Eq. 2.24 it follows that
V2 R(r) '

— = B2, 2.37
R(z) B (2.37)
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By substituting Eq. 2.36 in Eq. 2.37,

‘the following expression is obtained:

VI $enlr) _

Hence from this equation and Eq. 2.33,
it follows that A

,82 i~ B2
Therefore Eq. 2.34 becomes

1 -B2.
B? =-23-<kth e Tth 1)

_ﬁ2

°or kth -B%r
_ e
1 +L? B?
This equation is the thermal reactor
criticality equation.

Flux Distribution.. Since Eq. 2.33
for ¢,, is a differential equation of.
the same form as was obtained for ¢ in
the one-group bare-reactor treatment,
it follows that the solutions for ben
are the same in form as those for ¢.

t’l_l

(2.38)

Thus, for slabs
. ¢,h(i) = A cos Bx ;
for spheres .
A sin Br
¢th(r) = ’
r

for cylinders
bplr,z) = A Jy(ur) cos yz ,

where pu? + y? = B2, The conétanp A in
all cases depends on the power level.
Since q(r,7) and ¢th(£) are spatially
proportional, as can be seen from Egq.
2.30, it follows that gq(r,7) has the
same spatial distribution as ¢,,.
Therefore for slabs,
q(x,7) = T(T) cos Bx ;
for spheres, :
sin Br

= T(r) 20— ;

r .

q(r,7)

for cylinders,

q(r,z,7) = T(r) J,(ur) cos yz ,
where T(7) is a function of the age
and the power level..

From Eq. 2.16 it ‘then follows that
the flux per unit energyabove thermal,.
¢(E, r), for all E, likewise has a

spatial distribution, such as given



above for the thermal flux; that 1is,

for slabs,

¢(E,x) = V(E) cos Bx ;
for spheres,
in B
S(E,r) = V(E) S,
-

for cylinders,
¢(E,r,z) =

where V(E) is a function of the energy
of the flux in question and is, also,
a function of the power level at which
the reactor is operating. In each
case, B is given by Eq. 2.38.
Critical size. The boundary con-
ditions are the same as for the bare-
reactor one-group model.- By the
arguments of chapter 1, the first root
of the solution of Eq. 2.33 (for each
geometry) determines the critical

V(E) Jo(#r) cos Yz ,

size. Thus, for slabs,
Z_ s (2.39)
x, =——-— , .
° 2B
where x, is critical half thickness,
d is extrapolation distance, that 1is,
0.71 Kt ;
r
for spheres,
7
R=—=-3, (2.40)
B ‘
where R is the critical radius;
for cylinders,
2.405\? S
2 = <—;———> t | ————= ,  (2.41)
R+ 5 H
oz + 3)

where R is the critical radius and H
is the critical height. In each case,
B is given by Eq. 2.38.

Physical Interpretation of L%?. The
guantity Ka Ktr/B that was denoted by
- L? in the thermal criticality equation
has a simple physical interpretation
in terms of the average of the square
of the crow-flight distances that
thermal neutrons diffuse before
capture. To find this average, the
distribution of the thermal capture
density (or the flux, which is pro-
portional to it) due to a point source
is needed. The neutron-balance

equation affords the required dif-
ferential equation for the flux.

Consider a point source in an
infinite, three-dimensional space with

neutrons diffusing away from it. The

neutron-balance equation for points
away from the source is that for a
nonproducing medium. The spherical
coordinate system is chosen because

the source is easily located at r = 0.
The equation is, then
d? 2 d 1
G, 28 Ly, (2.42)
dr? r dr L?
This is the same equation as was

previously obtained for the reflector
of a spherical reactor. The general
solution was

sinhi} cosh 4~
$(r) = A ——= + ¢, ——

r r

. (2.43)

This can be written in a more con-
venient form for the present case as

-r/L er/L
+ C
r r
It is clear that C = 0, for, otherwise,
the flux would increase without bound
as r increases., Thus Eq., 2.44 becomes

e—1/L

H(r) = A (2.44)

P(r) = A

The number of neutron absorptions
per cubic centimeter per second at r
is then given by

(2.45)

e-—-r/L
$(r) S, =45, . (2.46)

r

which has the appearance
Q
N
<
-
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However, the quantity of more interest
is the relative number of captures per

unit r at different radii, that is,
Eq. 2.46 weighted by 4mr?:
e—r/L
fCr)= 4mr? &(r) 2, = 4mAr? Z, — .
(2.47)

The physical interpretation of L?
is obtained by finding r2, the average
of the square of the crow-flight
distance a neutron diffuses before
capture: '

[r 5y ar

2 _

1]
r =
>}
ff(r) dr
o ‘
® /L
-~r
~/‘r2 drrr 24 ¢ Za dr
o r
= = 6L2
—r/L
f47rr2,4 ¢ Za dr
0 r
(2.48)
and thus L
2
L? =—7; , (2.49)

or L? is one-sixth the average of the
square of the crow-flight distances
neutrons travel from the point they
become thermal to the point at which
they are captured.

Students often ask why not simply

determine r from

f":‘ f(r) dr

0

ro= ®
ff(r) dr
0

This does indeed provide further
understanding of L, but since the
quantity appears in the criticality
formula in the square form, L?, the
interpretation Eq. 2.49 is the one
usually given,

= 2L .
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It is well to bear in mind the
appearance of the distribution of

Eq. 2.47.

(r)

!
|
[
i
|
!
!
]

L

' ————

The most probable crow-flight diffusion
distance before capture is r = L.

Physical Interpretation of 7,,. The
physical interpretation of the age
from fission energy to thermal energy,
T.p» 1s quite similar to that for L?Z.
It is found that 7,, is one-sixth the
average of the square of the crow-
flight distances neutrons diffuse from’
the points of birth to the points at
which they become thermal neutrons.
(The quantity 7 is in units of area
and, perhaps unfortunately, it is not
denoted by a sqguared symbol such as
that for the thermal diffusion ‘““area,”
L?. Some early authors did use the
notation L:, but the symbol T,p Seems
to have been more widely adopted.)

It is required to find the distri-
bution of neutrons becoming thermal
from a point source of neutrons at
fission energy. The differential
equation for ¢ as a function of 7,
previously derived, is

g (r,T)
V2 g(r,7) = 22200 (2.50)
oT
or, in spherical coordinates,
2
9 q(r,T)_+2_3q(r,T) =Bq(r,T) C(2.51)

dr? r or oT

The solution to this, which can be
verified by substitution, is
e—r_2/47'
q(r,7) = A — ,
(47r7)3/2
For neutrons of age 7 = 7,,, Eq. 2.52
becomes

(2.52)

2 .
e—r /:t'r”l

g, () A —
(4WTth)3/2

(2.53)



which has the appearance

9, (r)

0

[ ——

The distribution with respect to r
(the fraction of neutrons that became
thermal in the shell between r and
r +dr) is really Eq. 2.53 weighted by

4rr?, that is,

—r2/4TM

flr) = 4mr? g, (r) = dmria S—
(4n7,,)3/2

(2.54)

which has the appearance

(r)

r —
The average of the square of the crow-
flight distance that neutrons travel

from the source to the point at which
they become thermal neutrons is

f r?2 f(r) dr
0
jmvxr) dr
0

2.

r =

@ e—r2/41'h
ridnr?p ——— dr
R (4n7th)3/2
= - R = 6T he
- /47",'
arrlA S ar
o (4n7th)3/2
(2.55)

Thus

which is the physical interpretation
of Tohe

Physical Interpretation of Components
of Thermal-Reactor Criticality E-
quations. It is necessary to return
to Eq. 2.38 for a moment and to note
the physical interpretation of the

component parts of the equation. The
equation 1s
ken ’Bthh
— 7 e = 1. (2.38)
1 + L2B2

First, 1t will be recalled that k:h is
the average number of neutrons produced
per absorption of a neutron in any
core material. The component

can be interpreted as the probability
that a neutron will not be lost by
leakage while slowing down from fission
energy to thermal energy. This can be
seen most easily from Eq. 2.31, which
states that the slowing-down density
at thermal energy is equal to the
number of neutrons (with fission
energy) born per second multiplied by
the factor

2
e—B Tth
that is,
—.Bz‘r
q(Tth'L) = ¢th(L) Za kth e th .
(2.31)
It follows that
2
e_B,Tth

is the ‘“leakage escape probability.”

The factor 1/(1 + L?B?) can be
interpreted as the probability that a
neutron will not be lost by leakage
after it has become a thermal neutron.
Since a thermal neutron has only two
possible fates - either it is lost
through leakage or is absorbed - the
factor 1/(1 + L2B?) can also be
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interpreted as the probability that a
thermal neutron will be absorbed.
This interpretation is clear if the
substitution that

Vigen + By = 0

The quantity

k

th €

1 + L2B?
is called the effective reproduction
constant and is denoted by keﬁ:

or
v? —321
# = :
th eff 1+ L2B2
is made, that 1is,
1 _ -1 _ 1
1+ L2B? ,
v2¢th Kaxtr v2¢th
1+L%| - 1 +- -
¢th 3 ¢th
¢thza absorptions/cm3-sec
Ner (absorptions/cm®:sec) + (leakage/cm®:sec)
- 2
¢thza + 3 v ¢th

It follows that 1/(1+L2B?) represents
the fraction of thermal neutrons being
absorbed, or the probability that a
thermal neutron will be absorbed, or
the probability that a thermal neutron
will not be lost by leakage.

When these facts are put together,
the physical meaning of the criticality
equation (Eq. 2.38) becomes clear. For
each thermal absorption, k,, neutrons
start out at fission energy. Of these
neutrons,

'Bthh

kth €
survive fast leakage to become thermal
neutrons. Of the thermal neutrons

2,

“B7

k”I e

1+ L?B?

survive total leakage and are absorbed.
If this quantity is exactly one
neutron, the neutron population
remains constant the reactor is
critical. :
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It is clear that if k, > 1, the
reactor is supercritical; if kef <1,
it 1s subcritical; and 1f keff = 1, it
is critical.

A further quantity in common use 1is
the excess reproduction constant
denoted by k_ . It has the definition

2
-B T
kth (4 .th
k = k -1-= -1.
ex

11 1 + L?B?
Therefore there is a positive, zero,
or negative k,,, respectively, in the

supercritical, critical, or subcritical
reactor.

The term ‘““reactivity” is used in
connection .-with the above two equations.
Several authors have defined the term
differently in the literature, and
considerable confusion has been
associated with the word. It is often
used to mean ke However, it now
appears that themost commonly accepted
definition is



k

L. ex .
Reactivity = p =

7
This is the definition that will be

used in chapter 6, “Kinetics,” where
reactivity plays a prominent role.

It is worthwhile to note that the
thermal Fermi age formalism degenerates
to the one-group formalism if

2
-B°T
e th =

that 1s, 1if there

neutrons while slowing down.
for the

is no leakage of
Thus

bare reactor in the one-group

model,
" _ k
eff B 1 + LZB2
k
kez = keff - 1l= 1 + L2B2

It will be recalled that in the one-
group model, the B? was introduced by
the definition

3k - 1) 3,
A

tr

B? =

or
k-1
B = ——
L2
from which the bare-reactor one-group
criticality equation follows:

k
1 + L%B?

REACTORS WITH ABOVE-THERMAL NEUTRON
CAPTURE BUT NO APPRECIABLE
ABOVE- THERMAL FISSION

Relationship Between ¢ (E,r) and
g(E,r) in an Absorbing Medium. Earlier
in this chapter, a relationship (Egq.
2.16) between the flux per unit energy
and the slowing-down density,
medium in which neutrons slow down

in a

without appreciable absorption was

derived. This relationship was
q(E;") :
— = ¢(E,r) (2.16)
EES PE. L

When appreciable absorption is present,
it has been shown that more accuracy
is obtained if Eq. 2.16 is replaced by

q(E, r)

ZES = ¢(E, r) ,

(2.56)
r :

where ZTis the total macroscopic cross
section. Equation 2.56 is still only
approximate, but it is an improvement
over Eq. 2.16.

No attempt will be made here to
really justify Eq. 2.56, but it can be
made plausible by going back to the
derivation of Eq. 2.16 and seeing what
changes need to be made for the ab-
sorbing medium and finally showing
that 1t holds for one particular case.
The integral equation for the flux
(Eq. 2.12) would become

E/a ¢(E':L) ZS(EI) dEl
¢(E, r) ZT = )
E' - aE'

g (2.57)

and the expression for the slowing-
down density (Eq. 2.14) remains

E/a , ,. E - aE’ ,
gE,r) =] e, S (B ——2 dE .
. El_aEl
E
(2.14)
The procedure is, clearly, to solve
for the flux in Eq. 2.57 and then

evaluate the slowing-down density from
the knowledge of ¢(E,r) obtained from
Eq. 2.14. However, Eg. 2.57 is not,
in general, easy to solve. On the
other hand, it is easily shown that
Ea. 2.56 follows from Egs. 2.57 and
2.14 for a hydrogenous medium with
constant cross sections, This will be
shown, and the demonstration will be
taken as a plausibility argument that
Ea. 2.56 is approximately correct for
slowing down in other moderators, such
as deuterium, beryllium, and carbon.
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For hydrogen, Eq. 2.57 is

“$(E',r) Z,(E') dE'
P(E, 1) ZT(E) = ,
E E'

(2.58)
and Eq. 2.14 1is

“$(E,r) £ _(E,r) dE’
E
El

E
(2.59)

By differentiating Eg. 2,58, with the
restriction that the cross sections
the equation becomes

q(E,r) =

are constant,

¢(E,r) Z,
S, ¢ (Bp) = - ———
E
where
AP(E, r)
1 E, = -_—
¢ (E,r) 3E
Then
¢ (E,r) 251
¢(E, r) i, E
-Z./Z,
¢(E,r) = CE ° (2.60)
When Eg. 2.60 is substituted in
Eq. 2.59,
[+ o}
(. /25)-1
g(E,r) =Ef CZ,E' & /2p) dE'
E
5 /5. 27
= ECS E /Er T
ZS
-z /2
= ECS,E /2 (2.61)
When C is eliminated from Egs. 2.60
and 2.61, it follows that
q
(E,r) = —
P(E,r ES,
or
$(E,r) = —— (2.56)
- E§ZT
since £ = 1 for hydrogen. Equation
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2.56 is taken as plausible when the
moderator is not hydrogen. '

Differential Equation for g(E,r).
When absorption is present at above-
thermal energies, the balance equation
comparable to Eq. 2.17 is

q(E + dE,r) = q(E,r) + ¢(E,r) Z_dE

Ner
e V2 $(E,r) dE , (2.62)
where Z and A, are, of course,
functions of energy. When the left
side is expanded in two terms of a
Taylor’s expansion about E, this
equation reduces to

Ney 3
Vi, r) + BEp) 5, = k)

oF
(2.63)
When Eg. 2.56 is substituted in Egq.
2.63, the equation becomes
) A, V2q(E, r) . q(E,r) £, 3q(E,r)
3EES, ¢s, O
| (2.64)

Solution for g,,. An attempt is
made to separate variables by writing

gq(E,r) = R(r) T(E) . (2.65)
By substituting this into Eq. 2.64 and
dividing by g(E,r), the result is
V2R(r) 32, 3EEZ 1 dT(E)
R(r) N, A, T(E) dE
(2.66)

The separation of variables was
successful, and, for reasons now
familiar, both sides must equal a
constant, say —-B32. The two ordinary
differential equations that result
are:

V2R(r) + B*R(r) = 0 (2.67)
and
dT(E) s, Ny Ap
+ |- - ;2 =
E 23, B 5 T(E) = 0 .
(2.68)



Upon solving this equation,

Now by defining the age in an absorbing
medium to be,

E,
FAtrKT
T(E) = dE ,
g JEE

and defining the “resonance escape
probability” P(E) to be

(2.70)

£, zu
P(E) = - dE|, 2.71
(E) = exp EEs, E ( )
E
Eq. 2.69 becomes
_1ﬁ2
T(E) = A P(E) e . (2.72)

Pefinition 2.71 is an important one.
The symbol P and the name “resonance
escape probability’’ appear quite
frequently in the literature.

Upon substituting Eq. 2.72 into Egq.

2.65, the latter becomes
g(E,r) = R(r) A P(E) e=™A" | (2.73)
or, since 7 = 0 when E = EF’
MEFL)=INL)A. (2.74)
However, ’
g(Eg,r) = &y z“:h ke, » (2.75)
and therefore
R(r) A = ¢, z“:h kep - (2.76)
Hence,
T(E,r) = &, 5,k P(E) emTA .
(2.77)

In particular, the source term for the
thermal group is
: 2
-_T ﬁ
th
kip Pep e .

qt“L)=¢Q“5)Zhh
(2.78)

Criticality Equation. The procedure
in getting the thermal Fermi age
equation when above-thermal absorption

the result is

Er =, EF N, Ap
T(E) = A exp | - 5 dE | exp [- B2 -~ dE
g £E r , 3E£

(2.69)

is present, by beginning with Eq. 2.78
as the thermal-group source term,
parallels the development of Egs. 2.31
to 2.38 for the case of no above-
thermal absorption. If the steps are
repeated, it is found that the thermal
criticality equation for resonance

absorption 1is

2
=T¢hB
kep Pep e

1 (2.79)

1 + L?B?

where k,, is the number of fission
neutrons produced per thermal neutron
absorbed (2.5 2,/S , for U?*%), P, is
the probability of escaping resonance
absorption while slowing down, 7,, is
the age-to-thermal, L? is the thermal
di ffusion “area,” and B? is the
“buckling,’ which 1s related to the
critical size by formulas 2.39, 2.40,
and 2.41.

Equation 2.79 is most applicable to
the reactor in which the uranium is of
low enrichment - a significant amount
of U23® present. A further improvement
can be made for this type of mixture
by introducing the guantity € to
account for the fact that U?3% has a
significant cross section for fission
for neutrons of energy greater than
1l Mev. The € has the following
definition: total number of fission
neutrons due to the absorption of
neutrons of all energies divided by
the number resulting from the ab-
sorption of thermal neutrons only.
With this improvement, Eg. 2.79 becomes

2
-T hB
ko, Poe e ¢
=1, (2.80)
1 + L2B?
Several reports exist in the

literature that give methods for the
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determination of €;(!) the problem will
not be taken up here. The value of €
never differs greatly from unity; it
is usually around 1.03 in natural
uranium reactors.

Another case in which thermal
reactor theory can be used with
reasonable accuracy is that in which
the reactor is almost, but not quite,
thermal and there is no appreciable
U238 or other resonance absorption;
there may be considerable 1/v ab-
sorption, In this case, the following
form of the criticality equation can
be used:

2

kP e th®
th th
1 + L2B2
2
-—T B
+ k(1 =P,)e =1,
(2.81)

where the absorption in the fissionable
atoms and other 1/v absorbers makes
P,, significantly different fromunity.
The assumption involved in the second
term of Eq. 2.8l is that the absorption
of and fissioning by epithermal neutrons
is due to neutrons that are very close
to thermal, and therefore the full
age-to-thermal as well as the thermal
E is used in this term.

REACTORS WITH ABOVE-THERMAL NEUTRON
ABSORPTION AND FISSION

The method of determining the
critical size (or critical mass) of an
intermediate-energy reactor will be

the derivation is as before, but the
balance equations become more compli-
cated and the solution for the critical

" size is much more time-consuming.

Heretofore the simplifying assumption
has been made that fission neutrons
are all born at the same energy. In
large thermal reactors, leakage of
neutrons is rather small, and neutrons
that cause fission attain a long age,
so that the monoenergetic fission
assumption at some average energy
gives good results and the results are
not too sensitive to the choice of
On the other hand, in
smaller reactors in which part of the
fissioning is due to above-thermal
neutrons, the leakage of neutrons from
the reactors is large and the proper
average energy for an assumption of a
monoenergetic source varies with each
reactor. It is therefore necessary to
take into account the fission spectrum
of neutrons, that is, the energy
distribution of neutrons emerging from
fission, The distribution of fission
neutrons is given best on a logarithmic
scale. The fission spectrum in
histogram form is given in Table 1, in
which the variable called lethargy, u,
defined as '

fission energy.
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u = In—

H
where E is energy in electron volts,
is introduced.

Balance Equations. The neutron
balance equations for above-thermal
neutrons of energy between E and E + dE

taken up in this section. The plan of and for thermal energy take the form
‘ ey 2
q(E + dE, r) - q(E,r) = — V? ¢(E,r) dE + 2 $(E,r) dE
[+ ¢}
- v f(E) dE | = G, (r) + 2, ¢(E',r) dE' | , (2.82)
Fen 7t f
P .
th
Atrth
g, pr) = - V2 ,,(r)
(I)H. Castle, H. . 3

Ibser, G. Sacher, and A. M,
Weinberg, The Effect of Fast Fission on k,
(May 4, 1943). .

CP-644
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+3,  ¢,,(), (2.83)

th



TABLE 1.

FISSION SPECTRUM IN HISTOGRAM FORM

Aa AE (ev) FRACTION OF FISSION
NEUTRONS

0 to 0.5 107 to 6.07 x 10° 0.0210
0.5 to 1.0 6.07 x 10% to 3.68 x 106 0.1040
1.0 to 1.5 3.68 x 10°% to 2.23 x 10° 0.2070
1.5 to 2.0 2.23 x 10% to 1.35 x 108 0.2310
2.0 to 2.5 1.35 x 105 to 8.21 x 10° 0.1830
2.5 to 3.0 8.21 x 10% to 4.98 x 10° 0.1170
3.0 to 3.5 4.98 x 10% to 3.02 x 10° 0.0670
3.5 to 4.0 3.02 x 105 to 1.83 x 10° 0.0350
4.0 to 7.0 1.83 x 105 to 9.12 x 103 0.0350
Total  1.0000

where f(E) is the fraction of fission
neutrons born in unit energy range
around E, Equation 2.82 can be
simplified by expanding the first term
on the left in two terms of a Taylor’s
series about E and then dividing
through the equation by dE. The result
is

oq(E, r) Ktr
= -3 V? p(E,r) + =, #(E,r)

Separation of variables. The
geometry will be restricted to that of
a slab, and the sphere and cylinder
will be an exercise for the student.
For slab geometry,

2
V2 p(E, ) - LEED
dx?

oF
[+ ]
- z + z ' dE'
Vf(E) f”‘ qbth(L) f fqb(E ,L) E [
E
th
and by using Egq. 2.56, this becomes
dq(E,r) Nep 10 2,
- = - V2 +
3E 3 §EZT q(E, r) §EZT q(E, r)
- s + 't dE' | ; 2.84
v f(E) fon @b, (r) i fEZT q(E',r) dE ( )
th
as before,
A .
tr‘h
t
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and a change of variable is introduced,
that 1is,
107
u = In ;
E

u has been called “lethargy,’ presumably
because from the definition it is clear
that when a neutron has little energy
it has a lot of lethargy. The energy

3 B? Pyep t z“:h Pop = alu,y)

(2.90)

A unique value of B? exists that
satisfies Eqs. 2.89 and 2.90, and a

method of finding it will be given

107 evis chosen here as an arbitrarily below. Hence a solution of the form
convenient number above the fission of Eas. 2.87 and 2.88 does, in fact,
spectrum. In changing the variable exist.
from E to u, the equations become
_ Ny d%q(u,x) 2, qlu,x) g (u, x)
Sé—z'r -axz sz au
= v flu b, (x) + du' (2.85)
f th :
th 0 fZT
and
N To find the value of B? that

tr d2 C‘bth(x)
- + Z .
3 dx? %eh Penlx)

= q(u,p,x) + (2.86)

An attempt is made to obtain a solution
by letting

g(u,x) = q(u) cos Bx , (2,87)
¢¢h(x) = ¢,, cos Bx , (2.88)
and substituting into Eqs. 2.85 and

2.86 to see whether a relation in B
results; if such arelation does exist,
it will determine a value or values of

B such that solutions of the form
of Egqs. 2.87 and 2.88 do, in fact,
exist. The substitution of Egqs. 2.87

and 2.88 into Egs. 2.85 and 2.86 gives,
after dividing through by cos Bx,

ANy B2q(u) . 2,q(u) . dq(u)
s e, &, du
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satisfies Egs. 2.89 and 2.90, the
following procedure (used by the ANP

Division, ORNL) may be used. The
guantity in brackets in Eq. 2.89 1is
proportional to the fissions per

second (per cubic centimeter), which
depends on the power level at which
the reactor is operating. Since the
critical size does not depend on the
power level, the quantity in brackets
may be set equal to any convenient
definite number, say unity. This
amounts to fixing the power level at a
definite value. It is then required

that
u,, Zf q(u')
f th . ’
th 0 fZT
(2.91)
Uen zfq(u')
= v f(u) Zf”' bep t ] TT du' |, (2.89)



and the equations become where

N -1
Ner qu(") 2, q(u) dg(u) _ Alu) a;y function of the cross
+ + = v f(u) .
3 fZT §2T du sections,

(2.92) B(u) = any function of the cross

u - u

<
mou

and sections,‘
— 1 LI
A ' A = _f A(u) du, in which the
tr”I . UN
T Zathqbth = qlu,,) . u,
' (2.93) integral may be evaluated by

Simpson’s rule,

A trial value of B?, say B:, is now
selected, and the g(u) (a function of
lethargy) and $,, are determined
numerically from Eqs. 2.92 and 2.93.
If the q(u) and ¢,, corresponding to
B? satisfy Eq. 2.91, the trial value
of B> = B? is the correct value. If
they do not, further guesses at the
value of B? are made until the correct i__E?___ET_
value has been determined to within an tr — |qU, + ¢ -gq = 2
accuracy appropriate to the data. 3¢z, §ZT N=N n ’"'1 N

The numerical procedure for finding (2.96)
the g(u) and ¢,,, from Egs. 2.92 and ;...
2.93, that correspond to any B? is the u
following. The lethargy range, u = 0 zy =.f f(u) du
tou = u,p, is broken up into a finite )
number of intervals, The ANP Division n-1
of the Oak Ridge National Laboratory The approximation is now made that

ol
n

1 u

__.f " B(u) du, in which the

Uy ,
LA |

integral may be evaluated by
Simpson’'s rule.
With the use of Eq. 2.95, Eq. 2.94

becomes

has. found that about 25 to 30 sub- 9, — 9,1

divisions, depending on the thermal- qy = , (2.97)

neutron temperature, are appropriate. 2

=0 < Uy > Usty g
1 7 T T T T T T T |

0 uy Uy Upn-1 U,

.=__=

u u :
" xtrBz 2, " dq(u) "
+ — = du . .
[ 3§zr ! ézr a(u) du [ du a u A (2.94)

n-1 n-1 . n-1

and the definition is made that

)\“.Bz . za UN

-— — = +
[ra@ - Bw du=-4-BuU, , el T @

w1 (2.95) N

The approximation is made that
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When Eqs. 2.97 and 2.98 are used,
Eq. 2.96 becomes
CN.(qn-l + qn) = 4q,.1 — 9 + Vzy

or
' g, (1=Cy) + vz,
(2.99)

q =
" 1+ G,
Equation 2,99 provides a recursion
relation for obtaining gq(u) at u = u,
in terms of the value of g(u) at
u = u, for which one starts with
the fact that g, = 0 (uy = 107 ev is
above the fission spectrum, by choice).
After successive solutions down to

g, the d,, is obtained from Eq. 2.93,
according to the following:
Qe n .
Pen = N (2.100)
s + "th
eh 3

In summary, by starting with the
condition that there was one fission
per second per cubic centimeter, the
solutions for ¢(u) and ¢,, were
obtained. If the trial value of B?
(related to the size) was the correct
one for criticality, then the number
of fissions per second per cubic
centimeter that would result from
these values of g(u) and ¢,, should
equal unity. The procedure is then
to determine the left sideof Eq. 2.91:

ks = zfth¢:h'+ E <

N

If k, ;o =1, the trial value of B?
was correct. If k .. # 1, a new value
of B:, say Bg, is chosen and the
keff (B:) is determined. Usually
about three guesses for B? and a plot
of the results, that is, keff (B?) vs.
B?, is sufficient to determine the
critical buckling (the B? such that

2 =
ks (B = 1),

A sample calculation form that 1is
used by the Physics group (ANP Division)
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of the Oak Ridge National Laboratory
for finding the kef corresponding to
a given trial for gz is shown in the
appendix. The form also provides for
the calculation of the lethargy
distribution of neutrons causing
fission (F,) and the lethargy distri-
bution of the flux. From the F 's,
the median lethargy (or energy) for
fissioning can be found; this is a
useful index of the neutron spectrum
of the reactor. '

Equations 2.89 and 2.90 were based
on the assumption of slab geometry;
however, exactly. the same equations
are obtained for the other soluble
geometries.

General Solutions. In the case of
the slab geometry, assumptions as to
the form of the flux or slowing-down
density such as

(2.102)

(2.103)
The

q(u,x) = g(u) sin Bx;
Pep (%)

would have worked just as well.
general solution is therefore

q(u,x) = q(u) [A cos Bx + C sin Bx],

= ¢th sin Bx ,

(2.104)

P (x) = @, [A cos Bx + C sin Bx] ,
' (2.105)
where ¢,,,» as used here, is a pure

constant.

£3

> qn-l+ qn>
L U
T 2 ul
N

(2.101)

From Eq. 2.56,

q(u)

A ;os Bx + C sianx .
£2,

(2.106)

spherical

(u,x) =

In the case of bare,

geometry, the general solutions are
sin Br cos Br
g(u,r)=gq(u) | A +C ,
r r
(2.107)



] For slabs,
Hu, r) = g(u) [A sin Br+ c cos Br} -
&3 r r ’ sin Br
T glu,r) = A q(u) ——, (2.116)
(2.108) r
|
sin Br cos Br g(u) sin Br
P(r) = ¢,, [A - c - }. ¢(u, r) = z, — (2.117)
(2.109) .
sin Br
In the case of bare cylinders, the Pen(x) = Ay, r (2.118)
general solutions are
gq(u,r,z) = q(u) [{A Jour) + C Y (ur)}{D cos €z + E sin ez}] , (2.110)
Plu, r,z) = %%?1 [{A Jolur) + C Yo(#r)}{D cos €z + E sin ez}} , (2.111)
T
beplr,z) = ¢,, [{A Jour) + C Yo(pr)}{D cos €z * E sin EZ}] ,  (2.112)

where
BZ=/L2+€2

Boundary Conditions. The boundary
conditions of the problem are:

1. The flux must be finite every-
where in the reactor.

2. The flux must be symmetrical
around points, lines, or planes of
symmetry in the geometrical set-up.

3. The flux must be nonnegative
at all points in the reactor.

4. At external surfaces, the flux
at all energies extrapolates to zero
at the same point. The extrapolation
distance 6 = 0.71 A, is actually
different for each energy interval
because A, is a function of energy,
but an average value of Atr is selected
and 8§ is taken as a constant for flux
at all energies, including thermal
flux.

Application of Boundary Conditions
and Determination of the Critical
Size. Boundary conditions 1 and 2
reduce the general solutions im-
mediately to

glu,x) = A q(u) cos Bx, (2.113)

olu, o) = AL cos B, (2.114)
T

¢th(x) = A ¢th cos Bx . (2.115)

For spheres and cylinders,

glu,r,z) = A q(u) Jo(pr) cos €z ,
(2.119)

P(u,r,z) = A %%%% Jo(ur) cos €z ,
(2.120)

¢th(r,z) = A ¢,, Jo(pr) cos €z ,
(2.121)

where

B? = u? + €2, (2.122)
In all these equations, the B has
the value that makes kef 1, ac-

cording to the procedure given above;
the q(u) and ¢,, are from the normali-
zation Eq. 2.91, and A depends on the
power level at which the reactor is
operating. In fact, A is equal to
the fissions per second per cubic
centimeter at the center of the
reactor, since q(u) was normalized for
one fission per second per cubic
centimeter and the distribution
functions,

sin Br

cos Bx, , and J,(ur) cos z ,

r

are all equal to unity at the center.
The critical size follows from
boundary conditions 3 and 4. In the
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case of slabs, boundary condition 4

states that
cos B(x0 +8) =0, (2.123)

where x;is the critical half thickness
and & is the extrapolation distance.

From boundary condition 3, the non-
negative condition
7
B(xy +8) =—, (2.124)

2

which 1s the first root,
Therefore

is obtained.

Kis

.(2.125)

x, = 25" 5 .
For spheresit follows, similarly, that
T
R =—§-— , (2.126)

where R is the critical radius. For
cylinders the relation between the
critical dimensions 1s given by

(2.127)

2 2
B? = 2.405 + T
R+ 3 H 2
2(245)
2

In the above procedure it was
assumed that the reactor composition
was given and the critical size was
to be determined. The converse
problem also exists 1in practice,
perhaps even more frequently - the
size 1s given, and the ratio of the
fissionable material to moderator and
structure is to be determined. The
B? is then immediately fixed by
Eqs. 2.125, 2.126, or 2.127, and
various trials are made for the
uranium mass, which affects the
macroscoplic cross sections, until

k, ;= 1 in Eq. 2.101,

EVALUATING THE CONSTANTS

Averaging Constants in the Thermal
Group. Up to this point, thermal
energy has been considered as if all
thermal neutrons were at one energy.
Actually, however, the thermal neutrons
(neutrons that have slowed down to
the point where they feel the energy
of the moderator nuclei and are just
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as likely to gain energy from a
collision as to lose energy) are
spread in energy in a distribution
that 1s given approximately by the
Maxwell-Boltzmann function. If the
Maxwell-Boltzmann function for velocity
distribution is denoted by M(v), one
can write

2
M(v) o p2 g=v /2kT (2.128)
where
m = mass of the neutron,
kE = the Boltzmann constant,

8.6170 x 10°% ev/°K,
T = the temperature of the medium in
degrees Kelvin,

In terms of energy, the equivalent

statement 1is

M(E) < JE e-E/kT | (2.129)

The energy given by E = kT corresponds
to the peak of the velocity distri-
bution, or the energy corresponding
to the most probable neutron velocity.

Actually, because of the 1/v behavior
of most absorption cross sections, the
thermal neutrons with lower energy
tend to be absorbed to a greater
extent than those with higher energy,
and the distribution is shifted
slightly in the direction of higher
energies than that given by the
Maxwell-Boltzmann distribution. Thus
the statement is sometimes made that
the “neutron temperature” is somewhat
higher than the thermal temperature
of the medium. However, because of
the extreme difficulty in obtaining
the correct distribution for any
given reactor, the Maxwell-Boltzmann
distribution is usually used as an
approximation in obtaining average
thermal cross sections.

The two thermal cross sections
needed are z“th and Z¢r,,. In regard
to Zat , the appropriate average is
obviouglythe one that, when multiplied
by ¢,, (the total thermal flux) and by
the atomic concentration, gives the
true number of absorptions per second
per cubic centimeter. Therefore one
can write



ben Za,, =f ¢, (E) =,(E) dE (2.130)
0

or

f¢,,,(E) 2 (E) dE
P (2.131)
th ®

[ #ontmr ar
0

Since

$,,(E) = n(E) v = E ¢ E/*T,

assuming n(E) < M(E), one can write

@
f S (E) E e"B/kT g
P :
a

th ©
f Ee-E/lszE
0

(2.132)

which 1s the appropriate average
absorption cross section for the
thermal groups. It is an important
fact that i1f Za(E) < 1/v (which_is the
case for many elements), then X, is
the cross section at the kT efergy
(0.025 ev for room-~temperature re-
actors) divided by 2/V7 = 1.128. This
can be verified by carrying out the
above formula for i; , with the
assumption that £ (E) = (kT) VET/E.
Usually, thermal cross-section data
are quoted at the kT energy.

On the other hand, in respect to
sl’gh’ it is the thermal leakage that
is to be represented accurately. Thus
it is written that

>\'tr 2 c0>\tr(E) 2
3 \% ¢th i/‘___g__ \% ¢th(E) dE ,
0 (2.133)

but
v2¢th = _Bz¢th !

therefore

A, oX,, (E)
B, =f —=— 8% ¢, () dE .

Then,

by assuming

Pop(E) = E e"B/*T

it follows that

©
f—l E eE/kT 4E
1 0o 2, (E)

tr
©
en f E e~®/*T gE
0

as before,

M

(2.134)

thus for 2,;,,, it is the reciprocal
1/2, (E) that is averaged over the
flux.

Usually, the 2, (E) is constant
enough so that one can choose a %;,,,
by inspection from the cross-section
curve and not bother to carry out the
above averaging process (which may be
time-consuming).

Effect of Heterogeneity on the
Constants. Up to this point, the
composition of the reactor has been
considered to be a homogeneous mixture
of atoms of fissionable material,
moderator, and, possibly, diluents.
Actually, almost all reactors are
designed in a cellular or lattice-
like form. The fuel elements may be
in plate form with the uranium alloyed
with possibly aluminum or zirconium,
and then clad (picture-frame con-
struction like that of the MTR and
STR); they may be in the form of
small-diameter (~0.1 in.) cylinders
of enriched UO, (for example) in a
mix (the intermediate-energy submarine
reactor design); or, in the case of
natural uranium reactors, they may be
large cylinders (~2 in.) in a can
(the ORNL graphite reactor). The
moderator may exist also in definite
separated regions, and coolant flows
between the moderator and the fuel
elements.

Clearly, the critical mass and
size will be affected to a greater or
lesser degree by the ‘““lumping.” In
some enriched-fuel reactor designs,
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the thickness of the different regions
is small enough to make the lumping
effect negligible. An assumption of
complete homogeneity causes little
error. At the other extreme, in a
natural uranium reactor the effect
may make the difference between
predicting that a mixture can be made
critical or that it cannot be made
critical (as may be seen in Problem 5
for graphite and uranium).

The heterogeneity effect is in-
corporated in the criticality formulas
by adjusting the constants. In the
thermal reactor equations, the constants
in question are L2, Tonr Repr and P, .
The 7,, can usually be assumed to be
unaffected by the heterogeneity;
however, the L? is altered somewhat.
A good discussion of L? in the heter-
ogeneous reactor is given by Plass.(?)
A special problem in heterogeneity
with respect to leakage is given by
the reactor in which air passages
penetrate, without steps, completely
through the reactor. Neutrons tend
to ““stream” from the holes and cause
an additional effect over and above
that resulting from the decrease in
over-all density. Methods have been
worked out for taking into account
the “streaming effect.’” A good
reference is the work of Behrens,(3)

The effect of heterogeneity on
P,, canbe calculated, but the procedure
is complicated and will not be taken
up here. A good reference is the
work of Dancoff and Ginsberg. (%)
Qualitatively, the increase in P,,
that results from the lumping of
natural uranium is due to two effects:
(1) some of the neutrons are completely
slowed down belowthe capture resonance

(Z)G. N. Plass, The Diffusion Length and the
Utilization of Thermal Neutrons in a Heterogeneous

Pile, CP-992 (Oct. 6, 1943).
(3)D. J. Behrens, The Effect of Holes in a

Reacting Material on the Passage of Neutrons,
with Special Reference to the Critical Dimensions
of a Reactor, AERE-T/R 103 (May 24, 1949).

(4Ys, M. Dancoff and M. Ginsburg, Resonance
Absorption in Lumps and Mixtures, CP-1589 (Apr.
17, 1944).
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(that 1is, below about 10 ev) while 1in
the moderator region and thus enter
the fuel slug with a more favorable
chance of causing fission as opposed
to being captured; (2) the resonances
of U238 apparently exist in rather
sharp peaks and a neutron entering
a fuel slug between peaks has an
excellent chance of passing right on
through without being captured, since
it 1s not moderated in energy to any
extent by the heavy nuclei of the fuel

region. Upon a few such fortuitous
entries, with periods of moderation
between, the neutron will have been

degraded below the resonance energies.
The effect of heterogeneity on the
k can usually be calculated in a
th | (5)
straightforward manner. The k,,,
as defined here, can be written

kew = 0f
where
] >
nEv —
Za (fuel)
vV = neutrons per fission
(= 2.5 for U2?35),
Zf = macroscopic fission
cross section,
2,(fuel) = macroscopic absorption
cross section for the
fuel material (for uranium
this includes U235 and
U238),
f = the thermal utilization
Za ( fuel)
B Za(total)
2,(total) = macroscopic absorption

cross section for all

core material.
The core of the heterogeneous reactor
can usually be partitioned into
identical cells. For example, if
the structure consists of fuel plates
separated by a layer of water (coolant
and moderator), the cell would consist
of the slab having one face at the

(S)E. P. Wigner and G. N. Plass, On the Utili-
zation of Thermal Neutrons, CP-103.



mid-plane of the fuel plate and the
other face at the mid-plane of the
adjacent water layer. If the structure
is fuel-slug cylinders separated with
moderator, the cell would consist of
the square parallelepiped assignable
to a particular fuel slug (Fig. 2.8).
This parallepiped can be approximated
by a cylinder for calculational

o O O
GINORIO
O O O

Fig. 2.8

In any event, the flux distri-
bution within acell will be irregular.
The flux will be depressed in the
center of the fuel and perhaps bulged
up in the moderator. The depression
of the flux in the fuel element
because of the attenuation of the
entering neutron current by absorption
in the outer nuclei is called self-
shielding. The self-shielding e ffect
is pronouncedin any localized material
of large absorption cross section. The
irregular behavior of the flux in a
cell will not affect 1, but it will
change the ratio of absorptions in
fuel to absorptions in other material
and hence will affect the thermal
utilization factor f.

As an example, the procedure for
getting f in the slab-like cell will
be indicated. Suppose the structure
is as shown in Fig. 2.9; the fuel
plates are of thickness t and the
moderator layers are of thickness
s. The assumption is made that no
slowing down takes place in the fuel
plates and that ¢,,(x) is a constant
at all points in the moderator. Both
assumptions usually fit the facts
reasonably well. The balance equations

i
|
|

FUEL

| | MoperATOR
|
|
i
i—— ————————— e — — e
1 —— | e —

|
|
|
| s
!
Fig. 2.9

in the fuel and moderator are therefore:

d2¢thi. 1
-—0a 0, (2.135)
dx? L2 thp
x F
d2
¢thM 1 3qth ( 136)
- +— =10, 2.136
dx? L; ¢th” >\tr

where F refers to the fuel region and
M refers to the moderator region.
In obtaining Eqs. 2.135 and 2. 136,
the assumption has been made that the
diffusion theory is applicable.
Usually the absorption in the fuel
plates is strong enough to cause the
simple theory to be somewhat in error.
However, as was stated in the section
on “Derivation of Fick’s Law, ” chap. 1,
itis so complicated and time consuming
to apply more accurate methods that
the simple diffusion theory is usually
used even in such cases as this in
which it is only approximately correct.

The general solutions of Egs. 2,135
and 2,136 are

1
= A inh ——
¢thr(x) ¢ sin T x

F
1
t C, cosh 7T— x, (2.137)
F

Pen, (%) = Ay sinh H:
3q¢n
+ Cu cosh —x -

LH >\tr

"
(2.138)
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The boundary conditions are
1. symmetry

<d¢p>

2. _ =0
dx

=0

x=

=)

3. T = 0
dx

tts

=

2

UORNC

5. A Pr N i
) trp\ dx T Ttry \ dx
z=t/2 ==t/ 2

If these boundary conditions are
applied to the general solutions,
equations result from which AC, CC’
AM, and C, can be determined as
functions of L:, L:, 9.pr and Agpy
(the constants).

The thermal utilization is then

given by

t/2
j; qbthp (x) Z“F dx

actually absorbed as compared with
the number that would be absorbed if
there were no self-shielding. The
cross sections for the moderator,
etc. above thermal can usually be
taken at their actual value. The
Za- and Z ,-effective cross sections
of the fuel obviously depend on the
shape and size of the fuel elements.
The reference that gives the formulas
for getting these effective cross
sections from the true cross sections
is the work of Bartels.(6)

REFERENCES FOR CROSS-SECTION DATA

Now that methods have been intro-
duced that require the knowledge of
cross sections at various energies,
it is perhaps well to give a list of
references where cross-section data
may be obtained. The following is
not intended to be a complete list,
but- is merely a suggestion of some
sources that have proved to be valuable

(2.139)

0

In general, as the heterogeneity gets
more pronounced, the P,, increases
and f decreases. The problem of
natural uranium reactors is thus to
determine a lumping arrangement such
that the product fP,, is a maximum.

In intermediate-energy enriched
reactors a certain amount of self-
shielding exists even for above-
thermal flux. It is not convenient
to computea flux distribution through-
out a cell for flux of all energies;
so a method has been worked out for
finding the ratio of effective to
actual absorption and effective to
actual fission microscopic cross
section for the fissionable material
by assuming neutrons to enter the
fuel element in a cosine direction
distribution and finding the fraction
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t/2 ' (t+s)/2 o )
f qbth‘.(") Zapdx +f qbth”(x) zaudx

t/2

and indicative of the type of sources
that give cross-section data. The
various physics journals, for example,
Reviews of Modern Physics, as well as
the progress reports of the national
laboratories, give continuing articles
on current cross-section measurements,

Some of the older sources are:

1. C. D, Coryell et al., The
Science and Engineering of Nuclear
Power, Vol. I, ed. by C, D. Goodman,
Addison-Wesley Press, Cambridge, Mass.,
1947.

2. N. M. Smith, KAPL Cross Section
Curves for Xe-135, U-235 and U-238,
Y-F10-51 (Apr. 17, 1951).

'(6)W. J. C. Bartels, Self-Absorption of
Monoenergetic Neutrons, KAPL-336 (May 1, 1950).



3. G. Haines and K. Way, Graphs
Showing Neutron Cross Sections as
Functions of A, Z or N, ORNL-144
(Oct. 4, 1948).

4, K. Way and G, Haines, Thermal
Neutron Cross Sections for Elements
and Isotopes H-Bi, AECD-2138.

5. K. Way and G. Haines, Tables of
Neutron Cross Sections, MonP-405
(Oct. 31, 1947).

6. G, Haines and K. Way, Tables of
Neutron Cross Sections for Elements
Po-Cm, OBNL-86 (Sept. 9, 1948).

7. K. Way, L. Fano, M. R. Scott,
and K. Thew, Nuclear Data, NBSCircular
No. 494 (January 1950).

8. S. Bernstein etal., Phys. Quar.
Prog. Rep. Dec,, Jan., Feb., 1948-49,
ORNL-325, p. 6-68.

9. H. R. Kroeger, “Thermal Neutron
Cross Sections and Related Data,”
Nucleonics 5, No. 4, 51-54 (October
1949).

10. H. H. Goldsmith, H. W. Ibser,
and B. T. Feld, Rev. Mod. Phys. 19,
No. 4, 259 (October 1947).

11. R. K. Adair, Rev. Mod. Phys.
22, No. 3, 249 (July 1950).

12, S. H. Turkel, Neutron Cross
Sections, NEPA-851 (Dec. 5, 1948).

Two recent (1952) sources are:

13. D. J. Hughes et al., Neutron
Cross Sections, A Compilation of the
AEC Neutron Cross Section Advisory
Group (unclassified), AECU-2040
(May 15, 1952).

14. D. J. Hughes et al., Neutron
Cross Sections, A Compilation of the
AEC Neutron Cross Section Advisory
Group (classified), BNL-170 (May 15,
1952).

CRITICAL MASS AND SIZE RESULTS

Figures 2.10 through 2.20 give the
results of some criticality calcu-
lations made by the reactivity group
of the NEPA Division of Fairchild
Engine and Airplane Corp. The results
were compiled by Mooneyham.(7) No
structural material or fission-product

poisons are present in these reactors.
The temperature of all components is
70°F. The assemblies considered are
homogeneous, gas-cooled, enriched,
cylindrical reactors containing
hydrogen, beryllium oxide, beryllium
carbide, graphite, or iron. No
reflection is present and the method
of calculation was the Fermi age model
of the thermal- or intermediate-energy
type.

The free-flow ratio, Rf , refers
to the fraction of air (or void).

PROBLEMS

1. The Materials Testing Reactor
(water moderated) has the following core
constants: 7T, = 64 cm2; L% = 3.64 cm2;
Atr = 0.8 cm; kth = 1.606 (unpoisoned). What
are the critical sizes of the equivalent
bare-spherical, cubical, and square-cylinder
reactors (that is, the unreflected reactor
having the same composition as the core of
Note: Strictly

the two-group theory gives more

the reflected reactor)?
speaking,
accurate results than does the Fermi age
theory for water-moderated reactors.

2. In the depleted and poisoned MTR,
k,, = 1.37.

what must be the new critical dimensions of

If Teh and L? remain unchanged,

the soluble geometrical shapes?

3. If a spherical mixture is pierced by
uniform cooling holes to the extent that
R (free-flow ratio) is the ratio of volume
of void to the total volume of material plus
void, find by what factor the critical
extrapolated radius must increase for
criticality to be maintained. By what factor
is the critical mass increased?

4. Find the most probable crow-flight
distance for neutrons to travel from birth to
the point at which they enter the thermal
group.

5. Can a homogeneous mixture of graphite
and natural uranium (ratio of atoms of U235
to atoms of U?3% of 1:140) be made critical?

What ratio of Ne to NU gives the largest

(T4, 0.
Conditions

No. 1100-EAR-R13 (Aug. 1,

Comparative Critical
NEPA

Mooneyham,
in Simple Nuclear Reactors,

1949).
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keff? Use the following data in obtaining
an answer:
Density of graphite, pc = 167 g/cms,
€ =1.0,
o, (carbon) = 0,045 (V%72) barns for E= Eth
(the factor V%72 is discussed
at the end of chap. 2),
o, (carbon) = 4.5 barns for E = Eth'
o, (carbon) = 4.8 barns for E = Eth'
o, (carbon) = 0 barns for E > Eth'
o, (U8) =0 barns for £ > 450 ev and
for 0.025 <E < 14 ev,
= 22 barns for 14 < E < 450 ev,

= 2.58 (\/77/2) barns for E=Eth'

o, (UB%) = 640 (V7/2) barns for E=E,,,
= 0 barns for E > Eth'
o (U3%) = 540 (/77/2) barns for E = E,.

6. Start with Eqs. 2.82 and 2.83 and show
that Eqs. 2.89 and 2.90 are the same for
spheres and cylinders as for slabs.

7. By using the data given in Table 2
and the Fermi-age, bare-reactor, calculation
form given in the appendix, calculate the
keff of the bare reactor with the following
volume composition:

UF,-NaF (80 1b U%%5) 7.83%
Beryllium oxide. 57.15%
Stainless steel 11.38%
Sodium 23.64%

The size of the reactor is such that

B? = 0.00240957
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8. Calculate the flux for each energy
interval, based on the condition of one
fission per second per cubic centimeter.

9. Make a plot of the normalized fission
spectrum, that is, the fraction of neutrons
causing fission verus u that have lethargy in
the unit lethargy range around u. Indicate
the thermal neutrons causing fission by a
block of unit lethargy width and proper
height.

fission-producing neutrons and from this the

Determine the median lethargy of the

median energy of fission-producing neutrons.

10. Plot the flux per unit lethargy vs.
lethargy. Determine the median energy of the
flux.

11. Determine the size of the square
cylinder that has the buckling used in
problem 10, and then determine the average
scaler thermal flux per cubic centimeter and
the average total flux per cubic centimeter
in this square cylinder if the total power
output is 200 megawatts. Use the relationship
that 1 watt = 3.15 x 10'% fissions per
second.

12. The spatial power distribution in the

bare square cylinder is given by

2.405 v
P(r,z) = A Jo P r| cos ;_:_Eg z .

Find the ratio of the peak power per cubic

centimeter to the average power per cubic
centimeter in the reactor,



TABLE 2. DATA SHEET FOR PROBLEM 7
TE G & [mm] — ]
e — u to u
Er/n E21 /N &Er)n 38202, N n-l Y
1 65.77433 0.019966 0.015792 254.01735 0 to 0.5 0.5
2 45.04023 0.013858 0.010814 130.64921 0.5 to 1.0 0.5
3 35.22225 0.011062 0.008457 83.84716 1.0 to 1.5 0.5
4 42.11434 0.013873 0.010112 110.02552 1.5 to 2.0 0.5
5 20.22131 0.006866 0.004927 24.37731 2.0 to 2.5 0.5
6 16.69578 0.005889 0.004257 16.80520 2.5 to 3.0 0.5
7 16.16205 0.006032 0.004467 13.46409 3.0 to 3.5 0.5
8 17.63337 0.007035 0.005301 15.88139 3.5 to 4.0 0.5
9 16.13459 0.008905 0.007082 13.21423 4.0 to 7.0 3.0
10 14.25246 0.027469 0.017119 9.83269 7.0 to 10.0 3.0
11 14.16492 0.070070 0.045352 9.94368 10.0 to 11.4 1.4
12 13.83022 0.123428 0.079270 9.52384 11.4 to 12.6 1.2
13 13.49418 0.163932 0.103262 9.09876 12.6 to 13.4 0.8
14 13.29129 0.177802 0.110899 8.85152 13.4 to 13.8 0.4
15 13.20091 0.242961 0.102066 8.74185 13.8 to 14.6 0.8
16 13.3%8 | 0.103066 ‘0.036725 8.87807 14.6 to 15.8 1.2
17 13.41421 0.262795 0.153379 8.97189 15.8 to 16.2 0.4
18 13.41766 0.233133 0.134135 8.97380 16.2 to 16.6 0.4
19 13.39895 0.313958 0.189716 8§.95565 16.6 to 17.0 0.4
20 13.35766 0.569988 0.364663 8.91850 17.0 to 17.4 0.4
21 13.33254 0.699962 0.455156 8.89643 17.4 to 17.6 0.2
22 13.34117 0.692234 0.443551 8.90693 17.6 to 17.8 0.2
23 13.50018 0.735471 0.474630 9.08708 17.8 to 18.0 0.2
24 | 13.57861 | 0.797224 | 0.514965 9.17057 18.0 to 18.2 | 0.2
25 13.55810 0.870304 0.559678 9.14951 18.2 to 18.4 0.2
26 13.52962 0.965446 0.623049 9.12371 18.4 to 18.6 0.2
92* 13.51717 1.024354 0.661604 9.11577 1.0**

*The thermal group u,, = 18.6 (E,, " 0.084 ev in this reactor, T = 1286 °F).

**The thermal group is fictitiously assigned a lethargy width of unity for simplicity of mechanics
in the calculation form.
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Chapter 3
CRITICALITY BY TWO-GROUP THEORY

Chapter 2 presented the Fermi age
treatment of criticality in which the
slowing down of neutrons is taken to
be continuous. The Fermi model is an
excellent method of determining
critical size (or mass) because of its
relative accuracy and brevity. Even
the intermediate-energyreactor problem
can be solved 1n a couple of days.
Unfortunately, however, the Fermi
model is applicable only to reactors
that are uniform in composition; that
is, it cannot be applied to reflected
.reactors or reactors with control rods.
Since almost all reactor designs have
reflectors, it would seem that the
Fermi model would indeed be limited.
However, most reflected reactors can
be represented by equivalent bare
reactors for determination of the
rough critical mass by simply extending
the core of the given reactor a distance
that is approximately equal to the
reflector thickness (for reflector
thicknesses of up to about 5 or 6 in.).
A little experience with reflected
reactor calculations makes it possible
to guess fairly well the inches of
core extension equivalent to a given
thickness of reflector. Although the
fissionable material is then treated
as being throughout the entire extended
bare reactor, it 1is, only
the fissionable material in the central
or core region that is called the
critical mass of the actual reactor.
Numerous “reflector-savings’' vs.
reflector-thickness calculations have
been reported in the literature.
Figure 3.1 shows these quantities
plotted from data obtained by two-

of course,

group calculations.¢!? It is to be.

noted that reflector saving is about
equal to reflector thickness, up to
5 or 6 in., for reflectors that are of

(1)A. 0. Mooneyham, Comparative Critical
Conditions in Simple Nuclear Reactors, NEPA
No. 1100-EAR-R13 (Aug. 1, 1949),

oW o
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Fig. 3.1. Reflector Savings vs.
Reflector Thickness for various
Moderators and Moderator Ratios; Free-
Flow Ratio = 0.

about the same composition as the core,
Reflectors usually have somewhat more
moderator than the core (because of
the decreased coolant requirement in
the reflector), and thus the reflector
savings are roughly equal to reflector
thickness for even greater thicknesses
than 5 or 6 inches.

It is clear though that the method
of the equivalent bare reactor cannot
be used to predict the spatial power
(or flux) distribution in the reflected
reactor; also, it cannot be used to
handle the critical mass calculation
if the reflector is thick (®6 in.) or
if the reflector is radically different
in composition from the core or to
calculate a reactor with control rods.
The one-group model described in
chap. 1 can be used for such problems.
In the one-group method, however, all
neutrons are considered to be at some
average velocity, and therefore the
method is not at all accurate or
reliable because one needs to know the
answer, so to speak, in order to select
an appropriate average velocity for
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the neutrons that will give good values
for the constants. Also, it is not
possible to obtain the correct power
distribution with the one-group model.
The&@wo-group model, which is an
improvement of the one-group medel, is
the subject for this chapter.

In the two-group model, all neutrons
with energy above a certain value are
classed as fast neutrons and the
associated constants are given average
.values. All neutrons with energy below
the dividing energy are classed as slow
neutrons and, again, the associated
constants are given average values.
The dividing energy does not have to
be taken as thermal energy, but this
is the usual practice because the two-
group model is most suitable for thermal
reactors.,

The case of the reflected reactor
in which there is absorption of and
fission by above-thermal, as well as
thermal, neutrons is the primary topic
of this chapter. The bare reactor and
the completely thermal reactor are
special cases of the following treat-
ment, '

BALANCE EQUATIONS

The neutron-balance differential
equations in the core are

A
tre. \
i v ¢fc(£) + ¢fc(f) 2,
* ¢fc(£) zafc - ¢sc(£) zasc ks
= ¢fc(£) Zafc kf =0 (3,1)
and
Atrsc
-5 Vi #,. () g () 2,
- $r 5.5 0, (3.2)
where
Atr = an average ‘transport mean

fe free path in the core for the
fast group,

a fictitious cross section
that represents the proba-

™M
]
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bility per centimeter of a
fast core neutron dropping
into the slow core group,

Za = an average macroscopic ab-
fe sorption cross section for
core neutrons in the fast
group,
Za = an average macroscopic ab-
sc

sorption cross section for
core neutrons 1in the slow

group, .
A,, = an average transport mean free

e path in the core for the slow
group,

k, = number of fission neutrons
produced per absorption of a
slow neutron in any core
material

=vip /2,
sc sc
- 3p = an average macroscopic fission
sc

cross section for core neutrons
in the slow group,

kf = number of fission neutrons
per absorption of a fast
neutron in any core material

=vip /X,
fe fe
2p = anaverage macroscopic fission
fe cross section for core neutrons
in the fast group,
¢fc = fast-group flux in the core,
neutrons/sec'cmz,
¢sc = slow-group flux in the core,

2
neutrons/sec*cm”.

The balance differential equations

in the reflector are
trop
- V2 bpp(r) + pplr) 24
+ s = 0 (3,3)
¢fR(.':) afR
and
AtrsR
T3 VE @op(r) + b p(r) 2,
~bpSp =0, (3.4)

where the definitions are analagous
to those for the core quantities,



GENERAL SOLUTIONS

Equations 3.1, 3.2, 3.3, and 3.4
will now be written with more compact

notation: for the core,
v? ¢fc(£) + a, ¢chf)
+b_ ¢, (r) =0 (3.5)
and
Vi (r) +d, ¢, (1)
. + ec d)fc(_f_') = 0 , (3.6)
and for the reflector,
and
V2 ¢ plr) + dp ¢ p(r)
+ eR d’fﬂ(f.) =0 , (3.8)
where
2. = (- zc - zafc
+ 2 k,)— 3 (3:9)
2
trfc
b =32 k 3 , (3.10)
c asc s Ktr
fe
i = -5 — (3.11)
e Ktrsc
e =5 —3 (3.12)
c LY !
trsc
= (o Z, + Z ) 3 (3.13)
ap - “R afR’ A ’
trfR
dp = > 3 3.14
R - = asR )\tr ’ ( . )
fR
=3 3 (3.15)
GR = R . .
Ktrfn

The general solutions of Egs. 3.5,
3.6, 3.7, and 3.8 will now be obtained
for the three geometries: slab,
sphere, and cylinder.

and reflector Egs.

Slab. For the slab, the core Egs.
3.5, and 3.6 take the form

d2 ¢fc(x)
————— + a, ¢y, (x)
dx?
+ bc ¢sc(x) =0 (3.16)
and
d? ¢sc(x)
+ dc ¢sc(x)
dx?
e, by (x) =0, (3.17)

3.7 and 3.8 take

the form
d2 ¢fﬂ(x)
Tt ap dpplx) = 0 (3.18)
dx?
and
d2 d)sR(x)
_— ¢ dR ¢sR(x)
dx?
+ GR d)fﬂ(x) = 0 . (3-19)

For the core, solutions of the fol-
lowing form are tried:

¢fc(x) = C, cos ch (3.20)

and B
.. (x) = A  cos B x (3.21)

to see whether a relation in B results
that gives a value or values of B such
that solutions of the form 3.20 and
3.21 exist. By substituting Eqs. 3.20
and 3.21 into Egs. 3.16 and 3.17 and
dividing through by cos B_x, the
results are

2 -
- CCB + acCc t b A, = 0 (3.22)
and
2 -
- AcB + chc + ecCc =0 , (3.23)
or
2 -
Cc(—B + ac) + Acbc = 0 (3.24)
and ,
Ce +A(-B2+d) =20, (3.25)
[ c [
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For a nontrivial solution for Ac and

C, to exist requires that the determi-
nant of the coefficients be zero:
-B* + a b,
=0, (3.26)
2
€, -B< + d,

This is clearly a gquadratic equation
in B: that determines two values of
Bi such that solutions for Egqs. 3.16
and 3.17 of the form 3.20 and 3.21
exist., For a reproducing medium
(core) the roots are real; one root
is always positive and one negative.
The positive root-will be denoted by
ch and the negative root by ~B§c. Then

¢f (x) =

c

Ci. cos Blcx (3.27)

¢sc(x) = Alc

which form a pair of particular solu-

(3.28)

cos Blcx

tions for the fast and slow flux. From
Eq. 3.25, it follows that
B? -d
c c
Clc =.___.;..__——Alc , (3.29)

c

and hence Eqé. 3.20 and 3.21 can be
written as

le‘c - dc
¢fc(x) = Alc " cos Blcx (3.30)
c

and

b, (x) = 4, (3.31)

c cos By x .

c

B2
1
+ Aac <

b, .(x) = A,
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Also,
¢fc(x) = Cy, cos iB, x
= C,, cosh B, x
B%c - dc
= Ay, <; ———;:——T> cosh Bzcx
(3.32)
and
bg.(x) = Ay, cosh B, x (3.33)

form another pair of particular

solutions.

On the other hand, if the sine had
been tried instead of the cosine in
Eqs. 3.20 and 3.21 the procedure in
Egqs. 3.22 to 3.26 would have been just
the same and the same B’s would have
been determined. Hence, there are two
further pairs of particular solutions:

B%c - dc
d)f'-‘(x):AZic e—c sinBlcx (3.34)
¢sc(x) = A3c sin Blcx (3.35)
and
-Bgc—dc .
¢fc(x) =4A,, — sinh B, x (3.36)
[
#,.(z) = A,  sinh B, x . (3.37)

The general solution is the sum of
the particular solutions, and there-
fore the general solution of the core
equations is

B2 - d -B2 _ 4
le ¢ ) 2¢ c
¢fc(x) = Alc ———;———— cos Blcx + Azc —— |} cosh Bzcx

e
c

c - dc —Bgc - dc
————— | sin Blcx + A4c —————— ] sinh Bzcx (3.38)
€c c

e

cos By x + Ay, cosh By x t Ay, sin Blcx + A,  sinh B, x. (3.39)



The same procedure isused for obtaining the general solutionsof the reflector
equations. If solutions of the form

¢fR = C cos Bpx (3.40)
and '
®$.p = A cos Bpzx (3.41)

are tried in Eqs. 3.18 and 3.19, it is found that the determinant equation for
the two values of B: is

2
—BB + AR 0
\ =0, (3.42)
€p -B* + dp

It develops that both values of B? are negative ina nonreproducing medium. The
values will be denoted by —B:R and —Bgn. The general solutions of the reflector
equations are

~Bip - dp
¢fﬂ(x) = AlB <—'—en-—> cosh Ble

B2 _d -B%, - d
2R R : 1R R
+ A2R< ) cosh anz + A3R <‘-———> sinh Blﬂx

CR eB
-B%, - d.\ ‘
2R R
. <—._> cinh Bypx (3.43)
€p
and

¢sn(z) = A)p cosh B,px t Ayp cosh Bypx + Ap sinh Blnx t Ay4p sinthRx . (3.44)

However, fromthe determinant equation in B; (Eq. 3.42), it can be seen that the
two solutions for B: are

2 .
-Blp = +ap (3.45)
and :
-Bip = +dg (3.46)

Hence, the second and fourth terms in Eq. 3.43 become zero, and the general solu-
tions reduce to '

-Bip - dp -Big - dp
¢fn(x) = AlR ———7;;——- cosh Blnx + A3R ———j;———— sinh Blnx (3.47)
R

and
¢sn(z) = AlR cosh Ble + A2R cosh anz + A3R sinh Blﬂx + A4R sinh anx. (3.48)

Sphere. By aprocedure analagous to that used for the slab, it is found that
the general solutions of the core equations of the reflected spherical reactor
are
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5 () ) . <ch - dc> cos Blcr . <—B§c - dc> cosh Bzcr
r)=A 2
fe ¢ e, r ¢ e, r
ch - dc sin Blcr -Bgc - dc sinh Bzcr .
+ A + A 3.4
3c e r de e r ( %)
[4 [4
and _
cos B r cosh B, r sin B, r sinh B, r
beelr) = Ay, - Are - tAg, —— ¢ A4c_r—— , (3.50)

where the two solutions of the core buckling are ch and —B%c (as given by Eq.
3.26).

The general solutions of the reflector equations are

B2, - d\ cosh B,pr B2, - d;\ sinh B, pr

1R R 1R 1R R 1R
(r) = A + A (3.51
¢fﬂ ") ‘R < €R > r iR < €R > r )

and .
cosh Ber cosh Bypr sinh Ber sinh Ber
bep(r) = Ajp ———— thyp ———— t Ay ———— t Ay ————, (3.52)
r r r :

where the two solutions of the reflector buckling are —Bfﬂ and —Bgn (as given by
Eq. 3.42).

Cylinder. The reactor withacylindrical core and an all-around reflector is
not soluble by analytical means. However, the case of a cylindrical core with a
jacket reflector and noend reflectors is soluble, and this useful geometry will
be treated here.

The general solution of the core equations in cylindrical coordinates is

2
Blc -

dc
¢fc(r,2) = —ec_'> [Alc.\]o(l-l'lcr)

+ Ay, Yo(plcr)] [cos €1.2 + E;_ sin elcz]

-Bgc - dc
+ ————;———i) [Azc Io(uzcr)

c

+_A4c Ko(ﬂzcr)] [cos €,.2 * E,, sin €2cz] (3.53)
and
¢sc(r,z) = [Al Jo(plcr)

c
+ A, Yo(#lér)} [cos €,.2 Y E|, sin Elcz]

+ [A2c Io(ﬂzc’)
t A, Ko(ﬂzcr)] [cos €9.2 * By, sin ezcz] , (3.54)

c
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where

B%c = 'U’%c * eic ’ (3.55)
2
B2 = ul +el (3.56)

and Bi and —Bgc are the positive and negative root of Eq. 3.26. Actually, efc

= eic,as will be discussed further, because the reactor was chosen tobe uniform
in composition in the axial direction.

The general solutionof the jacket reflector equations in cylindrical coordi-
nates 1is

-B2  _ 4
1R R
¢fﬂ(r,l) = <—R——> [AIR Io(lu’lﬂr)

e

+ A Ko(#lﬂr)J [cos €1p2 t E p sin elﬂz] (3.57)

and
b.plr,z) = [Am I,(iqgr)

+ Ayp Koluypr)] [cos €1z + Ep sin €182

+ [Aap Io(uggr)

t AR KO(#ZRT)] [cos €,p2 t Eyp sin €2Rz] , (3,58)

where
B2, =yl ey (3.59)
-Bip = -uip t €3p (3.60)

and —Bfn and -Bgﬂ are the two negative values of the buckling that result from
the reflector determinant Eq. 3.42. Actually,

2 _ .2 _ _2
€2R T €1¢ T €2,

€2 (3.61)

because the jacket reflector is the same length as the core. This equality
will be discussed further in a later section.

BOUNDARY CONDITIONS

The boundary conditions of the problem are:
1. The fast and slow flux must be everywhere finite,
2. The fast and slow flux must be symmetric about any points, lines, or

planes of symmetry in the geometrical setup.
3. The fast and slow flux must be nonnegative at all points in the reactor.
4, The fast and slow flux must extrapolate to zero at the external surfaces

of the reflector.
5. The flux and the current must be continuous across the interface between

core and reflector.

For slabs,
¢fc(x0) = ¢fR.(x0) ’ (3.62)
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¢sc(xo) = ¢SR(J:0) y (3.63)
>‘trfc —d¢fc(x) KtrfR "d¢fR(x)“
— 3 = _ 3 R , (3.64)
L dx %z, L x Jx=x,
e, (b, () o Mg [dbp(e)] (3.65)
3| dxr |, 3 dx . )
-—xo L. .-x-xo
where . is the half thickness of the core.
For spheres,
¢fc(R) = ¢fR(R) ) (3.66)
¢, (R) = ¢, (R) (3.67)
Mg, [dg, (r)] Mr g [dbgp(r)
_ = , (3.68)
3 | dr Jr:R 3 | dr r=R
A i . A
er, . [do, (r) tr g [dp p(r)
_ ¢ sc - R s ’ (3.69)
3 | dr Jr=R 3 | dr r=R
where R 1s the radius of the spherical core.
For cylinders (jacket reflector, no end reflectors),
br(R,z) = ¢rp(R,2)| for all 2 (3.70)
over the
¢SC(R,Z) = ¢SR(R,Z) length, (3.71)
tr ra¢ (r zf Atr (a¢ (r f
fe fer' 2 fR fR\T 12
3 = - 3 (3.72)
3 | r 1,=R 3 | r 1,=n
tr . FB¢Sc(r’zf KtrsR raqbsn(r,zﬂ (
= - ) 3.73)
3 L or Jr=R 3 L or Jr=R

where R is the radius of the cylindrical core.

APPLICATION OF BOUNDARY CONDITIONS TO GENERAL SOLUTIONS FOR THE CRITICAL SIZE

Slab. Upon application of boundary condition 2, the general solutions, Egs.
3.38 and 3.39, for the fluxes in the core of the reflected slab reduce immedi-
ately to
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€ €c

B2 - d -B2 -4
le c 2
bro(x) = A, <—-> cos B x + A, <_c_°> cosh B, x (3.74)

and
¢sc(x) = A, cos B x+ Ay, cosh By x . (3.75)

Boundary condition 4 can be satisfied by choosing A,z and A,z so that the flux
expressions in the reflector, Eqs. 3.43 and 3.44, become

-B2_ _ 4
1R R
¢fR(x) = A].R <‘T> [COS}I Blﬂx

cosh BlR(xo + T+ 8)

- I Blﬂ(xo TS sinh Blﬂx] (3.76)

and
cosh Bjp(xy + T + &)

¢SR(x) = AlR [cosh Blﬂx -

inh B
sinh By gz, + T +8) ”‘"}

COSh BzR(xo + T + 8)
+ A h B -
2R | €08 2R* sinh BzR(xo + T+ §)

where T is the reflector thickness and 8 is the extrapolation distance. Boundary
condition 5 provides the following four homogeneous equations in the four unknown

constants A, , A, , A/p, and A,p:

2
Blc - dc
A].C — cos Blcxo

e
-Bgc - dc _Biﬂ - dR
+ Azc ———;———-) cosh Bzcxo"AIR ) [cosh Bleo
c

sinh BszJ , (3.77)

[+
€R
cosh Blﬂ(xo + T+ 3)

- sinh BlR(xo + T+ 38)

sinh Blﬂxo} =0, (3.78)

¢ CoOs Blcxo + A2c cosh Bzcxo

1p | cosh Blﬂxo ~ i Blﬂ(xo T ) sinh Bleo

- A

- cosh BzR(xo + T+ §)
- A2R cosh Bypx, -

sinh B,p(xy + T + )

sinthRxo] =0 , (3.79)
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—B2 - d Ktr
2¢ c fe .
- A2c < > ' B2c sinh BZch

€, 3
A
-Bip - dp\ “trg N
+ AlR o 3 BlR sinh B px,

cosh Bp(x, + T + 3)

; h B -0, (3.80)
sinh Byp(x, + T +8) ~ 1“x°]

lc71¢ 3 Sin Blcxo

Ktr >\tr
sc

- Achzc——-B—.—- sinh Bzcxo + AIR

sR

3 BlR |:S]..nh.Bleo

cosh B p(xy + T+ 8) A".R
sinh Bm(x0 + T+ 5§) cosh B)px, 2R 3 2R sin 2R% 0

cosh an(xo + T+ §)

sinh an(xo + T + 8?

COSh BZRXO:’ =0 Q. (3.81)

If nontrivial solutions are to exist for Alc, A,.,» A1p, and A,, in these homo-

geneous equations, the determinant of their coefficientsin Eq. 3.78 to 3.81 must
be equal to zero. The determinantal equation involves x, and Tand is the criti-
cality equation. One can either specify x;, and solve for T, by trial and error,

or specify T and solve for x,.
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The determinantal criticality equation 1is

B}, - d, s © [-B3. - d, . Bip * dp . cosh Byglxe + T+ 8) - .
———————— —_— CcOos x - x - n
‘. cos 1c%0 ec 2¢%0 en cos 1RO sinh Bln("o + T +85) s1 lnzo
cosh Bm(x0 + T+ 3) cosh B2n(zo + T + 8)
h 3 - g -—
cos B, x, cosh B, x4 Sinh Bip(xg + T+ 5) sinh Bjpx, cosh B px, sinh By, (zg + T + 5) sinh B,px, cosh B,px,
=0 .
B2, - d.\ Mer,, B, +d.\ Mer,, B2, + d,\ Mergy cosh By (x, + T + §)
" 3 B,. sin B x, . 3 B,. sinh B, x, A 3 Bp b B 2 t T+ D) cosh B, x, 0
¢ ¢ R 1r ‘%o
- sinh Blnzo]
>\tr“: >\trsc >\trs" cosh Bln(zo + T + 8) >\tr“z
B, sin By x, - B,, sinh B, x4 3 Bip |sinh Bypxy -~ Sinh Bz T T79) cosh B px, 3 B,y |sinh B, x4
1r' %o
cosh B, (xy + T + 8)
- h
sinh B, (z, + T+ 8) %" Bar¥o
In review, the procedure for getting the critical size when the composition Sphere. Upon applicationof boundary conditionl, the general solutions Egs.

is givenis to evaluatea , b, dc,ec, ap, dﬂ, and e, fromthe macroscopic cross-
section averages by using Egs. 3.9 through 3.15, obtain Bic and —Bic as the roots
of Eq. 3.26, obtain -Bfﬂ and —Bgﬂ as the roots of Eq. 3.42, specifythe reflector
thickness T, and solve the determinantal equation, Eq. 3.82, for the critical half
thickness of the core, x,, by trial and error.

The converse problemis, as before, to have the x, andT given and the uranium
concentration as the unknown. The procedureis then, clearly, to make trial solu-
tions with various uranium concentrations until the set of constants, a,_, b , d_,
e,,is found that, together with a,, d,, and e, and the resulting buckling con-
stants, satisfies Eq. 3.82, Once criticality has been established, threeof the
constants Alc’ A2C, AIR, andAzR can be solved for in terms of the remaining con-
stant by using Eqs. 3.78 to 3.81. The remaining constant is the power constant,
By substituting the constants thus obtained into Eqs. 3.74 through 3.77, the fast
and slow fluxes in the core and reflector canbe evaluated to within the one un-
known constant, which dependson the power level at which the reactor is operating.

3.49 and 3.50, for the fluxes in the core of the reflected sphere reduce immedi-
ately to .
Bic - d.\ sin By r —B;c - d_\ sinh B, r
¢f0(r) = A e ro t A e r
c

[+
sinh B,.r

(3.83)

and
sin Blcr
= - .+
¢sc(r) - A3c : A4°

r r

(3.84)

Boundary condition 4 can be satisfied by choosing A,, and A,, so that the re-
flector flux expressions, Egs. 3.51 and 3.52, become

, ) —Bfn - dg cosh Bypr _
ngR(r) _AIR . .

R

cosh By a(R + T + &) sinh By,r
sinh B, (R + T + 38) r

(3.85)

(3.82)
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and

cosh Blnr cosh Bln(R + T+ 8) sinh Binr
= A -
¢SB(") 1R r sinh BIR(R + T+ 8) r

[cosh Bygr cosh B,,(R + T + 8) sinh Byar
+ A
2R

- , 3.86
r sinh BZR(R + T+ 38) r J ¢ )

where Tis the reflector thicknessand §=0.71 A, isthe extrapolation distance.
Boundary condition 5 provides the following four homogeneous equations in the
four unknown constants A3c’ A4c, A g, and 4,,.

B}, - d,\ sin B, R -B}, - d.\ sinh B, R
A + A
3¢ e R 4c e R

c c

-B}, - dp\ |cosh B;;R cosh B,,(R + T + 8) sinh B, R
Ag - — =0, (3.87)
ep R . sinh B, ,(R + T + 3) R
sin B, R sinh Bch
A3c R t A4c R
[cosh B,.R cosh Bln(R + T+ 8) sinh B R
- A -
1R R sinh B (R + T + §) R
cosh B, R cosh an(R + T+ &) sinh anR
- A, - — =0, (3.88)
R R sinh B,,(R + R + §) R
2 d A .
M By, - d, try. |RB,, cos By R - sin B, R
3¢ ec 3 R2
—Bgc -d, >\trf,_. RB,. cosh B, R - sinh B, R
+ A
4c ec 3 BZ
2 A .
"Bln -— dC trfn RBIB Slnh BlRR - COSh BIRR
- A
1R €p 3 R?
cosh BlR(R + T+ 38) RBln cosh BlnR ~ sinh BIRR
- =0, (3.89)
sinh Bln(R + T+ 38) R2
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) Ktrsc RBIC cos B R - sin BICR . Ktrsc RB,, costhCR-—sinh Bch
3¢ 3 R2- 4c¢ 3 R2
) K‘rsn RB ., sinh B R - cosh B, R cosh Bj, (R + T + §) RB,, cosh B, R ~ sinh B R
R 3 R2 sinh B _(R+ T + §) R?
Mr.p [RB,, sinh B,R ~ cosh ByuR  cosh B,y (R + T+ 8) RB,, cosh B, R - sinh B,,R
-~ Ayp 3 N = ‘oh B N P =0, (3.90)
R sin 2R(R T ) R?
As in the slab geometry, if nontrivial solutions are to exist for As., Ay ALy

and A,,, the determinant of their coefficientsin Eqs. 3.87 through 3.90 must be
equal to zero. The determinantal equation involvesR and T andis the criticality
equation, One can either specifyR and solve for T, by trial and error, or specify
T and solve for R.

The determinantal criticality equation is

Bic - dc _Bgc - dc .
_ sin BIL‘R _— 51nh Bch
ec eC

Bin+dn LB cosh Bya(R + T + §) ‘oh B. R
__—;;___ cost Bia sinh B, (R + T + §) SEAN Pia

sin B, R

2 A
Blc_dc “.fc
— | [RB,, cosB, R
L4

=~ sin Blcﬂ]

[RBlc cos B, R - sin BxcR]

sinh B, R

_Bgc-dc Atrfc
. 3 [RBzc coshB, R

- sinh B, R

>‘tr

sc

7= [RBy. cosh By R - sinh B, R]

cosh an(R

+ T+ 38)

sinh B, ,(R

2 A
<BIR + dn> troa
eq 3

cosh Bln(R

T T ) sinh B R = cosh B, R

[RBln sinh B,gR — cosh B R

+ T+ 3)

sinh B (R

tr

cosh B, ;R

cosh B, (R

(RB

YT 135) 1q cosh B, R - sinh BIRR)]

~ BB, gsinh B, R

+ T+ 3)

sinh an(R

T T 1) (sinh B,.R - RBln cosh Blnﬂ)]

cosh B,, (R + T + 3)

. inh B,,R - cosh B,,R
sinh By, (R + T + 8) 1 J3mt = oSt Ban

A

tr

[cosh B,sR -~ RB,, sinh B,,R

h Byy(R + T + 3)
_ cosh Bapl (sinh B, R - RB,, cosh B,.R)

sinh an(R + T+ 8)

0

(3.91)
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As in the slab case, the procedure
for getting the critical radius of the
spherical core when the composition
and reflector thickness are given is
to evaluate the constants a_, b , d_,
e., ap, dp, and e, by using Egs. 3.9
through 3.15, obtain Bic and —32c as
the roots of Eq. 3.26, obtain -By, and
~B§R as the roots of Eq. 3.42, and
solve the determinantal equation, Egq.
3.91, for the critical core radius, R,
by trial and error.

For the converse problem in which
R and T are specified and the uranium
concentration (critical mass) is un-
known, it is, of course, necessary to
make trial solutions with various
uranium concentrations until the set
of constants a,, b_, d_, e, is found
that, together with a_, dR’ and €, and
the resulting buckﬁing constants,
satisfies Eq. 3.91.

Once criticality has been es-
tablished, three of the constants Aac’
A,.» A1p, and A, can be solved for in
terms of the remaining constant by
using Egs. 3.87 through 3.90, The
remaining constant is the power con-
stant. PRy substituting the constants
thus obtained into Egs. 3.83 through
3.86 the fast and slow fluxes in the
core and reflector can be evaluated to
within the one unknown constant, which
depends on the power level at which
the reactor is operating.

Cylinder with Jacket Reflector and
No End Reflector. Upon application of
boundary conditions 1 and 2, the general
solutions, Egqs. 3.53 and 3.54, for the
fluxes in the core of the cylindrical
reactor with jacket reflector and no
end reflectors reduce to

2
Blc - dc

e
[+

brelraz) = Ay, <

and

1

From boundary condition 4, it follows
that

H
cos €1c<_5— + 8>

H
= cos €2c<é; + 8> =0 ; (3.94)

and from boundary condition 3 and the
arguments of chap. 1, it follows that
the first root of the cosine is set
equal to the arguments of the cosines

in Eq. 3.94:

> Jo ey r) cos €, z

o

b  troz) = A J(p  r) cos € 2zt A, I (u,,r) cos €, z .

i (3.95)
elc = €2c = . *
2<ﬁ ; 3>
2
-Bgc - dc
— Io(#2cr) cos €, z (3.92)
c
(3.93)
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Equations 3.92 and 3.93 for the core fluxes then become

ch - e,
¢fc(r,z) = A, —-——e-—'> Jo(p.lcr)

c

-B: - a
[4 c vz
+ A, Io(yer)| cos WTIERER (3.96)
Ce 2<— + 8>
2
and
Tz
b (r,z) = [Alc Jolyor) + A, Io(pzcr)] cos—— (3.97)
2(—- + 8)
2
By the same argument, it follows that
T
€1n = €2p * -, - €,). (3.98)

- €

H 1c 2c
2 (— ¥ 5)

2

Furthermore, boundary condition 4 can be satisfied by choosing A,y and A,p sothat
the reflector flux expressions, Egqs. 3.57 and 3.58, take the form

-B2, - d, Kylp,g(R + T + 8)]
s = A - I ( )
Pralr ?) 3"< en I [p, B +T7+ 8] °° H1a"
+ Ko(#lnr)}-cos -——%f———— (3.99)
2<—2+ b
and
Kolp,g R+ T +8)] -
boplriz) = Ajp - I, R+ T+ )] Io(pypr) + Ko(uipr)t cos a

— ., (3.100)
2%+9‘

where T is the thickness of the jacket reflectorand 6 = 0.71 A, 1is the extrapo-
lation distance.

Kolu,g(R + T + 8)]
+A4n

- IO [#2"(3 + T+ 8)] Io(/iznr) + Ko(y.mr)} cos

Boundary condition 5 provides the following four homogeneous equations in
the four unknown constants, A .y Ayl Ayp, and Ay (after dividing through by
cos m/2[(H/2) + 8], which is common to all four flux expressions):

Bic - dc- _Bgc - dc
A, Jo R + Ay | —— I, (u, R)

e ec

Blp ~ dp\ [ Kolp R + T+ 8)]
= Asp < €n ) Io[ﬂln(ﬂ + T+ 8)] IO(#lﬁR) + KO(#IRR{} =0, (3.101)
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Kylp, (R + T + 8)] Kolp,g(R + T + 8)] ;
(e, R) + Ay, Iy, R) —Azp §- I,(u,qR) * Ko pR)p - A - I (u,  R) + K (u, R} =0, : (3.102)
Ay Joluy, 2¢ to'H2e R Tolp, (R + T + 8)] 0 R R aR Io[“zn(R + T+ 8)] "0 "2 0 ‘2R |
A 2 A A
) B, - d)\ "“trg . By - do\ “erg, )t 4 -Big - dg\ “trip Kolp, g (R + T + 8)] I (e B) + K (u. RS = 0 (3.103)
T e e, 3 Fre Tiifae 2e e, 3 Mae T1ifac 3R e, 30 PRI, (e, (R + T+ 8)] "1 Faa H1a ’ '
>\tr Atr >\tr K [,LL (R+TH+ 3)] >\tr K [,LL (R+ T+ 8)]
224 J (u, R) + A S, I (u, R)+ A 28 L I,(u,R) + K, (u, R} + A, —2 LR I, (e, R) + K (g R)F = 0 . (3.104)
" ATy P Bl e 3 Fae Tiifa SRR U AT IS et VR A T B T Ty, R+ T+ 5] 11 Al o
As before, 1fnontrivial solutions are to exist for A o A2c’ A, ., and A4R, the zero. The determinantal equation involves Rand Tandis the criticality equation.
determinant of their coefficients in Egs. 3.101 through 3.104 must be equal to The determinantal criticality equation is, then,
B}. - d,\’ ) -B3. - d, L Bip * d Kolp,g(R + T + 8)]
€c JO(IU'ICR €c ° Iu'h:R) _T KO(IU'IRR) ) Io[,u-ln(R + T+ §)] To ('U'IRR) 0
Kolp g(R + T+ 8)) Kolp (R + T+ 8)]
Jo 1y R) Iy R) T,Ts, B+ T 73] Io(pygR) — Koy gR) I (n, (AT T+ 5] Io(u, R) = K () R)
=0 . (3.105)
-B2 + d\ Mer B2 _d\ Mer, B2 _ 4\ Mer K lu,,(R+ T+ 8))
lc c fec Jo( R) 2c¢ c fe I R) 1R R fR 0 1R Il(lu'lnR) 0
e, 3 Fic Y1ttae e, 3 Hac L1t ep 3 Fir Io[u g (R + T + 8)) o
+ Kl(plnﬂ)}
_ >‘trsc o ) >‘tr“ L B >‘trsn Kolp, g + T+ 8)] >\tr“z Koluyg(R+ T + 8)] I e )
3 Fic Jilky R 3 Hae f1'Hac 3 Hir Il (R + T+ 8)] Iy Gy gR) + Ky (g gR) 3 Han I lu, R+ T+ 28)] 1 Hap
+ Kl(p.”R)}
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To summarize again, the procedure for
getting the critical radius of the
cylindrical core when the composition,
length, and jacket reflector thickness
are given is to evaluate the constants
a,, bc, dc, e., ap, dp, and ep by
using Eqs. 3.9 through 3.15, obtain
B}, and -B_ as the roots of Eq. 3.26,
obtain -Bj, and —Bgﬂ as the roots of
Eq. 3.42, evaluate €, = €,, = €, =
€,p = m/2[(H/2) + 8], evaluate 7
and u,, by using Eqs. 3.55 and 3. 56,
evaluate u,, and Hap by using Egs.
3.59 and 3.60, and solve the deter-
minantal equation, Eq. 3.105, for the
critical core radius, R, by trial and
error.

It is clear that Eq. 3.105 and the
other defining equations can be used
to solve for any one of the following
quantities when the others are speci-
fied: R, T, H, or critical uranium
concentration (or critical mass).

Once criticality has been es-
tablished, three of the constants
Alc,'Azc, Azp, and A, can be solved
for in terms of the remaining constant
by using Eqs. 3.101 through 3.104,
The remaining constant is the power
constant. By substitution of the
constants thus obtained into Egs. 3.96
through 3.100, the fast and slow
fluxes in the core and reflector can
be evaluated to within the one unknown
constant, which depends on the power
level at which the reactor is operating,

REDUCTION TO SECOND-ORDER DETERMINANT

The criticality equation evaluated
in the preceding sections for the

0 0 1
Ayy 1 Ayy Ays Ay
Ay, Asy Ay, Azy

three different geometries has, in
each case, turned out to be a fourth-
order determinant. The first two
columns involve only core constants
and the last two columns involve only
reflector constants, with two zeros
in the last column.

It is not difficult to show that
the determinant of this fourth-order
matrix can be replaced by the determi-
nant of the product of a 2 by 4 matrix
that depends only on the reflector
constants and a 4 by 2 matrix that
depends only on the core constants.
Since the product of a 2 by 4 matrix
anda 4 by 2 matrix is a 2 by 2 matrix,
the result is a reduction of the
original 4 by 4 determinant to a 2
by 2 determinant.

If the second and third rows are
interchanged in the original 4 by 4
determinant (criticality equation) as
it has been written, a determinant of
the type

a4 ay, Ay 0

a1 ay4 Aji 0

=0 (3.106)
az a3, Az, A;,
Gs1 G4, Agy Ay

is obtained in which the a’'s depend on
the core constants and the A’s depend
on the reflector constants. It is then
easy to verify that the following
equation, which 1s a second-order
determinantal equation, is equivalent

to Eq. 3.106:

Az,
231 Q14
Ay
@21 G2
0 = 0. (3.107)
34 a3,
a4 .,
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Equation 3.107 is somewhat easier to
evaluate for each trial of R, T, or

N,, as the case may be.

EVALUATING THE CONSTANTS

The remarks at the end of chap. 2
about ‘‘Averaging Constants in the
Thermal Group” and ‘“Effect of Hetero-
geneity on Constants” are applicable
in the two-group problem also. However,
certain problems in evaluating the
constants that are peculiar to the
two-group model will be discussed.

Thermal Reactors. If the reactor
is a thermal reactor (most of the
fissioning caused by thermal neutrons)
and 1f no appreciable quantities of
resonance absorbers are present,
the two-group equations take a par-
- ticularly simple form. Eguations 3.1
through 3.4, for the fast and slow
flux in core and reflector, immediately
reduce to

Ay
r
2wt g (1) + g, (0) 5
- 3 qbfc r qbfc L c

- ®ener) 2a,, .k, = 0 (3.108)
and

}\trthc
- 3 v2 qbthc(L)-i-d)thc(L)za‘hc
- ¢fc(L) 2, =0, (3.109)

since zafc = 0 = k,1f the slow-neutron

group has been selected as the true
thermal neutrons only and the fast-
neutron group comprises all neutrons
with energy above thermal. If each of
these equations, Eqs. 3.108 and 3.109,
is divided through by the diffusion
coefficient, the equations become

3%,
V2 ¢;.(r) - ¢; . (r)
}\tr
fe
A
tron Ren
+ 6. =0 (3.110)
A the
trf Lz‘
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and
2 - 1
v ¢thc(I) - —-_¢thc(I)
}\tr 3z
f_ I C $, =0. (3.111)
A A fe
trthe Tfe

If neutron diffusion away from a
point source of fast neutrons 1is
described by a two-group model, the
balance equation for the fast neutrons
in a cubic centimeter away from the
source is the first part of Eq. 3.110;
that 1is,

3z
2 ¢ =
v ¢fc(r) —}\_-dec(r) “0- (3.].].2)
tr
fe
If
2 }\trfc
L, =— 3.113
e (3.113)
Eq. 3.112 becomes
1
V2 d;fc(r) —L—szfc(r) = 0 . (3.114)
f
The solution of Eq. 3.114 in the
spherical coordinate system 1is
-r/Lf .
bpo(r) = Al (3.115)
r

If the average of the square of the
crow-flight distances that the fast
neutrons diffuse before dropping into
the slow-neutron group is evaluated,
it is found that

© N - r/Lf
j. drr?e r2AS s - dr
0 ¢ r
rt= : = 6L}
0 e" r/L_f
[ tmrus Sy
0 r
(3.116)



However, in_chap. 2, it was shown
that GTih = r®, also, in the continuous
slowing-down theory. Thus L? has the
same significanceas 7,,, and 3Zc/Atrfc
can be replaced by I/Tthc in Eqgs.
3.110 and 3.111. These equations then

become
v? 1
b (L) - ¢s. (1)
the
A k
tr th
+ the Pine = 0 (3.117)
trfc Li
and
v? !
¢thc(—r) Y ene (D)
L
1 Atrfc
+ ————---—-quc = 0., (3.118)
Tthc }\trthc
Hence, in the notation of Eqs. 3.5

and 3.6, it follows that

1
a, = - , (3.119)
Tthc '
A
tr k
b - - the th , (3.120)
¢ 2
trfc Lc
1
d = - —, (3.121)
c L2
c
A
1 tr
e, = e (3.122)
Tthc Atrthc

A good average value for Atrfc can
usually be chosen by inspection,
because Ztr is usually fairly constant
for most elements. However, 1t 1s
perhaps preferable to average Ktrfc(E)
over the fast flux distribution. If
the reactor is large enough for the
leakage to be small, q(E) is essentially

a constant (assuming no epithermal
absorption). It follows that

q n 1
(E) = &
¢ EES, K
and
I :
A (E) —dE
Eth trfc E
At X (3.123)
"fe
fEr dE
E
ah

A somewhat better scheme,
to take

perhaps, 1is

q(E) = e'Bth(E)

?

where B? is evaluated from a best
guess as to the size of the equivalent

bare reactor. Then
e'BzTC
(E) ©o————
@ £E3,
and
E, -B3r,(E)
A (E) dE
j; trfc §Ezs
th
A, X
"fe E. e BIT (E)
f ! EEZ dE
Eth
(3.124)
Similarly, for the reflector
1 .
aR = - ) (3.125)
Tenn
1
dp = - —, (3.126)
2
LR
A
1 trfR
ep = _, (3.127)
T A
thR tr“lR
and A, can be evaluated by inspection

or as in Eq. 3.123.
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Epithermal Reactors. In epithermal
reactors the lower limit of the fast-
neutron group (upper limiting energy
of slow-neutron group) will, in general,
be some energy above thermal, and the
slow-neutron group will consist of
thermal neutrons, as well as those
with energies from thermal up to the
dividing energy. Absorption of and

fission by neutrons in the fast
neutron, as well as slow neutron, core
group will, in general, have to be

considered. The problem of obtaining
good average values for the constants
in this situation is a difficult one.
The difficulty arises because the
neutron energy distribution is not
known. Various methods of averaging
two-group constants have been proposed
and used, but no method will, of
course, be wholly satisfactory. The
difficultiesof cross-section averaging
can be alleviated only by using a
many-group calculation,

Probably the best method of averaging
the core constants in the two-group
model as applied to epithermal reactors
is the following. The simplifying
assumption is made that the spectrum
of the neutrons in the equivalent bare
reactor is the same as that in the
core of the reflected reactor, and the
~bare, intermediate-reactor, criti-
cality-calculation form discussed in
chap. 2 is worked out. Then since
the reactor in question is not quite
thermal, a decision is made to let the
slow-neutron group include some of the
lower energy lethargy intervals, for
example, 24, 25, 26, 27, 28, 29, 30, 31
(see the calculation form in the
Appendix), as well as the true thermal
group (interval 31 is just above
thermal). The fast-neutron group will

31

L

N=23

B? +

b, A
. th trth

then be the neutrons in intervals
1 through 23. Then, for example,
K,,fc in the two-group equation is
chosen to have the value that makes
the fast-neutron group leakage equal
to that for the first 23 intervals in

‘the Fermi model; that is,
23 aN
\, ), BB———1U
] it tr’N é(zT)N N
tr - ‘
fe 23 qy
By —

w=1 £y "
(3.128)

The other physical quantities are then
evaluated:

(3.129)

— K}

b

%s¢c 31 EN

(3.131)

9y
) B ——U
300

(xtr N

N=23
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N
o .=, v+ (,),v U
. e N£3 NGy Y
S‘ 31 ?]-N ’
¢, .= () U
th a Ngas a’N §(ZT)N N
(3.133)
23 =) ﬁﬁ .
V—_—_—
P - m
b - (3.134)
f 23 Ty
L Cly—=7T0U,

N=1o Y E€ )y

Even less is known a priori about
the neutron spectrum in the reflector.
However, since there is no fissionable
material or nonfissionable isotope of
the fissionable material in the
reflector, the reflector presents, in
general, a small absorption cross
section to neutrons that are slowing
down. It therefore seems reasonable
to consider the slowing-down density
as beinga constant,
average quantities is concerned. This
means that ¢(u) is approximately
constant and therefore

1w,
Mo =—“Tfo N (u) du,  (3.135)
wﬁ%ﬁ% u, is the lower limit {(in units

of lethargy) of the fast-neutron
group; and

1 %1
s, =—f =, du  (3.136)
R u, vo e
and
1
ZR = ., (3.137)
>\s EF
In —
3 E,
where
1 %
A= — A (u) du, (3.138)
$ ul 0 s

insofar as finding

bxy
]

F an average fission energy,

bx
1

lower limit (in units of energy)

of the fast-neutron group,
£ = average logarithmic energy loss

per collision.

The denominator of the expression for

ZR is the number of centimeters a

neutron travels, on the average, in

slowing down into the slow-neutron

group. The inverse 1s then the

probability per centimeter of a

fast neutron dropping into the slow-

neutron group.

There is no problem in regard to
the slow-neutron group constants 1in
the reflector if E; is equal to E,,
(the actual energy corresponding to
the temperature of the true thermal
neutrons), that is, 1f the slow-
neutron group has been chosen to be

the actual thermal-neutron group. If
E, has been chosen as greater than
E,,, 1t is difficult to ascertain a

weighting factor for the thermal cross
section relative to the average cross
section between E,, and E;. It can be

‘written that

A = AN

trsR trthR

1 Yt
+ B ———— [ "\, (u) du
(u,), - u) 0,

(3.139)
and
s = AY
Py @ ¢thR
1 Ysh
¥ Bﬁf A, (u) du,
U — Wy u,
(3.140)
where
A+ B =1,
A = fraction of slow-neutron group
flux that is thermal,
B = fraction of slow-neutron group

flux that is not thermal.
An educated guess is made of the value
of A and B, If the reflector is very
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thin, less than3 in., or nonmoderating,
A and B can be taken as the same as
A and B for the equivalent bare
reactor. If the moderating reflector
is very thick, greater than 9 in., the
value of A will be close to unity
and the value of B will be close to
zero. If the reflector is neither
thick nor thin, an intermediate guess
for A is required.

RESULTS OF CRITICALITY STUDIES

This section presents some graphs
of critical mass, flux, and power
distribution to provide a brief,
quantitative picture of the numerical
values of these quantities in various
kinds of reflected reactors.

Figure 3.2¢%) shows the critical
mass of “cold, clean,” beryllium oxide
moderated reactors for various be-
ryllium oxide reflector thicknesses.
These arenot practical reactors - they
contain no fission-product poisons or
structural material and they are at
room temperature. When these con-
ditions are present, the uranium
investment is much higher, as will be
discussed in the next chapter. It can
be seen from Fig. 3.2 that for a
given core diameter, the reflector is
very effective in reducing the critical
mass. JThese results were obtained by
two-group calculations.

Figures 3.3¢3) and 3.4¢3) show
experimental results of critical mass
determinations of ‘cold, clean,”
water-moderated reactors with water
reflectors. It can be seen from
Fig. 3.3 that water-moderated reactors
can be very small - of all elements,
hydrogen has the largest slowing-down
power for neutrons. In the current,
G-E, airplane-reactor design, advantage
is taken of the much smaller fraction
of the core volume that must be

2 .

( )L. L. Gartner, Criticality for Ureniunm
Dioxide BerylliumOxide Reactors, NEPA No. 949-EAR-
R6 (Mar. 14, 1949),

(3)c. K. Beck, A. D. Callihan, J. W. Morfitt,
and R, L. Murray, Critical Mass Studies Part III,
K-343 (Apr. 19, 1949),
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devoted to moderator when water,
rather than beryllium oxide, for

example, is used. More surface is
SR
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available for heat transfer to the air
(the GE-ANP design is air-cooled).

Figure 3.5(*) shows what the
critical mass of a fast, unmoderated
reactor would be. In the reactor
treated here, 40% of the core volume
is bismuth coolant. The fast, un-
moderated design is practical for a
power reactor from a heat transfer
standpoint, but it can be seen that
the uranium investment is so large
that this type of design is unfeasible

(4)D. S. Selengut, Uranium Weight for All
Metal Reactors, NEPA-IC-50-2-25 (Feb. 10, 1950),
o
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The calculations
3.5 were made by

at*PWe present time.
presented in Fig.
transport theory.

Figure 3.6¢%) shows the calculated
critical mass of some “operable”
Be ,C + 1/3 C moderated, bismuth-
cooled, power reactors. For these
reactors, which would operate at a
temperature of 1600°F, the composition
used for the calculations included
considerable stainless steel tubing
and fission-product poisons. The
calculations were therefore realistic
estimates of the U?3% necessary for
this type of design. It can be seen
that 2.5 to 4 ft is the best size
range for this design.

gk
oW,
500 T
TEMPERATURE, 1600°F
\ DILUENT, 0425-in. ID, 0.10-in. WALL,
400 STAINLESS STEEL TUBING
= VOLUME FRACTION Bi, 0.20
2 Xe AT EQUILIBRIUM CONDITION
T 300
(o]
b
z
n 200 X
o
> REFLECTOR
100 THICKNESS
I ——=—0in. —|
~ — s ST
0
2 3 4 5
REFLECTOR OUTSIDE DIAMETER ( ft)
Fig. 3.6. Requirements for Critical

Bismuth-Cooled uc, Reactors Moderated
with Be,c * 1/3 C.

Figures 3.7¢?) and 3.8(?) show
typical thermal- and fast-flux spatial
distributions in beryllium oxide
moderated reactors with beryllium
oxide reflectors, Fig. 3.7 shows a
thermal reactor, and Fig. 3.8 shows a
reactor in which the neutrons that
cause fission have median energy that
is somewhat above thermal energy. It
is customary to find a rise in the
thermal-flux distribution in the core
near the reflector when the reflector
is made of moderating elements.

(S)T. R. Mitchell, Criticality Maps r
Bi smuth Cooled Reactors, NEPA-IC-49-12-.36
(Dec. 16, 1949).
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Figure 3.9¢%) shows the north-south
flux distributions in the MTR for a
thin, slab type of loading of the fuel
elements. The core is H,0 and Al.
The first reflector is beryllium and
the second is graphite.

It is to be noted that in thermal
reactors in which nearly all the
fissioning is due to thermal neutrons,
the thermal flux distribution in the
core also gives the power distribution.
In nonthermal reactors calculated by

<6)J. H. Buck and C. F. Leyse, Materials
Testing Reactor Project Handbook, .ORNL-963
(May 7, 1951).
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group’ methods, the power distribution
must be obtained by summing the
products of the group fluxes and
the respective average fission cross
sections for the groups.

Figures 3.10 through 3.13¢(7) gjve
the thermal- and fast-flux spatial
distributions for an intermediate,
beryllium oxide moderated reactor
design. These calculations were made
by using a 27-group model on IBM
computing machines. Figure 3.10 gives
the spectrum of the neutrons escaping
from the core. It is interesting to
note the effect of the “window” in the
beryllium cross sectionat high energy.
Figure 3.11 gives the spectrum of the
neutrons causing fission at various
spatial positions in the core. The
thermalizing effect of the reflector
is apparent. Figure 3.12 is Fig. 3.11
integrated over the core, and Fig. 3.13
is the spatial power distribution.
The rise in the power density near
the reflector is quite pronounced in
intermediate reactors with moderating
reflectors.

Figure 3.14(3) shows the spatial
distribution of flux at different
energy levels (on lethargy levels at
which lethargy u = 1n 107/E) in an
intermediate, beryllium oxide moderated
reactor.

Do PROBLEMS

1. The MTR has the following constants:
Core (Al + U + H,0)

k,, = 1.34,

L% = 3.64 cn? ,

tr
— = 0.263 ¢m ,

<7)J. W. Webster and O. A. Schulze, Some
Results of Criticality Calculations on BeO and
Be Moderated Reactors, ANP-66 (Oct. 15, 1951).

(B)C. B. Mills, Statics of the ANP Reactor-A
Preliminary Report, Y-F10-81 (Jan. 8, 1952).
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2
Tep = 64 cm” >‘trjr
= 0,60 cm .
Xt
r . . .. .
f - 1.243 Assuming no absorption of or fissioning
3 ) em . by above-thermal neutrons (a good assumption

in the MTR), find the critical size of the

Reflector (Be) sphere, the cylinder with jacket reflector

Thickness X 46 cm , only (take the height of core and reflector
2 2 as 78 cm), and the parallelepiped with

L® = 396 cm” , reflectors on the north and south faces only
(take the length of core and reflector in the
A east-west direction as 113 c¢m and in the -

tr . . .
th vertical direction as 78 cm).
=0.64 cm ,

2. Find the spatial distribution of the
fast and thermal fluxes in the different
T = 89 cm® , geometries of problem 1, and plot the fluxes.
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Chapter 4
REACTIVITY EFFECTS

When a reactor is operated, it
heats-up thermally, the fissionable
material i1s consumed, and fission
products, some of which (such as
xenon and samarium) have high capture
cross sections, accumulate. The last
two effects, and in most reactors the
first effect, act to decrease the
probability that a neutron will
produce a fission because they increase
the likelihood of nonproductive
capture or leakage of the neutrons.
The reactor must, therefore, contain
enough fissionable material to ensure
criticality when it is in the hot,
poisoned, depleted condition. It
follows, then, that at startup, when
the reactor is cold, clean, and
undepleted, a degree of virtual or
potential supercriticality will exist
that must be offset by control rods.
Such control rods, called “shim rods,”
are fully inserted at startup and are
gradually withdrawn (if they are
absorber rods) as the temperature
approaches the operating level, the
fission-product poisons build up, and
the fuel is depleted. This type of
control is distinct from the “fine’
control necessary to make the reactor
momentarily supercritical or sub-
critical when power changes are
required.

No new methods are needed for
calculating the increased critical
mass required to offset the effects of
temperature, poisons, and depletion.
It is necessary only to evaluate the
constants in the light of (1) the
expanded reactor and the higher kT
energy of the thermal neutrons and
(2) the increase of the 2  because of
the fission products. Enough extra
uranium must be used to offset the
burnup of fissionable material that
will take place at design power during
the operating time prescribed by the
fuel operating cycle.

This chapter presents a discussion
of temperature, uranium depletion,
and fission-product poisons and their
virtual reactivity effects. (The word
“virtual” is used to indicate that the
effect never really occurs in the
reactor but is always offset by a
repositioning of the shim rods.)
Chapter 5 presents a discussion of the
calculation of the number and size of
control rods needed to offset the
virtual supercriticality present at
startup. .

It is clear that since the effect
of the shim control rods is to counter-
balance the effects of temperature,
depletion, and poisons, all four
effects should be measured in the same
terms. Much confusion has existed
in reactor physics about the units of
measure for these effects. However,
as far as shim control calculations
are concerned, the only important
requirement is that the four effects
be expressed by a common measure. It
has been found that in calculating the
strength of a control rod a convenient
procedure is to find the fictitious
value of v (physically equal to 2.5
for U%??®%, the number of neutrons per
fission), say, the v,, that would be
necessary to make the reactor critical
with the rod inserted. The reactor
may have had a degree of virtual
supercriticality before rod insertion
required a fictitious v _, for criti-

cality. The measure of the effective-
ness of the rod is chosen to be
Vcb —Vca
x 100% . (4.1)
VCG

If the control rod has been selected
of just the right size so that the
reactor 1s made critical when the
control rodis inserted, the effective-
ness 1s given by

- 2.5
2.5

Vcb

x 100% ,
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where 2.5 is the physical value of v.

It would be possible to take simply
(v,, - 2.5) or even just v,_, as the
measure in this case, but in chap. 6,
“Kinetics,” it will be found that a
convenient measure of reactivity
is kex/keff' and it can be easily
shown that

k., 2.5 _-v

keff

whichis the negative value of Eq. 3.1.
Since calculations of control rod
effectiveness have to be made for the
regulating rods also and the unit of
measure should conform to that used in
the kinetic formulas, the choice was
made to express the effectiveness of
the shim rods as well as the effects
of temperature, poisons, and depletion
in the same terms. The fact remains,
however, that for the “shim effects”
described in chaps. 4 and 5, it does
not matter how the effect is expressed
so long as there is consistency.

It is first necessary to calculate
the critical uranium concentration,
NU (final), in the hot, poisoned,
depleted reactor. In this calculation
the additional macroscopic absorption
cross section due to the xenon 1is
found by the methods to be given 1in
this chapter. The value of v in this
calculation will be its physical
value, 2.5,

The effect of the depletion 1is
-given by

2.5 - v,
2.5

x 100% , (4.2)

where v, is the fictitious value of
v necessary to make the hot, poisoned
reactor critical with extra uranium
added to offset depletion. The
uranium concentration for this calcu-
lation is then

Ny (final) + ANy (depletion)

It follows that v, is less than 2.5,
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and Eq. 4.2 measures a virtual super-
criticality.

The effect of fission-product
poisons is given by

Vg ~ Vap

x 100% ,
2.5

(4.3)

where Vap is the fictitious value of
v necessary to make the hot, clean,
undepleted reactor critical. The
uranium concentration in this calcu-
lation is also

Ny (final) + ANy (depletion) ,

absorption cross
the unpoisoned

but the macroscopic
sections are for
situation.

The effect of
given by

temperature 1is

Vip — ¥

2.5

dpt

x 100% , (4.4)

where Vipt is the fictitious value of
v necessary to make the cold, clean,
undepleted reactor critical. The Ny

in this calculation is still
Ny (final) + AN, (depletion) ,

but the macroscopic cross sections are
for the cold, clean situation.
Expressions 4.2, 4.3, and 4.4 are
positive and measurea virtual increase
in reactivity since we are working
backward with respect to the life
history of the reactor operation.
Enough control rods are then
provided to give control strength, as
measured by Eq. 4.1, to offset the
effects of temperature, poisons, and
depletion, as given by the sum of

Eqs. 4.2, 4.3, and 4.4, that 1is,
2.5 - v
dpt
x 100% .
2.5 %
DEPLETION

The amount of fissionable material
consumed at design power during the



operating time prescribed by the fuel
operating cycle can be easily found
from the relation

1 watt % 3.15% 10" fissions per second.

(This value varies slightly with each
reactor because the energy of the
gammas emltted upon neutron capture
depends upon the reactor composition.)
When this amount of fuel is added to
the concentration, Ny (final), of the
hot, poisoned, depleted reactor in
obtaining the v, of Eq. 4.2, the
macroscopic cross sections zf and Za
will be affected, primarily.

FISSION-PRODUCT POISONS

The fission products that present
the largest capture cross sections to
neutrons in a thermal reactor are
xenon and samarium, with xenon present-
ing the largest. Xenon arises through
the decay chain

2m 6.6h
135 135 .
s2Te — 5 53l

The half life of tellurium is so
short that the iodine can be considered
as being formed directly fram fission.
About 5% of the xenon comes directly
from fission and the rest from i1odine
decay. The calculation of the concen-
tration of xenon before and after
shutdown will be discussed in detail
in the following. The samarium arises
through the decay chain

1.7h

60Nd149 61pm149
The mathematical formulation for the
samarium buildup is quite similar to
that for xenon; so it will not be
given here. The other fission products
can be taken into account, roughly, by
assuming that they add 50 barns(!)
(thermal) per fission to the poisons
in the reactor.

(l)J. H. Buck and C. F, Leyse,' Materials
Testing Reactor Project Handbook, ORNL-963 (May 7,
1951).

The Xe'3®® isotope, which is the
isotope of xenon with the high capture
cross section, comes principally from
decay of Ilss, as indicated above.
An equation for the rate of change of
iodine can be written:

dN,

— - Fy, = Ny\[ (4.5)
where
N atoms of I'*® per unit volume,

y; = vield of I'®® per fission,

F = fission rate of the reactor in
fissions per unit volume per
unit time,

Ay = decay constant of 3% = proba-
bility of disintegration per
unit time.

The parent of the iodine, tellurium,

which is formed directly from fission,

has a half life so short that the
iodine can be considered as coming

9. 2h

135 135
_— 54Xe —> 55CS

directly from fission. Upon solving
the differential equation, Eq. 4.5,
and using the boundary condition that
no iodine i1s present at startup

(t = 0), the following equation
results:
Fy,
= -A
N, = . (1 = e"1t), (4.6)

I

4Th

- 62Sm149 (stable)

For the rate of change of xenon, the
differential equation is
dNy,
- MMt Fyexe - NxeMxe
- f BB Ny, oy (B) dE, (4.7)

where

Ny, = atoms of Xel!?S$ per unit

volume,
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Yrxe yield of xenon directly from
fission,
Ax, = decay constant of Xel3$,
¢(E) = reactor fluxper unit energy,
0xo (E) = xenon capture cross section
as a function of energy.
The first two terms of Eq. 4.7 account

for the accrual of xenon per unit
time, the third term is the decay per
unit time, and the last term is the
burnout due to neutron capture per
unit time, Equation 4.7 can be
rewritten as

daN

Xe

dt ) NIKI * FnyG - NXeKDXe , (4.8)
where
Moxe = Axe * S BE) oy (E) dE . (4.9)

Thus Apy, is the ‘disappearance’
constant. If Eq. 4.6 is substituted
in Eq. 4.8 and the resulting differ-

ential equation is solved under the
boundary condition that Ny, = 0 at
startup (t = 0), the following formula
is obtained:

FyXe Fyi

N e'xlt
X
¢ KDXe

Fy Fy
+< . "") e-Mpxet (4.10)
>‘Dxe “>‘1 >‘Dxe

where y,, Y1 t Ypx. = total yield
of xenon per fission. If t is large,
Eq. 4.10 reduces to

FyXe
Nye =
KDXe
. Fy
= Ze (4.11)
Ay, fE (E) oy, (E) dE
or
Fyy, = Ng’(e[xh +) fE $(E) oy (E) dE] ,

(4.12)
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which says that for equilibrium
conditions the rate of production
of xenon equals the rate of disap-
pearance of xenon.

It is interesting to note the form
of this equation fora high-flux thermal
reactor. ?)’ For a thermal reactor,
Eq. 4.12 becomes

PNy yxe = Ny (hyg, + dox,) ,  (4.13)

where

Ny = atoms of U?3% per unit of volume,
o4 = fission cross section,

= the thermal flux,

©-
i

and all quantities are at thermal
energy. Equation 4.13 can be rewritten
as

NgeUXe

N

c;bo-Xe

_— . (4.14)
Ay, * Po,)

= yXe
Wy

If the flux, ¢, is very large, ¢oy,  is
much greater than A, , and the quantity
in parentheses becomes approximately

unity. Equation 4.14 then reduces to
0
KGN (4.15)
NUUf ~ Yxe oo

or
Nye = Ny (4.16)

Thus in a thermal reactor, the density
of xenon saturates with respect to
increasing flux and depends only on
the uranium concentration when the
flux is large. It follows that the
xenon concentration is uniform over
the core of such a reactor. However,
this is not true in an intermediate-
energy reactor or in a thermal reactor
with low flux in which the burnout 1is
not necessarily large compared with
the decay per unit time.

(Z)G. Young, Critical Mass Needed to Over-Ride
Xe, MonP-457 (Dec. 29, 1947).



If the xenon reaches its equilibrium density for the fission rate F and the
power is suddenly reduced to fF, the differential equation for the iodine behavior
is

dN,
—= fFy; = Npo[ . (4.17)
When Eq. 4.17is solved under the boundary condition that N, =N(}, the equilibrium
iodine concentration at t = 0, the result 1is
1
Ny =——[fFy (1 = eMt) 4 X N0 e=Prt] (4.18)
AL
where
Ng = the equilibrium iodine density,

t

time measured from the moment of instantaneously reduced power.

The differential equation for the xenon behavior is

dNy,
dt

where ¢ is the flux before the power is reduced. When Eq. 4.19 is solved under
the boundary condition that N, = Nge at t = 0, the result is

CIFe MM - fEy e fRy MM - Py
° A Xe X Mpxe = Mp

= N\ + fFypy, - Nx"()‘XeA*fqust’ dE) (4.19)

Ny

> e'>\DXet , (4.20)

DXe DXe DXe
where

Apxe = Ayxe * fquS(E) oy (E) dE .

If the reactor is completely shut down, Eq. 4.20 becomes

A N° A, NO
N .-_-.__I_f___e'}\[‘ + N‘)’( _rr e~ MXet
- XI ° >‘xe - XI

0
XINI

XXe - XI

= N;e e MXet + (e'xlt - e Met) | (4.21)
The first term gives whatis leftof the equilibrium xenon at timet and the second
term gives the xenon that has come from decay of the equilibrium iodine.

From Eq. 4.21, the dNy /dt can be found, and the equation

dNy .

dt
can thenbe solved for t. The result is the time after shutdown at which the maxi-
mum concentration will occur. The result is

1 XI
toax © In 5 . (4.22)
>\I - XXe N NXe XXe (X N )
Xe I~ X
N oA ©

I I
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The average cross section of xenon
for thermal neutrons is found by
weighting the Ny, 6 oy (E) over the
thermal flux distribution (usually
assumed to be Maxwellian), that is,

a2}
[ Ny, ox (B)Ee /Rt dE

N o = ’
Xe Xe th °
f E e-E/kt dE
0

where the cross section of xenon is
given by the Breit-Wigner formula:

rﬂ2
oy E,
O'xe(E) = _—
2 re E
(E - E;)* +—
0 4
where
[' = 0.107 ev,
E, = 0. 0863,
o, = 3.4 X 10° barns.

The other constants of xenon are

y; = 0.0686,

Yrxe = 0.003,

Age = 2.103 X 10 % per second,
Ay = 2.900 x 10°® per second.

The effect of the xenon (and,
similarly, the other fission-product
poisons) is found by modifying the
2 of the reactor to take into account
the macroscopilc Xenon cross section,
NXe(TXe'

A reactor may be designed with
enough uranium in it to override the
xenon poisoningat its maximum transient
concentration after shutdown (for
example, the STR), or it may be
designed to only override the xenon
at a somewhat lower concentration,
depending on the operational re-
quirements of the reactor (for example,
the MTR). 1In the latter case, if the
reactor 1s not restarted within a
short time after shutdown, it 1is
necessary to wait for a period of time
to allow part of the xenon to decay
to cesium before the reactor can be
restar ted.
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TEMPERATURE

Increasing the temperature of a
reactor has three effects: (1) it
raises the energy of the moderator
atoms and hence raises the average
energy of the thermal neutrons, with
the consequence that the effective
cross sections for thermal neutrons
are changed (sometimes called the
thermal-base effect); (2) the reactor
expands and the atomic density of the
constituents is reduced; and (3) the
reactor size 1s increased.

Since the temperature is changed,
the first effect results in a new
Maxwell Boltzmann distribution M(E),
which 1s given by

M(E) @ \Jf_e-E/kT

The effective thermal cross sections,
as given by

(o]
[ o (E) E e ®/*T 4E
0

o’ =
%t @
[ E e B/kT 4E
]
and
fm—l E e E/6T gE
1 _0 crtr(E)
6 = 14
e LB e2vm ag
0

will thus be changed.

The second effect will result in
decreased atomic concentrations. The
third effect will result in a changed
B? in the case of Fermi age formulas
and, simply, changed dimensions in the
case of the group determinants. '

RESULTS OF CALCULATIONS ON
REACTIVITY EFFECTS

Figures 4.1, 4.2, and 4.3 show the
results¢®’ of calculations made of the
virtual reactivity effect of fission-
product poisons and depletion in the

(3)J. H. Buck and C. F. Leyse, Materials
Testjng Reactor Project Handbook, ORNL-963 (May 7,
1951).
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MTR. The quantitative data given are
typical of thermal reactors. The
effect of equilibrium xenon, for
example, 1s usually about 4% in
8k/k (= Av/v). 1t is interesting to
note the magnitude of the effect of
the after-shutdown xenon growth in
this high-flux, thermal assembly.
The effect is so large that the MTR
was designed with only enough fuel to
enable the reactor to be restarted
within about 30 min after shutdown.
If not started within 30 min, the

S o
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Fig. 4.3. Extra Reactivity Change

in MTR After Shutdown.

reactor must lie idle for about two
days, as can be seen from Fig. 4.3.

Figure 4.4 shows the results of
some calculations®*’ of the virtual
reactivity effects for various airplane
reactor proposals that have various
neutron spectra. In each case the
operating temperature is 1286°F, the
power is 200 megawatts, the moderator
is beryllium oxide, the coolant is
sodium, and the tubing is stainless
steel.

Figure 4.5 shows the after-shutdown
xenon growth for various fractional
power reductions from 200 megawatts
in a slightly epithermal reactor.

PROBLEMS

p
1. Usethe thermal, Fermi age criticality
formula to find the effect of 't/emperature,
depletion, and xenon poisoning at equilibrium
and maximum transient density in a bare,
graphite reactor, 5 ft in diameter, consisting

235

only of carbon and U . The temperature at

startup is 70°F, The constants have the
P

values:
T,, = 337.7 cm’,
o (C) = 0,001 barn (0.025 ev),
e
(4)8. T. Macauley and J. W. Webster, Results

of Some Bare Pile Calculations of Critical Mass
and Reactivity Effects, Y-F10-22 (Dec. 1, 1950).
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o, (C) = 4 barns,
th
o, (U) = 640 barns(0.025 ev),
th
o (U) = 10 barns,
th
of (u) 550 barns (0,025 ev),
th
3
Pe10°p = 1.67 g/cm

Assume throughout the problem that 7,, is
unaffected. The power level is 600 megawatts
and the reactor operates for 24 hours. The
reactor 1s a bare,

operating temperature is 2200°F,
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In calculating the thermal base effect
assume that the absorption and fission
cross sections are proportional to 1/v and
that the scattering cross sections are
constant. For the expansion, assume that the

coefficient of linear expansion is

a =1.86 x 107 per °C .

In connection with the xenon, take the
constants as having the values:
Ol(Xe) =3 x 10° barns,
;= 0.0686,
Yxe = 0.0716,
Yrxe = 0.003,
Kxe = 2,103 x 10°°% per sec (= 0.0757 per
hr),
Ay = 2.900 x 1075 per sec (= 0.1044 per’
hr).

2, Derive formulas for the concentration
of samarium before and after shutdown.



Chapter 5°
CONTROL RODS

In chapter 4 it was pointed out
that when a reactor operates it heats
up, fission-product poisons accumulate,
and the fissionable material is
gradually consumed. All these things
tend to increase the probability of
nonproductive neutron capture or
neutron leakage. It is thus neces-
sary to build into the reactor enough
extra uranium to ensure that the chain
reaction is still self-sustaining when
these effects are at their worst.
However, with all this extra uranium
in the core, the reactor will be
supercritical -~ to the greatest degree
at startup - when the effects are
absent, unless shim control rods are
provided. If shim control is obtained
by absorber rods, these rods would
normally be fully inserted at startup
and then gradually withdrawn as the
reactor heats up, the poisons ac-
cumulate, and the fuel burns out.
The shim control rods are thus normally
used to keep the reactor critical.
The regulating rods are used to intro-
duce a small amount of k_ _ for power
changes.

Several means of obtaining shim
control are available: absorbers,
fuel removal, and moderator or reflector
removal. In reactors which are thermal
or near—thermal, however, the most
control for a given volume and mass
movement is usually obtained by absorber
control rods. The discussion here
will be restricted to the absorber
type of control rod. Calculations of
the effect of fuel, moderator, or
reflector removal are usually best
done by perturbation theory.(!:?%:3:4)

x

(L)y, J. Nielson, Bare Pile Adjoint Solution,
Y-F10-18 (Oct. 27, 1950).

(Z)H. J. Nielson, The Adjoint Equations and
Perturbation Theory for a Reflected Reactor,
Y-F10-31 (Jan. 18, 1951).

(3)5. Brooks, A First Approach to Computing
Control Effectiveness for Fast Piles, A-4269
(Dec. 2, 1946).

In chapter 4, the effect of tempera-
ture, fission-product poisons, and
depletion was measured by the expres-
sion

2.5 = V4ot

2.5 '

where Vapt is the fictitious value of
v necessary to make the reactor
critical in the cold, clean, undepleted
condition. In this calculation, the
uranium concentration is taken as

N, = N, (final) + AN, (depletion) ,

where N, (final) is the necessary
concentration in the hot, poisoned,
depleted reactor and AN, (depletion)
is the uranium per cubic centimeter
that must be added to take care of
depletion.

Expression 5.1 therefore measures
the degree of virtual supercriticality
that will exist in the reactor at
startup. The problem is then to find
the necessary quantity, size, and
pattern of shim (absorber) control
rods that will give a virtual decrease
in reactivity that is equal in magni-
tude and opposite in sign to the
virtual supercriticality given by
expression 5.1. The reactor to be
used for the calculation is the cold,
clean, undepleted (startup) assembly
with

Ny, = N, (final) + N, (depletion)

and v = v__ . for criticality. The
effectiveness of any trial pattern of
control rods is therefore

(5.1)

v -V
- e

) (5.2)

dpt

v
[

where v is the fictitious value of
v necessary for criticality after the
rods are inserted. When v _ equals

(4)5.-Glasstone and M, C. Edlund, The Elements

of Nuclear Reactor Theory (2d ed., unpublished at
this date), Van Nostrand, New York. -
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2.5, a correct array of control rods
has been found.

The calculationof the effectlveness
of the regulating rods, which 1is
necessary for prescribing their size
and location, can be done by the same
methods. With respect to the reactor
condition for this calculation, it
is perhaps best to use the hot,
poisoned, depleted assembly with
Ny = Ny (final) and hence v = 2.5,
The effectiveness of the regulating
rod would then be given by

2.5 ~ v,
2.5 7

where v is the fictitious value of
v necessary to keep the hot, poisoned,
depleted reactor critical with the
regulating rod inserted. The quantity
5.3 is equal to the actual (as opposed
to virtual) reactivity, k /keff that
the regulating rod can create in the

(5.3)

reactor, as can be seen from the
thermal, Fermi age formula,
Zf e-Bzr
z
k = v -
eff 1 + Lng
The v, for criticality is clearly
given by (v, /v) &k 1, and hence
keff = V/v . Theref,ore
k. i keff -1 _-;: -1
ki, sy Ly Y.
v
c
v -V, 2,5 ~ v,
) v ) 2.5 ’

which is sometimes denoted by Av/v,
Still another way of writing the same
thing (for a thermal reactor) is

kth - kthc Ak
= , (5.4)

k. k

where k is the physical value of the
thermal reproduction constant and k,,

is the fictitious value of k,, neces-
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sary for criticality after the rod
is inserted. The notation Ak/k for
definition 5.4 is rather commonly used
in the literature. The expressions
5.3 and 5.4 are equivalent, and both
are equal to kez/ke if an actual
reactivity change as opposed to a
virtual reactivity effect is being
considered. Some of the results of
control rod calculations reported in
the literature are given simply by
Ak = k., - k‘h . In such a case, it
1s necessary to know the k .n of the
reactor to interpret the results in
terms of expression 5.4 or the equi-
valent expre581on 5.3. -

It is well to be on guard with
respect to the notation Ak/k. For
example, i1f the virtual effect on
reactivity of a uniform poison 1is
being expressed, the effect is some-
times measured by the actual change

i? the k , divided by the k,, or,
since
y zf . zf
z >
th 9 %2 _ Aza
= = -3 ,
th y Zf a,
>
a2

by the change in the macroscopic
absorption cross section divided by
the macroscopic absorption cross
section. (In the above equation,
if k,, on the left is the k., without

the poison, then the zal on the right
is the Z of the clean reactor plus
the AS of the added poison.) These

phy51cal changes Ak, /k, and &> /2
are only approximately equal to the
reactivity change as given by expres-
sions 5.4 0r 5.3, the condition for
them to be accurate being that the
neutron leakage probability shall
have been unaffected by the uniform
poison. This condition is only satis-
fied for a small amount of uniform:
poison or for reactors in which the
leakage is small. Expression 5.3



then is in the units that will be
used in the kinetic formulas of
chap. 6, as it should be, since the
regulating rods are associated with
the time-dependent behavior of the
reactor.

The best mathematical method for
determining the v_ for use in expres-
sions 5.2 or 5.3 is that devised by
Nordheim and Scalettar.!®’ The best
and most complete description of
their method is that written by the
Power Pile Section of ORNL in 1947,(®)
Two cases will be discussed here:
(1) the single, cylindrical, axial,
control rod in the cylindrical-reactor,
two-group model; and (2) the pattern
of seven cylindrical rods in the
cylindrical-reactor, two-group model.
(These seven rods are arranged symmetri-
cally as shown in Fig. 5.1.) The
discussion of the second case is
similar to that presented by the Power

O

O O
O

O O
O

Considerable simplification 1is
is achieved if the given reflected
reactor is replaced by its equivalent
bare reactor (the bare reactor with

(S)R. Scalettar and L, W, Nordheim, Theory of
Pile Control Rods, MDDC-42 (June 17, 1946).

(G)C. R. McCullough, Summary Report on Design
and Development of High Temperature Gas-Cooled
Povwer Pile, Appendix, MonN-383 (Sept. 15, 1947).

the same composition as that of the
core of the given reflected reactor)
for control rod calculations. Agree-
ment between the calculated effect of
control rods in a reflected reactor
and its equivalent bare reactor is
good. Thus, the first step for any
pattern of rods is to reduce the given
reflected reactor to its equivalent
bare reactor.

SINGLE, AXIAL CONTROL ROD

The problem is to calculate the
effectiveness, along the longitudinal
axis of a bare, cylindrical reactor,
of a cylindrical absorber rod of a
given diameter. The two-group theory
provides the most suitable model for
the calculation. Fermi age cannot
be used because the reactor is not
uniform in composition. One-group
theory would be too crude, and the
calculations with more than two
groups would be numerically too com-
plicated.

Balance Equations. The two-group
differential balance equations are

v? ¢f(r,z) t a ¢f(r,z)

+b ¢, (r,z) = 0 (5.5)
and \
v? ¢, (r,z) + d ¢ (r,z)
t e ¢f(r,z) =0, (5.6)

as discussedin chap. 3. The quantities
a and b have :

fo
k, =v
f b3
°f
and
Zf,
k =
s v z

involved in their definitions, in
general, and they are thus functions
of v (that 1is, Vc)’ which is now the
unknown of the problem. Equations 5.5
and 5.6 can be rewritten as

V2 ¢f(r,z) + a(Vc) ¢f(r,z)

+b(v ) @ (r,z) =0 (5.7)
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~and
v? ¢, (r,z) +d o (r,z2)
+ e ¢f(r z) = 0 (5 8)

to emphasize the dependency of a and
b on v_ The d and e are pure con-
stants. :
Remarks are given in the following
section on boundary conditions con-
cerning the proper energy to select
as the upper limit for the slow group
(lower limit for the fast group).
General Solutions. ‘The general
solutions of Egqs. 5.7 and 5.8 for the
radial components of the fluxes are

~chap. 3.

The power constant has been
so chosen to make the coefficient of
the second term of ¢ equal to unity.

In Egs. 5.9 through 5, 13 the B? and
4 have been written B? (V ), (v,
etc. to empha51ze,that they are

functions of the unknown of the
problem, v . This makes the argument
#I(V )r of the Bessel functions
Y [#I(V )r] a ll%tle confu51ng, un-
fortunately.

Boundary Conditions. The boundary
conditions of the problem are:

L. ¢, (R+38) =g (R+38) =0,

Bi(v,) - d\ - Bi(v,) -"d '
b (r) = A ———f——————- J [u (v;) rl 4| —————— Y [u (v ) rl
f e e 01 e
: -B2(v,) - d -B}(v,) -d
t C|l——— | I [u,(v,) rl +D ———————————> Kd[#z(vc) rl (5.9)
e e
and _
¢, (r) = AJo[ﬂl(Vé) r} + Yo[#I(Vc) rl + CIO[#Q(VC) rl + DKo[“z(Vc) rl , (5.10)

where B} (V ) and -B2 2(v_) are the roots
of the determlnantal equatlon

-B? (v ) + alv ) b(v )
e BAv,) +d|
(5.11)
and hence functions of v _. The v )

and p,(v ) are obtained from the
equations

u2v) = BXv ) - i (5.12)
c c H 2
()
2
and
—piv )= -Biv ) - . (5.13)

e

where His the lengthof the equivalent
bare reactor. Equations 5.9 through
5.13 follow from the derivations of
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where
R = the radius of the equivalent bare
reactor,
6 = extrapolation distance=0.71 A _
2, The fast flux is finite at the
rod axis, r = 0; that 1s, the rod is
transparent to the neutrons in the
fast group.
3. The slow flux extrapolates to
zero at a certaln distance 1inside
the rod, that 1is,

F d“bs] L
¢s dr r=rg ?H '

where
ro = radius of the rod,
op = the extrapolationdistance inside
the rod.

If cadmium rods are used (or any
other material that has a sharp drop
in cross section at a certain energy),
it is clear from boundary condition 2
that the slow group should be defined



to include all flux below the cadmium
cut-off and the fast fluxshould include
all flux above the cadmium cut-off.
If the rods are boron, however, the
cross section falls off in a manner
inversely proportional to the neutron
velocity. If the boron rod is fairly
thick, i1t may capture a substantial
portion of the epithermal neutrons that
enter its surface. ‘Probably the best
procedure for this case is to choose
the upper limit of the slow group
to be that neutron energy for which
thereis still about an 85% probability
that the average neutron entering the
rod with this energy will be captured;
that is, twice the rod wall thickness
should be about 1.9 mean free paths
for capture at the limiting energy.
The general form for boundary
condition 3 follows from setting the
return current equal to zero. The
proper value of SR can be obtained from
the results of the work of Davison and
Kushneriuk(’) in which values of S p
were determined for various sizes of
‘““black” cylinders by transport theory
in such a way that the asymptotic
flux of diffusion theory will be
correct in the core except for the
region within two or three mean free
paths of the rod. The latter region
is unimportant because it is small and
the flux density in it is low. Figure
5.2 is a reproduction of Davison and
Kushneriuk’s graph. It is best to
interpret the unit of length on this
graph as the transport mean free path,
Application of Boundary Conditions
to General Solution. In regard to
boundary condition 2, it can be seen
from the series expansion for K, and

Y, that
x
lim K,(x) = - lim (y + 1n—) (5.14)
x—0 x—0 . 2

(7)B. Davison and S. Kushneriuk, Linear Ex-
trapolation Length for a Black Sphere and a Black
Cylinder, MT-214 (March 30, 1946).

1s the argument of Y, in Eq.

| |
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: \_//A CYLINDER OF Flrl\lITE RITDIUS

| |
LARGE BLACK GYLINDER (M.T.135 )

\ /SMALL BLAiCK CYLINDER (M.T. 207)
| |

Ao Y\
0.9
0.8
— —
SPHERICAL HARMONICS (P3 APPROXIMATIONY |
0.7
0.6
0 1 2 3 4 5
RADIUS
Fig. 5.2. Extrapolation Length, A,

in Terms of Radiu§ of the Cylinder;
Unit of Length = Mean Free Path of
Surrounding Medium.

and
: 2 . x
lim Y, (x) = — lim (y + 1In =) , (5.15)
x—0 7 x—0 2
where v is Euler’s constant. Thus,
if D 1s chosen with the value
Bf(vc) - d
2 L e
D == (5.16)
T -B3v, )~-d
i e
‘the second and fourth terms in ¢,, as

given by Eq. 5.9, will cancel as
r » 0 and the ¢f will remain finite as
r = 0,

Application of boundary cordition 1
determines that

Yo lu (v, )(R + 5))

A= 5.17
Jo [ul(vc)(R + 8)] ( )

and
DKy [u,(v )(R + 8)]
C= - , (5.18)
I, [p,(w )R + 8)]
where & is the extrapolation distance

at the outer reactor surface. Again
it is to be noted that [(u;)(R + §)]
5.17,
for example, and u, is shown as

a function of V..
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m??;ally, application of boundary condition 3 gives

Y lu (R +8)]

10k + )] Falalmre) = i)

g BY-d K [u,(R+3)] 9 B}-d
- ol (uory) = ————— w K (u,r,)
- 2 271 2°0 T 2 21 20
-B? ..dIo[/J,z(R"rS)] ~-B? - d .
1 Y lu (R + 8)] » -y )
= — <- m,r HyT
SR Jo[,u'I(BJr 8)] 0 10 [} 1°0
Bi-d y KLy (8 + 5)] B2 - d
- = Io(uzro) S Ko(,u,zro , (5.19)
B2 _d ™I [u (R+8)] -B: - d 7
2 o2 2
where Bf, Bg, Ky, and u, are all
functions of v, and r, is the radius PATTERN OF RODS

of the rod.

Equation 5.19 has only one unknown,
v,.,.and is thus the desired equation
which determines the new value of v,
that is, v, that will assure criti-
cality of the reactor with the rod
inserted.

In review, the procedure is to
1. select a trial value of v,

2. determine Biand —Bg from Eq. 5.11,

3. determine p, and u, from Egs. 5.12

and 5.13,

see whetherEq. 5.191s satisfied by

these values and repeat the proce-

dure until the critical value of v,

is found,

5. wuse expression 5.2 (or 5.3, in the
caseof a regulatingrod) to find the
effect of the rod on criticality.

It 1s sometimes necessary to deduct
other small effects from the value of
expression 5.2 to get the net effect
of the rod, for example, the effect
of (1) removal of the slug of core

4,

mixture to make room for the rod,
(2) the blockage, when the rod is
inserted, of the streaming of neutrons
down the hole that takes place when
the rod is out, (3) the depression in
flux around the control rod, even when
the rod 1s out, bécause of the control
rod thimble, coolant, etc.
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Several shim control rods will
usually be needed in a reactor. If
only a very rough estimate of the
effectiveness of a pattern of four
to seven identical rods is desired,
the effectiveness, y, of one of the
rods in the axial position can be
calculated by the method described in
the previous section, and the ef-
fectiveness, z, of the pattern of n
rods can then be considered as being
approximately 0.8 ny. The factor of
0.8 provides for a 20% reduction 1in
the strength of each individual rod.
This. reduction occurs because the
rods are not all in a position of
maximum flux (the effectiveness of a
rod tends to be proportional to the
square of the unperturbed flux at the
point of insertion) and because the
rods tend to ‘“‘shadow’ each other;
that is, any one rod tends to ‘‘feel”
a flux depression caused by all the
other rods. For a pattern of one rod
on the axis and a ring of three to
six rods equally spaced from the axis,
the 20% reduction factor is usually
about right if the placement of the
outer ring is chosen correctly.
Normally, the ring of rods should be
about one third the way out on the



radius of the equivalent,
cylindrical reactor.

It is not too difficult to analyti-
cally calculate the combined effective-
ness of a pattern, however, and the
Nordheim-Scalletar procedure for this
calculation is given below. A pattern
of seven identical rods - one on the
axis and six in a symmetrical ring
off the axis - was chosen to illustrate
the procedure; however, in principle,
the effectiveness of any number of
rods can be calculated. The more
symmetrical the pattern, the simpler
is the formulation.

The problem is the same as that for
the axial rod. A value of v, that 1is,
V., 1s sought that will assure criti-
cality of the reactor with the pattern
of rods inserted.

Differential Balance Equations.
The differential balance equations,
5.7 and 5.8, are again the starting
point in deriving an equation which
will determine v :

v? ¢f(r,9,z) + a(Vc) ¢f(r,9,z)

bare,

+ b(Vc) ¢s(r,9,z) =0 (5.20)
and
v?2 ¢, (r,0,2z) + d ¢ (r,0,z)
+ e ¢f(r,9,z) =0, (5.21)

where a and b are functions of V.,
as indicated, and the flux is now a
function of the angle &, as well as
r and z. The angle 6 is measured
with respect to the baseline (or plane,

actually) drawn through the reactor

axis and one of the off-center control
rod axes (the axis of rod number 2),
as shown in Fig. 5.3. '

General Solutions. In more general
language, the procedure given in

chap. 3 for solving the balance
equations is to try the relations
v2¢f + B’qbf =0 (5.22)
and
2 2 =
v ¢, + B¢, =0 (5.23)

to see whether solutions exist for B2
such that solutions of Eqs. 5.22 and

@

Fig. 35.3.

5.23 are solutions of Eqs. 5.20 and
5.21. Substituting Eqs. 5.22 and

5.23 into Egqs. 5.20 and 5.21 yields

the familiar determinantal equation

-B*(v )+ alv) b(v,)

= 0.
-B? +

) Blodrdl (504
Equation 5.24 is a quadratic in B?
and says that two values of B? exist,
Bi(vc) and —B:(Vc)’ such that solutions
of Eqs. 5.22 and 5.23 are solutions
of Eqs. 5.20 and 5.21. The problem
reduces then to finding general solu-
tions for Eq. 5.22 for. each value of
the buckling and adding them to get
the general solution of Eq. 5.20 for
the fast flux. Following the same
procedure with Eq. 5.23 gives the
general solution of Eq. 5.21 for the
slow flux. Equations 5.22 and 5.23

written in complete detail are

3% 1 3 1 3% 3%
A SRS N f
or? r or r?2 262 922

t B§¢f =0 (5.25)

and
%, 13, 1 ¥% 3
+— +— +
or? r or r? 20? 922
2 =
t Bip, =0, (5.26)
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where i = 1, 2. Since Egqs. 5.25 and 5.26 are the same in form, the subscripts
can be dropped, for the moment, and an attempt can be made to separate the
variables by letting

¢ = R(r) 0(68) Z(z) . : " (5.27)
Substituting Eq. 5.27 into Eq. 5.25 (or 5.26) and dividing by R, @, Z gives
R" 1R' 1 8" g |
— t —— Fe —_— = o —_— 32 . (5. 28)
R r R r? e z

According to the now-familiar reasoning, both sides of Eq. 5.28 must equal a
constant, that is

— + B? = %, (5.29)

— e — — +—2— = _.#2 , (5-30)

or
Rll [ @ll
T ot r— o+ ut?t s o — 3
- ri— " u'r 5 (5.31)
Again, both sides of Eq. 5.31 must equal a constant:
Rll RI
’.2? + ,.T+ #2,;2 = p? (5.32)
and
O L (5.33
6 -n‘ . .33)
The three equations that determine the components of the general solutions are
Z"+(B* - uz = 0, (5.34)
" +n%@ =0, ' (5.35)
r?R" -+ rR' + (u2r? = n?)R = 0 . (5.36)

The possible solutions are, then,
7 - cos \]B2 - /_1,2 2
sin IB? _ u? z

(5.37)

®={cos né , , (5.38)

sin nf ,

J (ur) Y (ur) , |
R = .
I (ur) , or K, (ur) . (5.39)

and

The most general solution to equationsof the type 5.25 and 5.26is therefore

¢(r,0,z) = (F sin VB? - u? z + G cos NB? - u? z) E {[Lan(,u.r)
n=0

+ M;Y;(ur)] (A4, cos nf + E_ sin nﬁ)} ,  (5.40)
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where F, G, Ln, Mn, An, and En are arbitrary constants and Jn and Yn are arbi-
trarily used 1instead of In and K,. A solution of the type given by Eq. 5.40 ex-
ists for each solution of the buckling, that is, Bg and —Bg. Adding the solu-
tions gives the following expression for the most general solution of Eq. 5.21

for the slow flux:

' [+
¢, (r,0,2) = (Fx sin JB? - ud 2+ G cos \]Bi - ul z> )X {[Lln-fn(,ulr)

1
=0

3

+ MlnYn(,u.lr)] + (Aln cos nd + E = sin n@)}

+2]
+ (Fz sin I’Bg + “’3 z + G, cos I"Bg + 'L‘g z) Z {[LGIn('L‘zr)
n=0
MK, (u,r)| (A, cos nb + E, sin ne)} : (5.41)

As before, the ratio of fast toslow flux is known for each buckling; so the gen-
eral solution for the fast flux can immediately be written as

B - d
$(r.6,2) =——

e 1

(Fl sin ‘]Bi - u? oz

[+ 4]

+ G, cos JB: -/_z,i z) E {[Lln-fn(,ulr)
n=0

1n

+ MlnYn(,ulr)] (A cos ng + E,, sin n@)}

-B? - d
§— <F2 sin \]—Bg + ,u: 2z

-4

©
+ Gz cos -Bg + ,LL: z) Z {[L2nIn(/J'2r)
n=0

+ Mann(/“zr)] (4

2n

cos nfd + Ezn sin n@)} . (5.42)

Boundary Conditions. The boundary conditions of the problem are
1, qbf(R+8)=<;bs(R+8) =0, (5.43)

2. The fast flux is finite everywhere, including the rod positions; that is,
the rods are transparent to the neutrons in the fast group.
3. The asymptotic slow flux extrapolates to zero behind each rod surface;

that 1is,
[1 a¢s 1
— ] =, (5.44)
¢s ap pP=p, aR
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where p is measured from the rod center
and where p, is the radius of the
rods. The source for obtaining &p,
given in the discussion of the axial
rod case, applies here also.

As will be seen later, it is dif-
ficult to apply Eq. 5.44 to an off-
axis rod. An approximately equivalent
condition can be attained by finding
for an axial rod the radius (peff)
inside the rod at which ®, — 6 when
Eq. 5.44 is satisfied. The condition
5.44 is then replaced by

¢s(peff) =0

for the off-axis rods.
Application of Boundary Conditions

to General Solutions. It will be re-
called that in the case of the axial
rod the general solution involved the

(5.45)

¢, (r,8) = ¥ J (u,r) (4,

n=0

n

terms Y (u,r) and K,(u,r), which goto
-© at r = 0, and-that none of the
boundary conditions forced their
removal; 1n fact, they formed the
necessary sink terms for assuring that
the third boundary conditions could
be met. It is of no consequence that
with these functions the slow flux
becomes negatively unbounded and hence
fictitious inside the rod, because it
is only the flux in the active region
that is of physical importance.

The expressions for the flux in a
multirod pattern can be put ina similar
form; that is, a Y, and a K, term can
be established for each rod. The
radial components of the fast and slow
fluxes for the seven-rod pattern,
shown in Fig. 5.4, are given by the
expressions

cos n@ + Eln sin né)

7

+ .YO(/J’I'DI) tC L Yolup,)

+
s

3
i
[

7 .
* DK (ppy) + C Z DK, (u,p,)

and

B? - d
$y(r,6) —[
e

:Ng

0

n=2

In(uzr) (Azn cos né + Ezn sin n@)

(5.46)

a=2

J (u,r) (A, cos nb + E sin nb)

7
*Yo(upy) tC Z Yo(/"‘lpm)}

a=2

_Bg-d[
+_—

¢ n=0

+ DK (u,p,) + C

112

DK (pyp, )J :
0

@
¥y In(uzr) (4,, cos.nﬁ t+ E,, sin nb)

(5.47)




5.4.

Fig.

where Bf and —Bg are solutions of
Eq. 5.24 and functions of V,; M,and
M, are given by

pni = BI - (5.48)

and

(5.49)

R

and, hence, are also functions of Vs
Ai.» E;,» C, and D are arbitrary con-
stants; P, 1is the distance from the
mth rod center to the point (r,d) in
the two-dimensional radial plane
(Fig. 5.4).

If the quantities Yo(ulpn) and
Ko(wop,) are replaced by their equiva-
lent expressions, as given by the
addition theorem for Bessel’s func-
tions,

y;(“1pm) = Yo(u,r) Joleyr,)

+2 Z Y (uyr) J (u,r) cos nb  (5.50)

n=1

and

K (p,) = Ky(pyr) Io(ieyr,)

@
+2 X K (ur) I (u,r) cosnb .

(5.51)
=1
With the substitution
cos n@_ = cos na, cos nf
t sin na, sin nd , (5.52)
it becomes clear that Eqs. 5.46 and
5.47 are solutions of Eqs. 5.20 and

5.21, because it is seen that Eqs. 5.46
and 5.47 can be obtained directly from
the radial components of the general
solutions, Egqs. 5.41 and 5.42, by
assigning particular values to some
of the arbitrary constants.

In Eqs. 5.50, 5.51, and 5.52 the
notation is the same as that given
in MonN 383;(®) that is, O, is the
angle included between the radius
vector through rod m and the radius
vector through the point (r,8), and
a, is the angle measured counterclock-
wise from the radius vector through
rod 2 to the radius vector through rod
m, as shown in Fig. 5.5.

The following development, which
was worked out by the Power Pile
Section at ORNL, is the same as that

Fig. 5.5,

113



reported in the appendix of MonN-383,(%) except for minor changes. Upon sub-
stitution of Eqs. 5.50, 5.51, and 5.52 into Egs. 5.46 and 5.47, the latter two
equations take the form

¢,(r,8) = A (Jo(u,r) + 6CYy (u,r) Jo(u,r ) + Yo(u,r)

«
+ Z J (u,r) (A; cos nf + E; sin nb)
n=1 n

7
+20 F Y (ur) J, (uyr,) (cos na, cos n6 + sin na_ sin nd)

a=2

+ AgoIy(uyr) + 6DC Ky (uyr) Ig(u,r ) + DK(u,r)

-+
s

n=1

I (u,r) (A, cos n6 + E, sin nf)

7
+2DC Y, K (u,r) I (u,r.) (cos na, cos n@ + sin na_ sin nf) | (5.53)
‘=2
and
B: - d
Bf(r,e) =—e_' Alodo(uyr) + 6C Y (uyr) Jolu,r ) + Yo(ur)

+
w8

[Jn(p.lr) (Al;l cos nf + E; sin nf)

n=1

7
+ 2C Z Yﬂ(,ulr) Jn(,ulr.) (cos na, cos ngd + sin no, sin nQ)J
B} - d , .
+—e—— Agolo(par) + 6DC Ko(uor) Ig(u,r ) + DKo(u,r)
[+:]
+ Z I"(#zr) (A2n cos n6 + l’:z’I sin ng@)
n=1
. .
+2DC Y, K Xu,r) I (u,r ) (cos na_ cos nf + sin na_ sin nO)L. (5.54)
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The first boundary condition, that ¢, (R + §) = ¢f(R +8) = 0, is now applied
and the resulting equations are

¢ (R+8,0) =0=A,J[u,(R+8)] +6CY [u(R+ 8] Jyuyr )+ Y [u(R+8)]

+ Aoyl (R + 8)] + 6DC Ky [y (R + 8)] I(u,r) +DK [u, (R + §)]

+

Y {Aann (i, (R + §)]
n=1

7
+2C F Y [u (R +5)] Jolugr,) cos na, + A, I [u, (R + §5))

»=2

+

a=2 .

. ,
20c ¥ K [u,(R + 8)] I, (u,r.) cos na_} cos nf

+

7
{Eann (u,(R+8)] +2¢c % Y [u, (R + §)] J,(u,r.) sinna_

==2

+

E . T [u, (R + 8)]

+

7 .
2DC Y K [u,(R + 8)] I (p,r.) sin nal} sin né (5.55)

a=2
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and

B* _ 4

$,(R + 5,0 = 0 ='A1°—‘e—Jo[p1(n +8)]
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B} - d

- 6C Yo [p, (R+ 8)] Jy(uyr,)

Bl -d -B} - d
Yo [u, (R + 8)]1+ Ayg ———— I, [u,(R + 8)]
e

_Bg -d
- 6DC Ko [, (R + 8)] I,(u,r.)

-B? - d
DKylp,(R + 8)]

-4

B - d
— E ; {Aann[p.l(R +8)]

n=1

7
2¢ X Y, [u,(R+ 8)] J (ur,) cos na,

-B} _ 4
A2n_71n[/~’“2(3 +8)]

~-B? - d 1
20 ——— ¥} K,[u,(R+ 8)] I (u,r.) cos na, } cos nf
Bi - d a=2

7
{Eann[/J.,(R + 8)] +2C Z Y [p, (R +8)] J,(uyr,) sin na

”=2

B2 - d
2e I, [y (R + 5)]

B} - d

-B} ~d 1
wCBz_-d—.g K, [u,(R+ 8)]1I, (k,r,) sin na.} sin né
1

(5.56)



It 1s seen that Eqs. 5.55 and 5..56 are of the form

0 =a, + a; cos & + a, cos 20 + a5 cos 30 + ...

0
+ b, sin 6 + b, sin 20 + b, sin 36 *+ ... ;

thatis, they are Fourier series expansion's of zero. From the orthogonal proper-
tiesof the Fourier series, it follows easily that the coefficients are all equal

to zero: a, = bi = 0, for all i; that is

0= A, Jolu,(R+8)] +6CY [u,(R+8) J(ur)+ Ylu(R+3)]

+ Ay Iy [p,(R + 8)] + 6DC Ky [p, (R + 8)] I, (u,r,) + D Ky[u,(R+ 8)] , (5.57)

B - d B - d
1o ——— Jolu (R + 8)] +

. 6C Y, [n, (R + 8)] Jo (pyr,)
B2 - d -B3 - d
P Xy [y (R 4 )]+ Ay ——— Iy [, B + 5)]

-B} - d -B2 - d , o
+ ———— 6DC Ky, (R + 8)] I, (uyr ) +———D K [u,(R + 8)] , (5.58)

e e

and, forn=1, 2, ... ,

(=]
1

K
= Aann[#l(R +8)] + 2C Z Y [, (R + 8)] J,(uyr.) cos na,
=2

7
+ Ay I [p (R + 8)) + 2DC ¥ K [u,(R + 8)] I (u,r.) cos na, , (5.59)
a=2

o
I

7
= A, J [p, R+ 8] +20 F Y [p(R+8)] J (ur) cos na,
’ =2

-B; - d
+ Ay, ——— I [p,(R + 8)]
B} - d
-B - d 1
+2DC ——— Y K, [u,(R+ 8)] I (u,r,) cos na, , (5.60)
BY — d a=2
1

K
J, (p,(R + 8§)] + 2C E Yn[,ul(R + 8)] Jn(,u.lrn) sin na_
=2

0 =E,

n
7

+ E, I [pu,(R+ 8)) +2DC ¥ K [u,(R+ 8)] I (u,r.) sin na_ , (5.61)

r=2
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7
0=E J luR+8]+20 § Y lu@®+38)] J(u,r,) sin na,

n=2

-B2 - d
+E,, — I [u, (R +8)]
B2 -d
-B} -d 71
+ 2DC———d Y K lu,(R+ 8] I (u,r.) sin na, . (5.62)
ns2

2
Bi -

Equations 5.57 through 5.62 are the equations needed to evaluate 4,,, 4,,, 4

Azn (n > 0), and Eln and E2". Thus,

in?

6DC K, [p, (R + 8)) I (u,r) + D K lu (R + 8)]

A,y = - ' 5.63
20 I (u,(R +8)] ( )

6C Yolu (R + 8)] Jo(puyr ) + Y [u (R + 8)]

A = _ .
10 Jo[/il(R + 5)] ’ (5 64)

7
2¢ ¥ Y"[y.l(R +8)] J (u,r,) cos na,

a=2

A, = - , 5.65
1n J lu, (R +8)] ( )

: 7
2DC Z Kn[,uz(R + 8)] In(ulrm) cos na,
=2

A = - , (5.66)
I [p, (R + 8)]

7
2C Z Yn[y.l(R + 8)] J (u,r.) sin na
E,, = i—" . (5.67)
J [ (R +8)]

7
2DC ¥ K [p, (R + 8)] I (p,r.) sin na,
E, = -— """ : (5.68)
I (e, (R + 8)]
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Now, by applying boundary condition 2, that the fast flux must be finite at
each rod, directly to Eqs. 5.46 and 5.47, it follows, by the same reasoning as
that given in Egs. 5.14, 5.15, and 5.16, that

o / B} -d
D==|—] . | (5.69)
"\-B2 - d

Thus the A's and E's are known explicitlyat this point, except for the constant

C.

The procedure for determiningCis discussed in the following. Boundary con-
dition 3 (Eq. 5.45) says that ¢s(peff) = 0 for each rod, where Pes is the ef-
fective radius of the rod. By applylng boundary condition 3 at roé 2 directly
to Eq. 5.46, noting that & = 0 forrod 2 (by definition), andusing the notation
of MonN-383¢(¢) that

r distance from rod 1 to rod 2 =r, = r_,

12 n
ry, = distance from rod 3 to rod 2 ,
r., = distance from rod m to rod 2 ,

it can be seen that

+

®
0= Z Aann('u'lrz)

n=0

Y (uyry,) +C [Yo(plpeff) + Y (ury,)
* Yoluyrey) + Yoluyrgy) + Yoluyrgy) + Yoluyry,y)]
@
t Y A (uyry) + D Ky(uyry,) + DC [KO('U’Toe_ff) * Ko(pyry,)

n=0

Ky (uyryy) + Koluyrg,) + Kolpyrgy) + KoGuyry )] (5.70)
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Substitution of Egqs. 5.63 through 5.69 into Eq. 5.70 gives

6C Yolp, (R + 8)] Jo(u,r) + Y lu (R + 8)]

.. J
0 APRTED) ) 0 (#172)

7
-2¢ ¥ Yn[pl(R + 8)] J, (u,r,) cos na, _
+ =2 J (yr,)
J, [/LI(R + 8)]

7
*Yo(pry,) tC [Yo(/‘lpeff) B Yolpyr,,)
a=3

2
o Bl-d B2 _d

1 ’ 9
60— ——— K lu, (R + 8)] Iouyr,) +— ——— Kolu, (R + 8)]
-32 -d _32 _d
) I, (u,r,)
I [p,(R+ 8)]
2 Bz—d 7
® -2 — ——— z Kn[/iz(R + 8)] In(/.Llr.) cos na,
m _BZ - d a=z2
-2 =
! I (u,r,)
n 2 2
I [u,(R+3)]
n=1
2 Bi - d 2 B: -d 7
77' _32 _ d Ko(/‘l’zrlz) + C;———_Bz _ d Ko(uzpeff) + .gs Ko(uzrlz) . (5.71)
2 2

By noting that

cos na, + cos nay * ... *+ cos na,=0 .

whenn=1, 2, 3, ..., because of the angular spacingof the six symmetrical rods
in the outer ring, and solving for C, i1t is found that

9 Bl -4
= Kylp (R + 8)]
Yolu, (R +8)] o BI-d 7 B} _d
Yoluyry ) + ———————— J (uyr,) - = KoQuary,) + ToCu,r,)
0 17 12 J,,[u,(R+8)] [ Riat U] "—B:—d 02 12 Io[/.L’(R+8)] [ Al M1
C= I . (5.72)
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wh esver. G
6Y [, (R + 8)] J (u,r)
L = - J (w,r.) +Y (p )
J lu, (R + 8)] i’ 1Peff
B> - d .
2 kL, + 9] Iy(u,r,)
7 T .B? - d y
. 2
+ Yoluyr,,) - I (n,r,)
L, Tolkarus I, [, (R+8)]
B - d B -~ d 7
2 1 2 1
+ — K - —— K (w,r )
7 B2 - d oBalers) T B2 - d .§3 02" n2

i

All the arbitrary constants have
now been determined. To get the final
criticality equation, which gives the
desired relation in the unknown, v_,
the third boundary condition is again
applied, this time, to the axial rod,
rod 1. Since ¢, (p f) = 0 for all
g, it 1is legltlmate to simplify the
resulting equation by applying the
condition at ¢ =. 0. The result is

0 = Ay + Yoluyp, pg) + 6C Yoluyr,)

+ A, + 2 Bf ~ ¢ K. ( )
20 Y 0 \H2Pe g
2 (Bl - d
+6C —|—— Ko(uar,) , (5.73)
T \-B -d

where A, is given by Eq. 5.64, A,  is
given by Eq. 5.63, D is given by
Eq. 5.69, C is given by Eq. 5.72,

B? and -32 are solutions of Eq. 5. 24

iy is given by Eq. 5.48, -u3 is given
by Eq. 5.49, and all are functions of
V. .

“ To review, then, the procedure for
finding the effectiveness of the
symmetrical pattern of seven rods is
to
1. select a trlal value of v, :
2. determine B and -B from Eq. 5.24,
3. determine “1 and ©? from Eqs.

5.48 and 5.49,

4, determine D from Eq. 5.69,

5. determine A,;, and A,, from Egs.
5.64 and 5.63,

grq'et,erm1ne the C from Eq. 5.72,

see whether Eq. 5.73 1is sat1sf1ed
by these values and, if not, repeat
the procedure until the required
value of v 1is found,

8. evaluate the effect of the pattern
of rods from Eq. 5.2,

RESULTS OF CALCULATIONS ON CONTROL RODS

Figure 5.6¢®) shows the effect of
a 2-in., solid B4C, control rod on the
axis of various reactors with fast to
thermal fluxes.

Figure 5.7¢%) shows the effect of
an axial control rod as a function of
the effective radius (peff’ Eq. 5.45)
of the rod. This figure presents the
results according to two assumptions:
(1) the rod is black to all neutrons
(captures all neutrons that enter it),
and (2) the rod is black to thermal
neutrons and transparent to fast
neutrons. No control rod material
satis fies the first assumption, of
course; so this part of the curve 1is
of theoretical interest only.

(B)T. Rubin, H. E. Stern, and F. W. Mezger,
An Axial Control Rod in Cylindrical Reactors,
NEPA 1207-EAR-R14 (Nov. 15, 1949).

(9)C. R. McCullough, Summary Report on Design
and -Development of High Temperature Gas-Cooled
Power Pile, MonN-383 (Sept. 15, 1947).
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RADIUS OF THE SQUARE CYLINDER REACTOR
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Fig. 5.6. Percentage Change in

Reactivity vs. Molecular Ratio for
Removal of 2-in.-dia Axial Slug and
Insertion of.z-in.-dia Boron Carbide
Rod into Cold, Clean, Be,C * 1/3 C
Moderated Reactors.
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Fig. 5.7.
Control Rods.

Effectiveness of Central

Figure 5.8(!'°) shows the effect
of a rod, with p = 1.35 ¢m, as a
function of distance off the reactor
axis.
» Figure 5.9¢!%) shows the effect
of an array of seven control rods,
one on the axis and six ina symmetrical

(lo)J. A. Wheeler, Principles
Poger - Chapter 22: Control, N-2292,

of Nuclear
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Fig. 5.8. Effect of a Single Control
Rod on Reactivity. Effective radius of
rod = 1.35 cm,

o
07

WA N
| /
L
L
I

N

N

CHANGE IN & (Ak)

04
0
) 2 4 6 8 10 12 14
ACTUAL RADIUS OF CONTROL RODS (¢m)
Fig. 5.9. Change in k for an Array

of Seven Control Rods (Best Spacing).

ring around the axis, as a function
of rod size. It is found that when
the rods get to a certain size they
‘“*shadow” each other to such an extent
that the total effectiveness begins
to be reduced.

In Figs. 5.7, 5.8, and 5.9 the
rod effect is expressed as Ak (cf.,
paragraph following formula 5.4). It
is necessary to divide by k,, < 1.78
to interpret this effect in the units



recommended at the beginning of this
chapter.

Figure 5.10¢(!'1) shows the effect
of a pattern of four 2-in. rods in a
ring (no rod on axis) as a function
of distance off the axis. These
calculations were done by one-group
theory and are overestimates. They
indicate the qualitative conclusion
that there is usually a‘‘best place-
ment” of any set of control rods.

Figure 5.11¢!'!) shows the flux
distribution in the reactor with the

(ll)J. W. Webster, Control Rod Effects on
Reactivity and Pover Distribution, NEPA-IC-50-2-52
(Feb. 7, 1950).
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Fig. 5.10. Effectiveness of Four
2-in. Rods Placed Symmetrically at

Various Distances from the Reactor
Axis. RBRadius of square-cylinder
reactor = 2.9 inches.

four-rod pattern of Fig. 5.10 for
different placements of the rods.
The placement where the rods are 29.1%
out on the reactor radius results in
the flattest power distribution and
also. in the maximum reactivity ef-
fectiveness.

Figure 5.12¢1%) shows the effect
of partial insertion of an absorber
control rod, expressed as a fraction
of its total effectiveness.

PROBLEM

1. Calculate the reactivity effect
of a 2-in. control rod which lies on
the axis and is black to thermal
neutrons and transparent to fast
neutrons. For this calculation, use
the reactor described in problem 1 of
chap. 4. Also, calculate the effect of

a pattern of seven such 2-in. rods,

one on the axis and six in a ring off
the axis a distance equal to one third

the reactor radius.
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Chapter 6

KINETICS

The first five chapters have dealt
with subjects that are clearly important
in reactor design; that is, through a
joint theoretical and experimental
program, the critical mass and critical
size must be determined that are con-
sistent with heat transfer and shield-
ing constraints. The effects of
temperature, fission-product poisons,
and uranium depletion must also be
found, and then the necessary number
of shim control rods needed to offset
these effects can be determined.

In respect to reactor kinetics, or
the time behavior of the power, com-
ponent temperatures, and fission-
product-poison concentration, it 1is
perhaps not so clear just what the
theoretician should do, that is, just
what concerning kinetics is important
to reactor design.

Perhaps the role of the theoretician
in kinetics could be summarized by
saying that he helps to design a safe
and easily controllable reactor. For
example, some reactor designs are
inherently very stable. If the power
starts to change because of some
inadvertent perturbation, the reactor
automatically restores itself to the
original power. Such reactors have a
large, negative, temperature coef-
ficient, that is, the keff decreases
with increased reactor temperature;
and thus when the power and hence the
temperature increases, the reactor
becomes subcritical and the power
decreases. In a reactor witha negative
temperature coefficient, if a control
rod is withdrawn a short distance and
left there, the power will increase
for a few moments and then become
steady at a new, somewhat higher,
power.,

It is clear, then, that a reactor
proposal should be investigated theo-
retically to see whether the tempera-
ture coefficient is positive or negative
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and to determine its magnitude. The
response of the power and the tempera-
tures to various assumed perturbations
should be calculated. Various questions
must be answered, such as, ‘““how fast
should the control rods be designed to
move?”

Probably one of the most thorough
and capable investigations of the
kinetics of a reactor that had been
conducted at the date of this writing
was that for the submarine thermal
reactor (STR). The STR is a water-
cooled and -moderated reactor with
solid fuel plates. The water, which
is heated as it passes through the
core, is used to make steam which runs
turbines for propulsion of the ship.
As the power increases, the average
water temperature increases, and the
associated decrease in water density
tends to decrease the keff and to send
the power level down again. As a
consequence, the STR is a very stable
reactor; 1t has excellent self-
regulation characteristics; and almost
no accident, except that caused by
sabotage, would result in damage to
the reactor.

The report on the STR investi-
gation{!) gives an excellent example
of the kind of theoretical work that
can be done to answer the question ‘‘is
the reactor safe?’’ The following is
quoted from the introduction of the
report:

It is the purpose of this paper to in-
vestigate accidents which will affect the
reactivity of the Mark I Submarine Thermal
Reactor (STR) when it is operating in its
designed power range and to estimate the
effect of particular accidents on the over-
all power plant. Events which may occur

during the operation of the plant -~ mal-
function of some component or operational

(1), F. Henry, Accidents Affecting the Re-
activity of the Mark I STR, WAPD-41 (Oct. 1951).



errors - will be examined in considerable
detail.
sabotage will be investigated to the point

Catastrophes and possible acts of

of estimating the extent of damage and the
time required for the catastrophe to
develop.

Primary emphasis will be placed on the
results of accidents rather than on the
mechanism by which they may occur or the
probability of their occurring. For
example, the behavior of the reactor
following failure of all coolant pumps will
be examined. It is not intended to imply
by this examination that there.-is any
serious probability that such an accident -
or any of the other accidents studied -
will occur and no attempt will be made to
give a quantitative estimate of this
probability. Only qualitative statements
of how such an accident might occur will

be stated.

Table 6.1, which is a reproduction
of a table from the report,(!) suggests
the kind of investigation that can be
made of the kinetics of a reactor
design.

KINETICS EQUATIONS

The equations of reactor kinetics
that are encountered in a study such
as that made for the STR and an indi-
cation of how they can be solved will
now be given. The equations that
follow apply in particular to areactor
with a fixed moderator, a liquid
coolant that flows through the reactor
in one pass, and fixed fuel plates or
tubes. The equations, with slight
modifications, apply to the STR, the
MTR, most of the airplane reactor
proposals, and other reactors.

The simultaneous, first-order,
differential equations will be set
down for (1) the flux, (2) the concen-
tration of delayed-neutron emitters,
(3) the fuel temperature, (4) the
moderator temperature, (5) the coolant
temperature (as functions of position
along the reactor length), (6) the
iodine (xenon precursor) concentration,
(7) the xenon concentration, and (8)

the excess keff, which depends on
items 3, 4, 5, and 7. ’

Flux. In chap. 1, which was on the
one-group theory, it was stated that
there were reasons, over and above the
pedagogical ones, for presenting the
one-group formulation. It does have
practical uses, and the study of
kinetics provides such a use, The
one-group equation and the equivalent
bare reactor are used here. As will be
seen in the paragraphs on “Flux” in
the following section on ‘“Convenient
Transformations,” the average neutron
lifetime is the only reactor constant
needed, and therefore it is unneces-
sary to average the various constants
entering into the one-group formulas
for criticality. The lifetime should
be calculated by methods more accurate
than the one-group method.

It will be recalled that in the
one-group, steady-state case described
in chap. 1 the neutron balance was
expressed- as

.~(leakage) - (absorption)

+ (production) = 0 .,

It follows that in the nonsteady state
the equivalent statement 1is

-(leakage) - (absorption)
+ (production) = (rate of
change of neutron density) .

Flux with no Delayed Neutrons. 1If
all fission neutrons appeared promptly
after fission, the equation for the
flux with no delayed neutrons could be

written as

t
+— = V2 (r,t) - blr,t) I,
on(r,t) '
o) 3, = — ) (6.1)
a dt
where
r = the spatial position,
t = time,
n = neutrons per unit volume at r and
time t.
Actually, some of the fission

neutrons (about 0.76%) do not appear
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TABLE 6.1.

SUMMARY OF REACTOR ACCIDENTS

ACCIDENT

FIRST EFFECT

FINAL RESULTS

APPROXIMATE TIME
BEFORE FINAL
RESULTS COMMENCE

MEANS, OTHER THAN SCRAM, BY
WHICH ACCIDENT CAN BE
CONTROLLED

10.

11.

12.

13,

Primary coolant pump failure

Closing of steam turbine throttle

Regulator rod introduces a step
increase of 0.6% in reactivity

Shim and xenon rods all move out
at maximum speed

Xenon rods leock in position just
as the fully xenon poisoned pile
goes critical

Emergency cooling loop opens
during normal operation

At a time when only one of the
two boiler loops is operating,
the valves separating primary
coolant from the inoperative
loop are opened, the pumps in
the loops are started, and the
initially operating loop is
closed off

Pressurizer malfunctions so that
pressure in the primary loop
increases

Pressure in primary coolant
system falls

Extended boiling in core

All control rods removed from
core at scram rate (sabotage)

Coolant water removed from reactor
A block in the adjacent water

channels causes a fuel plate to
melt

Coolant temperature surge; no oacil-
lstiona; reactor power falls abruptly

Temperatures in power plsnt rise
(~25°F)}; reactor power falls abruptly

Reactor power increases in ~0.l sec to
3.5 times its initial value; falls to
2.2 times its initial value in ~0.3
sec

Rise in reactor temperatures of
~1,5°F/sec

Riae in reactor temperatures of
~0.3°F/sec

Some of coolant about to enter the core
is shunted through emergency loop

Temperature of primary coolant entering
core fslls 60°F/sec for § sec; reactor
power increases to 14 times initial
power; no oscillations are to be ex-
pected -

Temperature rises 1°F for 97 psi rise
in primary coolant pressure

Primary coolant water temperature
falla alightly

Reactivity decresses

Reactivity increases ~3.6% per sec,
reaches prompt critical in 0.2 sec,
then goes as exp (+250 t?)

Reactivity falls; fuel plates heat up

Reactivity falls ~ -0.0006

Coolsnt boils

Coolant boila

Reactor power approaches a higher
equilibrium value of 1.2 times its
initial value

Coolant boils

Coolant boils

Reactor delivera power both to
boilers and to emergency loop

Power snd temperatures return to
initial values

Primary coolant system rupturea

Coolant boils

Equilibrium when ~50% of volume of
coolant in reactor is in vapor
phase

Pressure relief valves in primary
coolant loop blow; fuel plates
vaporize

Fuel plates melt
Average coolant temperature in core

falls ~2°F; channel blocking may
spread

2 minutes

10 minutes

20 seconds

[

minutes

10 minutes

10 seconds

-

seconds

Dependent on rate
of pressure in-
crease

Dependent on rste of
pressure decrease

Dependent on cause

of boiling

0.2 seconds

1 minute

~ geconds

Emergency cooling loop
Emergency cooling loop

Automatic

Return roda to core at
normal insertion rate

Return xenon roda to core at
normal insertion rate

Close emergency loop valves

Automatic

Relief valves in primary line
blow

Repressurize or shut reactor
down

Dependent on cause of boiling

None — must scram in ~0.2
seconds *

Return coolant to core

None - moreover once tbe
melting has atarted, even
scramming will not control
the accident




promptly after fission, but, rather,
they arise after a delay time that is
dependent on the beta decay of various
fission products; hence, they are
referred to as the ‘“delayed neutrons.”
It is worthwhile, however, to solve
Eq. 6.1 to see the form of the so-
lution, even though the results have
no practical value. The right side of
Eq. 6.1 can be written as

an(i,t) 1 an(i,t)v 1 3¢(£,t)

e at ;

ot v ot v
(6.2)

then, dividing Eq. 6.1 by > gives
L?V? ¢(r,t) + (B - 1) &(r,1t)

A, 9p(r,t)
= _ 6.3
v ot ( )
where, as before, L? = AN, /3. The

quantity Ka/v is the infinite reactor
neutron lifetime (neutron lifetime if
there were no leakage). When Ka/v is
defined as l,, Eq. 6.3 becomes

L23V2 ¢(r,t) + (k - 1) ¢(r,t)
op(r,t)
l S
°
An attempt is then made to separate
the variables by assuming that

P(r,t) = o(t) Z(r) .

Now, since the approximation of re-
placing the reflected reactor by its
equivalent bare reactor has been made,
it follows that

V2 Z(r) + B2 Z(r) = 0  (6.6)

(1f the assembly 1s not too far from
critical), where

1 - #]
Cl2(x, + 8)

for slabs, 0 being the half
thickness of the equivalent, bare,
slab reactor; B? is equal to the
equivalent expressions for the other
soluble geometries. Equation 6.5
simply says that it is assumed that

. (6.4)

(6.5)

with x

the transient, spatial, flux distri-
bution remains as a cosine for slabs,
as (sin Br)/r for spheres, and as a
zero-order Bessel’s function for the
radial distribution in cylinders.,
Substituting Eqs. 6.5 and 6.6 into
Eq. 6.4 and dividing out the Z(r) gives

dp(t)
(-L*B? - 1 + k) o(t) =1, ? ,
dt
(6.7)
and dividing through by (1 + L2B?)
gives
1) é(e) - Ly do(t)
1+ L2B? ~ VST dr
(6.8)

The quantity 1/(1 + L2B?) is the
probability that a neutron will not
escape from the reactor, aswas pointed
out previously., Thus k/(1 + L%?B?) is
the keff for the one-group model. The
quantity 1 /(1 + L2B?) is called the
finite reactor lifetime, which is
denoted here by £, that is,

Lo
£ = I—:—Z;E; . (6.9)
With these substitutions, Eq. 6.8
becomes
dp(t)

Since k, .. =1 for thecritical reactor,
the quantity (k& - 1) is called
eff

k-excess;'that is,
k,, = keff -1,

With this substitution, the solution of
Eq. 6.10 is

INCRWITE
d(t) = ¢(0) e ,

since, in general, kez is a function of
time, If the case 1s considered in
which kez remains constant, that 1is,
there are no temperature or fission
product poison effects, then Eq. 6.11
reduces to

(6.11)

(&, /L)

P(t) = ¢(0) e . (6.12)
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As was stated in chap. 2, the most
commonly accepted definition of
reactivity 1is

k

reactivity = . o , (6.13)
eff
which is often denoted by the symbol p:
k

p = k" (6.14)

eff
Thus, the time dependence of the one-
group flux in the equivalent bare
reactor, for which kex is a constant

because of the false assumption that
there are no delayed neutrons, is
given by

(pk_ , . /L0)t

= $(0) e eff

"when Eq. 6.5 is considered, be-

é(t) (6.15)

which,
comes

$(r,t) = d(r,0) e Prers/D

The quantity C/pkef

(6.16)

in the exponent

is called the period, T; that is,
e
T =nunv-—. (6.17)
Pk ety
Equation 6.17 in the form
£ (6.18)
p = .
Tkeff

is sometimes called the inhour formula,
under the false assumption of no
delayed neutrons, More specifically,

however, the inhour formula for the
case of no delayed neutrons is
£
Tkeff

pin =——p—,  (6.19)

3600 k,

which gives the reactivity in units
called inhours, where 1 inhour is the
amount of reactivity that will cause
the reactor to have aperiod of 1 hour.

The formulation has, perhaps,
carried a bit too far under the as-

been
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sumption of no delayed neutrons and a
more realistic treatment will be
given, but it is worthwhile to see that
the reactor has a purely exponential
behavior and that even with a small
amount of k_,, the flux would assume
astronomical values in a very short
time if it were not for the damping
effect of the delayed neutrons. For
example, by taking a typical value for
£, say 10°* sec, and by supposing that
a conservative amount of k, , say
0.002, is injected, the flux would
rise as

., t) = ¢(r,0) e2°T

and in 1 sec would rise by a factor of
10% (if the reactor remained intact).

Flux with Delayed Neutrons. As
stated before, some of the fission
neutrons (about 0,76%) actually do not
appear promptly after fission, but,
rather, they arise after a delay time
that is dependent on the beta decay
of various fission products. These
delayed neutrons have, on the basis of
experimental measurements, been‘ peeled
off” into six groups. Each group is a
certain fraction, B,, of the average
number produced per
fission.,

of neutrons

Each group has adefinite, measured,
mean time, I, for appearance after
fission that is related to the half
life, Ty o of the fission product
(called éhe ith-group precursor) which
is the emitter of the ith group by the
usual relations:

l1n 2

'Tl

1
L,

The probability per second for delayed
neutrons of the ith group to appear is

1
N, = — ,
v l.

Table 6.2 gives the experimentally
measured data on the six groups of
delayed neutrons,



TABLE 6.2. DELAYED NEUTRON DATA
. A
B T i L bilien d
GROUP (fraction of neutrons | (half life of ith-group | (mean delay time of (probability per secon
NO. .. . for appearance of 1th-
per fission)* precursor, sec) i1th group, sec) -1
group neutrons, sec
1 0.00029 0.05 0.07 14
2 0.00084 0.43 ~0.62 1.61
3 0.0024 1.52 2.19 0.456
4 0.0021 4.51 6.50 0.151
5 0.0017 22.0 31.7 0.0315
6 0.00026 55.6 80.2 0.0124

6
*The total of the neutrons per fission is given hy J ’Bi = B = 0.000759.
i=1

With the definitions

with the spatial component separated

6 out 1is
= 1
B = i§1 B; (6.20)  4(¢) [kex(t) -8 keff(t)]
and Ciogr,t) = (concentration of ith 1 8 db(t)
group precursor at position r and time +— L A C,(t)=C , (6.24)
t), it follows that the statement that zai=1 k¢ dt
-(leakage) - (absorption) where
+ (production) = (rate of Cio(t)
change of neutron density) Ci(t) =— (6.25)
b 1 + L*B?
ecomes
tr &
3 V2 $(r,t) - dlr,t) E, + dlr,t) 5, k(1 =B + § C.o(r,t) A
i=1
1 ,t
(L2 g
v ot
An attempt }s rniade to separate the or
iabl b i that -
varilia es Y assuming ¢(t) [,O(t) ,8] keff(t)
d(r,t) = ¢(t) Z(r) .
- - dop(t
and ) (6.22) P L \C(t)=C qz( ), (6.26)
Ciolrat) = Ci(t) Z(r) , 24 im1 t
where where
V2 Z(r) + B2 Z(r) = 0 . (6.23) k.
. p = (the reactivity) .
It is found that the flux equation keff
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Concentration of Precursors. The
six differential equations for the
concentrations of the precursors of
the six groups of delayed neutrons
express the fact that

production per sec decay per sec of
of the ith-group - the ith-group

recursor recursor
P

rate of change of concen-
= tration of the ith-group

precursor
Thus
d(r,t) T kB, - N, C.y(r,t)
dC,,(r,t)
= " (6.27)
for i =1, 2, ..., 6. Using Eqs. 6.22
and 6.23, separating out the spatial

component, and d1v1d1ng through by
1 + L2B? gives

(t) 2, b, (t) By = A, Co(2)
' dC; (¢)
== (6.28)
where i =1, 2, ..., 6.

Before going on to derive the
equations for the temperatures and
fission product poisons, which de-
termine the time behavior of k_ .., it
is worthwhile to consider the special
case in which &k is constant (and
not equal to unity), An attempt is
made to obtain a solution of the seven
simultaneous equations, Eqs. 6.26 and
6.28, by assuming that ¢(t) and Ci(t)

have solutions of the form

P(t) = A e“!
and (6.29)

Cl(t) =Dl ewt N

where A and D; are constants, and by
substituting Eq. 6.29 into Eqs. 6.26
and 6.28 to see whether solutions for
@ exist which assure that solutions
for ¢(t) and Ci(t) of the form of
Eq. 6,29 exist. The substitutions
yield

t =1, 2, ..., 6,
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1 6
t - ) —_
AT (p=PB) k pp ¥ gl §

a t

o= LwA et (6.30)

and
- ' t
A et ZokopeB = NDy e
= D, e®t | (6.31)
where ¢ = 1, 2, ..., 6., Upon dividing

out the e®! and solving Eq. 6.31 for
Di’ it is found that

D A akeffﬁi
AR
Substituting Eq. 6.32 into Eq. 6.30
and dividing out the A e“! in Eq. 6.30
gives

(6.32)

(p = B) kst kyyy i§ ‘Zr:—x- = fw ,
(6.33)
or .
By
Pless * eff E<w Y "Bi>= bo
(6.34)
or
s Wb
or
(V) 6 wf;
P = + z '—+—l}\—o (6036)
kepr = @ i

Eq.

For any given reactivity, p,
6.36 is an equation of the form

Wl + A+ A2w5 tootAw=b .

Thus there are seven solutions for w.
If a plot is made of p as a function
of w, it 1s seen that for p > 0, one
solution of w is positive and the other
six are negative, Furthermore, it 1is
seen that for any p, the other six
values of w lie between consecutive
values of -A;, one to each interval.

Let w, be the root which is positive
when p > 0, and let w, be the root
lying in the interval

—As < @, < —AG = -0,0l6 ,



and, similarly,

4 2 5
”Xs <-w3 < —X4 ,
—Xz <w, <A, ,
A, <wg <=, ,

< —xl .

~ 1
-104 ® "iE-< W

it 1s determined that

t
expressions of the form D; e are
solutions for the flux, and expressions

;t .
of the form D, e“*" are solutions for

the precursor concentrations, where

In this way,

w .
1

the w, are those discussed above. The
complete solution is, then, the sum
of the particular solutions. Thus
t t t
P(t) = A, e +A e+ A e
w, 1
+ LR BN} + AG e 6 (6.37)
and
_ wot wlt
Ci(t) = Dio e + Di1 e
. t
+ . +D, €% , (6.38)
where 1 = 1, 2, ..., 6. The Dij can
be evaluated from Eq. 6.32; that 1is,
D A zakeff’Bi
v J w;j + N
in terms of the A.., The seven A; can

be evaluated from the initial values
of the ¢ and C; after multiplying
through by the spatial component. It
turns out that A; > 0 and Aj < 0, for
j=1,2, ..., 6.

Even though the constants have not
been evaluated precisely, enough 1is
known to make some observations on the
behavior of the flux in the special
case where k, f is a constant and not
equal to unity. The wy is the largest
root in absolute value, and since it
is negative, the last term in the flux
expression will quickly become negli-
gible after a time of the order of the
neutron lifetime, The fifth term will
become negligible next, and so on
through the fourth and third terms,

and, finally, after about 0.2 sec,
all terms after the first will be
negligible compared with the first,
For this reason, 1/w, in the first
term, which it will be recalled 1is
positive for p positive, 1s called the
stable reactor period, T. An obser-
vation can be made at this point: if
the flux is differentiated with respect
to time and t is set equal to zero (in
order to find the initial slope), it
is found that the last term dominates
(wg is very large). Since wg is close
in absolute value to 1/L, it follows
that the initial behavior of the flux
depends primarily on the neutron life-
time; that is, the flux behaves
initially as if there were no delayed
neutrons, The graphs for this chapter
illustrate this point. The flux climbs
very steeply for a fraction of a
second, and then the delayed neutrons
“catch” it and 1t begins to round off;
finally, after about 0.2 sec, the
increase steadies into that of the
stable reactor period,

Going back to Eq.
seen that since w

6.36, it can be

is a solution of

0
Eq. 6.36,
Lo, 5 woh;
p = + L ——,  (6.39)
keps i=1 @ * A
and since T = 1/w,,
v s A
p = + L —1  (6.40)
Thegs i=1 14 AT

which relates the reactivity and the
stable reactor period. The equation

6 B
c . ¥ i
Th,;p =y 1t NT
£ 6 By
——.+ ————
3600 k, . /oy 1+ 3600 A,
(6.41)

expresses the reactivity in inhour
units. One inhour of reactivity is
the reactivity which causes a stable
reactor period of 1 hr (3600 sec).
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The preceding discussion was a
digression that was made after ob-
taining Eqs. 6.26 and 6.28 to consider
the special case in which k, (and p)
is a constant, Actually, however, in
every reactor, to a greater or lesser
degree, kef varies with time - even
after the control rod is moved to a
new position and left there. The
change of reactivity with temperature
and with change of fission-product-
poison concentration makes it necessary
to couple additional first-order dif-
ferential equations with Eqs. 6.26 and
6.28 (already seven in number) to
account for the variation of k, and p.
The equations are written for the
temperatures of the three regions:
fuel, moderator, and coolant., The
reactor 1s assumed to be cylindrical,
with the coolant flowing longitudinally.
The temperatures are expressed as
radial averages at a variable, longi-
tudinal, position z.

Fuel
equation
tures at

Temperature. The kinetic
for the fuel-plate tempera-
position z along the reactor

length is
0 (z,1)
37 éf P(z,t)
= Ap [6,(2,8) -6 (z,8)] , (6.42)
where
Hf(z,t) = the radial, average, fuel-
plate temperature at longi-
- tudinal position z at time t,
6.(z,t) = the radial, average, coolant
temperature at longitudinal
position z and time t,
P(z,t) = ¢(t) P(z),

z a, )
Hc(z,t) =016, t —-—)+— 9f z',
v v
a z
2[5
YV Jo
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P(z) the longitudinal, power
distribution normalized
such that

fLP(z) dz = 1,
0
L = reactor core length,
éf/L = rate of increase of fuel

temperature per unit flux
in the absence of cooling,

Kf = rate of loss of temperature
by heat transfer from fuel
plates to coolant per degree
difference in temperature
of fuel and coolant.

The P(z) should be determined by at
least a two-group calculation. The
constants {, and Xf can be determined
from the thermal 'properties of the
materials and the geometrical arrange-
ment of the core structure.

If Eq. 6.42 is multiplied by the
heat capacity of the fuel, Cf, it 1is
clear that the first term on the right
is then the heat per second being
supplied to the fuel, the second term
is the heat being transferred to the
coolant per second, and Cf(aef/at), on
the left, is the net amount of heat
accruing in the fuel per second.

Moderator Temperature. The kinetic
equation for the moderator temperature
at position z 1is

a@m(z,t)
ot
-\, [6,(z,8) - 6_(z,0)] ,

=L, ¢(z,1)

(6.43)

which is identical in form to Eq. 6.42
and has analogous definitions,

Coolant Temperature. The equation
for the coolant temperature at position
z and time t 1is




where v is the coolant velocity and
.(z,t) 1s the temperature of a slug
of coolant at position z and time t;
the first term on the right is the
temperature at which this slug entered
the core at a time z/v seconds previous
to time t; the second term on the
right is the rise in the temperature
of the slug in moving from z = 0 to
z as a result of heat transfer from
the fuel; and the last term on the
right is the rise in temperature of
the slug as a result of heat transfer
from the moderator. The constant a,
is the coolant temperature rise per
second per unit temperature difference
between fuel and coolant; the constant
a, is the coolant temperature rise per
second per unit temperature difference
between moderator and coolant. The
constants a, and a, can be evaluated
from a heat transfer analysis.

Iodine Concentration. The kinetic
equation for the spatial average of
the iodine (xenon precursor) concen-
tration 1is

dd (t)
dt

(6.45)

=y #(t) = A d(1)

where y i1s the number of iodine atoms
formed per unit volume per second per
unit flux and A, is the decay constant
for I'35, This equation and the
following equation for xenon are
discussed in chap. 4 (y has a slightly
different definition here than in
chap. 4).

Xenon Concentration. The kinetic
equation for the spatial average of
Xe!3% concentration is
dl (t)

dt

= A, d(e) = A, X(¢)
- o, #(t) L(t)

where A is the decay constant for
xenon and o_ is the microscopic cross
section of Xe'3% averaged over the
reactor flux spectrum.

The other fission-product poisons,
such as samarium, obey similar equa-

(6.46)

tions, which are omitted here for
brevity.
Reactivity. The reactivity, p, and

the keff [= 1/(1 - p)] of the reactor
depend on the temperatures of coolant,
moderator, and fuel plates, the con-
centration of fission-product poisons,
and the position of the control rods.
The temperatures determined above as
functions of longitudinal position are
averaged over the core length, and the
reactivity is determined from the
averages; the averages are denoted by

ef(t), 6,(t), and 6, (t).

The equation for the reactivity is

Pk, =k, (8) = Bk (1)
+ ef[ﬁf(t) - 9f(0)]
+ e [6,(t) - 6,(0)]
+ ec[ﬁc(t) - 90(0)]

+e [X(r) - X(0)] , (6.47)

where

the change in k per degree
eff

change in average fuel plate

temperature evaluated at Hf

= Hf(O),

the change in keff per degree

change in average coolant

temperature evaluated at

6, = 6,(0),

the change in keff per degree

change in average moderator

temperature evaluated at

6, = 6,(0) and with X = X(0),

the change in keff per unit

change in xenon concentration

evaluated at { = X(0) and

6, = 6,(0),

the k__ introduced by the

control rods.

Skc(t)

CONVENIENT TRANSFORMATIONS

It 1s convenient to make certain
transformations of these kinetic
equations, By expressing the quantities
as dimensionless variables in terms of
the values at t = 0, many of the
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constants disappear and the numbers involved are reduced toa convenient magnitude.
Flux. In the flux equation the following substitutions are made:

P(t) = @y + ¢'(t) (6.48)
keff(t) = kex(t) t1,
' ' - (6.49)
kez
,0 =
kefs
Cit) =Cyy +Cic2t) (6.50)

where ¢oandc.oarethe steady-state flux and ith-group delayed-neutron-precursor
density for t=0, and ¢'(t) and C;(t) are the departures from the steady state
values with these substitutions Eq. 6.26 becomes
do' (t
E¢()
dt

= [¢y + ¢'(t)]{ke;(t) -B 1+ ke,(t)]}

l !
= L 3Gy +Cio (65D

and the steady state form becomes

1
0 = ¢, (-B) +2—Zil A Cop o (6.52)
Substracting Eq. 6.52 from Eq. 6.51 gives
d 1
£ ¢dit) = ¢y k(1) (1 = B)+ ' (t) k, (t) - @' (t) B- ' (t) Bk,

1
+—E X, Clict) . (6.53)
s, 5

Now, by transforming to the new variables

P'(t)
() = .
(t) %, (6.54)
and
Ci(e)
C,(t) = — (6.55)
Cio

and by using Eq. 6.52, Eq. 6.53 becomes

dd(t) 1 . 1
— =z—p(t) kopp(t) (1= B) +?p(t) kepp(t) ®(t) (1 - B)

_B P
C<1>(t) +i2 g Ci «  (6.56)

Interestingly, the only property of the reactor entering this equation is the neu-
tron lifetime.

Concentration of Precursors. If Eqs. 6.48, 6.49, and 6.50 are substituted in
the equation for the concentration of the ith-group delayed-neutron emitters. Eq.
6.28 becomes
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dCi(t)

By using the notations of Eqs. 6.48
and 6.50, the steady state form of
Eq. 6.28 becomes :

0 = B;2,8, -~ ACip (6.58)
Subtracting Eq. 6.58 from 6.57 gives
dC;(t)

dt
+ BE, ' (t) + B2 p(t) keff(t)

= ;BizaqSo ,D(t) keff(t)

= A Cite) o (6.59)

By transforming to the new variables
defined by Eqs. 6.54 and 6.55 and by
using Eq. 6.58, Eq. 6.59 becomes

dC, (t)

dt = >\,:[,o(t) keff(t)

+p(t) ko 0 (t) @(2)

+®(t) - C;(t)) . (6.60)

Fuel Temperature. With the sub-
stitutions

8f(x,t)
and
Gc(z,t) = Bco(z) + Gz(z,t) , (6.62)

where & 0(z) and 6, ,(z) are the steady-
state fuel and coolant temperatures
for t=0 at z, and 8¢(z,t) and 6,(z,t)
are the time-dependent departures, and
the relationship

P(z,t) = &(t) P(z) , (6.63)

w} . P(z) is the longitudinal power
distribution normalized over the
reactor length, L, so that

Oro(z) + 65(z,t)  (6.61)

L
.£ P(z) =1, (6.64)

Eq. 6.42 becomes

T =Bl t () k()] Z 08, + 8 ()] = N, [C,y +Cl(D)] (6.57)

39;(z,t)

39}(z,t)
—; Leldy(z) + @' (1)) P(2)
= Af[040(2) + 84(2,t)

- 0,,(z) - 0.(z,)] . (6.65)

By using the notations of Eqs. 6.61,
6.62, and 6,63, the steady-state form
of Eq. 6.42 becomes
0 = §f¢0 P(z) - Kf[efo(z) - eco(l)] .
(6.66)
Subtracting Eq. 6.66 from Eq. 6.65
gives
39}(z,t)

3t = €f¢ (t) P(z)

- A[63(z,8) - 0.(2,)] . (6.67)
By using Eq. 6.54, Eq. 6.67 becomes
39}(z,t)
YR Lpp @(t) P(z)

- A,[B}(z,t) - 6(z,t)] . (6.68)

Moderator Temperature., In a similar
manner and with similar definitions,
it follows that the moderator tempera-
ture equation becomes

57— = Labo ®(1) P(2)

= A [01(z,t) - 61(z,8)] . (6.69)

Coolant Temperature. By sub-
stituting Eqs. 6.6]1 and 6.62 and
subtracting out the steady-state
part, the coolant temperature equation

(Eq. 6.44) becomes
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.
v 0
Iodine Concentration. By sub-
stituting
d(t) =&, +d'(¢) ,  (6.71)

0

where &0 is the steady-state iodine
concentration at design conditions and
d'(t) is the time-dependent departure,
subtracting out the steady-state part,
and transforming to the dimensionless
variable

47 (t)
d,
the equation for the iodine concen-
tration (Eq. 6.45) becomes
dI(t)

I(t) = (6.72)

= Ale(e) - 1(e)] . (6.73)

Xenon Concentration. By sub-
stituting Egs. 6,48 and 6.71 and the
similar equation for xenon, that is,

T(e) =X, + X' (), (6.74)

the equation for the xenon concen-
tration (Eq. 6.46) becomes

dX'(t)

In steady-state'fdrm, Eq. 6.46 1is
0 = KI&O - Kxxo - ox¢010 ) (6.76)

and subtracting Eq. 6.76 fromEq. 6.75
gives

dX ' (t)
dt

= A, A () = A, XU (1)

—o, ¢ (t) Ly — o, @ (1) X' (¢)

- o, () . (6.77)

Transforming todimensionless variables

by using Eqs. 6.54 and 6.72 and
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zll z —- z\ ' I} Z—Z, 7
5m<z, ¢ ) -6 <z,t - __77__> dz' . (6.70)

X(e) -8 (6.78)
Lo
as well as Eq. 6.76, Eq. 6.77 becomes
dl(t) &o :
- KIIX—O (I(t) - X(¢t)

- ®(t) X(t) - ®(t)]

+ A [@Ce) + () X(t)] . (6.79)

Reactivity. With the use of the

definitions already introduced, Eq.
6.47 for the p(t) keff(t) becomes

p(t) kypp(t) = ko (2) = 8k (1)
te, 04(t) e 01(2) + e, Bl(t)

e X, X(t) . (6.80)

= A L8, ] - AT X)) - o ey + @t ()] X + X)) . (6.75)

REMARKS ON SOLUTION OF THE EQUATIONS

In solving for the response of the
system to, for example, a sudden
introduction of kex or perhaps a sudden
change of inlet coolant temperatures
by means of these simultaneous first-
order differential equations, a rather
lengthy set of equations must be used.
Often it is possible to reduce the
number of equations by approximations
and by leaving out certain equations
that affect the response only slightly.
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For example?™die moderator temperature
and the xenon concentration sometimes
change slowly and hence can be omitted
if the interest is only in the behavior
of, say, power for a short time after
a sudden change in ke « Also, the
six precursor equations can be reduced
to one by the following approximation:
The six groups are divided into three
classes, the shortest delay group being
Class A, the next three groups, Class
B, and the longest two groups, Class C,
Class A neutrons are considered as
prompt neutrons, Class C neutrons are
considered as being infinitely delayed,
that is, they are never returned to
the system, and Class B is given an
average decay constant,

N By * By * B,
B = L]
ﬁzlz t Bl Byly

Even after such approximations and
simplifications, however, there are
usually several simultaneous dif-
ferential equations, the solution of
which 1s at best a lengthy job. Three
procedures have been used with success
at the various laboratories: (1) An
inexpensiv&™But sometimes slightly in-
accurate method is to “linearize’’ the
equations by neglecting products of
departure quantities and then using
the method of Laplace transform to
solve the linearized approximate
equations, This procedure has been
described by Smith et al.(?) (2) The

(Z)N. M. Smith, Jr., et al., Perturbation
Equations for the Kinetic Response of a Liquid-
Fuel Reactor, ANP-62.

equations can be solved in a straight-
forward manner by using simple numerical
techniques and a digital computer such
as the IBM-CPC. This procedure has
been described by Nielson and Webster{?3)
(3) The equations can be solved through
the use of analog simulators such as

were used for the kinetic studies of
the STR design.

RESULTS OF KINETIC STUDIES

Figures 6.1 through 6,9(%)
presented as illustrations of the
kinetic behavior of a stable reactor.
These figures show the response of
flux (or power) and fuel temperature
to step increases in reactivity. The
data for these curves were calculated
by IBM numerical methods for the ARE
design of June 10, 1951. This reactor
was BeO-moderated and sodium-cooled,
and the fuel was in a liquid state in
many small vertical tubes. The fuel
tubes extended upward into a layer of
boron at the top of the active lattice,
and thus if the power were to increase
and the fuel temperature consequently
to rise, part of the fuel would expand
into the boron layer and be lost to
the chain reaction. The result would
be a slight state of subcriticality
and the power level would tend to
decrease, This reactor design is
therefore a very stable one.

are

(S)M. J. Nielson and J, W, Webster, Solution of
Kinetic Equations of Cylindrical Liquid-Fuel
Reactor, ANP-68.

(4)J. W. Webster and M. J. Nielson, Some
Results of Kinetic Studies on the ARE Design of
10 June 1951, ORNL Y-F10-75.
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Appendix A

NUCLEAR DATA g
¥
Nuclear data are presented for -
(1) the thermal cross sections of the 32 Dwe. 20527
unclassified elements (Table 1), (1)
(2) the fission and absorption cross 28
sections as a function of energy for SEPTEMBER 15, 1950 /U
uranium (Figs. Al through A6), (2?)
(3) the absorption cross section as a 24
function of energy for xenon (Fig.
A7), (%) (4) the xenon cross section 20

averaged over a Maxwell-Boltzmann
distribution for various reactor
temperatures (Table 2). (3

Another item of nuclear data fre-
quently needed is the fission spectrum.
The distribution of the energies
of the fission neutrons from U?3%
is given by the semi-empirical re-
lation(*

E 1/2
n

N(E ) = const sinh {——
" 0.487

-[ce,70.974) + (1/2)]
X e

(I)H. R. Kroeger, Nucleonics, Vol. 5, No. 4,
51-54 (1949).

(2)N. M. Smith, Jr., KAPL Cross-Section Curves
{or {e-135, U-235, and U-238, Y-F10-51 (Apr. 17,
951).

(3).]. W. Webster, Xe Effect in an Epi Thermal
Reactor, Y-F10-17 (Oct. 10, 1950).

o (barns)
>
\1_
'_\\

[0}
[+ 2 4 6 8 10 12 14
u
Fig. Al. Capture Cross Section of
y23s

This formula fits quite well theentire
fission spectrum from 75 kev up to

15 Mev,

(4)1'. W. Bonner, A Study of the Spectrum of
the Neutrons of Low Energy From the Fission of

U235 LA-715 (Dec. 12, 1948).
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TABLE 1. THERMAL NEUTRON CROSS SECTIONS AND RELATED DATA*
Symbols: b = average cosine of the scattering angle relative to the initial direction, SR microscopic cross section for a transport collision,
op = total microscopic cross section for collision, O, = microscopic cross section for an absorption collision.
og = microscopic cross section for a scattering collision,

ATOMIC C!gh&ld%L DEN(SgI/TZC, P lgléguji AZﬁgRE$G THERMAL (0.025 ev) (NbEUTRO)N CROSS SECTIONS, o THERMAL (0.025 ev) M;Cl:o;cloplc CROSS SECTIONS, THERMAL (0.025 ev) MEAN FREE PATH Sng\{'SG- MODERATING | ATOMIC
NUMBER, | NAME |  wgrGHT, at 20°C (x 10°24) | (1 =) 10SS, arns {em) POWER RATIO NUMBER,
z A 760 mm Heg) N £ or os orp oy P Zg Zrn 2y Ar As Arr A No ot (og/og) & z
1 H ©1.008 0.00008 0.00005 0.3329 1.0 46 46 15 0.32 3.33 140 1

(H,0)
1 D 2.0147 0.00017 0.00005 0.6662 0.7261 5.3 5.3 3.5 0 1
2 He 4.003 0.00016 0.000025 0.8320 0.4281 1.5 1.5 1.2 0.008 80 2
3 Li 6.940 0.534 0.0463 0.9031 0.2643 66.5 1.5 4 65 - 3.1 0.07 0.07 3.0 0.33 ‘14 15 0.33 0.018 0.006 3
4 Be 9.02 1.84 0.1229 0.9255 0.2078 6.1 6.1 . 0.0085 0.75 0.75 0.69 0.001 1.3 1.3 1.5 950 0.156 150 4
5 B 10.82 2.535 0.1411 0.9379 0.1756 719 3.8 . 715 100 0.54 0.51 100 0.01 1.9 2.0 0.01 0.094 0.001 5
6 C 12.01 1.67 0.0838 0.9440 0.1589 4.8 4.8 0.0045 0.40 0.40 0.38 0.0004 2.5 2.5 2.6 2600 0.064 170 6
7 N 14.008 0.00116 0.00005 0.9520 0.1373 11.7 10 1.7 0.81 7
8 0 16.000 0.00133 0.00005 0.9580 0.1209 4.1 4.1 . 0.001 500 8
9 F 19.00 0.00158 0.00005 0.9646 0.1025 4 4 0.01 41 9
10 Ne 20.183 0.00084 0.000025 0.9667 0.0967 2.8 10
11 Na 22.997 0.9712 0.0254 0.9708 0.0852 4.5 4 4 0.45 0.11 0.10 0.10 0.011 8.8 9.8 9.8 88 0.009 0.76 11
12 Mg | 24.32 1.741 0.0431 0.9724 0.087 3.0 2.7 2.6 0.3 0.13 0.12 0.11 0.013 7.8 8.6 8.9 77 0.009 0.73 12
13 Al 26.97 2.699 0.0603 0.9751 0.0730 1.6 1.4 1.4 0.22 0.097 0.084 0.084 0.013 10 12 12 77 0.006 0.47 13
14 Si 28.06 2,42 0.0519 0.9760 0.0702 2.5 2.3 2.2 0.2 0.13 0.12 0.11 0.010 7.7 8.4 8.8 96 0.008 0.81 14
15 P 30.98 2.34 0.0455 0.9783 0.0637 4.4 4.1 4.0 0.3 0.20 0.19 0.18 0.014 5.0 5.4 5.5 73 0.012 0.87 15
16 s 32.06 2.0 0.0376 0.9790 0.0616 1.4 1 1 0.4 0.053 0.038 0.038 0.015 19 27 27 67 0.002 0.15 16
17 c1 35.457 0.00295 0.00005 0.9810 0.0558 55 20 20 35 0.032 17
18 A 39.944 0.00166 0.000025 0.9832 0.0497 3 2 2 0.099 18
19 K 39.096 0.87 0.0134 0.9828 0.0507 4.0 1.5 1.5 0.054 0.020 0.020 0.034 19 50 50 30 0.001 0.030 19
20 Ca 40,08 1.54 0.0231 0.9832 0.0495 4 3.5 3.4 0. 0.092 0.081 0.079 0.012 11 12 13 86 0.004 0.35 20
21 Se 45.10 2.5 0.0334 0.9851 0.0441 22 0.74 1.4 21
22 Ti 47.90 4.5 0.0566 0.9860 0.0415 11 6 6 5 0.62 0.34 0.34 0.28 1.6 2.9 2.9 3.5 0.014 0.050 22
23 v 50,95 5.96 0.0705 0.9868 0.0391 12 1 7 4.5 0.85 0.49 0.49 0.32 1.2 2.0 2.0 3.2 0.019 0.061 23
24 Cr 52.01 6.92 0.0801 0.9871 0.0383 6.5 4 4 2.5 0.52 0.32 0.32 0.20 1.9 3.1 3.1 5.0 0.012 0.061 24
25 Mn 54.93 7.2 0.0789 0.9878 0.0363 15.3 2,3 2.3 13 1.2 0.18 0.18 1.0 0.83 5,5 5.5 0.95 0.007 0.006 25
26 Fe 55.85 7.85 0.0847 0.9880 0.0357 13.5 11 11 2.5 1.1 0.93 0.93 0.21 0.88 1.1 1.1 4.7 0.033 0.16 26
27 Co 58.94 8.71 0.0890 0.9886 0.0338 41 5 5 36 3.7 0.45 0.45 3.2 0.27 2.3 2.3 0.31 0.015 0.005 27
28 Ni 58.69 8.9 0.0913 0.9885 0.0340 22 17 17 4.5 2.0 1.6 1.6 0.41 0.50 0.65 0.6 2.4 0.053 0.13 28
29 Cu 63.57 8.89 0.0842 ° 0.9894 0.0314 10.2 7.2 7.1 3 0.86 0.61 0.60 0.25 1.2 1.7 1.7 4.0 0.019 0.075 29
30 Zn 65.38 7.19 0.0662 0.9897 0.0305 4.5 3.6 3.6 0.9 0.30 0.24 0.24 0.060 3.4 4.2 4.2 17 0.007 0.12 30
31 Ga 69.72 5.9 0.0510 0.9904 0.0287 18 16 16 2.2 0.92 0.82 0.82 0.11 1.1 1.2 1.2 8.9 0.023 0.21 31
32 Ge 72.60 5.46 0.0453 0.9907 0.0275 9 6 6 2.8 0.41 0.27 0.27 0.13 2.5 3.7 3.7 7.9 0.007 0.059 32
33 As 74.91 5.73 0.0461 0.9910 0.0267 8.8 4.5 4.5 . 4.3 0.41 0.21 0.21 0.20 2.5 4.8 4.8 5.1 0.006 0.028 33
34 Se 78.96 4.5 0.0343 0.9915 0.0253 28 13 13 15 0.96 0.45 0.45 0.52 1.0 2.2 2,2 1.9 0.011 0.022 34
35 Br 79.916 3.12 0.0235 0.9916 0.0250 11.5 5 5 6.5 0.27 0.12 0.12 0.15 3.7 8.5 8.5 6.5 0.003 0.019 35
36 Kr 83.7 0.00348 0.000025 0.9920 0.0239 27 27 27 0.05 13 36
37 Rb 85.48 1.532 0.0108 0.9921 0.0234 12.6 12 12 0.6 0.14 0.13 0.13 0.006 7.7 7.7 150 0.003 0.47 37
38 Sr 87.63 2.6 0.0179 0.9923 0.0228 11.3 9.5 9.4 1.8 0.20 0.17 0.17 0.032 . 5.9 5.9 31 0.004 0.12 38
39 Y 88.92 3.8 0.0257 0.9924 0.,0225 4.2 3 3 1.2 0.11 0.08 0.08 0,031 13 13 33 0.002 0.057 39
40 Zr 91.22 6.44 0.0425 0.9926 0.0220 8.4 8 8 0.4 0.36 0.34 0.34 0.017 2.9 2.9 59 0.007 0.44 40
41 Nb 92.91 8.4 0.0545 0.9928 0.0216 8.2 7 7 1.2 0.45 0.38 0.38 0.065 2.6 2.6 15 0.008 0.13 41
42 Mo 95,95 10.2 0.0640 0.9930 0.0209 9.6 1 7 2.6 0.61 0.45 0.45 0.17 . 2.2 2.2 6.0 0.009 0.056 42
43 Te 99 0.9932 0.0202 43
44 Ru 101.7 12.2 0.0723 0.9934 0.0197 9 6 6 3 0.65 0.43 0.43 0.22 1.5 2.3 2.3 4.6 0.009 0.039 44
45 Rh 102.91 12.5 0.0732 0.9935 0.0195 155 6 6 149 11 0.44 T 0.44 11 0.088 2.3 2.3 0.092 0.009 0.001 45
16 Pd 106.7 12.16 0.0686 0.9937 0.0188 10.5 4.5 4.5 6 0.72 0.31 0.31 0.41 1.4 3.2 3.2 2.4 0.006 0.014 46
47 Ag 107.880 10.5 0.0586 0.9938 0.0186 66 6 6 60 3.9 0.35 0.35 3.5 0.26 2.8 2.8 0.28 0.007 0.002 47
48 Cd 112.41 8.65 0.0463 0.9940 0,0178 2500 6 6 2500 120 0.28 " 0.28 120 0.009 3.6 3.6 0.009 0.005 0 48
49 In 114.76 7.28 0.0382 0.9941 0.0175 192 2 2 190 7.3 0.08 0.08 7.3 0.14 113 13 0.14 0.001 0 49
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TABLE 1 (continued)

ﬁ}ﬁﬂ}f - CﬂggagéL DEN?;;ZJ o gggf?; - A;géﬂégG THERMAL (0.025 ev) gigzzgr CROSS SECTIONS, o THERMAL (0.025 ev) MQCSQEEOPIC CROSS SECTIONS, THERMAL (0.025;:Q)MEAN FREE PATH Sng;:G- M°355?ﬁ§“c P?TOMIC
' WEIGHT at 20°C (x 10724), LOSS, POWER UMBER,
z 4 760 mm Hg) N £ or os orR %4 P2 s Zrg Z, Ar As Mrg Ay No (0g/o,) x € z
50 Sn 118.7 7.3 0.0370 0.9943 0.0169 4.6 4 4 0.6 0.17 0.15 0.15 0.022 5.9 6.8 6.8 46 0.003 0.11 50
51 Sb 121.76 6.691 0.0331 0.9945 0.0165 9 4 4 5 0.30 0.13 0.13 0.17 3.4 7.6 7.6 6.0 0.002 0.013 51
52 Te 127.61 6.25 0.0295 0.9947 0.0157 9 5 5 4 0.27 0.15 0.15 0.12 3.8 6.8 6.8 8.5 0.002 0.020 52
53 1 126.92 4.94 0.0234 0.9947 0.0158 10 3 3 7 0.23 0.07 0.07 0.16 4.3 14 14 6.1 0.001 0.007 53
54 Xe 131.3 0.00546 0.000025 0.9949 0.0153 37 . 54
55 Cs 132.91 1.873 0.0085 0.9949 0.0151 50 24 24 26 0.43 0.20 0.20 0.22 2.4 4.9 4.9 4.5 0.003 0.014 55
56 Ba 137.36 3.78 0.0166 0.9951 0.0146 9.3 8 8 1.3 0.15 0.13 0.13 0.022 6.5 7.5 46 0.022 0.090 56
57 La 138.92 6.15 0.0267 0.9952 0.0145 28 20 20 0.75 0.53 0.53 0.21 1.3 1.9 1.9 4.7 0.008 0.036 57
58 Ce 140.13 6.9 0.0297 0.9952 0.0143 29 23 ) 23 6, 0.86 0.68 0.68 0.18 1.2 1.5 5.6 0.010 0.055 58
59 Pr 140.92 6.475 0.0277 0.9952 0.0142 15 5 5 10 0.42 0.14 0.14 0.28 2.4 7.2 7.2 3.6 0.002 0.007 59
60 Nd 144.27 6.96 0.0291 0.9953 0.0139 100 2.9 0.34 60
61 Pm 147 0.9954 0.0137 60 61
62 Sm 150.43 7.7 0.0308 0.9955 0.0134 8,900 8,900 270 270 0.004 0.004 62
63 Eu 152.0 5.24 0.0208 0.9956 0.0132 6,000 6,000 120 120 0.008 0.008 63
64 Gd 156.9 7.94 0.0305 0.9957 0.0128 40,000 40,000 1,200 1,200 0.001 0.001 64
65 Tb 159.2 8.33 0.0315 0.9958 0.0126 ‘ 10 0.32 . 3.2 65
66 Dy 162.46 8.56 0.0317 0.9959 0.0124 1,200 1,200 38 38 0.026 0.026 6%
67 Ho 164.94 8.76 0.0320 0.9959 0.0122 65 s 5 60 2.1 0.16 0.16 1.9 0.48 6.3 6.3 0.52 0.002 0.001 67
68 Er 167.2 9.16 0.0330 0.9960 0.0120 200 6.6 0.15 68
69 Tm 169. 4 9.34 0.0332 0.9960 0.0119 120 20 20 100 4.0 0.66 0.66 3.3 0.25 1.5 1.5 0.30 0.008 0.002 69
70 Yb 173.04 7.01 0.0244 0.9961 0.0116 60 1.5 0.69 70
71 Lu 174.99 9.74 0.0335 0.9962 0.0115 170 30 30 140 5.7 1.0 1.0 4.7 0.18 1.0 1.0 0.21 0.012 0.002 71
72 Hf 178.6 11.4 0.0384 0.9962 0.0113 125 20 20 105 4.8 0.77 0.77 4.0 0.21 1.3 1.3 0.25 0.009 0.002 72
73 Ta 180.88 16.6 0.0553 0.9963 0.0111 25 5 5 20 1.4 0.28 0.28 1.1 0.73 3.6 3.6 0.90 0.003 0.003 73
74 W 183.92 19.3 0.0632 - 0.9963 0.0109 23 5 5 18 1.5 0.32 0.32 1.1 0.69 3.2 3.2 0.88 0.003 0.003 74
75 Re 186.31 20 0.0647 0.9964 0.0108 . 98 13 13 85 6.3 0.84 0.84 5.5 0.16 1.2 1.2 0.18 0.009 9.002 75
76 Os 190.2 292.48 0.0712 0.9965 0.0106 32 15 15 17 2.3 1.1 1.1 1.2 0.44 0.94 0.94 0.83 0.011 0.009 76
77 Ir 193.1 29.42 0.0699 0.9965 0.0104 464 14 14 450 32 0.98 0.98 31 0.031 1.0 1.0 0.032 0.010 0 77
78 Pt 195.23 21.37 0.0659 0.9966 0.0103 18 10 10 8 1.2 0.66 0.66 0.53 0.84 1.5 1.5 1.9 0.007 0.013 78
79 Au 197.2 19.3 0.0589 0.9966 0.0102 102 6.5 6.5 95 6.0 0.38 0.38 5.6 0.17 2.6 2.6 0.18 0.004 0.001 79
80 Hg 200.61 13.546 0.0407 0.9966 0.0100 - 415 15 : 15 400 17 0.61 0.61 16 0.059 1.6 1.6 0.061 0.006 0 80
81 Tl 204.39 11.86 0.0349 0.9967 0.0098 12 9 9 3 0.42 0.31 0.31 0.11 2.4 3.2 3.2 9.5 0.003 0.029 81
82 Pb 207.21 11.347 0.0330 0.9968 0.0097 8 ' 8 8 0.2 0.26 0.26 0.26 0.007 3.8 3.8 3.8 150 0.003 0.39 82
83 Bi 209.00 9.8 0.0282 0.9968 0.0096 6.5 6.5 6.5 0.015 0.18 0.18 0.18 0.0004 5.5 5.5 5.5 2,400 0.002 4.2 83
84 Po | 210 ' 0.9968 0.0096 . 84
85 At 211 0.9968 0.0095 85
86 Rn 229 4.4 0.0119 0.9970 0.0091 . 86
87 Fr 223 0.9970 0.0090 . 87
88 Ra 226.05 5 0.0133 0.9970 0.0089 88
89 Ac 227 0.9970 0.0089 . 8o
90 Th 232.12 11.5 0.0298 0.9971 0.0087 90
91 Pa 230.9 0.9971 0.0087 o1
92 U 238.07 18.7 0.0473 0.9972 0.0084 92
93 Np 237 0.9972 0.0085 03
94 Py | 239 : 0.9972 | . 0.0084 94
95 Am 241 0.9972 0.0083 ‘ 95
96 Cm 242 0.9972 0.0083 ) 96

*Cross sections for hydrogen and deuterium are for H and D atoms in combination with O (H,0 and D,0). The density given for BGanzz is for liquid radon.

The atomic weights and densities are from “Handbook of Chemlstry and Physics” (Chemical Rubber Publishing Co., Cleveland).
cross-section data gathered from the following sources:
Way, G. Haines, Thermal neatron cross sections for elements and isotopes, 'CNL-33, 2/29/48. : 4.
Melkonian, L. J. Rainwater, W, W. Havens, Neutron beam spectrometer studies of oxygen, M-2554, 5.
G. Nucholls, The total scattering cross sections of deuterium and oxygen for fast neutrons, MDDC-37, 6/17/46.

The macroscopic cross sections, mean free paths, slowing-down powers, and moderating powers are based on thermal-neutron

10/28/47 (supplement issued 4/20/48).
12/5/45.

K. Way, G. Haines, Tables of neutron cross sections,
H. H. Goldsmith, H, W, Ibser,

MonP-405,
Neutron cross sections of the elements, MUC-HHG-7,

2. E.
3. R,
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TABLE 2. AVERAGE THERMAL-NEUTRON CROSS SECTION OF XENON
FOR VARIOUS REACTOR TEMPERATURES

0y, averaged by the formula %

[¢+4]
f o, (E) E e E/kT g
0

Xe ’

[»e)
f E e~ E/kT 4E

0

where 2

% 4 E,
E) = |-— ,

(E - E)? + —

where
"= 0,107 ev ,
E, = 0.0863 ,
o = 3.4 x 10° barns.*
T (°F) E = kT (ev) G, (barns) x 107°
62.5 0.025 2.989
375.9 0.04 2.657
793.6 0.06 2.123
1211.4 0.08 1.674
1286.4 0.08359 1.607
1372.3 0.0877 1.539
1503.9 0.094 1.450
1587.4 0.098 1.378
1629.2 0.1 1.346
1673.1 0.1021 1.316
1712.8 0.104 1.290
1838.1 0.11 1.212
2047.0 0.12 1.097

*The data were taken from the work of S. Bernstein et al, as renorted in ORNL-325.
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A

Calculation Form 1 is for use in
applying the Fermi age theory to bare,
intermediate-energy reactors. The
notations and derivations are given
in chap. 2. Form 2 presents procedures
for solving two-group, three-region
criticality problems for reactors with
parallelepiped geometry and reflectors
on one pair of opposite faces. Similar
procedures can be devised for the other
soluble geometries.

Form 1 was designed by the ANP
Physics Group of the Oak Ridge National
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Appendix B
CALCULATION

FORMS

Laboratory, N. M. Smith, Jr., Chairman.
Form2 is based on the work of Garabedian
and Householder, as presented in
MonP-202,¢1) and modeled after a
similar form prepared by B. Spinrad.
The symbol A in the notation of MonP-
202 is the diffusion coefficient,
that is, A, /3. The sheets are
specifically designed for thermal
reactors.

(l)ﬂ. L. Garabedian and A. S. Householder, The
Two Group TheoryofPiles with Multiple Reflectors,
MonP-202 (Nov. 11, -1946).



OWG. 20652

CODE
FORM 1
FERM! AGE FOR BARE -REACTOR CALCULATION ™
1 I o g ¥ b i b X X x b b.ui puinrd purd biuvis pavi XV FUEL [MODERATOR| METAL |COOLANT |  VOID
- : BALANCE | CHECKS n#th | VOLUME
[1+1)xm ‘-t 1t oxixmax| ot X |oxmemxx| % XD lvmaxemm| wmeg,, 4,53 | Ry x IRy
¥ 2 o x NoTh DENSITY
LR SLoouN LEAKAGE ABSORPTIONS FISSIONS %”_ix(%> XX TEMPERATURE
DENSITY th CLEAN OR POISONED
2/ —1 z_a _ %y 1 2_
N B <————3 EZTZ;,> <5zr>,v Uy/2 Cy 1+Cy 1-c, vZ, q, ay £, £, A4, A, <€Tr>,, £, Y E_Z—r g2=
RADIUS____cm +«___cm AUGMENTED LENGTH
0
{ 025 00525
2 0.25 0.2600 |
3 0.25 0.5175 \
4 0.25 0.5775 / |
5 0.25 0.4575 \ | /
6 0.25 0.2925 \ / /
7 0.25 01675 / V] B
8 0.25 0.0875 V] N '
9 1.50 0.0875 \ ] \ ]
10 1.50 0 \ ] \ ]
1 0.70 0 \ \
12 0.60 0 \/ \/
13 0.40 0 I 1
14 0.20 0 I A
15 0.40 0 [ [\
16 0.60 0 IR [
17 0.20 0 [ [
18 0.20 0 [ [
19 0.20 0 \ [
20 0.20 0 \ \
21 0.40 0 | \ \
22 0.10 0 [ \ \
23 0.t0 0 Ji
24 0.10 0 /
25 0.10 0
Thermal (18.4) 1.00 0
26 0.10 0
Therma! (18.6} 1.00 0
27 0.10 0
28 0.40 0
29 0.40 0 X
30 0.10 0
3 0.10 0
Thermal (19.6) 1.00 0 :
SUM (18.4) A+B+C+D sum{18.4) kosr 18.4)
*THIS SHEET 1S SPECIFICALLY DESIGNED FOR THREE POSSIBLE THERMAL BASES: SUM U86) ArorLrD SUMUB6) forr 18.6)
o’ : SUM (19.6) A+B+C+D SUM (19.6) ket 19.6)
v=inE =18.4, v=18.6, OR ¥=19.6. THE NOTATIONS ARE THE SAME AS THOSE T v m B

GIVEN IN CHAPTER 2
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FORM 2.

TWO-GROUP MULTIREGION CALCULATION SHEETS FOR SLAB OR

PARALLELEPIPED GEOMETRY

The calculation procedure varies
slightly with the problem. The three
particularly types of
problems are:

A. to calculate the uranium content
to make a reactor of given di-
and

important

mensions, core structure,
moderator composition critical;

B. to calculate the radius to make a
reactor of given core structure
and composition (including uranium)
critical; /

C. to calculate 3k for a reactor when
a uniform change is made in the
composition of any region.

Procedure in Case A

l., Estimate the uranium content
and from this compute k and 2 __.

2. Carry through the calculation

of f, AB~1, C, and AB-!C and in f

leave py, tan p,,e as a variable,
3., Determine the value of Fo 1

tan p,,a which makes the eliminant= 0,

4. Find the value of p,, and the
associated k corresponding to 1it,

5. Repeat the process with the use
of the new k and the new 2,  computed
from it. Only f needs to be re-
calculated. Repeat until the initial
and the final k values are the same.

Procedure in Case B

1. k and Zas are known.

AB™', C, and 4B”'C.

2. Calculate f for several values

of a. .

3. Plot the value of the eliminant

vs. a and determine the a which makes

the eliminant vanish, This procedure

is also valid in Cases 4 and C.

Procedure in Case C
1. k and 2, are given for the un-
perturbed reactor. Put in the uniform

perturbation and calculate the p;,

that makes the eliminant = 0. Calcu-

late the k corresponding to this ;.

2. BRecalculate f with the use of
and new k and determine K,, and k
values which make the eliminant = 0,

Calculate

sNotation is that of MonP-202. (1)

3. Repeat until the 1initial and
the final k values are the same.

Comments. It would seem that the
procedure given for Case B would be
useful for any of these cases -~ par-
ticularly when the initial conditions
are far from criticality,

CORE*

Dimensions

Half thickness = a = cm
Bi (W/H)z = ;
B} = (m/L)? = ;

2
B} + B} =

Constants
Slow Neutrons

2, = - ;

k =

Evaluate
&gl l/Lg = i
A— = D = .

01 s

i

Fast Neutrons
2 _ - .
&02 = 1/7 = ’

A.°2=Df= .

Solve
(4, _'&gl) (8, _'&32) = k&&%‘

02 "*

Designate the negative and positive
roots of this equation by

- - B2 - - .
A01 - F01 - ’
2 - .

Aoz = Fy, = )
2 _ g2 2 2 - .
Moy = F01 - Bl - Bz - '

2 _ 2 2 2 _ .
Hoa = Foz + Bl + Bz - ’
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Compute
Noylhgy *+ Fgy)

r, = ;
2
>‘02%"02
2
kxox&01
r 2 = 2 2 - .
>‘02(%"02 - Fg,)
Functions
Kool =
tanh Fo 2@ Mo, tanh po.a
where a = half thickness of core.

Matrix and Critical Relations

= AgaTiHoy tonm 1y 0

A tanh p . a

02" #o2

(-

)

(-

)

Multiply AB™! and C to obtain

All Alz
( ) )
Azx Azz
( ) )
AB- lC =
A, 0
( )
A41 0
( )
The eliminant of

1 . -1 <Cl>
(o) e (o

must be zero. Manipulation of the
eliminant yields the following two-
rowed determinant, which is to equal
zero.
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0 0
Aza 1 Ay
A A

A!I Ail

12 31

1

= NoyHoy tan g0
(- )

1

Ngikey tanh pg,a
( )

T

( )

L

(- )

= XoaFilg, tanm pg,a

Agalaio, tanh i ,a

(=~

)

(-

)

N




t
—

(———) Ky, tan p4 e =

Mo, tan iy a = (

’uOI

Ho10

tan 18

Hoq1 taniy e

Ho1® =

Ho1

(]

2
'u01

2 _ 2 2 2 _
Foy = nmgy ¥ By t B =

(‘ng - &gx)

(-F3, - &3,)
(-F2, - k2,) (F2, - B2,

2 2
&'01 &'02

n
bl
(]

CONSISTENCY CHECK

cos pgy,a =

cosh Ho,e =

r, cosh y,,a
a L ———

2 —_—
r, cosh Ho 2@

" Az, N
1 A, 02Hgy AN Hg,@

X

A

Az,
-1+ >‘02'u02 tanh 1, ,a
41

Q

2 *
c, = Aoz T3 Moz tanh g ,a cosh u,a
41
Noa Ty
- 1 pOItan Hy @ COS Uy ,0
41
a;
C, = 4 AoiMo, tanh po.a coshpyg.a
22
A Mo
"'A—C1 -'A—' Mgy tan i, @ cos iy ,a
22 22

The check to assure that critical
conditions have been established is
that the following equality exist:

a, cosh py,a - A€, - A ,C,

= < cos Ky ,a .

This does not ensure that the Aij have
been evaluated correctly.

INNER REFLECTOR

Dimensions

Thickness = S = cm
B? = (m/H)? = :
B? = (m/L)? = ;
B} + B} = .
Constants

Slow Neutrors

2, = 1/L? = ;
Ay =D = : ’
Mgy = ki, + B} + B} = ;
Hig = ;
Wi, = k1, + B2+ B2 - :
Hig = .
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Fast Neutrons

Constants

&fz = 1/7 = ; Slow Neutrons
2 _ 2 _ .
}\1 2 = Df = ; %,2 1 - l/L - ’
Azl = Ds = H
Functions sinh cosh ) . ) )
K3y = Ry, * By * B = . ;
#118
S Har .= !
K12 2 2 2 2
K32 = &22 + Bl * B, = i
2 - 2 :u'zg = .
All(&ll &12)
S1 = = - . Fast Neutrons
Alzafz k2 = 1/T = ;
22 d
Nag = Dy = i
Matrix
s sinh p S cosh p S - cosh p .S Hy, sinh p S - g sinh p S
sh u -——
e 1" A1k S, Ayak iy sS,
) ( ) ( ) ( )
X 11 i i Ay
= NyHy, sinh g S cosh p,,S ?l— (g, sinh g S ~ p , sinh g ,8) - ~ S (cosh 1§ - cosh p,,S)
127
e — () ( ) ( ) _
0 0 b ,S - inh g, .S
cosh u . Y sinh p ,
— ) ( )
0 0 LTI sinh p,,S cosh g, ,S
)
OUTER REFLECTOR Functions sinh cosh
Dimensions
Thickness = t = cm ;
Kyt
BZ = (m/H)? = ; 22
2 2
B} = (m/L)? = ; Apilhay = kay)
t = = = .
1
B? + B2 = . 2
1 Bz Azzkzz
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Matrix

sinh Hggt sinh p, ¢ 0 0
( ) (_ )
= Aj Mg, cosh p, 0t = AyMqyy cosh u, t 0 0
( ) ( )
C = .
t, sinh p,,t 0 0
(_ )
=~ AyatyHy, cosh p,,t 0 0
(
DISTRIBUTIONS IN CORE !

- 1 [ 1 cos g, Q
Coefficients ' ( |
a, = (from consistency check). R R

|
———— g - - - - a, cosh a
Fluxes T (2 #02)
beo = U, = cos py, X + a, cosh py,X -TTTy T T °°
Pso
¢fo =U, = r, cos Hg X ( )
+ r_a, cosh X = .
2%2 Ho2 Jeo
Edge Values ~ ( )
cos g, a fs° ¢fo
f = ¢SO ; ( )
a, cosh p ,a Jf° J
o ( ' )
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Plots

X Mo X Mo X cos po X a, cosh p, X O+@ ' @ + r2®

DISTRIBUTIONS IN INNER REFLECTOR

Coefficients b ; cosh p, a ; cosh p a
4 = 0 - 0
cosh u,  a = ; ) A1ty f Ayt 1S,
cosh p,,a = ; sinh 4,
sinh p e = : ~ @ sinh p ,a + qbfo 3
: 1
sinh g ,a = H _
qbfo}‘lz“lz cosh p ,a - Jfo sinh u ,a Fluxes
b, = N
121253 ®,, = b, cosh pu X+ b, sinhp X
= ; + b, cosh p, X + b, sinh p X
b Jfo cosh py, 0 - ¢70K12p12 sinh y, ,a =
2 ° _ )
NS, ¢71 = bys, cosh p X + b,s, sinhp X
cosh y,,a
by = @y cosh pyja - @gy S
1
sinh @ sinh 4, a
-J,—+J,, ——
0 (]
T Mk f P25
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Plots

f1 sl

#IZX #IIX blsl cosh #IZX bz’l sinh #lzx 1+ 2 b3 cosh #llX b4 sinh #IIX — ¢f1 3 +4+5
s
1

Edge Values (necessary only if there

are more than two reflectors) Jfl = b\, .5/, sinh g, (a + s)

Py = by cosh py, (a +s) * byhyas sy, coshpy, (ats)

t b, sinh p,, (a t s)

+ b3 cosh Hiq (a + s)
DISTRIBUTIONS IN OUTER REFLECTOR

t b, sinh p, (a t s) Coefficients
= . G, = (from consistency check);
Joy = b\ sy, sinh gy, (a + s) C, =—— (from consistency check).

Fluxes
¢s2 = C, sinh p,, (a + s + t - X)

* byAyyky, cosh py, (a t )

+ byA, 4, sinh g, (a *+ s)
+C,sinh p,, (ats+t-X)
+ b4K11“11 cosh ¢, (a + s)

¢f2 = t,C; sinh p,, (a + s + t - X)
®fy = siby cosh py, (a + 5)

+ slb2 sinh p,, (a + s)
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Plots

a+s +t X

/-"22@

C, sinh 1, @

C2 sinh Hoy CD

©+0
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