


ERRATA

p. 28, line 11—for "7 [l -Prob B> 0J" read "7 [l -Prob {b > o}]

p. 52, line 5(bottom)—for "where q, denotes" read "where j"q~| denotes",

p. k2, line 6—for "summing (5-25) over" read "stumaing (3.28) over".
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CHAPTER I

INTRODUCTION

Discrimination in Linear Normal Regression

Let y denote a normally distributed, random variable with

2
constant, unknown variance a and whose mean is an unknown linear

function, E(y) = or* + 6* x , of a continuous, non-stochastic variable

x . The probability density function f(y; x) has the form

(1.1) f(y; x) = —-== exp
a\/2jc

(y - g* - p»x)

—i7

The following problem is frequently encountered in numerous

applications. A series of observations y . (j = 1, 2, ..., m) is

taken at a single, unknown value x of x . From these observations,

it is desired that x be estimated. It is obvious that the solution
o

of this problem requires the existence of some prior information about

2
the values of or* , B* and a .

It is well known ll, pp. 5l*9-550j that unbiased estimates of

the three unknown parameters may be obtained as follows: Make

observations (x±, y±) ,(1=1, 2, ..., n) on y at n known

values x. of x . The x. need not all be distinct, but at least
1 n

two distinct values are required. Let x = E x./n aXL^L define
1=1 X

new parameters a and p by 3 = B* and o = Of* + B* x . Thus

E(y) assumes the form



(1.2) E(y) - a + B(x - x) ,

2
for an arbitrary x , Estimate a , B and a by

n

a • E y,/n ,
i«l

n -v2(1.3) b = E yi(xi -x,)/ E (xt -x) ,
i=l i«l

and

n
2 = E Ty. -a -b(x. -x)l / (n -2)

i=l L x J

respectively. The expected value of y , (1.2), may then be estimated

by

(1.1*) Est |_E(y) J - a + b(x -x)

m

Possessing estimates of the parameters and letting y • E yn*M t
° j-1 J

one may estimate the unknown value of x corresponding to the m

observations y . by solving the equation
oj

(1.5) yo » a + b (jEst(xo) - x] ,

for Est(x. ) .

An estimate of the variability of Est(xQ) is needed to obtain

ameasure of the reliability of the statistic. Since Est(xQ) is a

continuous, random variable, the probability of its assuming any



3

particular value is zero. Non-trivial probability statements may be

made about Est(x ) only if one considers the probability of it

falling in some region, rather than at some specified point.

The Neyman-Pearson 9J concept of a confidence interval used

to estimate the parameter of a distribution will be employed. A

procedure for the determination of a confidence interval for xq

from the data of the type described above is known but apparently not

clearly understood by all statisticians. If one, for example, inter

prets literally the procedure described in a well known textbook on

mathematical statistics [8, p. 30lJ it is quite possible to arrive at

a confidence interval with end points that are complex numbers.

It is the purpose of this thesis to clarify the apparent anomaly.

Furthermore, the two-sample technique of Stein [llj will be applied to

devise an efficient design of the experimental procedure leading to

the determination of confidence intervals.

General Method for the Construction of Confidence Intervals

It will be convenient at this point to sketch the general

procedure that will be used in the sequel for the construction of

confidence intervals.

Let 0 be a sample of n observations taken from some

population with a probability density function of known form, but with

unknown parameters 6 ,|1, £2, ..., 4k (k > 0) . The parameter

0 is the one for which a confidence interval will be constructed.

Let the vector £ denote the set £., £„, ..., Ik of nuisance

parameters. The probability density function win be denoted by



f(u; 9, |) . If there exist two functions L]L(0n) and L2(0Q) ,

which depend on the sample but not on 0 or | ,then 1^(0^

(i = 1, 2) are random variables and the interval

(1.6) 5(0Q): L1(0n) < © < L2(0n) ,

is a random interval. If, independent of the true values of © and

| ,the probability is (1 -7) that the random interval 5(0n)

covers © , then 6(0 ) is termed a confidence interval for © and

(1-7) is the associated confidence coefficient. The values of the

functions L.(0 ) (i » 1, 2) are called the confidence limits

[13, pp. 122-126J .
Instead of finding the functions Li(0n) (i •1, 2) and their

distributions directly, it is frequently more expeditious to proceed

in the following indirect manner. Let C(°nJ ©) "be some random

variable which is a function of 0n and © and whose distribution

g(£) is known and independent of © and £ . Let *(0n) be a

random variable such that £ is a monotone increasing function of t ,

but £ may also be a function of some other random vector variable,

say p(0 ) . Let the probability density function of \|r , given p ,

be h {i; ©, |) which will generally be dependent on © and | .

For the purpose of this paper it will be sufficient to assume that the

random variables t and p are statistically independent. Let



Prob (A) be the conditional probability of A given p. If
P

E

.£2
1-7

f'2= J g(5)dS « Frob{$ 4 i2) - Prob ^ 4 ^
(1.7) 91

1

Probp (C ^ ^ - Probp {£ ^ i±) >

and ^r =f± when £= £h (i, h-1, 2; i/h), then, regardless of

the true values of © and g, Prob Nf 4 t^J ©> î =

Prob A 4 L \ is a random variable dependent on p and, from (1.7),

(1.8) 1-7=E Probp U ^ ^j ©, |J -Probp £|r ^ *2J e> t} •

As the notation implies, t-, and t2 are famotions of © .

Assume these functions to be monotone increasing and to range over the

interval of definition of if as © ranges over its set of admissible

values. If p is given and if, for a given t ,L^O^) and L2(0n)

are the values of © for which t = ti a*1"1 t = t2 respectively,

then

(1.9) Probp I* ^ tx; e, $} = Probp ^e ^ l^); ©, 1} ,

^Fhe expectation of a conditional probability will be taken to
be the expectation with respect to the conditional vector variable.
If F(p) is the cumulative distribution function of p , then

E[Prob (A)] = /Prob (A) dF(p) ,
where the integral is taken over the domain of definition of p .



and

(1.10) Probp U + t2; ©, l) - Probp |© ^ L2(on); ©, i}

whatever the true values of © and g may be. Substituting (1.9)

and (1.10) in (1.8), one obtains

1 - 7 = E

(l.H)

Probp {© > L^OJ; ©, g)

- Probp/© ^ L2(0Q); ©, |j

= Prob^e >Lx(0n); ©, gj - Prob^© ^ ^(O^; ©, g}

= Prob/l^) 4 ©^ L2(0n); ©, t) ,

the desired result.

In the event that ijr, and t„ are monotone decreasing

functions of © , then L, is associated with t2 and L2 with f1

in the same manner as before. In this event the analogs of (1.9) and

(1.10) are

(1.12) Probp |t ^ f±i e> g] = Probp |© 4 L2(°n); 9> *}

and

(1.13) Probp Uf 4 *2; 0, l} » Probp |© 4 \(0n)} ©, l]
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respectively which, when substituted in (1.8), again give (l.ll).

The relationship described above may be exhibited graphically

as in Figure 1. The two curved lines are t^6) and t2(©) • If t*

is the sample value of t > one erects a horizontal line at if* which

intersects *-,(©) at A and t2(©) at B . The vertical projection

of AB on the © axis is the confidence interval 6(0n) . If ©Q Is

the true value of ©,then ©Q i. 5(0n) if, and only if, *2(©0) 4

t 4 ti(e )• The confidence coefficient is (1 -7) •

The preceding discussion may be generalized to construct a

confidence region for two or more parameters. Conditions of monotoni-

city apply to functions of several variables in a similar way.

Purpose of This Thesis

Assume the normal, linear regression model described above. Let

x (i = 1, 2, ..., n) be arbitrarily specified, subject to the

condition that at least two values be distinct. Corresponding to each

x one makes an observation on the random variable y obtaining

values y. (i = 1, 2, ..., n) . In addition, m further values of

y , say y (j = 1, 2, ..., m; m ^ l) , are observed where it is

known that each y corresponds to the same but unknown value xQ

of x . The joint distribution of the entire sample of the (n + m)

observations is



t(on)

A / B

©

v^ /*£*)

L^e) L2(e)

Figure 1

Graphical Determination of Confidence Limits
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f(yr y2, •••> yn> y01> y02> •••> W xi> x2> •••' V xo) =

(1.1k) r n r- i2

1
•" ex]
• m+n

(2*a2)~^~

In (l.llt) it is assumed that the x± (i - 1, 2, ..., n) are known,

the y (1 =1, 2, ..., n) and yQJ (j =1, 2, ..., m) are random
2

variables and a , B , a and x are unknown parameters. This

paper will describe a procedure for determining a confidence interval

for x having the following properties:
o

1) The confidence interval will be unambiguous and not lead to

any absurdities.

2) The sampling procedure will be efficient in that the sample

size required will not be unnecessarily large to obtain an interval

with the desired confidence coefficient.

3) The confidence interval will be independent of the nuisance

2
parameters a , p and o .

Chapter II will describe the usual one sample procedure. It

will be seen that properties two and three are not fulfilled. Chapter

III will outline the recommended two sample procedure. Chapters IV

and V discuss the extension of the two sample method to higher

dimensions. A summary and example will be found in Chapter VI.



CHAPTER II

THE ONE SAMPLE PROCEDURE

Introduction

This chapter contains an heuristic graphical description and a

rigorous analytical discussion of the well-known one sample procedure

for the construction of confidence limits for x .

A Graphical Construction of a Confidence Interval for xQ

The customary procedure used to determine a confidence interval
_ m

for x is as follows. Compute the mean y^ = E 7-J^ of ^e m
° ° j=l °3

observations on y corresponding to the unknown x , and a , b and
n p , i

s2 as defined in (1.3). Let S = E (x -x) ,M = (- +-) and
i=l •

yo - a - b(xQ-x)
(2.1) u - -

s / M + s

It is well known [l*, p. 536] that u has Student's distribution with
(n - 2) degrees of freedom defined by

rn - lx
T ( " x)

(2.2) ^^(u) - -— I-—?
Mn -2)' T(^)

2

n-1

2

Let v = 1-7/2 and define t (n - 2) to be the lOOv percentile

of Student's distribution with (n - 2) degrees of freedom, i.e.,



ty(n-2)
(2.3) g^ujdu = I-7/2

- 00

Since g^ o(u) is symmetric about u = 0 ,

(2.4) ProbV |«| < ty(n - 2) )• = 1-7

Expanding and squaring the inequality within the brackets of (2.4)

one has

(2.5)

Defining

['. - a - b(xo - i>]
2

s

(x0 - xf ~
r + s

2 t2(n -2) s2
S

B - b

one may write (2.5) in the form

< *v(n"2)

11

(2.6) B(xQ -xf - $b(:i0 -x)(yo a) + (yQ -a)' M s2 t2(n -2)

The equality in (2.6) defines a conic whose discriminant is

(2.7)

2 1* s2 t2(n -2)
1* b - 4B = J- > 0

The graph of the conic is an hyperbola. The inequality in (2.6)
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specifies that the point (x , y ) lies between the two branches of

the graph. Thus, for a given value of y , an interval, that may be

of infinite extent, of values for x is specified. In many appli

cations, the range of admissible values of x may be known to be

finite, or semi-infinite. If this be the case, the confidence

interval so obtained may be truncated to exclude inadmissible values

of x .
o

The asymptotes of the hyperbola are obtained by setting the

left-hand side of (2.6) equal to zero. The asymptotes are

(2.8) - a =

and

(2.9) y0 - a

(xQ - x) b -

(xQ - x) b +

s ty(n -2)

yr

s ty(n - 2)

~~yf

Several cases may be distinguished in terms of the slopes of

the asymptotes:

Case (la). If

(2.10) b >
s ty(n - 2)

~~7r

the slopes of both asymptotes are positive. Figure 2 illustrates the

situation. Both branches of the hyperbola are continuous and

monotonically increasing functions of x ; they will be used to
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Figure 2

Confidence Limits for x under Case (la)
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define the functions ^. and \|r discussed in Chapter I. Thus, if

condition (2.10) holds, a conditional confidence interval for xQ

may be obtained by intersecting the hyperbola with an horizontal

line through the observed value, say y* . The projection xQ1 ^

x ^ xQ2 of the line segment PQ is the desired interval. The

conditional probability, under (2.10), that this interval covers the

true x is (1 - 7) , since this interval is derived from the
o

inequality (2.6), which in turn is just a restatement of the inequality

in (2.1*).

Case (lb). If

s t (n - 2)
(2.11) b < 7=

n/S

the slopes of both asymptotes are negative. Figure 3 depicts the

construction of the confidence interval. The situation is entirely

analogous to Case (la) except for the reversal of the sign of the

slopes of the asymptotes.

Case (la) or (lb) results if B > 0 .

Case (2a). If

s t (n - 2)
(2.12) 0 < b < — ,

VS

the slopes of the asymptotes are of opposite sign as in Figure 4. The

two branches are not admissible definitions of the functions ty^ and

t0 for they are not monotone functions of x . An horizontal line
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Figure 3

Confidence Limits for x_ under Case (lb)
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Figure 4

Confidence Limits for x under Case (2a^
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at y* intersects the same branch of the hyperbola twice, at P and
o

at Q . It will be convenient, and realistic, to define the condi

tional confidence interval for x to be the entire real line

whenever (2.12) holds, although rigorously one does not have a

conditional confidence interval in this case.

Case (2b). If

s t (n - 2)
(2.13) 0 > b > ~= ,

VS

the dual of Case (2a) is obtained. The same definition will be

applied to construct a conditional confidence interval when (2.13)

holds. Figure 5 illustrates this case.

Case (2a) or (2b) results if B < 0 . One cannot strictly

speak of the probability that the real line covers xQ . If B < 0,

the sample actually does not provide enough evidence for the depend

ence of y on x .

Case (3a). In the event that

s t (n - 2)
(2.14) b = —~=

VS

the slope of one asymptote is zero and that of the other is positive.

The two branches of the hyperbola are monotone functions of xQ and

may be taken to define f, and t2 • If (2.14) holds, a conditional

confidence interval for x may be obtained by intersecting the

hyperbola with an horizontal line through the observed value yg .



IB

Figure 5

Confidence Limits for xQ under Case (2b)
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The line intersects but one branch if y* ^ a , and none otherwise.

If y* > a , the conditional confidence interval is the projection,

xr, < x ,of the half-line commencing at P . If y* < a ,the

conditional confidence interval is the projection, xq ^ xQ2 , of

the half-line terminating at Q . If y* = a , the conditional

confidence interval will be defined to be -oo < xQ < oo in

the same sense as in Case (2a). Case (3a) is illustrated in Figure 6.

Case (3b). If

s t (n - 2)
(2.15) * = - 7=

s/S

the slope of one asymptote is negative and that of the other is zero

as in Figure 7. Conditional confidence intervals are constructed in a

manner analogous to that described in Case (3a). If yj > a ,the

conditional confidence interval is the projection xQ ^ xo2 of the

half line terminating at P . If y* < a , the conditional

confidence interval is the projection xQl ^ xq of the half line

commencing at Q . If y* = 0 , the conditional confidence interval

will be defined to be - <=x> < x < e='<=> in the same sense as

Case (2b).

Case (3a) or (5b) results if B = 0 . The confidence coeffi

cient is not readily determinable, but since b is a continuous random

variable, the probability of Case (3a) or (3b) occurring is zero.

These cases are sketched for the sake of completeness and as a

definition to serve in actual practice when (2.14) or (2.15) may hold
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yo"a

i
p /

^
*S

/ ,

/

J*±-^-^^ xo"x

X02 Si X03^- *2
I
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* y^ //
'**S '/

' f
^

Figure 6

Confidence Limits for x_ under Case (3a)
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Figure 7

Confidence Limits for x_ under Case (3b)
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to within the number of significant digits used in the calculations.

An Analytical Determination of a Confidence Interval for xq

The graphical construction described in the previous section is

heuristic. Conditional confidence intervals for xq are provided

under various conditions on b . In order to establish rigorously,

that the combined procedure furnished a rule for the determination of

unconditional confidence intervals in the sense of Neyman and Pearson

|9 , the procedure will be developed analytically. A pair of random

variables L.(0) (1=1, 2) that are functions of the sample 0^

will Be defined in such a manner that

(2.16) Prob/^(Oj < xQ < L2(0n); xq I > 1-7,

independent of the true value of x . Consideration will be given

to the amount that the probability (2.l6) exceeds (l - 7) . The

excess will be taken as a measure of the inefficiency of the procedure.

Definition. Let k be the observed value of the variable

(y - a) and n« - (n - 2) . Define L±(0n) (i = 1, 2) as functions

of the sample 0 by

f;t>4 . 1V!2 /Sf +M3 ifB>0
B B >J S

k b S M(2.17) L^OJ - «( x + -Ip - *£-= if B=0 and k > 0

- 00 otherwise ,



and

•r .. s t.(n')
f - bk "T '

x + _ + __

(2.18) L2(0n) =<^ x + -|p -lf^

+ <=x= otherwise.

23

+ M B If B > 0

if B » 0 and k < 0

These functions, so defined, agree with the limits set in the

discussion of the graphical procedure above. Statement (2.l6) will

now be sharpened and proven in

Theorem 2.1. Let Li(0n) (i » 1, 2) be two functions defined

by (2.17) and (2.18) respectively and let 7 be a pre-assigned number

such that 0 < 7 < 1 • Define v - 1 - 7/2 and

B = b

s2 t2(n -2)

Regardless of the true value of x ,

ProbJL^) < xQ < L2(0n); xq

(2.19)

(1-7) + 7 1 - Prob {b > 0}

Proof. By well-known rules of probability
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Prob JL^OJ 4 *0 <L^Oj; xQJ -

\hS°v) < xo < W* B> °' Vf

(2.20) + Prob|l1(On) < xQ < ^(Oj, B- 0; x0\

+ Prob |L1(0n)< xQ < L2(0n), B< 0; xl .

Now, if B < 0 ,L1(0n) «-oo and ^(^ a CK=> so that the

inequality L, 4 x .4 Lo imposes no restrictions on the paraniieter.

Thus the third term in (2.20) is

Prob

Prob

(2.21)

|-^< xQ < oo , B< 0; xl

Prob Jb < oi - (I-7 +7) Prob Jb < Oj.

(2.22)

Since the sample set on which B = 0 has zero probability,

Prob|L1(0n) < xQ < L2(°n)> Bs°* X0J

" ^B -0{W < Xo < L2(0n}' Xo]
♦ Prob Jb = o\ - 0

To evaluate the first term in (2.20), let B > 0 and consider
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(2.1). The variable u has Student's distribution with n' = (n - 2)

degrees of freedom. Hence, if v= 1 - 7/2 , then

,t (n')

1 -7 = / snt(u) du •
7-t (n»)

(2.23) v

Prob/u 4V* M " Prob(u ^ -Vn')

But u is a monotonic increasing function of (yQ - a) , as well as

a function of s and b . However (yQ - a) is statistically inde

pendent of s and b , so that, given the latter, one may write

1 - 7 = E Prots,b<yo-a ^ ^xo"x) +

(xo-x)2,
C > Xr(2.24) s ty(a') v/M +

-^
u„- x)ProbsJyo -a4 b(xo -x) -stv(n') Jm +-^ ;xQ,

It may be seen that u plays the role of £ and (yQ - a) that of

^ in the discussion in Chapter I. The random variables s and b

correspond to the vector p. Furthermore the limits of y are

I (x -x)2'
♦1(x0) =Ux0-x) +(-l)i+1s ty(n») ^M +-2^ >

(2.25)

(1 - 1, 2) .



Now

^ .* ♦ (-x)^5^'' (x°-")
o

(2.26)

If b > 0 , then

4(x„-x) | (, .J)2 '
S ,jM + —2-

b + (-1) ,

/s1 /l ^
\ (x. -x)2

M S
+ —

o
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a*2(x0) stv(n«)
(2.27) , " > * p; > 0 ,d(xQ-x) ^ /S

since B > 0 . Obviously dt^x )/d(x -x) > 0 . Thus if

"b /> 0 i ti(x ) and fAx ) are monotone increasing functions of

(x -x) and hence of xQ. If b < 0,then dt2(xo)/d(xQ- x)

<C 0 and

%(x_) st(n')
(2.28) -i_2_ < b + -^ < 0

d(x -x) ys

because B > 0 . Thus, if b <C 0 , t1(xQ) and t2(xQ) are

also monotone decreasing functions of (x- x) and hence of x •

The following argument will assume that b ^> 0 . The

modifications are obvious if b < 0 . The functions ti(x0) and

*,~(x ) are similar to those depicted in Figure 2. Corresponding to
Tc O



an observed value k of (y - a) , xQ =Li(0n) when (yQ - a) =

t1(xQ) (i = 1, 2) . Thus

(2.29)

1 - 7 = E

= E

^Vtj/o "a ^ tlUJ; *'l^o" o

Prob

Probs,b{yo "a ^ *2(xo^ Xoj

3,b{xo > Ll(°n)'xo} "

Probs,b (Xo >s L2(°n^ Xo}

- eTpr°\,b {li<°»> ^ xo ^ l2(V' xo]

-Prob^O^ < xo ^ L2(0n); x^ .

27

Throughout the above discussion it was assumed that B ~y 0 . Hence

(2.30) Prob^JL.^) ^ xo ^ L2(0n); x^ 1-7 ,

and therefore

Prob{L1(0n) ^ xQ ^ L2(0n), B> 0} xq

(2.31) - Pr°Vo{y°n> ^ Xo ^ W' Xo} ***{» >°)
= (1-7) Prob /b > 0y .



28

Substituting (2.21), (2.22) and (2.31) into (2.20), one obtains the

unconditional probability

(2.32)

Prob jyon) < xo < L2(0n); xoj =

(I-7 +7) Prob |b < 0i +0+(1 - 7) Prob |b>oj

rob /b > 0} +Prob /b < 6}\ +7 Prob/B<Oj(1 -7)

(1-7) + 7 1 - Prob (b > 0}]

This concludes the proof of Theorem 2.1.

The Evaluation of the Confidence Coefficient

Theorem 2.1 proves that the usual analytic determination of a

confidence interval for x does not result in the pre-assigned

confidence coefficient but exceeds that amount by 7 1 - Prob B > 0 .

An efficient procedure is one which will reduce the excess to zero.

If the excess is greater than zero, part of the sample is, in a sense,

being wasted in obtaining a confidence coefficient larger than that

originally specified. The probability that B > 0 is equal to the

power of a test of the hypothesis that p = 0 .

The power of atest of hypothesis in the Neyman-Pearson |J?J

theory is the probability of rejecting the hypothesis. It would be

desirable that the power be low when the hypothesis is true and large

otherwise. The power function of any non-trivial one sample test of
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the hypothesis that p = 0 depends on the true value of p , as it

intuitively should, but also on the true value of a |^2j . Thus

one would have to know the true variance in order to control the

excess over (1 - 7) .

The power of the one sample test of p = 0 is evaluated by

means of the non-central t distribution I7Jand is actually a

function of p/o . Figure 8 depicts the curve of a typical power

function when 7 = .05 . If the power is large, then the analytic

procedure is efficient; if the power is small, the procedure is

inefficient. If the power is small, then p does not significantly

differ from zero and the dependence of y on x is not demonstrated.

Hence, knowledge of y should not give one information about its

associated x

Another interpretation of the power is that the confidence

interval is finite.if, and only if, B > 0 . Thus, a relatively

inefficient procedure results when the a priori probability is large

that p does not differ significantly from zero. Since this
2

probability requires information about both p and o , one cannot

generally control the excess over (l - 7) in advance.

The following chapter describes a two-sample procedure that has

the advantages of making the power independent of the variance and of

further reducing the excess in the confidence coefficient to any

arbitrary quantity 5 , in the range 0 < 5 <£ 7 , whenever p

is outside some pre-specified zone of indifference about zero.
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Figure 8

Power Function of Test of Hypothesis that p • 0 B



CHAPTER III

A TWO SAMPLE PROCEDURE

General Description

Assume the normal, linear regression model postulated in Chapter

I. Let the non-stochastic variable x assume a fixed set of values

x (i » 1, 2, ..., p) such that each unit of sampling consists of p

observations on y , corresponding to each of the p fixed values of

x . Define

p P _ 2
x = E x./p and S = E (x. - x)

1.1 * 1=1

Assign apositive integer, nQ ,to be the number of sampling units to

be selected in a first sample. Let z be some positive, real number.

Let y. be the j-th (j = 1, 2, ..., nQ) replicate of the

observation on y corresponding to x^ (i = 1, 2, ..., p) . According

to the model, the mean and variance of y^. are

(3.1) E(yij) = a + p(x± -x) (i =l,...,p; i =l,...,nQ) ,

and

2(3.2) Var(y..) -a (i = l,...,p; j= l,...,nQ) ,
rij

respectively.
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Preliminary estimates of a and p based on the n sampling

units are

(5-3)

and

(3.^)

i P o
a* = E E y,,

P n 4_i 4_n *Uo i=l j=l

b* =

»oS

P o

E E
i=i j=i

(x± -x)
'U

respectively. The variance a is estimated by

(3-5) p n

P o

( E E
1=1 j»i ij

p n a*2 -n S b*2)
o o

Define the random variable n to be

(3.6) n = max
s

z + ! > nn

where q denotes the largest integer less than q . Select (n-nQ)

additional sampling units, making observations y±. (i = 1, 2, ..., p;

j » n + 1, n + 2, ..., n) . Final estimates of or and p are
v o o

(3.7)

and

1 P n
a • ~zz £ ^ y^

pn i=l j=l lJ



(3.8) b = 4 E E yiJ(xi -x)
i=l j=l

33

respectively. Now define

(j.q) t. = *M mfr-P)^ + h&

Many of the theorems that follow will be simplified by applica

tion of
2

2 n' s -v 2Lemma 3.1. Let s be such that —g— has the K. distri-
o

bution with n' degrees of freedom and n be a random variable defined

by (3.6). Let I be a random variable whose conditional distribution,

given s and n , is normal with zero mean and variance a /n . Then

t» lv/n/s has Student's distribution with n' degrees of freedom

unconditionally.

Proof. If s and n are fixed, then the conditional distri-

2 2
bution of t is normal with zero mean and variance cr /s . However

n and s are random variables related by (3«6), which implies that

n • n is equivalent to

(3-10) n z > s

and n = m > n , similarly, is equivalent to

2
(3.11) m z ^ s > (m - l)z



2
As assumed in the hypothesis, s is such that

(5.12) ±4 - X2

has the A. distribution with n' degrees of freedom:

X2 U'-2)
(3.13) Pn.(X2) - -^- —e"^"(X2)"T

n 2n /2 T (nf/2)

Thus

Prob jn =n^ =Prob |s2 < nQ zj
/ i v n'zn(3.1^) ^o

Pro^^<!l^|-j Pn,(I2)dX2 .

Similarly, for m ^ n + 1 ,

34

(3-15) Prob/n =mj = J Pn,( X2)d X2
' n'(m-l)z

5
a

The distribution function of t may be written in conditional form

with either s or n the conditional variable. It will be convenient

to choose the latter. Thus
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*m {H- < To} Prot{n =m}

, n = m ?•

Prot>{m < ••J = E
m=n

Prob
n=m

(3.16)
o

-
E

m=n
0

Prob < 110 < T

It was shown that the conditional distribution of t was normal with

p p 2
zero mean and variance c /s which, by (3.12), equals n'/X. •

Writing the variance of t in this form and using (3.14),

•ImProbV |t| < TQ, n = n «

n'zn
o 2 2

(3.17) _ BtJL , f / aV2/n')l/2 e" ^
yi7 2n /2r(n'/2) ;-to 0

_Xf 5^2
* e ( ?C) cL X_ du ,

and for m > n , using (3*15)

Prob \\A< TQ , n=mj =
n'mz

To ( a

(3'l8) j-i n'/2n, / f° ( X^/n')172y2T2n/2r(nV2) [T {,(m_1)zo - (*-l?;
0 2

a

X.2 u2 Xf Ej£
2nf "2 , -y 2N 2 , v2 ,

e e ( >C ) d ><_ du
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Substituting (3.17) and (3.18) into (3.16) one has

Prob 1 t < t
y2V^ 2n'/2r(n'/2)

n'zn

(3.19) .

n'-l

(X2)2 exp-(-2£l +j£) d X26.u

0

n'mz

00

+ E
m=n +1

o -T

n*-l

( A. ) exp ¥a.& .*•• du

n'(m-l)z
2

or

The infinite summation in (3.19) is a nniformly convergent series

in u . Therefore the summation may be permuted with the integration

with respect to u , giving

(3.20)

{Prob-f |t| < t

n'zn

t r 2
r o I cr

S&TP 2n'/2r(nV2)

n*-l

exp 1- -^-(1 +^y) [ d X du +(X2)2
-To °

r

E
m=n +1

n'mz

n«-l

(X2) 2 exp

•t 1 0 n'(m-l)z

a

"^

{•#4>}'X*j du
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2 2

To 90 - 4-dA-) n'-l

^— r ?v 2 ^a2) w*»
-T '0

o

t_ «o 2^(1+^} a^i

(3.20)

|° |e"-^^(x2/2) 2d(X2/2)du
0

o

/n'+lN t 0 n'+l
(—> r?, . u2 —,. _ , . ,.l)du

v^1 r (n*/2)
o o

/ o 2 -=— /• o| (1 +̂ 2 du = Jgn,(u)

Equation (3.20) is just the probability that a variable having

Student's distribution with n' degrees of freedom has absolute value

< T . Hence t has Student's distribution with n' degrees of
o

freedom. This concludes the proof of the lemma.

The foregoing lemma may be applied directly to prove

Theorem 3.1. Let s , n and b be random variables defined

by (3.5), (3.6) and (3.8) respectively. Let p be the unknown

parameter of (3.1) and

Then

u

2 -s2E (x. - x)
1-1

(b - P)\/nS'
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has Student's distribution with n' = p nQ -2 degrees of freedom,
2

and independent of a , a and p .

Proof. Given n and s , b is conditionally normally

distributed with mean p and variance a /nS . Hence the conditional

distribution of | - (b - P)y*T is normal with mean zero and variance
o 2 2
o /n . Since u = £v/Vs ,n is defined by (3.6) and n's /a has

the Xj distribution with n' degrees of freedom, .by Lemma.3*1,. •

u has Student's distribution with n' degrees of freedom independent

2
of a , a and p .

Theorem 5.2. Assume the linear normal regression model and let

a,b ,s2 ,and n be defined by (3-7), (3*8), (3-5) and (3.6)

respectively. In addition to the n sampling units let there be m

single observations on y , say y. (j = 1, 2, ..., m) , correspond

ing to a single unknown value xq of x . Let M= (- +-jj) and
m

define yA » E y_,/m-. Then
0 j=l °J

(3-21)

has Student's distribution with n* = p n - 2 degrees of freedom.

Proof. Let n and s be defined by (3.6) and (3*5) respec

tively. Given n and s , then

y - a - b(x -x)
(3.22) 6 = —

/ (xp -x)2
v/n VM + ^g
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p

Is conditionally normally distributed with zero mean and variance a /n .

Since w=Ss/n/s ,and n» s2/cr2 has the X2 distribution with n'
degrees of freedom, by Lemma 3.1, w has Student's distribution with

n' » (p n - 2) degrees of freedom.

Confidence Intervale in the Two Sample Procedure

It is necessary to show that Theorem 2.1 has an analog for the

two sample procedure. Let 7 , 0 < 7 < 1 , be some preassigned

number, v» I-7/2 and define ty(n') to be the 100V percentile of

Student's distribution with n' degrees of freedom. The notation of

this chapter will continue to be used and let

(3.23) B

s2 t2(n')
nS

Let k be the sample value of (yQ - a) and define two functions

L'(0 ) (1 - 1, 2) of the observations on the n sampling units by

and

r

X +
b k

B

s ty(n')
B

(3.24) L«(0n) =V x + -|g " Hr , ^ B=0 and k > 0 ,
2k

_ 00 otherwise,

k~

nS
+ M B , if B > 0 ,



r

X +

40

bk s Vn'>
-r + —s—

^ + MB, if B > 0 ,

(3-25) L2(0n) =<(x + -^ b|tM , if B=0 and k< 0,

+ 00 otherwise

The desired analog of Theorem 2.1 is provided by

Theorem 3.5. Let L'(0 ) (i = 1, 2) be two functions defined

by (3.24) and (3.25). Let 7 be a preassigned number such that

0 -^ 7-^1 and let

2 »2*v(n')
nS

B = b

Regardless of the true value of x ,

(3.26)

Prob Jl^oJ < xQ < L'(On)J x^j =

I-7 + 7 1 - Prob (B > 0}]

Proof. Let

yQ " a • b(xo • x)

s /M +
(xo - x)

nS

By Theorem 3.2, w has Student's distribution with (p nQ - 2) = n*
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degrees of freedom. One may prove Theorem 5.3 in identically the same

manner as used in proving Theorem 2.1. One need only replace the

symbols n , S , u and L.(0 ) (1 = 1, 2) of Theorem 2.1 with pn ,

nS , w and L'(0 ) (i = 1, 2) respectively. The proof then follows

verbatim* after using Theorem 3.2 as above, no further revision in the

proof is required because of the two sample procedure.

The Choice of z

It is seen that efficiency in the two sample procedure reduces

to making Prob jB > Oj- large. As defined in Theorem 3>3 ,

Now given n and s , (b - p) o~ J nS1 is normally distributed with

zero mean and unit variance. Thus

r

Prob „
n,s

(3-28)

b <

. Prob e< -SVn>)- £^< ^s/rtf <
n,s ) o a ^ a

stv(n,) _ pv^I =_. ;. / m>h Prob_ _ V A, < Z-F- /ds < A

2

n,s \<"f^< A2

rA2 - —
= (2«)-1/2 f e 2 dx .

Al

2From (3.6) it is seen that n ^ s /z or l/ s/~z -^ \/n/s . Let p

be outside some zone of indifference about zero, say |p| ^ X . Define
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CJ = (-1)1 1 XSx/S and C4 = —i (i = 1, 2) . Since
1 a /—i i s % ' '

the normal probability density function is unimodal and symmetric

about its mean,
2 2

A2 - — C2 - —
(2*)-l/2 f e 2 dx < (2«)"1/2 f e 2 dx =

A, C»

(3-29) X 1

p-Vsfci<^?i^,<c2) spr°v{ci<¥^<4 •
Upon summing (3«25) over n and s as was done in the proof

of Lemma 3.1, and since * J^' v/nS1 has Student's distribution by
s

Theorem 3.1, then

(3-30) l-Prob|B > 0} < J gQ)(u) du
L -" c

The numbers JL , S and t (n') are all constants. It is important

to note that the parameter a does not enter into (3.30) either

explicitly or implicitly. Equation (3.30) indicates the criterion on

which to base the choice of z. To make Prob |b > Oj ^ 1-6/7

whenever |p[ > 1 , it suffices to fix z so that

C2
(3.31) J g^UJdu < 6/7 < 1 .

Cl

An explicit value for z may be obtained by equating the upper limits

to t5/7(n«) obtaining Cg - ty(n») -^- =\i (n') , so that
v Z

(3-32) * = -p L-* _,-
[*»<»') -Vr(B,)]



43

The resulting lower bound will generally not be distinguishable from

- <x> for computational purposes.

Exact determination of z , considering both upper and lower

limits of the integral (3.31), may be obtained by using a table of

the Student's distribution to approximate the equality, but for

practical computation, the formulation in (3«32) is sufficient.

The Choice of n

The purpose of this section is to examine the criteria on which

to base a choice of the initial sample size, n . It was seen in

(3.14) that
n'zn

(3.33) Prob {" ="0} P„,(X2)dX2 ,

and in (3.15) that, for m > nQ ,

n'zm

(3.34) Prob {n =m Pn,(X2)dX;
n'z(m-l)

*2"
a

The expected value of n is obtained from

E(n) = E mProb-jn =m^

(3.35)

m=n

n'zn

r~T
X)

P.,(^2)dX2+ ?
m=n +1

o

j mpn,(%2)d#2 •
n'z(m-l)

^
0
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2

Let X = z/o so that X is a function of n' and hence of n .

A typical term in the summation of (3.35) may be written as

n'Xm X,2 n'-2

2n /2 T (n'/2) ;n'X(m-l)

2
For any m > n , the variable of integration, X- , is constrained

by the limits so that

n»X(m - 1) < X2 < n'X m ,

or

X2 Y2
(3-37) £nr < m < -Afr + 1FT ^ m -S "71

Substituting (3.37) into (3«36), there results the inequality

n'Xm )(? (n'-2)
—^ f (X2/n'X) e" 2(X2) "^ dX22B/ H(n'/2) }n,Hm_±)

n'Xm _ X n'-2
"•'8> < -^75^ [ Be""7"(X2)_T"dX22V r <«VW Jn,x(m.1)

n'Xm 0 X,2 n'-2

< a-VaV (n,/g) [ ^tl';r'^^i2 I (n /2) Vx(m-l)

Observing that
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(3-39)

rv/2)

2(n'+2)/2 p

*5

»72
n' > 2 T(n72) 2 -x •

(n'+2)/2

one may write (3«38) as

-1

r^2 T((n'+2y23

n'Xm X

•"T(-xV,/2dX2
n'X(m-l)

n'Xm X_ £ll£
e" 2 (X2)2 dX< *~-^T

2a?/2 r (»72) n'X(m-l)

O.*o)

-l
n'Xm X'

<"TCT2(H'+2/2 p ^l+2)/2) 2 (X2)n'/2dX2

2n'/2 T (n»/2)
+ ~^T

n'X(m-l)

n'Xm X.
e""^(X2) 2 d*2

n'X(m-l)

n'-2

which is the same as

(3^1)

n'Xm n'Xm

* ['xr ^W*'**8 < J-P..C*8)**
n**(*-D n'X(m-l)X(m-l)

n'Xm n'Xm

n'X(m-l) n'X(m-l)



1*6

Substituting (3.41) into (3-35) and summing, one obtains

n'Xn P°

n0 [pn,(°X2)dX2 +| { PD.+2(X2)dX2
0 n 3inQ

(3-42)

n'Xn

< E(n) < n (p .°(X2)dX2 +o 'Q 'n-

(90

| / Pn'+2^2>^2 + I Pn.(^V^2 ,
X n'Xn n +2 n'Xnn

o o

as bounds for E(n) . The bounds are good ones, for the difference

between the upper and lower bound is Just the last term which is less

than one. It is seen that E(n) is a function of nQ and X and

therefore of n ,o2 ,I ,7 and 6. If, to find that nQ which
minimizes E(n) , one differentiated (3.^2) with respect to nQ and

equated the derivative to zero, there would result a formidable

equation to be solved. It is much more convenient to use (3»*2) to

plot E(n) against n for various choices of p and X .

Table 1 contains E(n) and the 95 per cent points (^95) of

n as a function of n for the combinations of p = 4 and 8 and
o

X = .1 and .2 . As typical examples, the cases of p = 8 and X = .1

and .2 are plotted in Figure 9. The expected values were calculated

from the dominant inequality of (3.^2) and the upper percentage points

directly from (3-31) and (3.34). It may be seen that doubling p

effects only a slight decrease in E(n) , but n „- is significantly



TABLE I

EXPECTED VALUE OF n , E(n) , AND THE .95 PER CENT

POINT, n ne, , AS A FUNCTION OF n FOR
' .95 °

VARIOUS COMBINATIONS OF p AND X

*7

p=l* X=.l p=8 X=.l pal* X=.2 p=8 X=.2

uo
*(n) n.95

E(n) n.95
E(n) n.95

E(n) n.95

1 10.99 29-95 11.00 20.98
1

5-95 14.98 5.98 IO.49

2 10.99 20.98 11.00 16.91 5.95 10.1*9 5.98 8.1*6

3 10.99 18.31 11.00 15.45 5-95 9.16 5.96 7.73

1* 10.99 16.91 11.00 14.60 5.97 8.1*6 5.91 7.30

5 10.99 16.04 11.00 14.04 6.11 8.02 5.92 7-02

6 10.99 15.45 10.99 13.60 6.49 7.73 6.28 6.80

7 10.99 14.90 10.98 13-41 7.16 7.45 7.04 7.00

8 11.04 14.60 10.97 13.20 8.03 8.00 8.00 8.00

9 11.15 14.32 10.98 12.90 9.00 9.00 9.00 9.00

10 11.38 14.04 11.12 12.73

11 11.78 13.80 11.50 12.60

12 12.39 13.60 12.16 12.1*8

13 13.16 13.55 13.05 13.00

14 14.05 14.00 14.01 14.00

15 15.02 15.00 15.00 15-00



Figure 9

Expected Value, E(n), and 95 Per Cent Point, n^y of

Distribution of n as a Function of n

48
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reduced. On the other hand, doubling X results in almost a 50 per

cent reduction in E(n) with exactly a 50 per cent decrease in n „,-

for the lower values of n .
o

The slight minima of the E(n) curves are not detectable on the

graph. It should be observed that when p = 8 and X = .2 if n

were chosen to be 4 , the expected total number of observations is

5.91 whereas if n were chosen to be 6 , E(n) = 6.28 , an

increase of .37 observations. However, in the first case, 5 Per

cent of the time in the long run, the total number of observations

will exceed 7.30 whereas if n = 6 , the upper 5 per cent point

is only 6.80 , half an observation less. It may frequently be

advantageous to choose n not as that value which minimizes E(n) ,

but so as to make E(n) not greatly different from the absolute

minimum and to provide thereby further insurance in the form of a

smaller upper percentage point.

Choosing z and n is equivalent to designing the two sample

2
procedure. If a is known, or an approximation exists, then z is

2
chosen as a function of n , so that X = z/o is a function of n .

If E(n) is too large for some practical reason, it is possible to

adjust the specifications of the problem to reduce E(n) . The

adjustments will consist of the alteration of 7,5 or ^ or any

combination of the three.

2
If a is not approximately known, so that X is unknown, it is

a more conservative procedure to choose n too large rather than too

small. This safeguards one from the very high upper percentage point

characteristic of the distribution of n for small n .



CHAPTER IV

MULTIPLE LINEAR NORMAL REGRESSION SINGLE SAMPLE

Introduction

This chapter will extend the usual one sample method of construct

ing a confidence interval for x to the case where there are more

than one continuous, non-stochastic variables. In particular, the

discussion will be based specifically on the model postulating two

independent, arbitrary variables, but the formal extension to higher

dimensions is straightforward.

Discrimination in Multiple, Linear, Normal Regression

Let y denote a normally distributed random variable with

2
constant, unknown variance a , and whose mean is an unknown linear

function of two continuous, non-stochastic variables x. and Xg .

Let there be n observations (y., x^., Xg.) (j =1, 2, ..., n) on

y corresponding to n known pairs (x^., Xg.) of x^ and Xg .
n

Define x. » E x../n, (i =1, 2) . Let the expected value of y be
3=1

written in the form

(l*.l) E(y) = aQ + ctL(x1 -x^) + ag(xg -Xg) ,

for arbitrary x. and Xg and where aQ ,a^ ,and Og are unknown

parameters. It wiH be convenient to introduce the notation

<*'2> 4h -I £ <xi,5 -*L><*hJ "V <*' h-X> 2) '



with the further provision that

(4.3) 'oh

and

(4.4) 1
oo

Let

(*.5) TV

I A yj(xhj - xh)
j=l

n j=l J

1

0

0

11

21

12

i
22J
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(b - 1, 2) ,

and denote the determinant of _/V by L and the cofactor of iA
ih

by

Lih (i» na1> 2) . By Cauchy's inequality [l2; p. 2J L ^ 0 and
it shall be assumed that L > 0 . This is equivalent to the linear

independence of x. and Xg . Let a. be an estimate of o^ (i =0,

1, 2) and define the column vectors

<*.6) a =

r.
o

•i



and

(4.7) ^01

Then a is the solution of the matrix equation

JVa - 1 ,

(4.8)

a = TM1 1

Hence, the expectation of the a.^ (i =0, 1, 2) is

-1Ka) - ecA:1 i0> -A-^Kio) ,

so that

(4.9) - E(a) - TV1 [J^-E(JL0)] •

The varlance-covariance matrix of the estimates is

->

bJ[»-K«)] [a-K(a)] •

•{(TV1) [K -*<£„>] [I, -ici,,)]* tA^ff(4.10)
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(4.10)

(TV"1) ej[j>0 -•(Ao)][j(0 -«U0>] j (AI1)
-yv-1 ^yvt/v-1)1 - lyv-1^

since (_/\T )T = Tv" because of the symmetry of yV .
2

estimate of a is

An
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-lxT

-.2

(4.11) s2 -^j EPj -aQ -a1(x1J -\) -agfxgj -Xg)J ,

which is independent of &± (i =0, 1, 2) [l; p. 552J .
A series of m observations yQh (h =1, 2, ..., m) are taken,

all corresponding to the unique, but unknown, pair (x^Q, XgQ) . Let
m

y = E y ./m , and consider
° bWL °h

(4.12) v = yo - a0 - a^ -ZJ - ag(Xg0 -5g) .

Since v is a linear combination of normally distributed variables,

it too is normally distributed and, by virtue of (4.1) has mean zero.

An estimate of the variance of v is

2 2
(4.13) u = sd

T i 2 L-Mi+i + E -# (x. -5J(x.n -x.)
m n . . , nL io i/x jo j

with n* - n - 3 degrees of freedom and independent of the parameter

estimates in (4.12). Thus, the ratio t = v/u has Student's distri

bution with n' degrees of freedom. If M=(j +-), v•I-7/2 and
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t (n') is the lOOv percentile of Student's distribution with n'

degrees of freedom, then

-|"|t| < tv(n«)j(1-7) = Prob

(4.14) ^

= Prob-
lo " al^x10-*L) a2^X20 " X2^

M+ ^ ^^lo-xi)(xJo-V
i,j=l

<tv(n») >

J

Squaring and rearranging terms within the braces of (4.14), the latter

may be written in the form

(4.15)

Prob-f E
i,j=l

aiaj"

s2 t2(n' L,
v -ii fx -x Hx -x )vxio xinxjo xVnL +(Vao}'

»2 M +2f«n-2 E a±(yo -aQ)(xi0 -x±) «s£ Mt^(n') < 0j- =1-7
i=l

A Geometric Construction

The inequality within the braces of (4.15) nay be taken to define

aprediction region for yQ in terms of x±o (i • 1, 2) . To deter

mine the nature of the bounding surface it is sufficient to evaluate

the signature of the matrix of the quadratic form within the braces

in (4.15). Let



(4.16) Llh
s2t>')Lih

nL
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(1, h = 1, 2) ,

then the matrix is

(4.17) A -

Let

(l*.l8) Q

so that

(4.19) Q A Q -

- T.
11 -al

1

*ia2 + T12

^ + T12 "^ *2

0

*!

^ " Tll

1

- T.
11

All

~S—7"

L22

x12
T

"B^ * *1 T12
Tll

l12 Tll T22
T.
11

The signature of QT A Q is -1 because T.. > 0 (1 •1, 2) and
ii
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2 1* 1* 2
T - T-, To0 = -s t (n')/n L < 0 . Since the signature is
12 •!•"!• ^^

invariant under a congruence transformation, the signature of A is

2 2
also -1 and inasmuch as s Mt(n') > 0, the bounding surface

is an hyperboloid of two sheets [3; p. 230J and the confidence region

is that region of the space bounded by the two nappes of the hyperboloid.

A joint confidence region may be obtained for (x^ -Xj) and

(XgQ - Xg) corresponding to an observed value yQ - aQ = k by

substitution into the expression within the braces of (4.15), obtaining

(al "T11)(X10 "*lf + 2(81 a2 +T12)(X1X) "XL)(X20 "X2) +

(4.20) (a| -T22)(x2Q -Xg)2 - 2^ kfx^ -x) - 2^ k(xgQ -Xg)

+ k2 - s2 t2(nf) M < 0 .

The equality in (4.20) represents a conic in the x^Q , XgQ plane

whose discriminant is

D = *[(«! ag +T^)2 - (aj -T^)^ -T^)]
(4.21)

" k A T22 +4 Tll "Tll T22 +TL +2"1 a2 T12

To evaluate the sign of D one may consider the matrix A '

formed by permuting the last two rows and columns of A . Thus



(1*.22) A'

If

(4.23) Q'

then

*1 - T.
11

^ag + T,
12 •*!

"l a2a,-, + T.
12

- T.
22

-a„

r

r

-a-

^

"1 a2 + T12
2 m

*1 T22 + a2 T12
D/l*

1
*2 Tll + "l T12

D/l*

2 m
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I

(4.24) Q'T A'Q«

0

D/l*

K -Tll>
0

T12 " Tll T22
~BpT

,.*The signature of Q' A' Q* equals the signature of A ' which

2
must, in turn, be equal to that of A which is -1 . Since T,g -

2

Tll T22 ^ ° 'then sSn(ai " ttj_) =1 implies sgn D =1 ,but

the converse does not hold.

The permutation of rows and columns in (4.22) is arbitrary for

the quadratic form was originally symmetric in x^.Q and XgQ . Thus
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if either of a2 > V for i=1 or 2 ,or both, hold, D > 0

and the curve in the x , x plane is an hyperbola or one of its

limiting forms, the result of the intersection of the plane yQ - aQ = k
2 2 v.

with both nappes of the hyperboloid. If both a > T^ and ag s

Tg2 the conditional joint confidence region for x1Q and XgQ will

be taken to be the region in the plane bounded by the hyperbola (4.20).

Since (4.20) is a direct consequence of (4.17), the associated confi

dence coefficient is 1 - 7 .

If either a2 > Tu or a2 > T22 ,but both inequalities
do not hold simultaneously, a reduction to the simple regression model

will be made. If, say, a2 ^ T22 ,then the conditional joint

confidence region will be defined by letting -00 < xgQ < ^^

and by constructing an interval for x _ according to the discussion

in Chapter II, identifying a^ ,x± and x1Q with b ,x and xq

respectively.

If both a2 < Tu and a2 < T22 ,then no joint confi
dence region for x and x_ strictly exists. As in Case (2a) of

Chapter II, one may define a conditional confidence region to be the

entire x1Q , x2Q plane.

The Analytic Determination of a Joint Confidence Region

It will be demonstrated in this section that the heuristic

discussion of the previous section may be used as a basis for a

rigorous definition of an unconditional joint confidence region for

(x,„, xnn) . The discussion will refer to the following
v 10' 207

Definitions. 1) Condition Px will be said to obtain if



59

a2 > Tu and a| > Tg2 .
2

2) Condition Pp will be said to obtain if &±

> Tii and a^ < Thh (i, h=1, 2; i^h) .
3) Condition P„ will be said to obtain if~>> 3

2 2Conditions ?1 and Pg do not, i.e., both ^ < Tu and ag ^

Tpp hold simultaneously.

4) If y - a = k , then the region R is the

set of all points (x1Q, x2Q) satisfying (4.20).

5) If y - a = k , then a random covering

region, dependent on the sample 0 , which is a subspace of the x^^ ,

xp space is defined to be

(i) all pairs (x1Q, x2Q) in R if Condition
P. obtains

(ii) Ll(0n) < xio< L2(0n)j-~< xho<

«=> where L,(0n) (j = 1, 2) are defined
(4.25) f\(0 ) mJ in (2.17) and (2.18) with a± ,x± and

x, identified with b , x and x^
io °

respectively if Condition P2 obtains

(iii) all pairs (x1Q, x2Q) in the plane if
Condition P obtains.

The random covering region f\ (0^) agrees with the limits set

in the geometric discussion earlier in this chapter.

Theorem 4.1. Let Conditions P1 ,P2 and P be defined as

in Definitions (l) - (3) above. Let -f\ (0Q) be arandom covering

region defined by (4.25) depending on the sample 0n . Let y be some
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preassigned number such that 0 < 7 < 1 • Then, regardless of

the true values of x.fl and Xg-. ,

Prob^Q, ^ cri(0n) ^x^, Xgoj
(4.26)

= 1-7 + 7 1-Prob -jcond. P. or Cond. P2>

Proof. Conditions P, , Pp and P are exhaustive and mutually

exclusive so that

Prob j^, x2Q) €n.(0n); x±Q) x20|
= ProbAx^) €r\(0n), Cond. P1; x^/XgA

(4.27) + ProbA^, X20) eA(0n), Cond. P2; x^, XgA

+ Prob Ux^, x2Q) eA(0n), Cond. P^ x^, x2q\ .

Nov

(4.28)

Prob^x^, x20) 6A(0n), Cond. P^ x^, x^j

"^pJ^O' X20) «^<°n>* ^O' X2o}^ {CODd- PlJ

Let u and v be defined by (4.12) and (4.13) respectively. Then

t = u/v is distributed as g^t) ,Student's distribution with n* =

(n -3) degrees of freedom. Let v=1 -7/2 and tv(n') the lOOv



61

percentile point of g^t) • Then

1-7 » gn,(t)dt = Probjt < ty(n')| -
-t,.(n')

(4.29) V

Probjt < -ty(n')

Now (y -a ) is statistically independent of a^^ , a2 and s , and

t is clearly amonotone increasing function of (yQ -aQ) . Thus,

given a - (a., ag, s) and letting

\ " ''l^O "V + ^^20 "x2)

(4.30)

2 L,

(-l)h stv(n«) /M + E -^ (xiQ -x^x^)
v i,jssl

(h = 1, 2) ,

then, In view of the monotoniclty of t ,

1 - 7 - EL[^^{X'ao < V ^O' X20j "

^-jX "ao < V ^O' X2o\] =

E_ [prob_ /^ < yQ -aQ < Agj x^, XgGj]
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independent of the true values of x^Q and x2Q . Let

(4.32)

so that

(4.33)

*(xio' xho) " F
u io

M

Xi) +L^ (xho "V
11 J

-ii
nL

(Lii ^h -Lih} t*to -*h)2
+ = =rQ-

ih

> lii

nL L
ii

o A,

o(xiQ -x±)

(xio-xi) +it: Ko-V
ii

3 5Vn,)Lii
= a, + (-1)

(1, h, j = 1, 2; 1 ^ h)

It ^ > 0,then aA1/S(xio -x±) > a± -str(n,>yLii/nL > °
when a2 > T±± . Clearly c\A2/d(xiQ -x±) > 0 if a± > 0.
If a < 0 ,then dA^c^x^ -x±) is obviously negative and

dAgAKxio"V < ai + sty(n') /L^/nL < 0 when a2 > T±± .
Hence, when Condition P. obtains, A. (j = 1, 2) are

monotone functions of x.Q and of Xg0 separately and thus are

monotone functions of the two variables jointly. Therefore, correspond

ing to an observed (yQ -a )»k ,say, when (yQ -aQ) is bounded

by i^ and Ag then (x^, x2Q) € f\(0n) so that (4.31) may be
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written in the form

(1-7) - E_
a
Pro^tac' x20} £^(0n)j x10' X2o)

(4.34)

=Prob^^, x20) €n.(0n); x^, x^J ,

independent of the true value of (x^, x^) . But (4.34) was derived

assuming that Condition P, obtains. Hence, from (4.28),

PWb{^x10' X20) €f^°n)> CoM' Pl' X1X)' X2o) =
(4.35)

(1 -7) Prob<Cond. P1 >•

The second term on the right hand side of (4.27) may be evaluated,

2 2assuming &. > T-, and ag ^ T22 , by writing

Prob^Q, X20) ef\(0n), Cond. P2; x^, x^J

=Probp2j\(0n) < x^ < L2(0Q), --o< x2Q <00;

^LO' ^o) ^ (Cond' P2J
(4.56) J L

•^Pgf^V < ^LO < W* x10' X2o}

•Prob jCond. Pg > .
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According to the definition in (4.25), *! > \ and x-0 are identi

fied with b , x and x of Chapter II respectively. Thus

(4.37)

2 a. „ s2tv^)In »2tfo>

nL22-L^

s2t2(n«) s2t2(n') s2t2(n«)
> BLgg = y- — - —S

^ (xlj "V

2Hence with the identification made, a£ > T— implies that B > 0

so that, using the results of Theorem 2.1,

Prob-

*2,{y°n* <Ao < L2(°n); "lO' ^o) Prob {Cond* P2J

(4.38) =ProtB>o{Ll(0n) <^0 <MV* ^O' ^o} ^l00**' P2}

= (1-7) Prob <Cond. Pg>

In view of the symmetry between a. and a2 , one obtains the same

results if their roles were reversed.

The final term of (4.27) reduces readily to

(4.39) ProbJtx^, Xg0)€ Pl(0n), Cond. P^ x^, x2Qi =
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(4.39) - Prob-/Cond. PI- (1 -7+7) Prob VCond. P^ ,

since if Condition P. obtains, f\ (0n) is the entire (x^, XgQ)

plane so that the joint event on the left hand side of (4.39) imposes

no restriction on (x1Q, XgQ) and the equality results.

Finally, substituting (4.35), (4.38), and (4.39) in (4.27) one

obtains

Prob((x10, x2Q) cA(0n); ^ Xg^ -(l -7) Prob [cond. P^

+ (1-7) Prob {cond. PgV +(l - 7+7) Pr°D {^Cond. P^

• (1-7) Prob /cond. Pj + Prob -Jcond.
(4.40)

L x, . V +

Prob{Cond. P.A + 7Prob |Cond. P

(1 -7) +7 1-Prob jcond. P1 or Cond. Pgjj-

regardless of the true values of x^ and XgQ . This concludes the

proof.

A result has been obtained that is analogous to that reached in

Chapter II. The term Prob jcond. Px or Cond. P2| is equivalent to
the power of a test of the composite hypothesis that 0^ = a2 • 0 .

Stein [ill has shown that no non-triviajL one sample test of such an
hypothesis exists whose power is independent of the variance.
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The following chapter will outline a two sample procedure which

will enable one to make the confidence coefficient arbitrarily close to

(1 - 7) whenever a. and ou are outside some region of indifference,

a region whose center is at the origin.



CHAPTER V

MULTIPLE LINEAR NORMAL REGRESSION TWO SAMPLE

Introduction

A two sample procedure will be described for obtaining a

confidence region for the independent variables in the case of

discrimination in normal, multiple linear regression. In particular,

it will be assumed that there exist two independent variables. The

theory is formally extensible to more than two such variable in a

straightforward manner. It will be shown that a confidence region for

(x. ,x_n) may be constructed with an associated true confidence

coefficient that is dependent on a function which is equivalent to the

power of the test of the composite hypothesis o^ = Qg =0 . Finally,

a method will be exhibited for making the actual confidence coefficient

differ by an arbitrarily small positive quantity from some assigned

positive number less than one whenever o^ and o^ are outside some

zone of indifference.

The Non-Central F Distribution

Prior to the actual description of the two sample test and its

properties, it will be convenient to introduce a distribution function

that, in the multivariate case, plays the role that the non-central t

distribution does in the univariate case. This function is the non-

central F distribution function.

Let u (i = 1, 2, ..., m) each have Student's distribution

with n' degrees of freedom. Let c± (i =1, 2, ..., m) be real



constants. Stein M

(5.1)

shows that

m

= E
i=l

u,

+ c.

n"

has the non-central F distribution defined by

(5-2)

m

ProblF' < t| = Im>n«(T, S c2)

y7r(n'/2)r((m-iy2) 0 -T?7

m 2 m 2l +F'+2p/Ec + E c.
' 1=1 1=1

68

O +n»yg) ;T f (p.^p2)^

m+n'

dp dF'

If E c^ = 0 ,the distribution reduces to that of the ratio of
i=l

independent chi-square variables with m and n' degrees of freedom

in numerator and denominator respectively.

General Description

Assume the multiple, normal, linear regression model postulated

in Chapter IV. Let the non-stochastic variable x± (i = 1, 2) assume

a fixed set of p values (x ,xg ) (j = 1, 2, ..., p) which shall

constitute a sampling unit. All samples will be integral replicates

of the sampling unit. Let y.v be the k-th replicate of an observation
J* p

on y corresponding to (x^, Xg.) . Define xi = E x^/p ,
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(1=1, 2) . Assign a positive integer n to be the number of

sampling units observed in a first sample and let z be some positive

constant. Let

(5-3)

(5-4)

and

(5-5)

Let

(5-6)

i:
ih | £ <xij "VKj "*h> a, *-l, 2) ,

n
P o

O J—X K^JL

rt* 1 p n°
y * E E y.,-^-oo n p . . . . Jjk

o j=l k=l

0

y\: -

A21 ^2£

*12

cOO

denote the determinant of _/\_ by L' and the cofactor of Xin by

L' (i, h = 0, 1, 2) . As in Chapter IV, it will be assumed that

L' > 0 . Let



(5.7) a*

and

(5.8) i: -

a*
o

1

a£-

Aoo

^Ol

A02
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The a* are preliminary estimates of a± (i = 0, 1, 2) and are the

solutions of the matrix equation

(5-9) y\: a* = r ,

or

(5-10) a* = yV-x i

2 2
An unbiased estimate, s , of the variance a is given by



2 1
s =

(5.11)

n
P o

- E E
p no " 3 j=l k=l

P n.

pno - 3 P n,

Let

(5-12)

y., - a**jk o u^xiyxi>- al(x2j-x2^

n
P o

E E
o j=l k=l

2 * Iyjk-ao- l

a* 1* -at I*1 x01 2 02

"~\

max
z J

+ 1 , n

oo
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where [ql is the largest integer less than q. Select an additional

(n -n) sampling units. Define V^ (i, h=0, 1, 2) analogously
to X* ,replacing n by n in the denominator and in the upper

limit of the summationo Then if &± are final estimates of a±

(i = 0, 1, 2) and

(5-13) a =

a
o

"2

^ J

then a is the solution of the equation
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(5.14) y\ia. r

or

(5.15) - a:-1 i:

It follows that the expectation of a is

(5.16) E(a) = eca:-1 r> -a^ki;)

ao

°2

Theorem 5.1. Let a±(i =1, 2) be defined by (5-15) and s

and n by (5.11) and (5-12) respectively. Then

(5-17) t, =
(ai "ai^ v^>

Lii
(1 - 1, 2) ,

has Student's distribution with n' » (p n - 3) degrees of freedom.

Proof. Expanding (5-15),
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1

n p L1 Lii £ £ yJk<xij "xi> +

(5.18)

'* j=l £ ^^ "̂ .
(1 = 1,2; ih = 2)

Hence given n , the conditional distribution of a. (l = 1, 2) is

normal with mean a. and variance

(5.19) „ / * ii 2

Since the conditional distribution of

*i =

(a± -o^) >/np

^y*
2 n' 8 2is normal with zero mean and variance a /n and g— has the 7\^

a

distribution with n' degrees of freedom, the theorem follows by

3-1 since

*i "
^ s/^1

(i - 1, 2)

The Construction of a Confidence Region

Theorem 5.2. Assme the normal, linear, multiple regression

model and let s2 ,n,&± (i =0, 1, 2) be defined by (5-11), (5-12)
and (5.15) respectlTely. In addition to the n sampling units, of p
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observations each, let there be m individual observations y .

(j = 1, 2, ..., m) on y corresponding to a unique, but unknown,
m

pair (x1Q, x2Q) of (x^ Xg) . Let yQ = E y^/m and M=
1 1 iml± + _±_ . Then
m pn

2

70 "a° "1=1 aiUi° "*±]
(5.20) t' = •

2 L'

s/M+^ p^(xi0 "x.K^ -\)

has Student's distribution with n' = (p nQ - 3) degrees of freedom.

Proof. Given n and s , the conditional distribution of

2

yQ -ao -£ a±(xl0 -x±)
(5.21) | = . _, i

t

^JM+jx ^r (xio -x1)(xho -x,)
2 2/2

is normal with zero mean and variance o /n . But n' s /a is

distributed as X with n' degrees of freedom. Hence, by Lemma 3-1,

i _. g v** has Student's distribution with n' degrees of freedom,
s

The next theorem to be proven is based on the following

Definitions.

s2tv<n'>Lih
1) T'ih pnL'

2
2) Condition P' is said to obtain if a^ > Tj^

and a„ > TA2 hold simultaneously.



and
"h
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Cm

3) Condition P^ is said to obtain if b.^ > T|
ii

< T' (i, h = 1, 2j i/h) .
khh

1*) Condition Tl is said to obtain if Conditions
—3

P' and P2 do not.

5) If y - a = k , the region R|_ of the x^^ ,

Xg plane is the set of all pairs (x±Q, x2Q) such that

(a2 -TjjKx^ -\)2 +2(a1a2 +^(x^ -̂ (x^ -\) +

(a2 - T' )(x2Q - x2)2 - 2 a1 k(x1Q - xj - 2ag k(x2Q - Xj,) +
l22'v 20

(5-22)

k2 - s2 M t2(n') < 0 .

6) If y -a =k,a random covering region of the

x, ,x2 space, which is afunction of the sample 0Q ,is defined to be

(5.23) f\ (0n)

(i) all pairs (x^, Xg ) in R' if
Condition P£ obtains.

(ii) l£(0n) 4 x.0< L2(0n);-— < xno<
nowhere L'(0n) (j =1, 2) are
defined in (3-24) and (3-25) with &± ,

< x. and x. identified with b , x

and x respectively if Condition P£

obtains.

(iii) all pairs (x1Q, x2Q) in the plane if
Condition Pi obtains.

3
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Theorem 5.3. Let 7 be a preassigned number in the range

0 < 7 <C 1 • F°r any sample 0 , let a random covering region

f\'(0 ) be defined by Definition (6) and Conditions P| , P^ and

P' by Definitions (2) - (1*) respectively. Then, independent of the

true value of (x,Q, x)

Prob|(x10, x20) eO.'(0n); ^ x^j
(5-24)

= (1 -7) +7 1-Prob (Cond. P^ or Cond. P^j

Proof. This theorem is the dual of Theorem 4.1. By Theorem

5.2, t' has Student's distribution with (p nQ - 3) degrees of

freedom. The region R' may be identified with the region defined

by (4.20). The proof of Theorem 4.1 may be applied directly to this

theorem if the primed quantities and functions are replaced by the

analogous unprimed quantities and functions of Theorem 4.1 and pn of

thistheorem is identified with n of Theorem 4.1 and the recourse

to Theorem 2.1 in the proof of Theorem 4.1 is replaced with recourse

to Theorem 3.3.

Theorem 5.3 provides a method of constructing a confidence

region for the joint estimation of x and x . The next section

will show how the actual confidence coefficient may be made arbitrarily

close to (l - 7) , whenever a and au are outside some zone of

indifference by the proper choice of the constant z .
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The Choice of z and n.

Ab was done in Chapter III, a criterion will be established by

which z may be chosen in order that 7 1 - Prob

Cond. P2~l] < 5<7 for 0 <6< rwhen 0^ and 0g are
outside some zone of indifference.

Assume that n has, in some manner, been fixed. By Defini

tions (1) to (3)

-jcond. P' or

Prob-fCond. PJ or Cond. P^t = Prob ja2 <T^ and a2 <Tggj

a2 pnL' P ap PnL' 2/ v
= Prob<; -i* < tf,(n') and 2 < ty(n«)

(5.25)

s2L's L1;L s-L'g

r

i:iVJLii av < 2t2(n.,
s

^ Prob^

By Theorem 5.1,

= Prob -f E
i=l

K - ai> / Jir
ii

s yn'

<

2 t2(n')

(a± - a±) puLJ.

Lii

a,
PnL'

Lii

s v/ n

(1 = 1, 2) ,
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have Student's distribution with n' degrees of freedom and further-

2 2
more, n' s /a has the chi square distribution with n' degrees of

freedom, although

pnL'

>y/Z? Hi

are not constants, by (5,.12),

(5-26)
°i /pnL' '

/ lii >
°i / PL-'

s\/n' \ v/z v/n^1 x/ l"
Substituting (5-26) back into (5.25),

(i = 1, 2) ,

(i = 1, 2)

1-Probicond.. F£ or Cohd, PgV < Pr0D <£
(ai - a±)

nL'

Lxi

(5-27)

"i / PL'
2 2 t2(n')

^ Tn'

Comparison with (5.1) shows that the left hand side of the

inequality within the braces on the right has the non-central F

distribution with m = 2,n'=pno-3 and

OS,

J2SJ
PL'

Lii
(i = 1, 2)

Let the zone of indifference, outside of which the confidence

coefficient should be less than (l - 7 + 6) , be the region bounded by



the ellipse

(5-28)

Points on the ellipse correspond to

2 2
V 2 rL c. = .

i=l x

In the notation of (5-2), z must be chosen so that

/2t2(n«) A
(5-29) & „. -=? > TITT < 5/7
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2
Given r ,7,5 and n' = p n - 3 , such a choice is always

2
possible. Denote this choice by z*.(n, 7, r , 5) . In principle, it

is possible to tabulate z* for various combinations of the parameters.

The distribution of n is the same for the multiple regression

model as for the simple model. The choice of n should be based on

the same criterion as discussed in Chapter III. The expected value

of n is given by (3.40), but the value of z used in the determina

tion of X should be z* rather than (3.32). If the minimum E(n)

is too large for all choices of n , it is possible to reduce E(n)
2

by a change in r ,7,6 or some combination of these constants.

Such a change is equivalent to an alteration in the specifications of

the experimental design.



CHAPTER VI

SUMMARY AHD EXAMPLE

Summary

Let y be a random variable, normally distributed with constant,

2
unknown variance a and with a mean that is an unknown linear

function y = a* + 0*x of a non-stochastic, continuous variable x .

The problem of discrimination assumes that there exist a set of

observations on y corresponding to a single, unknown value, x ,

of x . It is desired to devise an experimental procedure which will

enable one to construct a confidence region for x with confidence

coefficient 1 - 7 , 0 < 7 < 1 •

It is shown that the usual one sample procedure is inefficient.

The confidence coefficient always exceeds (1 - 7) by an amount that

is a function of B*/<* . A two sample experimental procedure is

developed in Chapter III for constructing a confidence interval for

x , independent of a , which whenever 0* is outside some

specified region of indifference about zero, will have a confidence

coefficient not greater than (1 - 7 + 6) , where 8 is an arbitrary

positive number < 7 . If 6* = 0 , or is very small in absolute

value, one should not try to discriminate x from y .

The two sample procedure enables one to make the confidence

coefficient independent of a at the expense of making the sample

size a random variable dependent on a . In the problem under

consideration it is generally more desirable to permit the data to
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fix the sample size in order to attain a given precision than to

specify the sample size arbitrarily and then let the data fix the

accuracy attained.

The discrimination problem in the case of normal, multiple,

linear regression is discussed and found to be quite analogous to the

simple regression model. The two sample procedure is extended

specifically to 1he three dimensional case, but the formal extension

to the n-dimensional situation, for arbitrary n , is immediate.

Example

In the period following the cessation of hostilities in Europe

during World War II, considerable concern was evinced in command

circles about the awareness of the troops to the world situation and

current events. The effectiveness of devoting regularly scheduled

periods to orientation talks and discussions was questioned. Field

trips to various commands were made to interview and examine samples

of troops with regard to their knowledge of topical questions. The

primary sampling unit was the battalion. From one infantry battalion

a set of twelve test scores on a simple objective examination was

received. The arithmetic mean of the test scores was 84. It was

found that no reliance could be placed on the battalion information

and education officer's estimate of orientation time in the unit.

^The data of this example were freely adapted by the writer
from material in his possession while assigned to the Research Branch,
Information and Education Division, Headquarters, United States Forces,
European Theater, 1945-1946.
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There were available four control infantry battalions, from

another division, which had regularly scheduled orientation periods of

0, 2, 1*, and 6 hours monthly. On the basis of a sample from the control

battalions, a 95 per cent confidence interval for the unknown amount

of orientation time in the test battalion was desired.

It was assumed that over the range of orientation time of

practical interest, the distribution of test scores, y , was normal
2

with a constant variance a , and with a mean that was a linear

function of orientation time, x , of the form (1.2). For practical

purposes, this assumption was sufficiently valid.

Itwasundesirable to demand a larger sample from the control

battalions than necessary to insure a confidence coefficient greater

2
than .95 . Ho knowledge of a was available. Furthermore, if the

true regression coefficient was greater than two in magnitude, the

confidence coefficient should not exceed .95 by more than .005 •

It was arbitrarily decided to let n equal eight sampling

units. Each unit consisted of one test score from each of the four

control battalions. The data observed in the first sample appear in

Table II.

In this example p = 4 , nQ = 8 , n' = p nQ -2 = 30 , and

S = 20 . The conditions of the problem specify that X = 2, 7 = .05

and 5 = .005 . This is sufficient information with which to choose

z . With 5/7 = .1 ,then tx(30) = -1-310 so that by (3-52),

, = _.—(g>2 2° ,„ . 7.12 .
[2.042 +I.310]



TABLE II

TEST SCORES OF ENLISTED MEN IN FOUR INFANTRY BATTALIONS
WITH DIFFERENT NUMBER OF ORIENTATION HOURS

Sampling
Unit No. 0 Hours 2 Hours 4 Hours 6 Hours

1 65 74 70 89

2 61 66 69 93

3 79 70 89 100

l* 67 71 65 82

5 58 56 87 95

6 49 61 75 85

7 72 68 82 90

8 58 70 93 93

83
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Preliminary estimates of the parameters a and p are, from (3«3)

and (3.4),. a* = 75.063 and b* = 4.675 respectively. The variance

2 2a is estimated from (3.5) to be s = 67.019 • Thus, from (3-6),

C

n = max I

v_

67.OI9
7.12

+ 1 , 8 > =10

Two additional sampling units are necessary. The additional data

obtained appear in the supplement to Table II.

TABLE II (Supplement)

TEST SCORES OF ENLISTED MEN IN FOUR INFANTRY BATTALIONS

WITH DIFFERENT NUMBER OF ORIENTATION HOURS

Sampling
Unit No. 0 Hours 2 Hours 4 Hours 6 Hours

9 54 76 66 82

10 57 73 78 92

Final estimates of a and p are by (3-7) and (3*8) a =

74.50 and b = 4.66 respectively. Evaluation of (3«23) shows that

B = 20.32 y 0 and hence the confidence interval for x , the

unknown orientation time is provided by (3-26) using the first defini

tions of the functions L!(0q) (i = 1, 2) in (3-24) and (3-25)• The

calculated confidence interval was (4.24 ^ x •< 6.11) . The
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true confidence coefficient depends on the unknown 0 . If the true

value of 3 is 4.66 ,then C± = -9-852 and C2 = -5-768 . The

actual confidence coefficient, if £ = 4.66 has an upper bound

-5-768

s30(
:9-852

•95-+ -05 S50(u)du < -95001 ,

which is well within the bound .955 specified in the problem.
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