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NUMERICAL ANALYSIS OF BETA SPECTRA: I. NON-UNIQUE FORBIDDEN SPECTRA

M. E. Rose

In the analysis of all beta spectra wherein the nuclear matrix elements

enter only as a multiplicative factor, that is, allowed and spin change A j = n + 1,

parity change Art = (-)n transitions, it is possible to construct a Kurie-Fermi

plot. This is true when the interaction is a mixture as well as for pure inter

actions. When the transitions does not conform to the above, a simple graphical

representation of the data does not seem feasible. For Aj = Q, Ait = (-)
36

one has the following transitions which are presumably second forbidden: CI ,

Tc^9, Tl20^ and possibly others. The first forbidden transitions seem to have the

allowed shape, with the possible exception of RaE, and we therefore consider at

least second forbidden transitions. The discussion given below is devoted to the

question of analyzing such spectra.

When the experimental data are converted to the form of an observed

correction factor by dividing the counting rate by the calculated spectrum for

allowed transitions, one requires that the resulting data be fitted to a function

of the form

G-vl Cf±W +V% f2W +PXP2 f 3W (!)

where (0 lf CPp and (p, are given functions of the beta-particle energy W, and

incidentally of Z and WQ, the endpoint energy. The latter is assumed known. The

measurements are taken at discrete points W^ and we write (P (W^) = (f^ (i).

The (0 (i) can be taken as accurately known and the error in Q^ = G (W-jJ is

1. We are here assuming the validity of the Fierz conditions: no appreciable
mixture of S and V and of T and A interactions.



statistical. While only one constant S = p2/Pi is involved so far as the shape of

G(W) is concerned, it is not desirable to divide out p-L, say, since this treats the

data preferentially.

The (real) constants p-^ p2 would be values of nuclear matrix elements

if a pure interaction were assumed. Otherwise, they would be products of nuclear

matrix elements and mixing constants. Alternatively, the matrix elements could

be calculated on the basis of some model and then p., p_ are mixing constants.

It is also possible that more than three terms are involved in the correction

factor but attention is restricted to the simpler case. The extension to a more

complex case will be evident.

For convenience we rewrite (l) in the form

G± =ax 1^(1) +a2 if2(i) +a5 ^(i) (2)
where %=If J fe %- (f ±, fQ = (f g, a± =£ &2 =v\, a^ =ft V± pg
and

a-z - a1 *2 = 0 (2a)

Then the fitting process, which is done by least squares, gives the normal

equations

Z fn(i) [ax >x(i) +a2%(±)+a5 f5(i) -G^j -XbQ =0
for n = 1, 2, 3 and

/ ao

(3)

ttl

\"a3,

(3a)

2. The phases can always be chosen so that the nuclear matrix elements are real.
However, even without a special choice of phases the product pj p2 is always
real and p., p2 are the square moduli of matrix elements. The fact that the
mixing constants can be taken real has been demonstrated by L. C. Biedenharn
and M. E. Rose, Phys. Rev. 83, 459 (1951).
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Here X is the Lagrange multiplier. The non-linearity of the problem is eliminated

at this stage.

Introducing the symmetric matrix C whose lements are

olm -I f( (i) fB(i> 00
and the matrix M where

( 0 1 o\
H. 1 0 o (5)

\0 0-1/
which is also symmetric, one has

(C - X M)a = z (6)

where the vector z is given by

zn - 2 % fn(i) (7)
i

The given results of observation fix z, C. Then

a= (C -XM)"1 z (8)

where

(c - xm)"1 = —5a£— (o)
*m |C-XM| ^

and K» m is the cofactor of Cjfm -XM^ ffi in the determinant IC-Xm| . Note
that K 0 = K 0 .

Jtm mJfcL

The mean square deviation in a^ ±B given by the diagonal elements of

(C -X M)"1:

(^ -a^)2 -(C -XM)"^ = _^52 (10)
|C -XMl
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The as yet undertermined Lagrange multiplier X is given as a root of the

equation resulting from (2a). This gives a quartic in X (see Eq. 11 below) and

the roots (which can be found numerically) are conditioned by the requirement that,
3

when substituted back in (8), the resulting values of ax and a2 are both positive.

This may, of course, give no solutions (in which case the original parity, spin

change assumptions may be at fault) or more than one solution. Obviously X must

be real. It is clear, of course, that one is also interested in the value of a^

since the sign of a* gives the sign of the ratio p2/pi'

For the determination of X we have

and

3

21 (KJlK£2 +KJ2Kei-KJ3K£3)zJ^ =°

2

Kll = C22 C33 " G23 + X C22

2

K22 = cll c33 " ci3 + x cn

2

K33 = Cll C22 " (C12 ~ *•'

*12 =C13 C23 " (C12 "X) (C33 +X) =*21

K23 = C13 (°12 "X) " Cll C23 "*%2

(H)

3. This procedure is an alternative to the one described by A. M. Smith, Phil. Mag.
Ser. 7, xliii, 915 (1952). A least squares fit without using Lagrange multipliers
is also possible but gives simultaneous cubics in p^_ and p2. Note that no
difficulty should arise from a near singularity resulting from approximate linear
dependence of the functions ^"n. This would make |c | small but not C-XMj.
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K13 =C23 ^C12 "x) "ci3 c22 s*5l

Also, for the a (Eq's. (8) and (9)) one needs

|c -xm| = |c| +x rci;L C22 -C12 +2(C12 c33 "c23 ci3n

+X2 (2 C^ -C?3) -X3.
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