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ANGULAR CORRELATION IN ALLOWED B-TRANSTITIONS

M. E. Rose

1. INTRODUCTION

It is well known that, at this time, the importance of the angular
correlation between recoil nucleus and p-particle lies in the fact that
experimgnts of this type can be used to determine the composition of the
Fermi interaction. From the linearity (vithin present experimental precision)

of the allowed Kurie plots it can be said that the Fermi interaction is

predominantly S or predominantly V. The choice betweén these two possibilities

can be made once data on the angular»gorrelation are available.

The correlation for the case that no y-ray follows the p-decay has
been discussed by Reynolds et al.l While the numerical results presented
there refer to the neutron decay (that is, the eﬁdpoint energy corresponds'
to this case) the formal part should be generally applicable. However, aside.
from a number of misprints which have now been correctedl, there seems to be
an error of principlebin RBB which will be brought out explicitly in the
following. This concerns the role of the finite mass of the recoil nucleus

and the singularity in the (differential) angular correlation.

1. Reynolds, Biedenharn and Beard, ORNL report No. 1hlik. See also Erratum sheet.
%his_report is referred to as RBB.  See also, M. E. Rose, Phys. Rev. 91, 197
1953). - '
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The purpose of the present report is (1) to give a somewhat more
complete.discussion of the calculations (2)’to correct the aforementioned mis-
understanding and (3) to present amalytical results wheréﬁy, for high energy
spectra, the labor of preparing theoretical curves should be very much'ﬁinimized.
As will be seen, the theoretical curves are obtained after two integrations
whiéh, in gene:al, have to be done numerically. The first is over p-energy
and the second is over the finite solid angles of the detectors. The latter
integration is important in the most interesting regionm, é; ~ R where 69'15
the angle between recoil and B-particle. The reason for this is that the
correlation function before integration over solid angles is infinite at =

G =n and the experimental curve will thereforé differ considerably from
this. Obviously, the singularity is integrable. In order to avoid twé
‘numerical intégrﬁtions, the energy integration is»éagried out analytically.
In order to do this, the Coulomb field effects are neglected but, especially
for high energy spectra, this will introduce an error“negligible compared to
the experimental one. Moreover, it should be recalled that it is usually -
necessary to distinguish between two essentially non-overlapping classes of
curves, one for S with possible T admixture and the other for V witﬁ‘possible
T admixture (see Eq. (2) below). It should also bebmentioneq, at this point,
that the analytical energy integrafion is possible oply by expressing the
results in non-closed form. However, the infinite series involved converge

very rapidly for high energy spectra. In making this statement it is recognized
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that it w;ll be.deSirabie for exper;mental reasons to accept only those co-
incidences for which the B-energyrw ;jWi, a lower cut-off. The windows_(if
present) automatical;y aceompliSh this. For the purpose of‘using these results
in a simple way Wj should be chosen to be somewhat higher than is usual; perhaps
Hi_) 2 eor?esponding, in the gn}ts used here2 to kinetic energies above 500
kev. |

It should also be mentioned that there are severa;,interest;ng spectra

with large endpe;nte¢ _The following list is.illustrative:

" TABLE I

B, (Mev) Yo
135 b.b 9:6
a2 | .45 9.7
c13? b1 9:0
me? k.2 | 2-2
07 423 2
p3b 5.1 11.0

In all these cases, with the possible exception of P3h, the B-trans1tion goes

to the ground state of the daughter nucleus and there is no Y following the B

2

2. Weusem=c =1, E nergies and momenta are, as usual, in mec“ and me

respeptively. W is the kinetic plus rest energy.
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When there is a y-ray the correlation can also be ca.lcx-zlzart;ed..5 No further

consideration of such cases is necessary here.

2. THE CORRELATION FUNCTION
The number of coincidences with the angle 9 'bétwe_en recoil and B-
particle is directly obtained from the electron-neutrino correlation. Omitting

the Coulomb factor the latter is (per dW and per 4 /M = d.-cos\9‘ )
F - 2 ap b
P(V, W) = const. pWq“(1 + =% Il +i)_ ﬁ | (1)

where };, = COS -3” and & is the angle between p-particle and neutrino. As
usual q = W, - W with infinite recoil mass (see Appendix) and p = |/W2"- 1.
The constant b represents possible Fierz interference (between S and V since
a.d.mixturé of A with T is known to be small from He6 angular correlation
measur,ementsh). Actually, from the energy spectra ’ bl ,é 0.1 and in this
range the effect on the correlation function is too small to be detected.

We henceforth take b = O although the inclusion of the b-term presents no
problem.

~The constant a is given by

3. M. E. Rose, Phys. Rev. 90, 1123 (1953). See also M. E. Rose, ORNL-~1595.

L. S. L. Ruby and B. M. Rustad, Phys. Rev. 89, 880 '(1955')_.
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c; Ul,e%cglga‘-I ° (2a)
E [+ |55

for interactions and

n

E|fa) 2t |f3]

a = - (2b)

SRR

for V interactions. Hence, - 1< a ¢ 1/3 implies S and 1/3< a <1 implies

. ) 2 : > _ :
V. One expects Cg v c‘I‘ and 5‘1 and fG‘ can be roughly estimated from
LS or jJj coupling models. However, such estimates are not actually necessary
unless & turns out to be near 1/3, which is not probable \a priori.

The measured spectrum, aside from solid angle corrections is
o oo : |
B ) = S aw P(W) J(0 , W) | (3)
W _ AY
1

where J( 6 ,W) is the Jacobian and W, is a possible upper cut-off, see Eq. (10a)

below. From momentum conservation elone

. . .
J(9,W)=,_ 1 [—EA.cose +\"l—-x2sin29] (&)
2§

and in (1) ve use

)L= - [)\.,sinaé + € cosB \}71 -V 22 sinae] | {5)

where

x=p/a | (6)



and
g= 1 for A<1
(1)
€=%1 for Ay
Contributions from both signs of ¢ must be taken for A 7/ 1. The value of W
corresponding to A = 1 is W = 3(Wy + 1/W,). |
It will be noted that the Jacobian is singular if W ié such that
A =cscB D 1. ' This corresponds to the fact that for A > 1, the resultant
3 + ?1\ lies along f for 3‘ = 0 and 9’: n. Hence 6 , which is equal to n at
these two points has a minimum and for all o , B 2 n/2. This also gives rise

to the double sign (Eq. 7). The energy W for which A = csc O is

.m-sec29 [ -sme \/—W - cos 9] - (.8)

for 9 P n/2. Thls is the maximum energy detectable as a c01nc1dence for the

given .0 . Hence unless Wp { Wy for ell 0 , which means W, £ W since
WmA(i‘t/E) = w, the singulerity must appear. As will become apparent, for all-
9 except 6 = 5, the singularity is integrable in energy but at 6 - %, the
engular distribution has a weak (logarithmic) singularity. Contrary to the
statement in RBB, this 1s not due to the assumed infinite mass of the recoil
nucleus, as the appendix shows. That this is to be expected \is evident from |

the fact that only momentum and not energy conservation is invoked.

For 0 ¢ n/2 we note that |
Wy =W | (6 < =n/2) . (9)
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Since there si_aems to be no advantage to be gained by setting an upper cut-off
we can assume that Wo = Wy if Wy § { W and if Wl 7 W we can take Wo = W, for

all 0 down to 0. where Wy, ( 6 1) = W;. In the latter case the correlation

1
function (O ) = O for a11 O < O 1. For W, of the order given in the fore-

going table,

W, % W, . Slge ] 3 (8a)
1+ sin 6 2Wg5 o
with great accuracy and hence
‘ '~ wO w0 - Wl = | »
sin 9 1 ~ — -1l 4 —————3—— H W > W. (8b)
Wy ows o '

3. EXPLICIT FORM OF INTEGRALS

We write the correlation in the form

U0 ) =9,(0) -=aq(B) | (10)
where
W2 .
Q = g dW oW g [12 cos 20 + 1 - 26 cosh y 1 - 22 sineBJ
Vi - a2 5in20 (10a)

dw , .
f p q [Lecos 20 +1-2€ xcose\ll—xe sinee]
n?

1l - si

X[x sin° 0 + € cos© 1-2° sinee]v N (10b)
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We consider two cases: |

(a) Wy y W 2 W

(b) WoW W

- In case (a) wéhave g > 6-173t/2 and

W
2
) 2 S .
Q=2 g ¥ EW g (l+h.2 cos 20 ) (11a)
W, V1 -2 sin20
d.Wp q 2 2
Q = 1-3cos2f + A% sin 20 (4 cos 26 - 1) (1l'b)
\/1 -2 51020 | |
Defining the following integrals:
. dW pW g2 rer 3
Io(W) =_S = oo L) = g = .
W V1 -2 51020 W, 1 - 22 510”0
12)
' aw W 5
To(W ) = g Z = I,(w) = S LD
W.l 1 - A% sin“0 Wy qJ_l—-xasinae
we have that
Q, =2 E[é + Ig_ cos 20] ‘ (13a)
" i
Q =2 [Ii(l -3 cos® © ) + sin26 (% cos™® - 1) Il] (13b)

and all arguments of Ié . I]'_' are Wl.

)

L]
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"
For W2 = Wm it is seen that all integrals converge at all 6 except Il .

Since ; _ ‘
—_— ‘ .
V1 - A2 s5in2@ - E , (1%)
q . :
where
X =8 460 + oW = c(W_ - W)(Wy - W) - (15)
and
a =W 2 . 20 29 :
= W~ + sin » b= -2W,, c = cos (15a)
Wn'1= sec2 O Wy + sin 6 one - cosaej o (15b)

it follows from Wy (x) = W (x) = WO that the integrand in I,"behaves like 1/q
whereas at the upper limit g - 0. In all other iht_egrals the positive powers
of q insure convergence. '

For case (b) we give the results for 0 7 n/2 and O & n/2 separately:

e?n(2

Qo = 2T, (W) + 3, (W) (16a)

Q =2I; (W) + I (W) | (16b)
where |

Io_(ﬁ) =1 (W) + I (W) cos 28 (172)

I (W) = (L -3 cos2(9 ) 1 (W) +.sin2 6 »(k.cbs.e 6 - 1) .;1.'1"(W) (170)
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and, with the notation

Vo =% @ - ") | - (18)
the J o and Jl are given by }
Ty () = T, () = 1, () - 2 05§ [Wo (3, - 3,) - (v - 93)] (162)
Iy (1) =1, (W) - 1) (W) + cos [Wo (s = vy) -2, (v, - ¥p)
+ Y5 - )’3] + cos G (4 cos® B - 3). (y5 - 2y + yl) | (‘l8b,)

The parts of Q, and Ql exclusive of J o and Jl respectively are; of course,
Ié (Wy) + I, (W) end ,,Il_(wl)p_-i-___-Il (W) respectively and again, the latter

divergeg‘ at 9 =n ina ‘légé.rithmic way

9 2< 3{!2

Here
Q = K (W) -2 Jo" cos & (19a)
Q =K (W) + Jl' cos @ + (4 cos> 0 - 3) J.i." (19'b)

where |
K, (W) = I (W) - I, (W) -~ (20)
X () =1 (W) -1, (W) | (200)

and there is no divergence. K, is obtained from (17a) and (12)by re-

placing the upper limit W by W Similarly, K, is obtained from (17b)

.
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and (12) by the same replacement of the upper limit. For this reason, in the.

results given below for I(; oeee Ii' we leave the upper limit arbitrary in some

places so that either W, or W may be substituted in the results.

L. EVALUATION OF THE INTEGRALS

Define
' W

S 2 aw B Ry 4+ 1(Wp, W) (21)

W "

Then, omitting the argument Wl in Ié ete.,

I = szQ - BWERB + 3W, Ry - Rs (22a)
1= -wo(Rh - Re) - (R5 - R3) ' (22b)
I'= W2(R ) - 2w

1= Wo\Bs - Ry - B (Ry - Ry) + B - Ry

L -
IJ'.--R5 2R3+Rl

Once the integrals Rm are evaluated, proper substitution of the limits gives
all required results.

The integrals Rp cannot be given in closed form but can be given in the
form of an infinite series which converges rai)idly for Pl/ wlz'l (i.e.,

W 3 1). Define

(23)
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and use . '
o0

p=VW Z 7y/w2v
o

and the binomial coefficients are

7, = (=) (%) __ 3.5 ... (2 -3) : (2h)

then e
Rm + 1 = yg— 7y I-"m + 1 - QV | (25)
Thus .
3 3
I"p = yzo 7y EJOLQ - 2’- 3“0%.-3 - 27+ BWOL).]. _ 2y-_ L5 - 2p (258.)

op) (250)

" .
Ic') = Z; 7)’ [WO(LLL -2y L2 - 2)’_) - (Ls - 2p° L3 -

oo
2 ’
I' = z - - - )
1 S EJ°(L3 cop T o) Ty Lgym e i) ¥ s g I oyl (ase)

I]l-t - 2 7y -[(Ls P 2L3 - 2y .+,Ll - 2y) - (254)

[

)
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" For Lm(W2 Wi) we have the following recurrence formula:
)

= _2m-1D m-1la
Lm = Ay on ° In 21 - m ¢ m-2 (26)
with Wé .
-1
Am=wm \JX : (262)
me ‘
Wi
and
: 1 b
LO= VE’ log (ﬁ + W V-E +m) (26b)
Wi

In the form (26) m is restricted to positive values. However, if (26)

~ is written in the form

L = B ,am'lEL - L : (27)
m- 2 m om.-2g m-1 m-1lag n .
where W,
i °
¥ X
B = 27a
m (m - 1)a - (27a)
Wi
and (27) is used in conjunction with
Lo--Alg X NE B, ~ C (em)
-1 (a" W 2 V& -
| W

1
then by giving m all non-positive values (m =0, -1, -2 ..) one obtains

all L for m £ 0.
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If one evaluates the right-hand side of (26b) at W, = W one obtains

log [ - sin D sec 9 d - cos QJ | .

whereas for W2 = W one obtains

|cos 9,

1 " ‘_W smee
TJeesgl ¢ L T TTeese]

wherein one uses

_ 2o
Vx(W) = .lcos@‘ S
It may be noted that for arbitrary Wl the argument of the log in L0 vanishes like ~

stG so that L0 is finite in all cases except when one limit is—Wm, see Eq. (44d);

It is seen, then, that the singularity appears at 0 - xin L, end only in L.
However, when Ic'>’ Ic';. and I]'_ are evaluated at 9 = n the singular term_.Lo has a
vanishing coefficient. This coefficient vanishes like sihee.- Therefore, in
evaluating the above for O = x - d ( d « 1), it may be disadvantageoué to
use the recurrence formulae to calculate a very small quantity as the difference
of several large qua.n_tities_. That these quantities will be large »may‘ be recog-
nized from the fact that the leading terms ()) =0 in (25)) all contain a dominant

>

term proportional to Wo. Hence, we proceed to isolate the ''singular'’ term‘Lo';_.

That is, we write

In =2y Lo+ D, | | (28)
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D fulfills the recurrence formulae (26) and (27) with
D =0 _ | (28a)

and D__l will be given below. The Zm fulfills the homogeneous recurrence
formulae obtained from (26) gﬁd (27) by setting Am and B, = 0. Also

Z,=1 | (28vb)
and z_, will be given below (see Eq. (33b)). We consider the problem of
solving the recurrence formulae for Zm' This will be done in two parts:
first an approximate solution valid near 6 = % will be obtained. Then the

omitted terms will be added to obtain an exact solution for specific m values.

Considering m » 0, we set

e "], (29).

no

and with any W we find

(o]

omes SR e Ty
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For convenience we make x) = 1. Then, comparing (30) with the recurrence

formula for the Legndre polynomials, which is

m -2 ' (31)

for argument x, we see that (30) and (31) are identical with identicel initial

conditions (P, = 1) if

T ..1
m- 2
and

1
X = —
Ve

Hence

m
z W°1>(1)' > 0= %) (32)

Hence, near Q = 7, Zﬁ is a polynomial in l/c of degree m.
If the right-hand side of (27b) is evaluated at W, = W we find that
. " . 2 2
the argument of the log is WO w§ -1 sin 9 - W§ sec“ @ sin“@ —_—> sin @

times a positive constant as @ ——> N,

Hence, if we write

and

T

W
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we have

By =1

where f is finite at é} = n, (see Eq. (hhﬁes. Therefore

and

log T

2= ‘JE;Z: '—;€>'J:7Wb‘ -

2 ‘
If in (27) with B = O and a = W_ we insert

-m - 1 o;l .
= W e B (1/VT)

-m =1

we obtain

: G, .
;;s;ﬁ>‘ am -1 m-lop .n-le 1n-2f},

m m m=1l m

Comparing (35) and (31) and taking (33b) into account we find

0, =% (@m+1)

m.-_-2:

(33)

(33a)

(33b)

(34)

(35)

(35a)
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and

. - ,
21 =(E) " P (1/ ve), -’ (O3 x) (36)

LS

with m > 0. With the results (32) and (36) it may be checked that at 6 ==
all integrals except I]'_' do not contain L_ and are hence finite.
Returning to the exact homogeneous recurrence formulae and noting that

a=W(2)+l-c,weset

z -2, & | . - T (57)

where Zio) is given by (32) and (36) then eo =el = O and for m >0

om - 1 W {1 -e 1.c (o)
-2 %em-l-mml[?*c €n_o*t " Im.a| (8
Explicitly,
g 11l -c (0) 1 1 -¢ ' .
,ea=-2— p ZO =3 o (38&)
_ZEQ _'2_1'-c,'(0) N
W W2 1 (
_I1% g 3 [Hotl-c 1-c (o)
€ “ve 6 —€,+ 1, o (38e)
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21~

W y [We+1-c 1-c¢c
€ -226€,-3 (‘L—‘—" c— €5+ Z§°)] (384)
For negative index
=2m -1 KQ. -_m _c +
e‘m_..-2 m-1 aem-l m—laEm Am-E (39)

where

' ~2m=-1(W 1] s() _ _me f1_11],(0)
‘n ‘ . (;Q ) Lyl _ ( -p;—g) Zm (ko)

—W-Q— - L = e _s.;g____‘ 29 z - .s_ﬁ. 2_0_ e
a Wo aW Wz
and
1 -8 in2 6 ~ siﬁee
- ‘2 = ~ " : !l. m
wo aW2 W
o 0

' | 3 A
are very small (for Wo = 9 the larger is 1.3 x 10 at best). Hence the

are all very small. Explicitly, the first few € o 8T

€ R S |  (bla)
-1 (‘l—a- W |
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from (33b) and

€. =w_:€ 1. +“’L2

3 W o .
e =E :G_e'% ie-l+'d_~-5

and as many others as are necessary are easily obtained.

The explicit Dm are for m;> 0

Dl=Al
W
_ 2 9 a
D=8 +5 /%
W
D: +.5_. —Q—D -géA
3=t s D 001

_ 7 ¥ _3 &
th All-"'E_% D5 .2: P D2
D 9 o _ka

5=A5+5 D52 D5

The form (42) is most suited for numerical calculation. In this

we note that for Wy = Wy, W, = W

o m-1
A='-l Wg-l (Wo'l'l .

o -

(k1v)

(41c)

(k2)

connection,

(43)

ey

<



<

“

whereas for W, = Wm and arbitrary W

~25-

2 1

Ay = - x(u) (43a)

c 1

For w2 = W, arbitrary W A is equal to (43a) minus (43).
In all cases \c 0.
For negative index we have the following explicit,resulté:

W,

2 .
D-l='r7}"l°gv.{ﬁ;‘g, +.2br£}&+w c +'2bﬁ} ,(m“_i_).
: ) o ' Wl '

see (33a). For W, = W, and w arbitrary we use the result that the argument

of this log is

and for W,= W the argument is

. ) |
- %E__Q__ wi -1+ (w2 - cos 20)] (4hc)
+ 1 V
o

For W, =W, W =W, and é = % we have D 1 finite in contrast to .Lo' For

sin 0 << 1 the argument of the log in (4lha) evaluated at arbitrary Wl is

2
- W) 1 -
Wy WO" -
(6 3y

The quantlty £ (see Eq. (33a)) is given by the ratio of () or (khe) to

(kha) accordlng to whether the upper limit is W, or Ww.
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Hence, at @ = n, the D-l term is always finite as expected. .Other velues:

of D are obtained directly from the recurrence formula (27):

J |
Dy =B, +—2-D - : (45a)
D,=B.,+-2- S p £ 0D "
355t TaT T2 TE fa (k50)
W
2 L0 2
Py =B+ 5 7 D5 -5 = Do (45c)

Obviously, these results can be easily extended as far as is necessary.
The neglect of the coulomb effects and the finite experimental precision will
determine the required accuracy and the number of correction terms necessary.
In this connection, as already emphasized, the calculations are made more
easily if the lower energy cut-off Wi is not too low. Clearly, since the ani-
sofropy of the correlation arises from the higher energy electrons.oné doesn't

lose very much if W, is set at a comparatively high value.



APPENDIX

Although the arguments given above may be sufficient ;bo show that the fin_ité
nass cﬁf the recoil nucleus cannot remove the ( O - integrable) singularity in the
angular correlation at 9 = 5, we give an explicit demonstration of this fact in
the following in order to make the point abundantly clear. -

Let_l;b‘e the resultant of the leﬁton momenta-i)\ and ?a.nd let M be the mass

of the recoil nucleus, then

P-F+T (A.1)
and
W, =W+aq#+P /oM » (A.2)

With g-: cose we fixid_
. » 2 :
2 _[ 2M(Wo - W - q) - Q4 2 ] (4.3)
BoM(W, - W - a)

2,
The maximum energy Wm is that root of 1 - A.2 sin 9 = 0 which is not greater

than WO. This is easily found to be

Wy .=, ¥# [ 1+ +\Ir+ o (g - ) + L:,‘zgi ] (a.4)

expressed as a function'of q rather than 9 .

One couwld express W in terms of e by solutlon of the equatlon resulting

from eln,minatlon of between (A.3) and. the Quadratlc o:f‘ vhich (a. h) is a root:
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. 2
W2+2MW-2M(wo-q)-l-C1=O (A.5)
but this is not actually necessary.

We now consider

P4
!

2 2
= q2 (1 -2 sin” O )

- 2
l:em(wo - W -q) -P_2+q2]

8M(Wo -W-aq)

(A.6)

| ' 2
If W =Wm-€(6>/0;)weknowtha-tfor 9—-)n,x~e- sothat|/x
venishes linearly. That is, X(W_) and ( O X/ 0 W), =0. It is now a
’ m

straightforward matter to verify that this is true with finite M.

From (A.3) for fixed §

0

-2 3 { 2M(W, - W - a)(a + M) - q2(Q.+ M) +p%(2q + M - 2 §zm)} (A.7)
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which is to be substituted in

- 2W sin® O | (A.8)
oW oW .
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ALW =W
: m

1,0% . %4 2
2:‘('-W)Wm = (q > W )w - W, sin 0

where q(Wm) =p"(Wm) ~sin9

f

Since 2M(Wo - W -q)‘-—i>P - q? at W = Wm we find

(2 0 o/W), - sin°B

and therefore

(

2" ) -0
Ty, ¥

Consequently J X_vanishes at least linearly in Wm - W and the divergence

of Ii'remainst

(A-9)

(A.10)

(A.11)
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