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SHIELD OPTI

A shielding problem can be said to be solved when the radiations from

a given array of sources has been reduced to some tolerable limit at a speci

fied location. In general if a problem can be solved at all, there are many

different ways in which it can be solved, so that it is of interest to inquire

which of these solutions is the best. While for stationary applications

"best" might imply cheapest, for mobile power applications weight is the

primary consideration and "best" therefore means lightest. For this reason

mobile reactor shields are usually optimized with respect to total weight.

The weight of the shield alone, however, is not the sole consideration,

since other features of the shield can affect the overall installation weight.

Thus the location of the center of gravity of a submarine shield is quite

important to the stability of the craft. For this situation it might be

possible to evaluate the effect of a high centroid by including in the shield

weight the extra keel ballast required.

In an airplane it is common to consider the shield as divided, partly

around the reactor, and partly around the crew. Strictly from considera

tions of shield weight, it might appear desirable to have the two parts of

the shield of about the same weight, but this highly divided situation means

a large moment of inertia about the transverse axes, with concomitant in

crease in control surface requirements.

A large reactor shield dlane?S^5iW3PWrar^&ad, the alternative to a

ahighly divided neutrori^(|ld, ^?%jJCijln-(:r-easeIjftWB*1^1 &r6a °f ^
fuselage as to increase the power requirements for a given performance. This

also has an equivalent.weight penaltjgj^^^r * •***

The distance from reactor to crew position is another variable in



airplane design. The greater is this distance the greater is the inverse

square attenuation, but the fuselage becomes longer, hence heavier and harder

to propel through the air. There is a proper balance in this parameter also.

The influence of all these variables can be taken into account in opti

mizing a shield with respect to weight. For the purposes of the present dis

cussion, it will be understood that this is the case, but the weight will

nevertheless be treated as a simple integral over all parts of the shield.

Thus

W = J /o(x,y,z) dV (1)
shield

where in the simple case o(x,y,z) would be a density and dV a volume element.

In general W could also include other parts which are functions of variables

other than (x,y,z). This will not change the fundamental method of optimiza

tion, hence will not be treated explicitly now.

Although there must exist another expression, analogous to Eq. (l), for

the dose rate at the position occupied by the nearest personnel (e.g., crew

position in an airplane), it would be excessively complicated and would in

volve unknown cross sections. It is, however, not difficult to express the

variation of the dose rate as the integral of variations which are measurable

throughout the shield. For the purposes of the present discussion it will be

assumed that there are just two functions which specify the shield configu

ration, one for the interior and the other for the periphery. The variation

in the dose rate at the crew position is then expressed by the following

equation!

5D = J D«(x>y>z) 5cr(x,y,z) dV + J D^(x,y,z) &t(x,y,z) ds (2)
shield shield

volume surface



where cr(x,y,z) is a point function describing the composition of the shield,

and t(x,y,z) is a function describing the surface (s) of the shield

St(x,y,z), the variation in t(x,y,z), is taken to be normal to the shield

surface at (x,y,z) and positive for increase of shield thick

ness.

D'(x,y,z) and D£(x,y,z) are functional derivatives of D with respect to

a and t, and are to be described in more detail in the next

paragraph.

dV,dS are volume and surface elements, the latter being taken at

the variable (usually outer) surface.

(5)The functional derivatives Dq and D^ are defined in the following

manner. Consider a small volume € about the point (x,y,z) in the shield in

terior, and change the value of a(x,y,z) withinthis volume by an amount

5a(x,y,z). This will produce a change in D by an amount S^D. The functional

derivative^) iS then defined as

jfeD_
£6a-»-0 Sa(x,y,z)

Da(x,y,z) = lim ^ t (3)

It is easily seen that D'(x,y, z) is one true observable of a shield

measurement. Suppose a(r) represents the volume fraction of lead in the

lead-water region of a spherically symmetric shield. Then the measurement

(.
consists of inserting a spherical shell of thickness ? = —•=-— at some

4 ttt2

radius r of the shield and observing the" change in the dose rate, D*. Then,

since 8a = 1,

* Theoretically, of course, any small piece of lead at or near the proper
radius could be used. The spherical shell is chosen so that the maximum
effect will be observed for a given spread, or uncertainty, in the radius
at which the lead is located.
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H,<*> = _^_ (*)
4 70*27-

It is convenient to introduce in this connection a "replacement length, A"

much like a relaxation length, * which describes the effect on D of replacing

water with lead at r.

/(r\ _ - lim rvC{T) ~ 7_*0^ (5)

whence

*-^y (5a)

D'(r) = - 5 (7)
° 4 Trr2/(r)

It is of interest at this point to inquire why "i" might be a function

of r. It is, after all, merely an indication of the effect of replacing a

* The similarity between / and a relaxation length X is seen from the fol
lowing:

The law for plane exponential attenuation of a beam of intensity I is

I = I0e"xA

dl _ It e"xA_ - -_ ±0e
dx A.

> - ir («

This equation is then to be compared to Eq. (5a) in which 1 corresponds to dx,
SJD to dl, and D to I.
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small thickness of water with lead. At first glance this might be thought

to be independent of the radius at which the lead is introduced, and if this

were the case it would be clearly an advantage to locate the heavy material

at the smallest radius so that the weight per unit thickness would be a mini

mum. There are, however, very good reasons why the lead cannot advantageously

be located too close to the source in a reactor shield, to wit:

1) Capture and inelastic scattering gamma rays will be produced in the

lead, so that locating this material too near the source, i.e., in too high

a neutron flux, will cause this secondary gamma-ray source to be excessive.

2) Intermediate energy neutrons will proceed through the lead relatively

unimpeded, producing a strong secondary source beyond the lead.

3) In general, secondary gamma rays will be produced throughout the

shield. The lead must be so located that it intercepts these gamma rays,

i.e., it cannot be concentrated too near the source.

Next consider a small element of shield surface a near the point (x,y,z)

at which the thickness is increased by an amount 6t(x,y,z) measured in the

direction normal to the surface. This will produce a change in D by an

amount 8^D, giving the following definition

D+(x,y,z) = rtftT.n——, A (8)
T a5t—*0 <jst(x,y,z)

The simplest exposition of the nature of D/(x,y,z) is obtained by the

use again of the spherical shield. For this case, a becomes 4 irr§, or the

area of the outermost shield surface, and D'(x,y,z) becomes simply D'(rQ)
"t r

D{.(x,y,z) = D'(r) - -^ (§2) (9)

4 7rr2*.(rj (10)



where X.(rQ) is simply the relaxation length for total dose rate of the ma

terial at the outer shield edge.

The shield weight is of course assumed to be affected by the variations

in a and t, and it is therefore of interest to write down the effect as ex

actly as possibles

6W = J 9/°(X3a'Z) 5a dV + / yo(x,y,z) &t(x,y,z) dS. (11)
shield shield

volume surface

The shield weight is optimized subject to the constraint of constant dose

rate, so that,

6W +=£--6D = 0 (12)
•"o

where A is an arbitrary constant to be determined by the conditions of the

problem and DQ is the allowed dose at the occupied space, that is, the value

of D when the shield is adequate or,

J ya[x)7,z) D0 W j
shield

volume

lieId L
+ J |/o(x,y,z) +^A D^.(x,y,z)

shield L Do
surface

6t(x,y,z) dS = 0 (13)

Equation (13) indicates a requirement for shield optimization in terms

of variations in a(x,y,z) and in t(x,y,z). Thus if

|(a,t) = W+^D (14)
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is the integral to be minimized, the left hand side of Eq. (13) expresses the

variation in this integral due to variations in a(x,y,z) and t(x,y,z). Thus

if the functions a(x,y,z) and t(x,y,z) are changed to a(x,y,z) + 6a(x,y,z)

and t(x,y,z) + 6t(x,y,z), the corresponding variation in £ is expressed by

the LHS of Eq. (13). But ?or | to be a minimum (a maximum would be easily

recognized and discarded), this variation must be zero, as is expressed by

Eq. (13), for any arbitrary variation functions 6a(x,y,z) and 8t(x,y,z). The

only way to insure this, since 8a and 8t are completely unspecified, is to

require that the square-bracketed quantities in Eq. (13) are identically

zero. That is, for all points within the volume of the shield

fg*D> -° <«)

and for every point on its surface,

p+£j>i = 0. (16)

For a spherical shield, these requirements become, for the volume of the

shield,

2£ = 1 (17)
&a 4 7rr2i(r)

and since ^£ is simply the difference in densities of the two components, the
da

requirement becomes simply that

r2£(r) = constant = C (18)
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and for the shield surface,

o(r0) = (19)
' 47rr2x(r0)

A can of course be eliminated between Eqs. (17) and (19)> so that the

optimum configuration is completely determined. It should be emphasized

that jd(r) and \(r0) are to be determined in the optimum configuration itself,

and that Eqs. (17) and (19) serve only to identify the optimum shield when

it has been achieved. It is nevertheless obvious that it is possible in

cases of physical interest, at least, by comparing actual /(r) 's with those

specified by Eq. (17), to determine in which direction to change a to ap

proach the optimum.

The Neutron-to-gamma Ratio

Eqs. (17) and (19) specify the optimum values of "2(r)" and \(r0),

which are measures of the shield effectiveness in terms of the dose rate D.

The instruments which are used measure neutron and gamma-ray dose

rates separately, however, so it is convenient to derive from the basic

equations the desired effectivenesses for these two dose components. For

this purpose, let the dose rate be represented as the sum of a neutron and a

gamma ray component,

D - N +P (20)

and define two new replacement lengths in terms of these individual components:

/ (r) = lim tL. (21)
• ?->° &aN
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I (r) = lim yp (22)

Similarly, for the relaxation lengths at the shield exterior,

S^o> - -»§) (23)
/r=rQ

V'o> • TafL <*>
'rs=r

and, for completeness, add

From these definitions it is not difficult to show that

, ^

and

D N r
X&J " ^7^T+x7r7T (26)

p _ n . r
^TrT ~ £JrT I^FT (27)

In a lead-water shield, the replacement of water by lead makes little <

difference to the neutron dose. As a consequence it is a reasonable approxi

mation to let

in(r) >> ly{r)

If furthermore N^P, then it is easy to ehcVthat'Eq; (l8) would pe replaced

by

r2i (r) = cC (28)
7 D
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i It follows at once from the above for an optimized spherically syAne'tric

shield that the; ratio of neutron to gamma dose rates is given by

where pQ =/o(rQ)

/>o*
N /o'r2/7(r) X7(r0)

r = i _ /Qqfe ' (29)
Xn(rQ) yo'r3*n(r)

/o' • <2£
^a

Parameter Optimization

In many cases of shield design it is sufficient to specify the shield

in terms of a finite number of parameters. In the previous case, the func

tions a and t could be considered as infinite sets of parameters, having

values to be individually determined at every point in space. Considerable

simplification results if only a few parameters need be considered.

In a typical aircraft divided shield where the shield is very asymmetric,

the parameters might include:

1,2) The two reactor shield thickness parameters T0 and T1 if the thick

ness as a function of a polar angle if is expressed by T = T0 - T'tJt.

3) The effective angle of a lead shadow shield.

4-9) The six thicknesses of crew shield front, sides, and rear for neu

trons and for gamma rays.

10) Some function of the reactor shield diameter, to take account of the

the extra drag occasioned by excessive frontal area, etc.

The general method for shield optimization in which a finite number of

parameters is adequate is now outlined.

The weight is expressed as a function of the parameters, thus:
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W = W(x,y,z, ...) (30)

The dose rate at the occupied space is likewise expressed in general as a

function of the same parameters>

D = D(x,y,z...) (31)

Furthermore it is required that the dose rate in the chosen design be just

equal to some tolerable level D0. That is,

D(x,y,z,...) -D0 - 0 (32)

In addition there may be other conditions, such as that the crew com

partment volume is fixed (while its shape may not be). These are expressed

also in general form, thus

Fi(x,y,z,...) = 0 (33)

F2(x,y,z,...) = 0 (33a)

Although it will often be more convenient to combine the special conditions

expressed by Eqs. (33,a, ..) with either Eq. (30) or Eq. (32), the general method

for optimizing does not require this.

If a new function

I = W +n)D +a\F1 +o£F2 + ... (34)

is defined, where <*>, o\, c^2, etc. are constants to be determined from the

characteristics of the function W, D, F^Fg, etc., then it is postulated

that W is then optimized subject to the conditions of Eqs. (32) and (33>a..)
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'1 =*J = H = .. •- 0 (35)
#x ^y 2z

in order to make this postulate apparent, Eq. (34) is first simplified

by combining the functions Fx, F2, etc. with either W or D. Each one of

these will be such that it can be lumped with either the dose rate or the

weight. Thus if F1 represents the weight penalty for increasing the reactor-

to-crew separation, then W +4/]F-. would represent the shield weight proper

plus some amount to allow for the extra fuselage. A similar penalty to be

added to the dose, say F2, could refer to some physical disadvantage, as

sociated, for example, with an uncomfortable crew space. Taking these into

account, let

W' = W+*->1F1 +^jFj + ... (36)

also,

^2 n
— F0 + —D' = jj + _1 F +Jly^ + ... (37)

D' - D0 = 0 (32a)

$ = W +o)D' (38)

For variation in any two of the parameters x and y,

QX 8x £x

f£ey , *lLby +cJ±.by (40)
*y ^y ^y
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Now Eq. (32a) constrains Sx and Sy so that for a given 8x, a concomitant 8y

must be such that

€£l6x+|£l5y . o (4i)

The variation in weight which this causes must be zero if the weight has been

optimized, that is,

5W =|£ Sx +J| 6y = 0 (42)

On multiplication of (4l) by an arbitrary constant<&4 it is seen by com

parison of this and (42) with expressions (39) and (40) that the sum of the

latter is zero. Furthermore, it is evident that (39) is equal to the nega

tive of (40). Accordingly, both (39) and (40) must be zero, and by analogy

so are all other partial derivatives of ^ that is, if W1 is optimized and D1

is fixed, then

?x ?y 0z

or

J?W' £W*
^x _£y

^x ^y

= 0 (43)

= OJ (44)

Optimization of a Box-shaped Shield

As an example of optimization of a shield in which it is possible to

specify the configuration by a finite set of parameters, consider the following;

It is required to shield a given volume of radioactive material (pure

gamma emitter) with a minimum weight of shielding material. Both the source

and the shield are to be in the shape of rectangular parallelepipeds. The

source is to be located in a vehicle at a position well behind an operating
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crew. As a consequence radiation leaving the front, sides, and rear of the

source contribute differently to the dose rate at the crew position, for

which the shield is to be designed.

of

CHEW
\

SOURCE

1
SHIELD

y

Fig. 1 - Box-shaped Source in Shield

Figure 1 shows the configuration of the source in its shield. Both are

assumed to have square cross sections.

The conditions of the problem are stated mathematically as follows:

W = /o(x2y - V) (45)

2 7) = constantV = i^ (46)

D = Dp + Ds + % (47)

Dp = F&Vna (48)

Ds - S|?|e
-m((*-|)/2)

(49)
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dr = RiV^y-p-a) (50)

D(|,a,x,y,Y) -DQ = 0 (51)
where

p is the density of shield material

W is the shield weight

x,y,i,~n are the dimensions of shield and source, as shown in Fig. 1.

V is the source volume

D is the total dose rate at crew position

DF,Dg,DR are the dose rates due to radiation leaving the front, the sides,

and the rear of the source

F,S,R are constants which describe the attenuation of these radiation

components

H is the attenuation coefficient of the shield material

DQ is the tolerable dose rate at the crew position

Optimization is first carried out for those variables of which W is not

explicitly a functioni

gj = -nF|2e"^ + MR|2e^(y-7-a) = 0 (52)

where

da.

C = J^tal
2 u R

a = 3L£?. + 1 Ai £ (53)
2 2 n r

- 244* =

Next I is eliminated from the expression for the dose by means of Eq.

(46), and optimization is carried out with respect to >7.

D. gvjp_ ey2 (7-y) +sV^ ;ji -kfj) ^
* Note that Fe"^C + Re^c = 2YFR
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fff -o-̂ ^-^)eWa(y-7)+|^.^ el(*-^, (55)

For a source box large compared to a relaxation length in the shield material,

H » l/'?

and if V-v r?,

then the following simplification is permissible:

ill . JH""^)

-Vx+Vf
where

A = l/ji in (16FR/S2)

Two more equations follow from Eq. (43)

(56)

'1 =2/,xy-^^H e"^"^). 0pxy -CO^Ol. e ^ "'V- 0 (57)
ax ' 2

€l = ox2 -<WE e^2 ^> „ 0 (58)

The four remaining unknowns x,y/n, and&jare fixed by Eqs. (51 and 5*0> (56),

(57), and (58).
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