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ANGULAR CORRELATION IN ALLOWED P-TRANSTTIONS

M. E. Rose

1. INTRODUCTION

It is well known that, at this time, the importance of the angular

correlation between recoil nucleus and 6-particle lies in the fact that

experiments of this type can be used to determine the composition of the

Fermi interaction. From the linearity (within present experimental precision)

of the allowed Kurie plots it can be said that the Fermi interaction is

predominantly S or predominantly V. The choice between these two possibilities

can be made once data on the angular correlation are available.

The correlation for the case that no 7-ray follows the 8-deeay has

been discussed by Reynolds et al. While the numerical results presented

there refer to the neutron decay (that is, the endpoint energy corresponds

to this case) the formal part should be generally applicable. However, aside

from a number of misprints which have now been corrected , there seems to be

an error of principle in RBB which will be brought out explicitly in the

following. This concerns the role of the finite mass of the recoil nucleus

and the singularity in the (differential) angular correlation.

1. Reynolds, Biedenharn and Beard, ORNL report No. 1444. See also Erratum sheet.
This report is referred to as RBB. See also, M. E. Rose, Phys. Rev. 91> 197
(1953).
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The purpose of the present report is (l) to give a somewhat more

complete discussion of the calculations (2) to correct the aforementioned mis-

understanding and (3) to present analytical results whereby, for high energy

spectra, the labor of preparing theoretical curves should be very much minimized.

As will be seen, the theoretical curves are obtained after two integrations

which, in general, have to be done numerically. The first is over B-energy

and the second is over the finite solid angles of the detectors. The latter

integration is important in the most interesting region, & £$ n, where $ is

the angle between recoil and 8-partiele. The reason for this is that the

correlation function before integration over solid angles is infinite at

0 = Jt and the experimental curve will therefore differ considerably from

this. Obviously, the singularity is integrable. In order to avoid two

numerical integrations, the energy integration is carried out analytically.

In order to do this, the Coulomb field effects are neglected but, especially

for high energy spectra, this will introduce an error negligible compared to

the experimental one. Moreover, it should be recalled that it is usually

necessary to distinguish between two essentially non-overlapping classes bf

curves, one for S with possible T admixture and the other for V with possible

T admixture (see Eq. (2) below). It should also be mentioned, at this point,

that the analytical energy integration is possible only by expressing the

results in non-closed form. However, the infinite series involved converge

very rapidly for high energy spectra. In making this statement it is recognized
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that it will be desirable for experimental reasons to accept only those co

incidences for which the P-energy W ^ W,, a lower cut-off. The windows (if

present) automatically accomplish this. For the purpose of using these results

in a simple way W^ should be chosen to be somewhat higher than is usual; perhaps

2W1 y 2 corresponding, in the units used here to kinetic energies above 500

kev.

It should also be mentioned that there are several interesting spectra

with large endpoints. The following list is illustrative:

TABLE I

EQ (Mey) WQ

A35 4.4 9.6

Cl5^ 4.45 9-7

CI55 4.1 9,0

Ne25 4.2 9-2

:019 4.5 .9-8

P5^ 5-1 H.O

In all these cases, with the possible exception of P^ , the 8-transition goes

to the ground state of the daughter nucleus and there is no y following the p.

2. We use m = c = 1. E nergies and momenta are, as usual, in mc2 and mc
respectively. W is the kinetic plus rest energy.
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3
When there is a 7-ray the correlation can also be calculated. No further

consideration of such cases is necessary here.

2. THE CORRELATION FUNCTION

The number of coincidences with the angle (7 between recoil and 6-

particle is directly obtained from the electron-neutrino correlation. Omitting

the Coulomb factor the latter is (per dW and per d M, = d cos-J" )

P(fr, W) =const. pWq2(l +2&-/1 +|) (1)

where u, = cos J and %T is the angle between P-particle and neutrino. As

usual q = W0 -Wwith infinite recoil mass (see Appendix) and p = ]/\r"~ 1.

The constant b represents possible Fierz interference (between S and V since

admixture of A with T is known to be small from He angular correlation

measurements ). Actually, from the energy spectra fbl ^ 0.1 and in this

range the effect on the correlation function is too small to be detected.

We henceforth take b = 0 although the inclusion of the b-term presents no

problem.

The constant a is given by

3- M. E. Rose, Phys. Rev. 90, 1123 (1953). See also M. E. Rose, QRHL-1593.

4. S. L. Ruby and B. M. Rustad, Phys. Rev. 89, 880 (1953).



-7-

CS
a = -

\h\'-H\P\'
4 IIiT +ct IP I2

for interactions and

2

(2a)

<4lwaM3IJ*l
4|H2 +<S IJ*I

for V interactions. Hence, -1^ a^ l/3 implies S and l/3 < a <1 implies
2 2 r t±

V. One expects Cg rs/ CVp and J1 and J<T can be roughly estimated from

LS or jj coupling models. However, such estimates are not actually necessary

unless a turns out to be near l/3, which is not probable a priori.

The measured spectrum, aside from solid angle corrections is

a = ~r ~ ~—;—77-:— - (2b)

Q(e.) = S
w2

dW P(W) J(6 , W) (3)
Wl

where J(9 >W) is the Jacobian and Wg is a possible upper cut-off, see Eq. (10a)

below. From momentum conservation alone

j(0,w)= 1 [.Pinopj +(i -X2 sin2TJ 2
Jl-X2sin20 L

and in (l) we use

U. =- |x sin2£ + QcosQ \j 1- X2 sin2 dJ (5)
where

X = p/q (6)
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and

6=1 for X < 1
C (7)
6= ± 1 for X} 1

Contributions from both signs of Q must be taken for X^ 1. The value of W

corresponding to X = 1 is W =^(WQ + l/WQ).

It will be noted that the Jacobian is singular if W is such that

X = esc 9 } 1. This corresponds to the fact that for X^ 1, the resultant

p + q lies along p for v = 0 and V = «• Hence \J , which is equal to it at

these two points has a minimum and for all <\7 , Q ^ jt/2. This also gives rise

to the double sign (Eq. 7). The energy W for which X = esc U is

Wm =sec20 JWQ -sin 9 y] WQ -cos 9J (8)
for C7 "^ Jt/2. This is the maximum energy detectable as a coincidence for the

given -6 . Hence unless Wg < Wm for all 0 ,which means Wp ^ W since

Wm (it/2) = W, the singularity must appear. As will become apparent, for all

0 except Q = x, the singularity is integrable in energy but at $ = «, the

angular distribution has a weak (logarithmic) singularity. Contrary to the

statement in RBB, this is not due to the assumed infinite mass of the recoil

nucleus, as the appendix shows. That this is to be expected is evident from

the fact that only momentum and not energy conservation is invoked.

For (7 < it/2 we note that

Wm =W ( 6 < «/2) (9)
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Since there seems to be no advantage to be gained by setting an upper cut-off

we can assume that W2 = Wm if Wjl ^. W and if W;l > W we can take W2 = Wm for

all 9 down to 0, where Wm( d±) =W1. In the latter case the correlation

function Q(0 )=0 for all 0 < 6^ For WQ of the order given in the fore

going table,

"-* -° [rr±t+ -3s-] (8a)

with great accuracy and hence

sin 0 '» Wo _1+W0 -Wi , w _ (8b)
1 Wl 2W^ '

3. EXPLICIT FORM OF INTEGRALS

We write the correlation in the form

Q(9) = Qo(e) - a 0^(9) (io)

where

Qo

W2

=^ dW Pw ** [x2 cos 20 +1-26 Xcos0 JT -X2 sin2^]
Wl \|l-X2sin20 (l0a)

and

ty^r 2 2W> 2 2 i— . "7

Q. = \ • P * = X2 cos 20 +1 - 26 Xcos0 J 1 - X2 sin2#^ J[Jl -X2sin20 L J
Xsin2 0 + € cos 9 \fl- X2 sin20J (10b)
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We consider two cases: ,

(a) W2 y W1 } W

(b) w2>.w % w1

In case (a) we have 7 7 » •_ y it/2 and

?2
Q^ =2 ( dW PW I2 /, -.2

»,_ >/l -X2 sin20
(l + X cos 2 © ) (11a)

a=2 f,dW P? * =r- (l -3cos20 +X2 sin20 (4 cos20 -1)7 (lib)
^ Jf ^i-x2sin20 L J

Defining the following integrals:

Wo
3r2 dW pW q2

wl fl -X2sin20

w2

I0(*l) = 1
wl

dW p5 W

\/l - X2 sin20

we have that

Qo=2 [l« +Io' cos 2d]

{(w1) =J dw p3 *
Wl Vl - X2 sin2©

(12)

5
W2

dW p'ci<V -1
Wx q/l-X2sin20

(13a)

Q-L =2 fl^(l -3cos2 6)+sin20 (4 cos2" & -l) 1^ (13b)

and all arguments of I' •• I, are W-,.
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For Wg = Wffi it is seen that all integrals converge at all y except I, .

Since

{T- X2 sin20 = Gl (1*0
q.

where

X=a+bW +cW2 =c(Wm -W)(^ -W) (15)
and

a=WQ2 +sin2 B,b=-2WQ, c=cos2 0 (15a)

Wm= sec20 [w0 +sin 9Jw02 -cos20J (15b)

it follows from Wm (n) =W^ (it) =WQ that the integrand in I^'behaves like l/q

whereas at the upper limit q —^ 0. In all other integrals the positive powers

of q insure convergence.

For case (b) we give the results for 0 J jt/2 and 0 ^ it/2 separately:

9 >*/2

Qo =2I0 (W) + JQ (W^ (16a)

«1 =21^ (W) + Jl (Wl) (16b)

where

Jo (W) = IQ (W) + 1^ (W) cos 20 (17a)

Ix (w) =(1 -3cos2$ )!£ (w") +sin2 0 (4 cos2 0 -1) I'^(W) (17b)
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and, with the notation

yn =|(^ -\n) (l8)
the J and J are given by

Jo (wi> =Jo (V "Zo W-2cos6[w0 (yk -y2) -(y? -y5)J

Ji (V -h (V --1! W+cos e [wo2 Xy3 - yx) - 2wG (7l|> - y2)

+y5 -Y5J +cos 0 (4 cos2 9 - 3) (y5 -2y3 +y)
The parts of Qq and Q, exclusive of J and J respectively are, of course,

IQ (Wj-) + IQ (W) and I (W).,+ I, (W) respectively and again, the latter

diverges at 0 = n in a logarithmic way.

6 4. «/g, 12

Here

(18a)

(18b)

Qn =K (W,) -2J'cos# (19a)
O Q.J.' O

Q =Kj_ (Wx) +J1' cosO +(4 cos20 -3) J^' (19b)
where

Ko (W1) = \ (V' "Xo (W) (20a)

'.Kj_ (Wr) = I± (W1) ... Ix (W) (20b)

and there is no divergence. Kq is obtained from (17a) and (12) by re

placing the upper limit W2 by W, Similarly, Kx is obtained from (17b)
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and (12) by the same replacement of the upper limit. For this reason, in the

results given below for I' .... I." we leave the upper limit arbitrary in some

places so that either Wm or W may be substituted in the results.

4. EVALUATION OF THE INTEGRALS

Define
W

j2 dW -C- .F^ +l(w2 Wx) (21)
wx U

Then, omitting the argument W, in I' etc.,
1 0

Xo =̂ 2 "5W^R3 +3WQ Rk -R (22a)

x6 =Wo(R4 -R2} "<R5 "V <22b)

I' -W2(R5 _Ri) -2Wo(r^ .r2) +r5 .r5

Once the integrals R are evaluated, proper substitution of the limits gives

all required results.

The integrals Rj^ cannot be given in closed form but can be given in the

form of an infinite series which converges rapidly for p^/ W&1 (i.e.,

W^ ^ 1). Define

L(1, »>. ;a ^l (a5)
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and use

then

Thus

p=wZ" •yrf*v
o

and the binomial coefficients are

(-). (J,) =-1-3.5 .... (2^ -3)
V= (_) Vv) =" "" " (2l°

2 i>i

70 =1, 7X =4

Rm +1= w~ V Lm +1-2>^ (25)

r,o " £ 7, [Wo^2 -2/- *&, -2y+ 5WQL4 _̂ L5 . 2J(25a)

I
o"- ]rt 7, [VLu . 2„- \ -s») -a5 -2»-S- *> (25b)

^ - Z y, fo<S . 2„ "\ . g,) -2»0(H -sy" ^ -2,) *h . 2„" S-J (25=)

"l' - 2 VL(L5 - 2* " ^3 -2|/ +Ll - 29 ) (25d)



-15-

For L (W0 y ) we have the following recurrence formula:
m £-; 1

with

and

L . = A_ - 2* ' 1 * L m - 1 a T
—-——— — li

mm ^_. c m - 1 m c ~m - 2
2m

m
mc

W

4W.

L =—^— log (|f~X + W\[c + •r
W,

(26)

(26a)

(26b)

In the form (26) m is restricted to positive values. However, if (26)

is written in the form

-. 2m -lb.
= a - ———— — i,

m c
liL.

m-2 ni2m-2am-lm-laDi

where

B -w"1-1YT
m (m - l)a

-W„

W,

and (27) is used in conjunction with

L .._i,iog(^ +•• \F +-Jl_)
-1 ya W 2 >fa

W„

W,

then by giving m all non-positive values (m = 0, -1, -2 ..) one obtains

all L for m <0.
m ^

(27)

(27a)

(27b)
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If one evaluates the right-hand side of (26b) at W2 = W one obtains

1

|COS £I

whereas for W2 = W one obtains

log -sinO sec & |[ W -cos 0 J

cos

f WQ sin20 1
0]—l0g [- |cose| J

wherein one uses

X(W) = |cos0J
w2-i
O

2W„
o

It may be noted that for arbitrary W, the argument of the log in L vanishes like

sin 0 so that L is finite in all cases except when one limit is W , see Eq. (44d);

It is seen, then, that the singularity appears at 0 =nin LQ and only in L .

However, when I', I•• and I' are evaluated at 0 = it the singular term L has a
-o ^

vanishing coefficient. This coefficient vanishes like sin &. Therefore, in

evaluating the above for 0 = jt - O (o «. l), it may be disadvantageous to

use the recurrence formulae to calculate a very small quantity as the difference

of several large quantities. That these quantities will be large may be recog

nized from the fact that the leading terms (^ =0 in (25)) all contain a dominant

term proportional to W^. Hence, we proceed to isolate the ''singular'' term L0'.

That is, we write

ha = zm LQ + Dm (28)
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D fulfills the recurrence formulae (26) and (27) with
m

DQ =0 (28a)

and D_1 will be given below. The Z^ fulfills the homogeneous recurrence

formulae obtained from (26) and (27) by setting A and B = 0. Also
mm

z0 = 1 (28b)

and z_"l will be given below (see Eq. (33b)). We consider the problem of

solving the recurrence formulae for Z^. This will be done in two parts:

first an approximate solution valid near 0 =nwill be obtained. Then the

omitted terms will be added to obtain an exact solution for specific m values.

Considering m y 0, we set

2
and with a~ W we find

\ - vc L (29)

% - ~^— C %-! —^~ ° * in - 2 (30)
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For convenience we make /L •= 1. Then, comparing (30) with the recurrence

formula for the Legndre polynomials, which is

p2m-lYp m-lp yv
m = x m - 1 *m - 2 (31)
mm

for argument x, we see that (30) and (31) are identical with identical initial

conditions (P0 =• 1) if

and

Hence

m

Zn--^^(-^) (©^*) (52)

X. - ..'2
m ~ 2

1
x =

vr

72 m Vfc"

Hence, near (y - n, Z is a polynomial in l/c of degree m.
m

If the right-hand side of (27b) is evaluated at W2 = W we find that

the argument of the log is W y Wr -1 sin & -w sec & sin 6 —^ sin0

times a positive constant as 0 ^«.

Hence, if we write

and

L =-i— log 0
o ^- o

L = -—i—log -p
_1 ^¥ ~x

/=»
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we have

•>_1 = */P

where f is finite at (f = jt, (see Eq. (44a)). Therefore
A

T.
1

- log f +
-1 =

\T7

T)
l

• log f
-1 "

l/t Lq (33)

and

fa~
(33a)

z-l= yfc/I —>f/VQ (55b)

2
If in (27) with B = 0 and a = W we insert

m o

-m - 1 m ... __. . . „
Z = W^ c p (l/*fc") (54)
-m -1 o m s ' ' ' w '

we obtain

/mp =̂ a c^-a'-.p .SLz.1 cm-2+i' p '(55)
m m m -1 m m -*..

Comparing (35) and (51) and taking (55b) into account we find

(Tm =\ (m + 1) (35a)
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and

(—. \ m + 1

G- pmd/ra, •: ( 0»*) (56>

with m \ 0. With the results (32) and (36) it may be checked that at Q - x

all integrals except I" do not contain L and are hence finite.
1 o

Returning to the exact homogeneous recurrence formulae and noting that

a = W^ + 1 - c, we set
o

Z =Z(o) +6 ' (37)
mm m

(o)
where Z is given by (32) and (36) then € =6n = 0 and for m>0

m o 1 ^

m-1R +1-e e , l_zJL z(o) 11 —5T~ l—c C7m-2+ c m-2je .slzjl2>€„..,-slzJ:r°+i-c em_p +—<:* (38)
m 2m c m

Explicitly,

(o)e =!^_£ZV -i^l£ (58a)
2 c o c

$ =5^ae _£i^cz(o) (58b)
3 3 c 2 3 c -1

e -lie .ifw°+1-cg +i^z(o)l
U4 4 c 3 4 [__ c 2 c 2J

(38c)
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£ =2"o G.4fw| +1, -c. l_-_c (0)1
5 5 c 4 5 L • c 5 c 5 J

For negative index

^i^P /-_^£^m+Am. - 2 m - 1 a " m - 1 m - 1 a ~m m - 2

where

(38d)

(39)

J[ =2_m^_l/rwa_x) z(0) _mc_A 1)z(o) (lK))
m-2m-l\a W0j m"1 m-l^a %I m

The coefficients

and

«o - 1 -_sin2ft ~ _s^?l.
a W0 aWQ W5

1 1 -sin2 fl „ sin2flg_ _ £ __ .

a wo aW2 W^
o o

are very small (for W = 9 the larger is 1.5 x 10 at best). Hence the-/L

are all very small. Explicitly, the first few £ are
-m

\S7 w/
(41a)
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from (33b) and

€-2 "Ha +^-2 <to>

«.3 =!?e--* i**+U
and as many others as are necessary are easily obtained.

The explicit D are for m^ 0

D1=A1

D2=A2 +I \ Al

D3=A3 +| ^-D2"! ! Al3 a *= 5 c

D. = Ak + f -Q_ D, - 1 - D0
4 4 4V a 3lic2

(4lc)

The form (42) is most suited for numerical calculation. In this connection,

we note that for W2 = Wm, W = W

/ \ m - 1

^T 2«0 V 2WQ / .
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..whereas for W_ = W and arbitrary W1

^a" -4-1? VX(W1) (45a)

For W = W, arbitrary W , A is equal to (45a) minus (43).

In all cases \jc ^0.

For negative index we have the following explicit results:

wi

see (33a). For W„ = W and Wn arbitrary we use the result that the argument
2ml

of this log is

. 2
sin

Vac ..„
* m

^f£L p sln ô .«& -fa ♦ =os2dJ (Ub>
and for W0= W the argument is

\S±n2$ fW2 -1+-V (W^ -cos 20)1 (44c)
W2 + 1 L° J

For W2 =WffiJ w =W, and 6 =«we have D finite in contrasjt to LQ. For

sin 9^ 1the argument of the log in (44a) evaluated at arbitrary ^± is

. 2(W. - . . .. ,„ ^*o "Vl (1 -V ,") 2A^ £_ < _£_ _ (W + W,) > Bin C7
«L No"*! ° M

The quantity f.(see Eq. (33a)) is given by the ratio of (44b) or (44c) to

(44d) according to whether the upper limit is W_ or W.
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Hence, at ^ = it, the D . term is always finite as expected. Other values

of D are obtained directly from the recurrence formula (27):
-m

•D-2-Bo-+-VD-l (*5a)

3 .Wq_ « i c.
2 •

5 L. 2

D.5 =B-i +-f- -f D-2 - * -r D-l (*5b)

D-4 -B-2 +T i" E-3 "-f -*- D-2 (45=)
Obviously, these results can be easily.extended as far as is necessary.

The neglect of the coulomb effects and the finite experimental precision will

determine the required accuracy and the number of correction terms necessary.

In this connection, as already emphasized, the calculations are made more

easily if the lower energy cut-off W is not too low. Clearly, since the ani-

sotropy of the correlation arises from the higher energy electrons one doesn't

lose very much if W-j^ is set: at a comparatively high value.



-)

-25-

APPENDIX

Although the arguments given above may be sufficient to show that the finite

mass of the recoil nucleus cannot remove the (0 - integrable) singularity in the

angular correlation at v = it, we give an explicit demonstration of this fact in

the following in order to make the point abundantly clear.

Let P be the resultant of the lepton momenta p and q and let M be the mass

of the recoil nucleus, then

f=p+q (A.l)

and

o

W=W+q + P/2M (A.2)
o

With £•= cos0 we find

-,2
C2.[2M(W0 -W-q) -q2 +p2 J (A.5)

8p2M(WQ -W-q)
2 2 /»>

The maximum energy W is that root of 1 - X sin 7=0 which is not greater

than W . This is easily found to be
o

»m :5[" V. +^-t 4- <»o. -»> +̂ -"J (A-k)
expressed as a function of q rather than 0 .

One could express W in terms of & by solution of the equation resulting
m

from elimination of between (A.5) and. the quadratic of which (A.4) is a root:
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W2 +2MW -2M(W -q) -1-q2 =0

but this is not actually necessary.

We now consider

X=q2 (1 -\ sin2 0 )

1 2f2M(WQ -W-q) -p2 +q2J
8M(W - W - q)

If W =Wffi -6(6^0) we know that for 9—^ it, X~/ £• 2so that |/"x"
vanishes linearly. That is, X(W )and ( 9x/9 W).r =0 it ig

Wm
straightforward matter to verify that this is true with finite M.

From (A.3) for fixed ^

ls now a

'm

(A.5)

(A.6)

" Tw" 7^"o "W"q)(qL +M) "42(q +M) +p'2(2q +M-2£2M)j (A-7)

= 2M(W0 "W" 0(2W £2+M- W) +p2(M -W- 2£2M) - q2(M - W)

which is to be substituted in

TT °**^--™°^& (a.8)

<">



AtW = W
m
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±.(4-*) - (4 4^") -Wsin20 (A.9)H *W Wm m

where q(W ) =p(W) s±aQ

2 2Since 2M(WQ - W-q) —^P - q at W= Wffi we find

(q d q/^W) =-W sin20 (A.IO)Wffi m

and therefore

(4-2-) =o (A.n)
"m,

Consequently /IT vanishes at least linearly in W -W and the divergence
m

of I" remains.
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