

.-
I , • • • , I'.
t ,_
ii,

• •
' •

..
~. t.

~

,~. 1. ;.
'. j. ,

''''~. ",.
" •
••

(y' 'I· f)"v' (;

.Y f> i) cd cL

"-',

,t.':

~
ll. v e>s.
hi6

eo
1;5

MANUAL FOR THE ORACLE

. . [/K II k r~' () '. '
}

, ORNL

Central Files Number

53,·12~2 '

Copy No', . :?J+,IJ

PREPARED BY THE MATHEMATICS PANEL

A. S. Householder, Chief

, J. Moshman, 'Editor

December 1953

OAK RIDGE NATIONAL LABORATORY
Operated by

CARBIDE AND CARBON CHEMICALS COMPANY
A Division of Union Carbide' and Carbon Corporation

Post Office Box P
Oak Ridge, Tennessee

, 4 , i ·1 ~~

i~

.
",

-
':

-,

,
,

>, ~
> •

.

, •
.
.
•
.
 :

 •
•

•
.

•
,

.
..
.
.

.
.
.
.
.
.
.

.
.
.
.
.

.
.

.

~
·~

'·2
, ;

::._
 ._~
~
..

__ .

 ., ~

. ___

 ..
... ~.

~_:
..:~~

...
..

.
..

 .

.
.'

.,
j.

;
'

.
',

.
.

_
.

.
..

.u

_ ...
 ,,

·
'

, ..
 ~_.~

. i
i
I
I
i
i
I
I
I
I
!
!
!
!
!
'
 ~
~
 _

_

,., ..
?. ;,',.
'.
tit

•
~.
~ ,

• • • • • • • • • • • • • • •
I-

Section

2

3

4

5

6

7

CONTENTS

Title Author

Automatic Digital Computation W. C. Sangren

Electronic Digital Computers C. L. Perry

Basic Operations of the ORACLE A. S. Householder

Flow Charts and Coding J. Moshman

Use and Construction of Subroutines M. R. Arnette

Coding a Complete Routine N •. M •. Di smuke .

Interpretive Subroutines C. L. Perry

-
I

-
"

;;

•
•
•
•
•

•
J
"

•
•
•
•
•
•

e

e:
·.

 e
 .

•
•
•
 ' •

.•
 ,

#-

~

•
'"

•
•

• • • • • '. .'
• ,.
• • • • • • • ... <> • • • • • 0.

FOREWORD

A series of lectures was presented at the Oak Ridge National Labo,ratory in January

1953 to acquaint Oak Ridge personnel with the theory and appl ication of high-speed

electronic digital computers, in general, and ,with the ORACLE, in particular.

, In essence, thi s manual covers the subj ect matter presented in the lectures. Minor changes

were made to include current information or to adopt such modifications that subsequent

experience has indicated to be desirable.

In its entirety, the manual should serve to orient those who either formulate problems

for solution on the ORACLE or engage in the programming and coding of problems for sol u

tion. It is hoped that thi s manual 'wi II provi de answers to most of the questions that

might arise' in the minds of potenticilusers of the Laboratory's high-speed computing

foci I ities.

The various sections are being issued separately to be insert~d in the loose-leaf binder.

This format was adopted for three reasons:

It wi II hasten the availability of some of the sections as they are processed.

(2) It wi II enable changes to be made easily.

(3) It wi II foci I itate the addi tion of new sections that appear to be needed.

Although the component parts are credited to one or two people, much of.the content is

a result of the united effort of all members' of the Mathematics Panel who have liberally

and constructively critici zed the material contained herein. " Si mi lor contri butions were

made by the Research Participants and ORINS Fellow who worked with the Mathematics

Panel during the period of genesi s of thi s material.

!
'

.

·"
*-

','
~

.
!"t:

£..
~:
-~_

:..
'.<

.;
;.;;

-t:
. __

ELECTRONIC DIGITAL COMPUTERS

c. L. Perry

ORNL
Central Files Number

53-12-2

Section 2

••
••

••
••

••
••

••
••

••
••

••

• • • • • • • • • • • '.
• ••
• ".
• • • • • '.

2. ELECTRONIC DIGITAL COMPUTERS

C. L. Perry

The purpose of this chapter is to present,in a general fashion, a description of auto

matic digital computers. In an earlier chapter, it was stated that the computing steps

performed by automatic computers are theel.ementary arithmetic operations, addition" sub

traction, multiplication, division, and certain logical operations such as the transfer of

information and the stopping of the machine. Basically, electronic digital computers are

computing devices which automatically perform, by electronic means, a sequence of these

arithmetic and logical operations. The sequence of operations depends on the problem to

be solved on the computer. A trivial change in a problem parameter, for example, degree

of a polynomial or coeffi cients of a differential equati on, does not represent a different

problemi in these cases, the sequence of operational steps does not change. If the com

puter is to be used for many different problems, the effort involved in preparing the various

sequences may, oVer the lifetime of the computer, exceed that of building, operating, and

maintaining the machine. A computing sequence, or program, once evolved may be used

for many versions of a problem by suitable adjustment of the parameters~ Thus electronic

computers save human effort in the preparation of problems for computation, as well as in

the computational steps.

Electronic computers that can be used without structural alteration for a wide variety of

problems are called general·purpose computers. Simi larly, computers limited to a small

class of problems are called special-purpose computers. Oak Ridge's ORACLE is a gen

eral-purpose computer. The SPEC [Special.Purpose Electronic (NEPA) Computer] solves

only systems of linear algebraic equations or problems reducible to that form. 'Many of

the following remarks apply to both general- and special-purpose computers.

HISTORICAL DEVELOPMENT

Although plans for an automatically sequenced, mechanical, general-purpose computer

were formulated by C. Babbage in England as early as 1835, 1 it was not unti I 1944 that

the first automatic computer, called the, Automatic Sequence-Controlled Calculator, or

Mark I,operated successfully. The design and construction was started in 1939 at Endi

cott, New York by the International Business Machines Corporation.

Mark I, now in operation at Harvard University, was designed by H. Aiken, B. Durfee,

F. Hamilton, and C. Lake. It is an electromechanical device that uses mechanical counters

actuated by a 4-hp motor and electromechanical relays. (The relay was invented by Henry

in 1835.) The automatic sequenci ng of Mark I J~ arithmetic operations is controlled by a

punched paper tape~ Each row across the tape indicates a computing step. The paper

tape is placed in the computer so that the first row, indicating the first computing step,

is at the reading, or sensing, station. The computer starts the computation by performing

1 For additional details see D. G. Hartree, Calculating Instruments and Machines, Urbana, Uni
versity of 1,llinois Press, 1944. It is interesting to note that automatic analog computers conceived
by Kel vin in 1876, but designed later, ,operated successfully before dig'ita I computers~

2.1

2.2

the computing step indicated by the first row. The paper tape is then advanced so that

the second row is at the reading station, the second computing step is performed, etc.

The computer conti nues in thi s manner until it comes to a row indicating the operation

"stop computi ng" or unti I the computer is stopped by the operator. Another means that

Mark I has of terminating the computation is a conditional stop, which may be verbally

stated as U stop if the computed number is negati vej otherwi se, conti nue computi~g."

Provision was made in Mark I for the automatic transfer from the sequence on one tape to

that on another so that a special function, say sin x, could be evaluated. This transfer

and other new operations are present in computers of more recent design.2

Mark I, with an addition time of about 14 sec, is slow compared with electronic com

puters, whose time for additions varies from 0.01 to 0.00005 sec, the latter figure being

the time for computers such as the Whirlwind and the ORACLE. Mark I is being modified

to make it a faster and more versatile computer.

The ENIAC (Electronic Numerical Integrator and Computer), designed and constructed

during World War II, was the first truly electronic digital computer. Its addition time is

0.0005 second. Now in operation at Aberdeen, Maryland, the ENI'AC was completed in

1946 at the University of Pennsylvania.

COMPARISON OF AN AUTOMATIC COMPUTER WITH A HUMAN COMPUTER

AND DESK CALCULATOR

A graphic description of the mechan ization of computing can be real ized by comparing

automatic computation with desk computer calculation for which machines such as the

Friden, Marchant, or Monroe calculators are used. In using a desk calculator, the operator

inserts in the keyboard a number that represents numerical data, parameters, or intermedi- i

ate results. He then presses an operation key to add, multiply, subtract, etc. Following

the completion of the indicated computing operation by the desk calculator, the operator

then records the computed number on a sheet of paper as an answer or as an intermediate

result. Alternately, he may leave the number in the calculator as an intermediate result.

The operator then continues to the next computing step.

The computing steps mentioned above are mechanized in the following manner. The

numbers used in the calculation are stored in units of the computer synonymously called

storage reg; sters, memory regi sters, memory cell S, or cells. The operations characterized

by the keys in the desk calculator are specified by a numerical code for the computer.

The location, or storage register, of the number to be used in the computing step is also

specified by a number. The electronic, or electromechanical, computer automatically de

codes the numerical code and performs the indicated computing step. The computer also

automatically sequences itself; that is, after one computing step is performed, the next

one is started. Some computing machines have a stop operation; the computer stops when

2 For additional detail see A. W. Burks, H. H. Goldstine, and J. von Neumann, Preliminary Dis
cussion of the Logical Design of an Electronic Computing Instrument, Princeton, Institute for
Advanced Study, 1946, a paper which proposes and describes in detail the features included in
computers of recent design.

• .'

WI'

•

it performs the stop operation. Other computers, such as the SPEC, are manually stopped

by the operator.

The program, which consists of the numbers and the numerical code for the computing

steps, is read into the computer, and the answers are printed, or read out, viaa unit of
the computer called the input-output unit~, The storage, or memory, unit consists of a large

number of storage regi sters. The part of the computer that decodes the operation codes

and sequences the computing steps is called the control unit. The arithmetic unit is the

part of the computer in which the arithmetic operations are performed.

Figure 2.1 is a block diagram which schematically shows the relationships between the

four basic of automatic compu,ters and the corresponding units in a desk calculator-

human operator combination.

INPUT .OUTPUT

Conversation
Reading
Writing

DESK CALCULATOR

Multipl ication
Division
Addition

Subtraction

HUMAN COMPUTER

(Invention)*

WORKSHEET

Instructional Headings
Numbers

BOOKS ON
NUMERICAL METHODS

TABLES

HUMAN CALCULATOR WITH
DESK COMPUTER

INPUT.OUTPUT UNIT

Numbers
Results

Instructions

ARITHMETIC UNIT

Multipl ication
Division
Addition

Subtraction
Compar i son * * *

CONTROL UNIT

Timing
Sequencing

STORAGE UNIT

Instructions
(Numerical Code)

Numbers
Parameters

Initial Values
I ntermedi ate Results

Tables

ELECTRONIC DIGITAL COMPUTER

*An invention by the electronic computer is either a transient (nonrecurring) or a systematic (recurring) error,

**Gate is.the computer terminology for a device used to control the timing of transfer of information, In the symbol -4--,
the arrow through the circle indicates the path for transfer of information. The other arrow indicates the source of the impulse
for the opening or closing of the gate.

***Comparison of two numbers is a trivial operation for a human computer and is not mechanized in desk calculators. The
comparison operation determines which of the following statements is true, A ~ B or A < B. In the ORACLE, B = O.

Fig. 2. 1. Block Diagram Comparison of Human Calculator with Desk Computer and Electronic:
Digital Computer.

2.3

2.4

The wires in the computer that form paths for the transfer of information are symbolized

by lines in the diagram; the arrows indicate the direction of transfer. When information is

transferred from "A" to "B", the information is reproduced at B without being erased at A.

MACHINE CODE

The computing steps to be performed by the computer are specified by a numer'ical code~

Some of the digits in this code for a single computing step indiCate the operation. The

other digits represent either an address or some other information relative to the operation.

The address is a number specifying a particular storage register in which the operand, or

number on which the operation is to be performed, is to be found. An example of a differ

ent type of relevant information occurs in a 'shift operation ,where the number of places to

be shifted forms the address pGlrt. The numerical code for one computing step is called

a command, or an order.

For some computing machines, as for the ORACLE and all other very high-speed com

puting machines, a command consists of two parts. One part of the command specifies

the operation to be performed and is called the instruction; the other part is called the

address, even though it may not actua Ily be an address in the sense descri bed above. The

code for which the command consists,of two parts is called a single-address code. The

code for other machines consists either of three parts, called a two-address code; four

parts, called a three-address code; or five parts, called a four-address code. A two-address

code is used in Mark I and in the ENIAC. Mark IV and the MIDAC use a three-address

code. The SEAC uses a four-address code. There are advantages to each of the above

mentioned codes. The two-address code has the fewest advantages. The si,ngle-address

code is the most flexible. A single-address computer ,can be used as a three-address

computer by using a technique called interpretive subroutine operation (ef., sec. 7). Single

address computers require simpler design and fewer parts than do the other computers.

In a single-address computer, a computation, such as the addition of two numbers and

the storage of the sum, requires three commands.

First Command. Clear the accumulator3 and transfer the number A, located in M(A), 4 to

the accumu I ator.

Second Command. Add the number B located in M(B) to the number A now in the accumu

lator.

Third Command. Transfer the result C = A + B from the accumulator to the' address

M(C). C is also left in the accumulator. The number previously in M(C) is replaced by C

and the previous contents of M(C) are lost.

If M(A),M(B), and M(C) are 100, 101, a~d 102, respectively, the three ORACLE commands

are 24100, 20101, and 5F102.

3The accumulator is a register in the arithmetic unit which stores sums, products, dividends,
remainders, etc. It serves the same purpose as' the upper dial in the Friden calculator or the
middle dial in the Monroe or the Marchant calculator.

4M(A) is the symbol for the address of the storage register which contains A, that is, the memory
location of A.

• • • • • • • • • • • • • • • • • • • .' • •

•

I na computer with a three-address code, the computation descri bed above i s specified

by one command, for example, 20 100 lOr 102, if 20 is the'code in the three-address opera

tion for: "Add the numbers in the storage registers specified by the first and second

oddress~s (l00 and 101) and place the result in the'storage register specified by thethird

address (l02}."

CONTROL UNIT

The control unit in most general-purpose computers of recent design contains a register

called the control counter. The control counter stores, the address of the storoge regi ster

containing the next c'ommand or pair of commands to be .performed. In the ORACLE, two

commands are stored in a single register and are called the left order and right order. The

left order is performed first and is followed by the right order. At the start of a computa

tion, the control counter is set to the address of the storage register cOI'Jtaining the first

commond to be performed. During the performance of the. first comm~nd or pair of com

mands, the address .in the control counter is automatically. increased. The general-purpose

computers now in operation perform from 8 to 100 different operations. In computers with

one-, two-, or three-address codes, at least one of the possible computer operations is an

operation which replaces the address in the control counter by an address which is speCi

fied in the command.

I n computers wi th a four-address code, the fourth address is used to indicate the location

of the next command to be performed. Thus, in a four-address computer, the fourth ad

dress serves asa c~ntrol counter. In one-, two", and three-address computers, the com

mands are performed in sequence. That is, after the comm'and in address N is performed,

the command in address N + 1 'is performed; this process is: interrupted only when there is

an operation whi ch changes the address in the control counter.

The use of a control counter permits storage of command~ arid numbers in the 'same set

of storage regi sters. The Monrobot and Mark IV are examples of computers with two sets

of storage regi sters, one for commands and another for numbers.

Commands are decoded in a part of the control unit called the funCtion table. In addition

to decoding the commands and sequencing the command~,the control unit also regulates

the performance of all the other units of the computer. The performance of arithmetic and

nonarithmetic operations by the c~mputer consists of many elementary steps involving the

opening and clos ing of electronic gates to provide for the transfer of d number from one

location to another. These steps, called subcyclesof an" operation, are automatically

sequenced by the control unit. Multipl ication, for example, consists of several shifts and

several additions, as well as the transfer of numbers.

The complexity of automatic control in computers has evolved in the following manner:

1. One step operation, or nonautomatic sequencing, is simply computing by pressing

switches, such as is done by desk calculator computation. Many modern computers, in

cluding the ORACLE, can operate in this mode either for, engineering testing of the com

puter, for checking a program step by step, Oli 'for demons'tration. The ORACLE can also

2.5

2.6

operate in a s'ubcycle mode to test the steps in a computer operation such cis the shifting

involved in the multiplication operation.

2. Fixed-sequence calculation is the, most elementary form. of automatic sequencing.

The SPEC is a fixed-sequence com'puter. Commands are placed in successive storage.

registers, such as successive rows on a paper or magnetic tape. ,The computer performs

, the commands seria lIy. There is no provi s ion for operations whi ch depend on the va lue of

computed numbers, as described in the following sections. Furthermore, there is no pro

vision for skipping computing steps, either in a forward or a, backward direct.ion. In the

SPEC, for example, a sequence of calculations is repeated by starting the sequence again,
. , • I

and not by skipping back to the beginning from some intermediate point, as is possible in

the ORACLE.

3. Fixed-sequence calculation with a conditional stop, provides a modification of the

sequenci ng of the computer's operations. The conditional-stop operation terminates the

computation if the number in the accumulator has a specified sign. Otherwise, the com

putation continues with the next command. The conditio~al stop was the first conditional

command introduced in computers (Mark I) and was the forerunner of other conditional

commands (see paragraph 5 below). The provis i,ons in the des ign of computers for condi

tional commands and modification of commands are the most significant recent contributions

to the logical design of computers.

4. Fixed-sequenced calculation with automatic subsequencing provides for the use of

subsequences of computing steps occurring, frequently in computing, for example, the sub

sequences for computing the value of a special function. Computing machines like IBM's

SSEC, which was the first electronic digital computer to be retired from computing, were

designed with a feature which permitted automatic incorporation of a subsequence of com

puting steps. These subsequences were on paper-tape loops in the SSEC and could be

used as, many times as desired in a computing program. Each time the subsequence was

used, the paper tape moved through its entire loop.

5. Conditional-sequenced calculation, incorporated in general-purpose computers of re

cent design, permits branching operations. ' In a branching' operatio~, the computer takes

the next command to be performed from one of two storage regi sters,' the register chosen

being determined by a specified condition, such as the $ign of the number in' the accumu

lator. This type of operation permits a se'quence of computing steps to be rep~at~d a num

ber of times; the number may be computed by the machine itself.

6. Modification of commands or alteration of the computing steps by the computer is

possible when commands and numbers are stored in the same set of storage registers.

Arithmetic operations may be performed on the numerical code for a computer operation.

For example, the command "clear the accumu latorand transfer the number in regi ster 100

to the accumulator," with ORACLE code 24100; ca~ bechanged to "Clearthe accumulator

and transfer the number in register 101 to the accumulator" by adding the number 00001 to

the code 24100 to give 24101. The provision for modification of orders makes it possible

•

• • • • • • • • • • • • • '. • • • • • • • •

to progran:' a calculation with fewer commands~ The shorter progroms, for computers with

provision for modifying commands as compared with computers without such provision,

require fewer storage regi sters in the computer. Thus more compl icated problems than

would otherwise be possible can be put on a computer which can modify its commands.

ARITHMETIC UNIT

The part of the computer in which the arithmetic operations are performed is called the

arithmetic unit. The arithmetic unit, in most computers, consists of one or two shifting

registers, including the accumulator; one or two buffer registers for the temporary storage

of a number during an arithmetic operation, for example, the multipl icand or divisor during

multiplication or division; an adding unit; a complementing unit for changing the sign of a

number; and perhaps a multiplying unit. In all binary computers, multipl ication is performed

by successive addition and shifting. The UNIVAC, Mark II, and other decimal computers

have special decimal multiplying units. The SPEC has a high-speed multiplvina unit which

finds the product of two decimal digits.

The details of operation of the arithmetic unit depend on the number system used by the

computer. Electronic computers use either the base 10 or the bose 2 number systems [3.75

decimal (base 10) = 11.11 binary (bose 2); that is, 3 x 10° + 7 x 10- 1 + 5 x 10- 2 = 1 x 21

+ 1 x 2° + 1 x 2- 1 + 1 x 2- 2].

There are many physical devices that can be used to store a binary digit, and they re

quire only two stable states. In an analog computer, on the. other hand, the computing

elements are continuous quantities, such as voltage or length, whieh may assume one of

a'n infinite number of possible states in some specified interval. These computing elements

are limited in accuracy by the precision with which the device is constructed and the con

ditions of operation of the computer; temperature and humidity variation may be very im

portant. The ,elements used in digital computers, however, assume only a finite number of

different states; in most electronic computers, the elements assume only two stable states.

Inan analog computer, the elements store approximately the correct quantity; the computing

element of a digital computer stores either the correct digit or one that is completely

wrong. Thus, the answers produced by a digital computer operating satisfactori Iy can be

predicted exactly; the answers produced by an analog computer can be predicted only

app~oximately.

Some of the bistable elements used in electronic and electromechanical computers and

their, two states are relays (on or off), electronic flip-flops (conducting twin triode with

either one or the other side conducting), magnetic cores (saturated or unsaturated), and

paper tape or card's (hole or no hole). Several devices developed for storing decimal digits

are mechanical counters, multiple-position relays, special-purpose. vacuum tubes, and

magnetic-core assembl ies. Each such device has ten stable states. Groups of ,from fo.ur to

ten bistable devices have also been used to store a decimal digit.

2.7

2.8

In the SPEC, four bistable elements are used to store a decimal digit. The representa'!"

tions of the ten decimal digits are:

Decimal Digit SPEC Representation

0 0011

1 0100

2 0101

3 0110

4 0111

5 1000

6 1001

7 1010

8 1011

9 1100

The 0 and 1 represent the two stable states of the bistable elements. The .above scheme

is called the excess-three, or plus-three, coded decimal. The excess-three code is the

binary representation of the .decimal digit plus three.

The simplest computer designs are for computers, like the ORACLE, which use a binary

number system and bistable storage elements. In using an electronic computer with binary

arithmetic, the input numbers and output numbers can be represented in the fami I iar deci

mal form. The electronic computer can, as part of the calculation, change the numbers

from a coded decima! form to their binary representations. In computers with bistable

storage elements, the storage of decimal numbers requires 30% more :storage elements than

does storage ·in b.inary form. Multiplication and division require more time in a decimal

computer than in a binary computer, unless there is a special decimal-multiplying unit.

In business calculations, it is more convenient to use a decimal computer. In scientific

calculations, where, many operations are performed on a few input numbers, it is advisable

to use either a binary computer or a computer with specially designed storage elements for

decimal digits and a special-decimal multiplying unit.

MEMORY UNIT (S TORAGE UNIT)

The memory is the part of the computer in which the numbers and commands are stored.

Commands are transferred from the memory to the control unit for decoding. Numbers are

transferred from the memory to the arithmetic unit to be used in the calculations. Thus,

the speed of operation of a computer depends on the time required to transfer information

from the memory to the control unit and to the arithmetic unit and the time required to trans~

fer information from the arithmetic unit to the memory. This transfer time is called the

access time. For most computers, the time required to transfer a number from the memory

to the arithmetic, or control, unit is the. same as the time required to transfer the number

back from the arithmetic unit to the memory.

The recent trend has been to design computers with memories that contain a large number

of storage registers and have a low access time. The ORACLE illustrates this trend with

•

• • • • • • • • • • • • • • • • • .'
• • • •

1024 (soon to be expanded to 2048) storage registers and an access time of 10- 5 second.

Some computers have two types of memories; one is fast, and usually .expensive; the other

is slow, usually inexpensive, and capable of stori.ng 104 or more numbers and commands.

The slower memory is called the auxiliary memory. Some relatively simple calculations

require over 104 numbers and 107 computing steps.

A computer has either a static or a dynamic type of memory. In the static type of memory,

all memory regi sters are stationary; and information can be transferred to or from the memo

ry at any time. In the dynamic type of memory, the memory cells move with respect to the

information transfer lines; information can be transferred only when the information is in

coincidence with the transfer line. In computers with dynamic storage, it is generally im

possible to slow down or stop tbe me.mory for subcycle checking. The possibility of slow

ing down or stopping the memory is a significant advantage in computers with static memo

ries, wheresubcycle checking can be done. Computers with dynami.c memories are currently

less expensive and less bulky than computers with $tatic memories.

The physical devices used in computer memory units are:

Static Type.

1. mechanical counters

2. relays

3. selectrons (a special-purpose vacuum tube produced by RCA)

4. electronic fI ip-flops (expens ive and usually only used in the arithmetic uni t and control

circuits; the ENIAC, however, has electronic flip.f1ops for its memory)

5. cathode-roy tubes

6. magneti c cores

7. crystals

Dynamic Type

1. rotating drum with magnetic coating

2. magnetic tape

3. magnetic wi re

4. acoustic delay lines

5. paper tape

6. punched cards

7. photographic film

Paper tape, punched cards, and photographic fi 1m are not erasable, and thus memories

using these devices are not flexible. The requirements fora :flexible memory are:

1. information stored in the memory remains there unti I needed (avai labi lity),

2. information transferred to a memory register replaces th~ previous information in the

register (erasabi I ity),

3. information transferred from a· memory register also remains j·n the· memory register

·(retentivity).

2.9

2.10

Computer memories are further classified as serial or parallel ... In a serial memory; 'the

digits stored in a storage register are transferred one after another, that is, serially. In a

parallel memory, the digits stored in 0 storage register are all transferred at.the same time,

that is, in parallel. A paral,lel computer, such as the ORACLE, which stores 40 digits in

a storage register would thus need 40 trans.fer lines to transfer the information in a storage

register. Parallel computers with static$torageare the fastest type of computer. The

timing of operations is less.stringent in sllch"a computer than in a serial computer with

dynami c storage. The control of a parallel computer is less compl icated than that of a

serial computer, but the arithmetic unit in a seridl computer is smaller than that in a

parallel computer.

INPUT AND OUTPUT

The program consisting of commands and parameters for a problem is transferred t~ the

memory from the inpu't unit. The answers are transferred from the memory to the output

unit. Since both inputand output require transfer to or from the memory, the input and out

put equipment for a computer is often a single unit, such as an electric typewriter, a

magnetic tape, or a paper tape reading and punching unit.

The control unit controls the operation of the input and output equipment •. Some of the

computer operations are commands for reading information into the memory from 'the input

equipment and for reading out from the memory to the output equipment.

A problem is ~tarted by re~dingin the program from the input unit to the memory and is

concluded by reading out the answers. The input-output eq~ip;"ent can also be used during

the computations to read in more commands or parameters or to rea'd out intermediate re

sults.

CONCLUSION

Digital computers are now being used for many appl,ications other than scientific compu

tation. Sears, Roebuck and Company, for example, has developed an automatic digital

computer for inventory application; the Bendix Corporation has constructed digital com

puter control systems for aircraft control; MIT has constructed a digital computer control

for a milling machine. It is likely that, soon, more digital computers win be used in control

application than in scientific computation.

The use of digital computers is economical only in repetitive operations. Thus, if a

large percentage of the steps in a calculation are not repetitive, the problem should not be
. '\

put on a digital computer. If the problem recurs frequ.ently with only param,eter changes,

it should properly be ~ons.idered as repetitive •.

One of the most ~ignificant advantages for digital.computers .is accuracy. An incorrect

answer produced by the electronic computer is usually due to a human error in preparing

the prQgram r.a.ther than to an error by the computer. The error frequency for human calcu

lation is about one error in 500 computing steps. The error frequency for some electronic

computers is about one error in 100,000,000 computing steps.

• • • • • • • • • • • • • .' • • • • • • • •

•

Techniques have been developed for us ing the computer to check the computation pro

gram. Some computers also internally check their own computations. Every electronic

computer should have a check on its power supply. If a transient power failure occurs

during a computation, the computation may have to be restarted. In the ORACLE, for

example, the memory would be likely to lose all its information in the event of a power

failure.

2.11

.;;..
..

"j
oi

:,
.,

BASIC OPERATIONS OF THE ORACLE

A. S. Householder

ORNL
Central Files Number

53-12-2

Section 3

••
••

••
••

••
••

••
••

••
••

••

3. BASIC OPERATIONS OF THE ORACLE

A. S. Householder

The ORACLE may be thought of as a connected system of binary elements controlled by

a clock. The toggle or flip-flop is intrinsically binary, since at any moment it sends a

signal over one, but not both, of two outputs. The magnitude of the s has no logica

significance. It may be said therefore that at any moment the toggle exhibits one of two

pass ible states according to which output carries the signal. The toggle retains its

state unti I caused to reverse by an appropriate signa I. Such signals may come from other

toggles, from clock pulses, or from combinations of both.

Gates and inverters are devices for combining and reversing signals. Thus an or gate

emits a signal when "and only when it receives a signal on at least one of its inputs; an

and gate emits a signal when and only when it receives a signal on both (or all) its inputs;

an inverter emits a signal when and only when it receives none.

On each cathode-ray tube is an array of 1024 locations upon wh ich a recording can be

made and from which an existing recording can be read. Only two types of recordings are

made or recogn ized. Hence, although the cathode-ray tube is not intrins ically binary in

its operation, it is nevertheless utilized as a set of 1024 binary elements. Therefore, it

may be said that each of the 1024 locations on a given cathode-ray tube is capable of

assum ing either of two poss ible states; thus a phraseology that appl ies equa Ily to toggles

and to locations on a cathode-ray tube is adopted. Likewise, a toggle, or a location, will

be ca lied s imply an element.

Either of the pos sible states of an element may be arbitrarily" selected; the state se

lected may be designated by the symbol "0" and the other, by the symbol "1". In this

sense the element always represents either 0 or 1.

The locations or elements on a cathode-ray tube are arranged into a square array of 32

rows numbered from 0 through 31 and 32 columns numbered in the same way, and there are

40 tubes. (Actually, there are 80 tubes, besides some spares; but at the present time, for

checking purposes, these are used as two sets of 40 and each duplicates the other.) The

tubes are numbered from 0 through 39. Consider the location in the ith row and jth column

of each of the 40 tubes. Let ~ des ignate the state of the element on tube 0, a1 that on

tube 1, ••• , ~9 that on tube 39. These 40 elements, occupying corresponding positions

on the 40 tubes, const itute a memory cell whose state is des ignated by the 40 binary

digits (ao' a l , ••• I ~9). Such a set of 40 binary digits is called a word. There are

therefore exactly 240 possible words; each word designates a possible state of a memory

cell, and the state of any memory cell represents some word.

INTERPRETATIONS OF A WORD

Ordinarily, a word has either an operational inferpretation or a numerical interpretation.

The numerical interpretation of the word (ao' ali ••• , ~9) is

(3.1) a -aD + a 12- 1 + ••• + ~92':'39

3.1

3.2

The arithmetic operations of the machine are designed on the assumption that all numbers

representable by the mach ine are in th is form. A number express ible in the form (3.1) is

called a digital number. Clearly, a digital number is an integral multiple of 2- 39, and it

satisfies the inequalities

(3.2) -1 ~ a ~ 1 - 2- 39

Hence, -1 is digital, but +1 is not. If ao 1, then a < 0; while if ao'= 0, a~ O. Hence

ao is called the sign digit.

The operational interpretation of a word will be discussed pre'sently. Besides the

operational interpretation and the numerical interpretation just defined, other interpre

tations are poss ible, and these may be operational, numerical, logical,or some com

bination thereof. In particular, the 40 digits in a word 'can be grouped into four decades;

a Iso, by proper programm ing, each decade can be operated upon, in some degree, inde

pendent Iy of the others in the same word, and the decades can be interchanged and

permuted. For the moment, however, only the "normal" interpretations first named will

be cons idered.

Anyone of the 1024 elements on the face of a cathode-ray tube can be identified by

giv ing the number i of the row and the number j of the col umn in wh ich it occurs, with the

convention that

i, j 0, 1, ••• , 31

The number i can always be represented in the binary scale by five binary digits, and the

same is true of the number j. If this is done and the five binary digits representing i are

followed by the five binary dig its representing j, these ten binary dig its constitute a decade

(v 0' v l' •• • , v 9)' The number

n = v 029 + v 128 + ••• + v 82 + v 9

is the address of the element. This element, together with the 39 elements with the same

address on the other 39 tubes, constitutes a memory cell, and the address of the memory

cell is also n.

Most of the operations of the machine bring a word from a specified memory cell and do

something with it in the arithmetic organ, or else they take a word from some part of the

arithmetic organ and place it in a specified memory cell. Hence, in general, a command

consists of two parts: a part representing the operation to be performed (what the aritlime

tic organ is to do with it, or from wh ich part of the arithmetic organ it is to come); and an

address tel I ing whence the word is to come or wh ither it is to go. The operations are

considerably less than 210 in number; in fact, they are less than 28. Hence, a decade is

more than adequate for representing all the machine operations. A word, therefore, can be

used to represent two distinct commands: the first two decades represent one command

and the second two the other command. These are called the left-hand' (md the right-hand

commands. Of the two decades used to represent any command, 'the first eight digits of

the first decade represent the operation, and the second decade represents the address.

• • • • • • • .,
• • • • • • • • • • • • • •

•

(When the second bank of 40 tubes is used, as additional memory, rather than as a dupl i

cation of the first bank for checking, it will be necessary to consider the last digit of the

first decade also as part of the address.)

AR ITHME T Ie UN IT

There are five registers, designated AU, AL, QU, QL' and SU, together with P, the

"plusser," and the complement gates in the arithmetic organ. Associated with SU in

physical construction, though not in function, is the register SL' which is not properly a

part of the ar ithmetic organ. F ina lIy, an essentia I part of the control un it is the control

counter, wh ich counts from 0 to 2 10 - 1, inc Ius ive.

When the mach ine goes into operation, the memory cell, whose address is ·then in the

control counter, has its contents sent to SL' Words in SL are interpreted operationally by

the machine, and it carries out first the left-hand command; then, if this was not a transfer

(as descr ibed below), it executes the right-hand command. Meanwh i Ie, the address in the

control counter is increased by 1. Upon completion of the right-hand command, a signa I

is emitted which calls for the next word to be sent to SL •. The next word will be the word

in the memory cell whose address is at th is time in the control counter. In norma I oper

ation, therefore, the words in consecutive memory cells go to SL' one by one; and each

time, the two commands are executed before the next word is called for. It is important to

note that the action wh ich sends a word from one place to another is a copying and not a

transfer. That is, ,the word remains in the source and is copied into the destination.

The sequence just described can be broken by one of the transfer commands. An un

conditional transfer command a Iways causes the control counter to be reset to the address

specified in the address part o{ the command and causes the word contained in the memory
, .

cell having that address to be copied immediately into SL' even when the transfer command

is, itself, a left-hand command. Moreover, the transfer command must specify whether or

not the left-hand command in the new word is to be executed. Thus the command whose

symbol is "Tr, 25" signifies that the machine is to perform the right-hand command in the

memory cell whose address is 25 and. to ignore the left-hand command in the same word.

In addition to the unconditional transfers, there are conditional transfers which require

the mach ine to execute the transfer if and on Iy if a certa in cond ition is satisfied. If the

cond it ion is not sat i sfied, the mach ine proceeds to the next command •. Fina lIy, there are

two stall orders wh ich require the mach ine not to transfer but to proceed with the next

command. These, and certain other operations, arose essentially by accident, but they

are useful in some situations, as wi II be indicated later.

There is no further need to consider SL' since the concern here is primarily with the

operations themselves. Hence, the ind,ices from SU, AL, and Q~ will be omitted, and

these registers will be designated simply by S,' A, and Q. Table 3.1 indicates which

quantities in an arithmetic computation are received or retained by each of these registers.

By pseudo product is meant the sign digit and the next 39 digits of the product or of the

product increased by 2- 40
, according to which type of multiplication has been execLlted.

3.3

3.4

TABLE 3.1. CONTENTS OF REG ISTERS

REGISTER
OPERATION

A Q S

Addition Augend Addend
Sum

Subtract ion Minuend Subtrahend
Differenc~ • ,0'

Division Dividend Pseudo quotient Divisor
Remainder x 239

.Multi pi ication Pseudo product Multiplicand Multiplier .,

Not ind icated in Table 3.1 is the fact that the fina I 39 digits;;wi II be in Q after the mu'lti

pi ication.

There is no expl icit command for the purpose of taking a word into S or bringing one

from S, since S is used as an auxiliary register to hold a number being used as an operator;

the other registers hold the operand and receive the result of the operation.

The registers Aand Q, besides functioning as indicated in Table3.1,also function as

shifting registers in wh ich cyclic permutations of the digits in a word or in a pair of words

can be effected. Sh ifting to the right or left corresponds to divid ing or multip lying by

powers of 2 when the word represents a number. The faci I ity a Iso prov ides for certain

logical transformations. that differ according to the disposition of the digits at the ends.

The transformations will be considered after the arithmetic operations have been described

in detai I.

SUMMATION

Add ition is bas ic to a II operations. It is c lear that the sum of two dig ital numbers is

not necessarily a digital number. Hence, when a program calls for an addition, it is

important to be assured in advance that the sum is digital, which may be very difficult, or

else to have some means for the machine to determine whether the sum is to be digital

and to take appropr iate steps if it is not. ,For th is purpose, the A-reg ister is provided

with an, additional element, placed at the left, which makes 41 instead of the usual 40

elements. The extra element is sometimes called the x-toggle. If a..;, 1 is 'used to desig

nate the state of th is element and if ~, ••• , C1.:39 are' used for the states of the other

elements, the numerical interpretation of the state of the entire register will be

(3.3) 2 2 -1 2-39 a -a _ 1 + ~ + a1 +. •• . + ~ 9

A number a representable in this form clearly satisfies the inequalities

(3.4) -2 ~ a < 2 _ 2 - 39 - = ,

and will be called bidigital. The set (a_l' ~, ••• , a39) of 41 digits will be called an

A-word. If a _ 1 = ao' then

-a_ 12 + ao :-~ ,

•
•

.' •

,and a i,s digital. Hence, a bidigital number is digital if and only if the first,two digits

are al ike.

The algorithm for addition is designed so that the sum of two digital numbers will be

correctly formed in A, whether the s~m is digital or not. But when a nondigital number is

formed in A, that is, one for which a_ 1 /. aO' a special toggle called the HO.F.," or

overflow toggle, is set in the machine. One form of conditional transfer uses as the

condition the state of the O.F. toggle so that it is always possible to introducf;! a con

ditional transfer to test whether a given sum is digital or not.

The Sand Q registers have 40 elements each, while P has 41. Suppose, now, that the

mach ine is executing a command "H, M(b)". Th is requ ires that a certain number b, stored

in the memory cell whose address isM(b), is to be added to the number a (po~sibly bi

d iaitaD in A and the result c is to replace a in A. If

(3.5)
while

(3.6)

b -{3o + {3 12 - 1 +

c -y _ 12 + Yo + y 12 - 1

the algorithm performed by P is the following:

~9 + {339

(3.7)

~8 + {338 + yi8

ao + {3o + Y~

a_ 1 +{3o + Y~l

+

+ {3 2- 39
39

+ Y392- 39

Y3 9 + 2Y;8

Y38 + 2yi7

Yo + 2y~ 1,

Y -1 + 2Y~2

"

The digits Y' are the "carries" digits and do not appear in the final result. Each digit,

a, (3,y,and y', is, of course, a binary digit with a value 0 or 1. It will now be shown

that, as stated above, c is the true sum'of a and b when a is digital whether c is digital

or not. Indeed~ it will be shown further that if c is digital it is the tru~ sum whether a is

digital or not, and still further, that although a and c are both nondigital the result can

sti 1/ be interpreted.

To show' this, multiply the first equation through by 2- 39,' the next by 2-38, ••• ,the

next to the last by 2°, the last by -2, and sum the results. Th is gives

a + b = c + 4(y ~ 1 - y: 2)

Hence if a + band c are not equal, they can differ only by ±4. It is supposed, first, that

a is digital, without restriction on c (it is necessarily bidigital I); second, that c is digital

~ithout restriction on ai and third, that neither a nor c is digital. If a is digital; then

(s ince b is certainly digital),

-1 ~ a <
-1 ~ b < 1

-2 < -c ~ 2

from which,

-4 < a +, b - c < 4, •

3 • .5

3.6

Both inequalities are proper since, in the inequalities being combined, at least one proper

inequa I ity occurs on the left and at least one occurs on the right. Since a + band c must

differ by exactly 4 if Jhey are not equal, it follows that they are equal.

If cis digital but a not necessari Iy so, the conclusion' again follows, as can be eas i Iy

verified. Now, suppose that neither a nor c is digital. Certainly, then, lal > Ibl, and

hence sgn (a + b) == sgn a. Hence, even in th is case, if sgn c = sgn a, then c a + h. In

fact, if sgn a sgn c = -1, then

-2 ~ a < -1

-1 ~ b <

< -c ~ 2
and therefore

-2 < a + b - c < 2

so that a + b = c. A similar argument applies to the case sgn a sgn c = 1. Only if a and

c are both nondigital and sgn c I=. sgn a will a + b ¢ c. In that event, it is readily verified

that

(3.8) a + b c + 4 sgn a c - 4 sgn c •

To summarize, if

(3.9) (y -1 - (U_ 1 - Clo) (Y-l - u_ 1) 0

then a + b = c, and otherwise (3.8) holds.

In normal operation, nondigital numbers are to be avoidedi whenever there is doubt about

the digital character of any arithmetic result that is to appear in A, an overflow test should

be introduced and a remedial routine provided. ' Nevertheless, cases may arise for which

the full flexibility can be utilized.

Th~re are, altogether, eight summation operations, and the above discuss ion relates to

the operation "H, M(b)", wh ich calls for the addition of a number b, stored at address

M(b), to the number a presently contained 1n A. If it is des ired merely to have b copied

into A, the command should be "c, • Th is, ,first, causes A to be c'leared, and the

operation thereafter proceeds as an ordinary addition in wh ich a O.

For subtractions, the plusser is provided with a set of complement gates. On a command

"C- , M(b)" which first clears A, and on a command "H- , M(b)" which does not,' P

receives through 5, not the number b, but the number

'b' f3' f3 '2- 1
,- 0 +, 1 +. • • + f3' 2- 39

39

where each f3; = 1 - f3 i • The replacement of each f3 i by its compleme'nt f3; is effected by

the complement gates. In addition to this replacement, 2- 39 is added. It is readily shown

that b' + 2-39 = -b. Hence, in either case, P receives -b to be added to the contents of

A, with the result to be copied into A. In the analysis carried out above for addition,

b can be replaced by -b and the same conclusions will be reached as to the conditions on

the validity, of the algorithm for subtraction. Note that the command "C- , M{b)" will

cause the O.F. toggle to be set when and only when b = -1. The bidigital number which

goes to A will then, asa result, be -b = 1, but it is not digital.

•

•

The other four summation commands provide for the additio~ or the subtraction of Ibl.
The selection of b or of b' + 2- 39 is made at the complement gates accordi.ng to the sign

of b and the operation (addition or subtraction) to be performed. The command "C-m,

M(b)" wi II never set the O.F. toggle; the ,command "em, M(b}" will set it when and only

when b -1.

SHIFTS

Before considering multiplication and division, it is necessary to discuss the arithmetic

sh ifts. Note first that if a is given by (3.3), then

22 2 ' 2- 1 2- 39 a -a _ 1 + a _ 1 + ~ + a1 +. •• + ~ 9

-a_ 123 + a_ 122 + a_ 12 + ao + 2-1 a 1 +. •• + 92- 39

It follows that

2-1 2 2- 1 2- 40 a = -a _ 1 + a _ 1 + aO +. •• + ~ 9

The command uR, 1" replaces the number a in A by the number

(3.10) R(a) -a _ 12 + a _ 1 + a02 - 1 + + ~82-39

a2- 1 - 92- 40 = (a/2)*

Thus (a/2)*, the pseudo product of a by 2- 1, is obtained by leaving the initial element

A_l of A fixed, while each remaining element Ai assumes the initial state of A i _ 1• Let

E 2- 40

and call this the unit round-off error. Then

(3.11) o ~ a2:"' 1 - (a/2)* ~ E •

More generally, if 0 < P < 40, the command fiR, p" replaces the number a in A by

(3.12) RP(a) -a_ 12 + +

a2- P - E(a
40

_
p

(a/2 P)*

2- p+1 + a 2- P +
1 0

+ ••• + a39 2
- P+l)

• •• + a... 2- 39
-39-p

and, regarded as a pseudo ' ication, the error satisfies

(3.13) o ~ a2- P - (a/2p)* ~ 2(1 - 2- P) E < 2E

The relations (3.13) are val id even when p ~ 40, since R40{a) has the val ueO for a ~ 0,

and _2- 39 for a < O.

The shift counter has six binary places and, hence, runs from 0 to 2 6 - 1, inclusive.

The command "R, p", when p ~64, is executed as uR, p''', where 0 ~ p' ~ 63, p' p

(mod 64). Normally, a shift of 40 or more places would not be ordered in A alone, although,

if the number p is computed by the routine, the shift' might turn out to be 40 or greater.

The command uR, 0" leaves A as it was and, in that sense, is a stall order., However,

the machine does go through a sequence of operations. The contents of AL are copJed

into A U and then recopied from A U into AL • It could happen that the number a inA was

3.7

3.8

nondigita I but that the O.F. toggle had been cleared by a .transfer command. If so, the

command uR, 0" would reset the O.F. toggle.

The commands "R, p" cause the A register to shift but leave the Q register fixed. The

commands "Rq, p", on the other hand, sh ift the A and Q registers together as a sing Ie·

register. This is useful for performing multiple precision arithmetic. Also the command

"Rq, 40" is the only single command available for taking a number from A to Q without

going through the memory.·

It is to be noted that (a/2 P)* is never less than Hence, a bias occurs wh ich

could be significant. It would be desirable to remove the bias by adding 2-40 to the

quotient before dropping digits, but th is is difficult and expensive in terms of the equ ip

menta By forcing the final digit in the result to have the val'ue 1, the bias is removed,

althouah the magnitude of the maximum error is not reduced. Thus

(3.14) Rr{a) 2 2-1 2-38 2- 39
-u _ 1 + u _ 1 + ~ +. •• + <1..:3 7 +

a2- 1 + 2E(l - <1..:38 - u392- 1)

(a/2)*
r

More generally,

(3.15) RrP(a} a2- P + 2E(1 - ~9-p - Ct4o _ p2- 1 - ." - u 392- P)

(a/2 P)*
r

Hence the deviation of the result from true division satisfies

(3,16) -2E ~ a2- P - (a/2 P)\ ~ 2{1 - 2- P) E < 2E •

These relations hold trivially when p = 0, although actually,

(a/2o)* = (a/2o)* = a
r

and there is no difference between the commands "Rr, 0" and uR, 0".

A command "Rqr, p" is perhaps of no interest, but the circuitry needed for the shifts

a Iready discussed makes the operation ava i lable. The operation proceeds by performing

a sequence of p single shifts; each time the shifted result enters ALI the final digit in

AL takes the value 1 so that l's appear in the first p -1 positions in Q, as well as in the

last pos ition in A.

The command "Ro, p" is used for logical, rather than arithmetic, purposes. When this

command occurs, 1 is replaced by 0, and the shift proceeds thereaffer as though a were

positive. Hence

RoP(a) = RP(a + 2u_ 1) ,

In particular, Roo(a} = a + 2u-:- 1', The command "Roq, p" shifts A and Q together as a

single register. Like Rrq, the shifts Roq and Rorq are available, but perhaps not useful.

If 2Pa is bidigital, the command ilL, p" replaces a by 2Pa, in A., The O.F, toggle will

be set if and only if 2Pa is nondigital. If 2Pa is not even bidigital, the result of the . \

operation has no simple arithmetic interpretation,'

•

•

The commahd II lq, p" has the same effect on A as does "L,' p", but, in add ition, the

Q register is shifted and Ao feeds to Q39' Note that it is Ao and not A_l which feeds to

Q39' This is true for all left shifts involvingQ. The command "lc, p" clears Q at the

outset and is otherwise identical with ilL, p"; "lcq, p" clears Q at the outset and is

otherwise identical with "lq, p". The command "ly, p" differs from "l, p" in that

the setting of Qo is transmitted to A39 at each shift; "lqy, p"differs from "lq, p"inthe

same way; and "lcqy, p" clears Q at the 'outset and thereafter proceeds as does "lqy, p" ~

It is important to note carefully that on sh ifts involving Q, A always feeds· into Q from

Ao'
MUL TIPLICATION

In the multipl ication process, the command "M, M(a)" causes the number a in memory

cell M(a) to be copied into S, where it serves as the mu It ipl icand, wh He the number b

held by Q serves as mu Itipl ier. The command presupposes, therefore, that the mu Itipl ier

b has, by specific command "Q, M(b)" or as a result of a shift, found its way into Q.

The first step performed by the machine as a result of the multiplication command is the

foll,owing: The A reg ister is cleared; the contents of P are gated into A if Q 39 ."" 1, but

not if Q39 "" 0; and the A and Q registers are shifted one place, as in the command

"Rq, 1". Observe that P has the sum of the number in S (wh i ch was a) and the number

in A' (which was 0). If this is thought of as extending the~ A register on the right by

adjoining Qo' it can be said that the number 2-1fJ39a is now to ~ found in this register

(A, Qo)' Meanwhile, Q39 loses (339 and receives fJ 38• The next 38 steps in the multi

plication are identical with the first step, except that A is not cleared. That is to say,

after the second step, the further extended register (A, Q 0' Q 1) contains th·e number

(2- 1fJ 38 + 2- 2fJ 39)a, while Q 39 loses fJ 38 and receives fJ370 After 39 steps, the register

(A, Qo,Q l' • • • , Q38) contains the number

(2- 1fJ 1 + 2- 2fJ 2 + ••• +2- 39fJ 39)a (b + fJa)'a

The final step is to subtract fJoa without shifting. Th is leaves the complete product in

the extended register consisting of A and elements Qa' • • • , Q38' while Q39 retains the

sign digit fJo of the multipl ier. The most significant digits of the product are in A, and

this number will be designated (ab)*. Clearly,

(3.17) o ;;;; ab - (ab)* < 2E

Since the mu Itipl ier b must be in Q at the start and the mu Iti'pl icand a goes directly from

the memory to S, both are necessarily digital. If a "" b "" -1, then (ab)* "" ab "" 1, the result

is nondigital, and the O.F. toggle will be set on the last step. Otherwise, l(ab)*1 < 1 and

the pseudo product is digital. On each of the first 39 steps when a new partial sum is

for~ed, the sum goes from P to A U and then down right to A L• The resl,Jlt in AL is always

the product of a digital number, a, by a positive digital number and is therefore digital.

Hence the O.F. toggle cannot be set on any of these steps. On the fina I step, it can be

set only if a == b == -1, since otherwise the final result is digital. Hence the O.F. toggle

will be set bya multiplication only in the one special case that gives a nondigital product.

3.9

3.10

Inasmuch as the pseudo product never exceeds the true product, a bias can be intro

duced. With the command "Mr, M(a)", A is cleared, and Al is given the setting 1. There

after the mu Itipl ication proceeds as before. Th is has the effect of adding 2-1' at the

start, an'd after 39 shifts this 2- 1 becomes 2- 40 == E. The quantity which now finally

appears in A is denoted by (ab)\' and it sati sfies

(3.18) -E ~ ab - < E

Hence the error can be of either sign and cannot exceed E in magnitude.

Even with this type of multiplication there can be no spurious overflow indication, but

thi s assertion requires separate proof. The most unfavorable case would be that in wh ich

a b = 1 - 2- 39• But

(1 - 2- 39)2 + 2- 40 1 - 2- 38 + 2- 40 + 2- 78 < 1

and

[(1 - 2- 39) (1 - 2- 39)]* 1 - 2- 38 < 1
r

Hence there is no overflow on the 39th step and none on the last. 'But the partial sums

are positive and monotonically increasing. Consequently, there can be no overflow on

any intermediate step.

DIVISION

Multipl ication proceeds by a series of additions and right sh ifts, and divi s ion proceeds

by a series of subtractions and left shifts. On the command liD, M(b)", the number b from

memory cell M(b) is sent to S, where it acts as divisor, wh ile the number a in A is the

dividend. Unfortunately, in division, the O.F. toggle can receive a spurious setting even

when the. division is legitimate. Hence if there is doubt about the possibility of carrying

out a legitimate division, the test must be made in advance, and whenever the O.F. toggle

is to be inspected, possible spurious settings must be considered.

Suppose, fi~st, that Ibl > lai. The general procedure is to form consecutive digits of

the quotient in Q39' beginning with the sign digit Yo' and shift left the quotient digits

and the current remainder. After 39 shifts, the pseudo quotient will be in Q and the

remainder, multiplied by 2 39, will be in A. On the left shift, digits are shifted from Q into

A if the command is "Dq,M(a)"i otherwise, they are not.

If sgn (ab) == 1, that is, if a and b have the same sign, then Yo = 0, and therefore Q 39 is

set to 0. Both registers A and Q are now sh ifted left. The complement gates are set so

that P receives -b. Thereafter P contains a trial. remainder. If pO = SO, that is, if the

sign of the trial remainder agrees with the sign of b, then this is accepted into A, Q 39 is

set to 1, and the registers shift. But if pO rtSO, Q 39 is set to 0, and the shift is performed

with the previous remainder. Hence at every stage the current, remainder has the same

sign as b. The process of shifting the remainders to the left is equivalent to the paper

and-pencil process of shifting the divisor to the right for successive subtractions. At

the fina I step, 39 sh ifts have been performed, Yo has passed fr<?m Q39 to Qo' and A is left

with 239 times the remainder.

• • • • • • ." • • • • • • • • '.
• • • • • ••

•

If sgn (ab) = -1, that is, if a and b haveoppos ite signs, then Yo =1, and Q o is set to 1.

Moreover, a + b, contained in P, is admitted into A. Since, by the initial assumption

Ibl > lal, it follows that sgn (a + b) = sgn b. Division now proceeds as before.

Symbolically, the algorithm can be described as follows:

r 1 = a + by 0' YO = (ao - f3 0)
2

For i = 1, 2, • • • , 39, form

2it i +1 2 ir, - b
1

Then for i = 1, 2, ••• , 38,

ri +1 t i+1' Yi+1 when sgn li+1 sgn b

r i+ 1 r, Yi+l 0
1

when sgn li+1 /:. sgn b

Because 0 is treated as a positive number, the cases for b > 0 and for b <0 differ

sl ightly. In the former case, it can be shown inductively that

(3.19) o ~ 2i r i +1 < b

In fact, f3 0 = O,and therefore Yo = aO' If a = a O = Yo' then by hypothesis b> il ~rl ~ 0;

if 1 = aO = Yo' then a < 0, and therefore b > a + b = '1 > O. Thus the statement is verified

for i = O. Suppose that 0 < 2i-lr, < b. Then 2 ir, < 2b, or 2 ir, - b < b. Hence'2 it, +1 < b. = 1 l' 1 1

Then, if sgn ti+'l = sgn b, it follows that r i +1 = li+1 ~ 0, and the conclusion follows. If

not, thenr '+1 =r, ~ 0, and
1 1 - '

o > 2i
t i +1

2ir, - b
1

2iri +1 - b
or

b > 2ir i +1

Iii either case, (3.1,9) is verified.

If b <0, a similar i,nduction shows that

(3.20), b ~ 2
i
'i+l < 0 •

Although it was assumed for the above argument that Ibl>lal, the steps can be retraced

and the same conclusion reached when a = -Ibl < 0, though not when a = Ibl.
If

(;' b)* ' 2 -l' '2 - 3 9 ,a = c, = -yo + Y 1 +. •• + Y 39

it is clear from the way in which the digitalized quotient was formed that

r 40 = a - cb •

If b > 0, it fo lIows from (3.19) that

o ~ a - cb < 2- 39b •

Hence

(3.21) o ~ alb '- (alb)* < 2E

and if b < O,it follows from (3.20), likewise, that '

(3.22) 0 < alb - (alb)* :s; 2E

It is to be noted that if alb happens to be digital (that is, expressible exactly in 39 binary

digits), pseudo division will yield strictly (alb)* = alb when b > 0, but (alb)* = alb;... 2- 39

when b < O.

>,

3.11

3.12

The command "Dr, M(b)", or "Dqr, M(b)", yields a round-off division which eliminates

the bias but does not r~duce the I im its of error. As with the round-off right sh ift, this

gives a pseudo quotient (alb)\ = c for. which Y39 == 1. Hence for b > 0,

(3.23) -2E ~ alb - (alb)\ < 2E,

and for b < 0,

(3.24) . -2E < alb - (alb)* < 2E
r ==

Table 3.2 I ists the complete set of operations of the machine, together with the mnemonic

symbol and the machine code for each, and gives an indication of the sign ificance of the

addres s digits. Dnly certa in nonarithmetic operat ions remain to be di scussed.

TRANSFER OPERATIONS

Among the tran sfer commands, the commands "NT r, ..;." and "NT {, -" instruct the

machine not to transfer to the right or left half of the cell whose address is given. Hence

the address is irrelevant. However, such commands clear the D.F. toggle and are there

fore not pure stalls. The commands "Tyr, m" and "Ty{, m" are conditional transfers

that require a transfer if the D.F. toggle is set, while "Tnr, m" and "Tn{, m" require

the transfer if it is not set. The commands "T +r, m" and "T -t{, m" require transfer

when A_l == 0, that is, when the number in A is ~O; "T -r, m" and liT -{, m" require

transfer when A_l = 1, that is, when the number in A is <0. When the D.F. toggle is set·,

it is cleared only by a command of this group, but anyone of these commands will clear

the togg Ie, whether or not a transfer actua Ily takes place.

SUBSTITUTIONS

While entry to A from the' memory is effected only indirectly through P by mean s of a

summation command" Q is entered directly at the command "Q, M(d)", wh ich causes the

number d in the memory cell whose address is M(d) to be copied into Q. This is one of a

total of 33 substitution operations. In the table, the dash indicates that on Iy the first

sexadecimal digit of the machine code is relevant. Each of the other 32 substitutions

consists of copying the digits of any decade or combination of decades from A or any

decade or combination from Q into a specified memory cell. The possible combinations

inc lude the nu II combination, and th is is another sta II operation. It is, in fact, the on Iy

true stall, since the nu II transfer, "NT r, _If or "NT {, -", wi II clear the D.F. toggle, and

a shift of zero places ~ay set the D.F. toggle.

The mnemonic symbol for a substitution from A consists of four characters corresponding

to the four decades, each character being an "d' if the decade is to be copied and a

:'0" if it is not. For substitutions from Q, a is replaced by q.

INPUT-OUTPUT COMMANDS

Thus far, no mention has been made of terminal equipment. This is of two kinds: a

punched paper tape for input and output and magnetic tape for an auxiliary memory. The

paper tape has rows of five positions across the tape, each position being punched for a

"1" and not punched for a "0". Four of the five holes are used to represent a single

•

•

sexadecimal digit and the fifth is punched to represent a space. A sexadecimal digit,

representing four binary digits, is called a character. Thus each row across the tape

represents, either a character or a sRace. On reading from tape to' the' machin_~, the

characters are read from the tape in 'sequence and enter Q at the right end. As the four

binary digits enter Q, the register is shi'fted left. The:.end of a word on the tape'is

marked ,by a space, and when a space occurs, the word then' in Q is copied ,into the fast

memory. If the command is "Ls, m", the word goes to the memory cell whose address is

m, and when this operation is completed, the mach ine is ready for its next command.

However, the address m is required in the control counter. Hence, ordinarily,-the command

"Ls, m" must be a left-hand command, and the right-hand command must be a transfer of

control •. Otherwise, when the machine isreody to bring the next pair of commands to SL'

it will bring in the word in m+ 1, since that is the address in the control counter. Similar

remarks apply in allthe tape orders that use the control counter.

The command "Ld, m" loads a ~equ~nce of wor,ds from the paper tape into the machine.

In executing the command the address, m, goes to the control counter, and the machine

loads' into, Q, in sequence, the characters as they appear on the tape and contin ues to

load arid shift until a, single space occurs. At this point, the contents of Q are sent to

memory cell m, the control counter steps up one, and the operation repeats. Loading

stops when a double $pace appears. Aga in the control counter is used, and wi II be set

to m+n aftern words have been loaded into the machine. Hence the word in m+n will go

toSLnext, unless the load order was on the left with a transfer command on the right.

If it is desired to punch out only q sing,le word, the word should be placed in Q and the

command CI Pq, -" given. The dash .si~n ifies that the address is not used i~the ex*!cution

of the command. Hence the control counter i~ not affected. For punching out a series ofn

words located sequenti,ally in the memory,th'e'fjrst word being at m,the command "P, m".is

given. The punching must be stopped manually ,at the console at the conc Ius ion ofn words.

Th~ ORACLE is to have four magnetic tape drives for the auxi I iary memory., Each tape

can store an essentially unlimited amount of information arranged in blocks of ,27/ words

per block, where].I ::= 0,1, 2, • • •• The value of vis fix~d for each tape throughout a

given computation and is set by a hand switch at the outset. Reading 'from a tape or

writing on a tape is done only in one direction, the "forward" direction, and words go

into or come from the .fast memory in sequtmce, an integral number of blocks at a time.

Searching, however, can go in either the forward or the backward direction, again over an

integral number of blocks. If it is desired to read a particular block of info'rmation from a

given tape and then to use that space for writing out information from the 'mach ine, the

writing command must be preceded by a command to search back one block so that the

read-write head can be brought 'to the start of the block. For both searching and for

reading and writing, if n is the number of blo,cks, Q must have the number 2- 39(n-l) at

the time the command is given (note that the number is n ..,.. 1 and not n).

3.13

3.14

Reading and writing require the use of the control counter to locate ·the destination or

the source of the information in the fast memory. As with paper tape, so .it is with l11ag

netic tape - the words go through Q., and the machine can do no computation while readi.ng

or writing is in progress. Searching, on the other hand, requires no reference to the

memory and no use of Q after the search begins. Hence the control counter is not affected,

and the machine can continue to operate internally wh i Ie the search proceeds. The

mach ine wi II continue whi Ie search is in progress un less a read or write is called for

before the search is completed. In this event, the machine idles until the search is at on

end, after which the reading or writing will take place.

It is not poss ible to read or write with one tope whi Ie searching on another or even to

search simultaneously on two tapes. Note that in a II cases the identification of the

tape is on essential port of the symbol for a tape command.

BREAKPOINT STOPS'

It has already been mentioned that on Iy eight digits of a decade are uti I ized for desi g

nating the operotion and that the lost digit wi II become a part of the address when the

memory is. expan~ed to 2048 words. The remaining digit is used for a breakpoint stop. In

checking out a routine, it is sometimes convenient to have the machine stopatcertaili

critical points in the computation so that the contents of the registers can be examined,

whereas such stops cou Id serve no purpose ofter the routine is well tested. Consequently;

if the manua I switch that is provided on the machine is set to "breakpoint stop," the

machine' will stop before executing any order for which' toggle number 8 (for a left-hand

order) or 28 (for a ri ght-hand order) has the state 1, but if the switch is not--set for break

point stop, this toggle is ignored. For example, the command to copy the number from Q

into the memory cell whose address is 2B9, in the sexadecimal notation, would appear in

machine code as "7F 2B9". However, if the execution of this command is to be interrupted

by a breakpo int stop, the command should be given as "7F AB9". If the second memory

bank were in use and the memory cell located there, the command would appear as

"7F 6B9" I without breakpoint, and "7F EB9" with breakpoint.

• .-..

. TABLE 3.2. ORACLE O.PERAT1ONS

SYMBOL CODE
RESULT

(Illustrated for p = 2)

SHIFTS A_l Ao Al A2 ••• A37 ~38 A39 Qo Q , Q 2 Q3 • • • Q38 Q 39

Ro p 10 pt 0 0 0 ~ • • • ~5 a36 a37 f3 0 f3 , f3 2 f3 3 • • • {338 f3 39

Ror p 11 pt 0 0 0 , • • • a35 ~ 6 1 f3 0 f3 1 f3 2 f3 3 • • • f3 3 8 f3 3 9
..

L p 12 p a 1 ~ ~ a4 •• • a39 0 0 f3 0 f3 , f3 2 f3 3 • • • f3 38 f3 39

Ly p 13 p a1 ~ ~ a4 • • • a39 f3 0 f3 0 f3 0 f3 1 f3 2 f3 3 • • ·f338 f3 39

R p 14 p a_ 1 a_ 1 a_ 1 ao • • • 15 16 17 f3 0 f3 1 f3 2 f3 3 • • • f3 3 af3 39

Rr p 15 p a_ 1 a_ 1 a_ 1 , • • • 15 16 1 f3 0 f3 , f3 2 f3 3 • • • f3 38 f3 39

Le p 16 p a , ~ 1 a4 • • • 19 0 0 0 0 o 0 ••• 0 0

Ley p 17 p a, ~ a3 a4 • • .. a39 0 0 0 0 o 0 •• ~ 0 0

Roq p 18 pt 0 0 0 ao • • • .15 16 17 ~8 19f30 f3 1 • • • f3 36 f3 37

Roqr p 19 pt 0 0 0 00 • • • ~5 16 1 1 . ~9 f3 0 f3 1 • • ·f3 36 f3 37

Lq p 1A p a1 a2 1 a4 • • • ~9 0 0 f3 2 f3 3 f3 4 j3 5 • • • ao a1 -
Lqy p 1B p a 1 ~ ~ a4 • • • ~ 9 f30 f3 , f3 2 f3 3 f3 4 f3 s • • • ao a1

Rq p lC p a_ 1 a_ 1 a_ 1 ao ••• a3S a36 17 a38 ~9 f3 0"f3 1 • • • f3 36 f337

Rqr p 1D p a_ 1 a_or a_ 1 ao .. • • ~s 16 1 1 19 f3 0 f3 1 • • • f3 36 f3 37"

Leq p " lE p a1 ~ 1 a4 • • • 19 0 . 0 0 0 o 0
• • • ao a1

Leqy p . lF p a , ~ a3 a4 ••• ~9 0 0 0 0 o 0 ••• ao a ,

to -+A _ 1 even when p = O.

3.15

TABLE 3.2 (continued)

SYMBOL CODE RESULT

SUMMATION A Q

H M(d) 20 M(d) c = a + at Fixed

Hm M(d) 21 M{d) c a + Idlt Fixed

H- M(d) 22 M(d) c a - at Fixed

H -m M(d) 23 M(d) c a - Idlt Fixed

C M(d) 24 M(d) d Fixed

Cm M(d) 25 M(d) Idl Fixed

C- M(d) 26 M(d) -d Fixed

C-m M(d) 27 M(d) -Idl Fixed

!Unless (~ ~ a_I) (Yo - Y-l) (a_ 1 - Y-l) ¢ O.

PRODUCT

D M(d} 3A M(d) 239[a/d - (ald)*] (a/d)*

. Dq M(d) 3B M(d) 239 [a'ld - (a'/d)*] (a'/d)*

M M(d) 3C M(d) . bd (on exten ded reg i ster)

Mr M(d) 3D M(d) bd + 2- 40 (on extended regi ster)

Dr M(d) 3E M(d) 239[a/d - (a/d)*]
r

(a/d)*
r

Dqr M(d) 3F M(d) 239(a'!d - (~'/d)\] (a' /d)\

3.16

• • • •• • • • • • • • • • • • • • • • • • •

TABLE 3.2 (continued)

SYMBOL CODE RESULT

TRANSFERS

NTr - 40 - Stoll

Tr m 41 m Transfers control to right of m

NTt - 42 - Stoll

Tt m 43 m Transfers control to left of m

T +r m 48 m Transfers control to right of m when 0

T -r m 49 m Transfers control to right of m when u_ 1 = 1

T+t m 4Am Transfers control to left of m when u_ 1 0

T-t m 4B m Transfers control to left of m when u_ 1

Tnr m 4C m Transfers control to right of m when O.F. clear

Tyr m 4D m Transfers control to right of m when O.F. set

Tnt m 4E m Transfers control to left of m when O.F. clear

Tyt m 4F m Transfers control to left of m when O.F. set

NB: When condition foils, control continues to next command. All the transfer oper
ations, including NT, clear O.F. toggle.

3.17

TABL E 3.2 (continued)

SYMBOL CODE RESULT

SUBSTITUTIONS

0000 - 50 - Stall

OOOa M(d) 51 M(d) Replaces 030 °39 by a30 ~9

0000 M(d) 52 M(d) Replaces 020 °29 by ~O a 29

OOaa M(d) 53 M(d) Replaces °20 °39 by a20 ~9

(Jf)JJ.£J. M (d) SF M(d) Replaces 00 . . . °39 by ao . . . ~9
0000- 70 - Stall

OOOq M(d) 71 M(d) Replaces °30 °39 ' by f3 30 f3 39

OOqO M(d) 72 M(d) Replaces °20 °29 by f3 20 f3 29

OOqq M(d) 73 M(d) Replaces °20 °39 by f3 20 f3 39

qqqq M(d) 7F M(d) Replaces °0 . . . °39 by f3 0 ... f3 39

Q M(d) 6- M(d) d-+Q

STOP

Stop - 0-- Mach ine idles

3.18

•

T ABL E 3.2 (continued)

\ SYMBOL CODE

\PAPER TAPE

RESULT AND COMMENTS

Punch n words beginning with C(m). * Stop punching ma/nuaM'y at
the console .after n words have been punched.

Pq -\EC - Punch C(Q). After the order P or Pq, Ihe rnlormation yQ is zero.

Ld m F8 m Load to double space, storing the first word in m. * / I

Ls m ,FC m Load to single space; transfers next word on tapeAnto locationm.*

\
MAGNETIC TAP;E Contents of Q must be 2- 39 (n - 1).

MTO m 80 ~ Write or record n blocks from memory onto/fape t/:O, beg inn ing with
.. \ C(m).*

MTl m 81 m \Write or record n blocks 'from memory/onto tape Itl, beginning with
"-(S(m). *

Wri~\Or record n blocks from/menl'ory onlo lape 112, beginning with

C(m)~ ,

Write or \\ord n blocks from memory onto tape #3, beginn ing with

C(m).* • \. ~
Read n blocks~rom Jipe ItO into memory, storing the first word in

m.* r.V .. _
Rea~ n blocklm lape III into memory, storing the first word in

R:~d n blocks Irom\\e #2 into memory, storing the first word in
m.* /

Rea~.rblocks from tape fl?J\into memory, storing the first word in

"';I'
Search forward n blocks on tape !:4). /.. ' ,

Sfl A 1

/

- I Search forward n blocks on tape 1t1.

Sf2 - A2 - Search forward n blocks on tape #2.

Sf3 _;A3 - Search forward n blocks on tape #3.

SbO - BO-

Sbl - 81-

Sb2 - B2-

Sb31. 83-

/

P m E8 m

MT2 m 82 m

MT3 m 83m

TOMm 90 m

T1M m 91 m

T2M m 92 m

T3Mm 93m

Sf 0 - AO-

Search backward n blocks on tape t/:O.

Search backward n blocks on tape Itl.

Search backward n blocks on tape #2.

Search backward n blocks on tape 1t3.

*The control counter is used in th is order. The order must be a left-hand ordef~nless
the next command word appears in the memory cell immediately following the las~ell
affected by the reading or writing. For all the magnetic tape orders, the number of words
per block must be fixed manually by a selector switch. . ~

3.19

••
•.

••
••

 ' .
..

.•
..

..
..

••
.•

•

C>
3:
Q

0 U

Q

c:

Z

c
...:(

E

...c:
V

)
I/)

I-
0

er:e
::E

.c
.

:c
..,

u 3
:

0 -
I

U
.

•••••••••••••••••••••••

t
•
•
•
•
•
•
•
.
•
•
•
•
•
•
•
•
•
•
•
•
•
•

• .' •

4. FLOW CHARTS AND CODING

'J. Moshman

The coding or preparation of a problem involves more than the translation from one

language (that of the numerical procedure by which a particular problem is to be solved)

into another (that of the commands which the computing machine understands and can

execute). In most appl ications, the machine control wi II not follow a I in~ar sequence of

orders but will jump forward and backward and repeat some orders many times, some a few

times. Moreover, in the course of the operation, and' depending on interim results of the

operation, certain orders will be modified or even eliminated. It is thus seen that the

relation' of the numerical procedure ,to the machine code i snot static, in general, but is

highly dyna~ic.A specific coded corifmand represents its initial s'tate and, also, all the

modifications that will subsequently be imposed upon it during the course of the operati'on.

RELATIONSHIP OF A FLOW CHART TO THE FINAL COD.E

Inasmuch as the coded sequence of a problem is dynamic, an attempt should be made

first .to vi suali ze not the initial appearance of the code but its continuing function and its

relationshi p to the development of the desired solution. In essence, thi sis the rai son

d'etre of the flow chart. The flow chart enables t~e coder to grasp the interrelationships

of the entire process and to provide acc,ordingly in the code~ The flow chart'is a visual

representation of the course of the control as the machine moves through successive stages

in solving a problem.

LINEAR SEQUENCES AND INDU.CTION LOOPS

In simple cases, the control moves linearly through the instructions provided; it never

retraces or alters its step. Such a case is termed a linear sequen~e and is, depicted in

the flow chart by a simple oriented line or curve, as below~

t J.
More efficient than a linear sequence, from the point of view of machine utilization, is

an induction loop. An induction loop is som~ sequence of operations that is retraced by

the control of the machine. Induction loops are of two main varieties.

1. One type may repeat the same procedure some fixed number of times, such as in the

evaluation of the same functional expression for a predetermined number of values of the

variable.

2. The other type may repeat the same procedure a variable number of times and permit

the machine to decide, on the basis of a predetermined 'criterion, whether or not to repeat

the opefation again. A typical example is an iterative process that gives successive

approximations to' a function. When convergence to a specified degree has taken place,

the machine control recognizes thisand'does not retrace the steps again.

4. 1

4.2

An induction loop generally has the form depi cted below.

-......-

-
Frequently, a hierarchy of inductive procedur~s, such as the evaluation of the square,

root by successive approximations of a fixed set of variables, is imposed. This is termed

an example of a multiple induction loop .in contradistinction to a simple induction loop
.' '. " .

which is typified in the figure a.bove. Multiple induction loops have forms characterized

by the, forms given below.

-- - -j - ..

" J~

I
...

r I

h. -- -- --.. .. -
DECISION BOX ES

The configurations which illustrate induction loops are obviously incomplete. The points

of entry into and exit from the loop or loops 'should have been indicated. Points of e~try
may be set up by the addition of some I inear path which joins the loop at some point.

Points of exit, however, depend upon some criterion which the machine examines. Thus

at some stage in the loop, the coding should provide for a test of thi s criterion and for a

branching of the path that is dependent on the results of the criterion examination. Such

a point of divergence takes place at a point corresponding in the code to a conditional

transfer of control - the T +, T -, Ty, and Tn orders. On the flow chart, these points are

denoted by a box with one entering p~th and two exit paths. Such a box is termed a

decision box; at this point, the machine decides which path to follow. A decision box may

also be used to bifurcate a linear sequence. Examples of decision boxes in the various

senses are:

OUT OUT.

IN-----...! IN

+

The variable upon which the criterion for branching depends should be placed in the

the deei sion box. The two exiting paths may then be labeled with the' appr~priate

criterion. The paths marked + and - refer to the sign of the number in the A register, ,and

"yes" and uno" refer to the setting of the overflow toggle.

• • • • • • • • • ..'
• • • • • • • • • • • •

•

OPERATION BOXES

Up to this point, the di scuss ion has been primarily concerned with'logical operations of

the .computer. In the course of a ,linear sequence or within an induction loop, certain

arithmetic operations are performed. These procedures are indicated in an operation box

which is distinguished from a decision box by having only one path of entry and one exit.

The operation box contains the mathematical form of the expression being evaluated and

the order of numerical calculation, if this is of concern. 1 Operation boxes may appear in

the flow diagrams given previously in the manner shown below. The detailed operations

have been omitted, as well as the deci sion criteria. Complete examples are discussed at

length in other paragraphs of thi s section.

~

SUBSTITUTION AND ASSERTION BOXES

Inductive loops contain one'or more inductive variables that mayor may not be relevant.

An inductive variable is some index related to the number of times the loop has been
I '

traversed. It is relevant if the criteri~n in the deci sion box for leavirig the loop is a

function of the inductive variable itself, such as will occur if the loop is traversed a fixed

number of times. An irrelevant inductive variable serves no explicit purpose, but it is

used impl icitly to maintain the identity of successive iterations. To indicate the change of

an inductive variable from one value to another, a substitution box is used. A relevant

inductive variable generally requires an operation box to indicate the explicit operation

performed in changing the variable. The operation box is usually unnecessary in an

irrelevant inductive variable. The ~ubstitution box is inserted at some point in the flow

diagram, usually between the deci sion box and the main inductive operation box, which

logically is the point at which the induction may be said to be repeated for the next valu~

of the inductive variable. The substitution box has, like the operation box, one arrow

entering and one leaving, but it will be marked with a Ii symbol to differentiate it from the

operation box.

An assertion box is used to denote that some variable has been given some new notation.

For example, Xi may be the ith approximation to some parameter x. If the criterion in the

deci sion box is such that at the ith iteration the control of the machine wi II leave the loop,

1 That this is not trivial may be seen by examining thenumericQI calculations of
x = ablc when a = 2- 8, b = 2- 33, and c '= 2- 7• If first, a is multiplied by h, the product is
2-4 " which is rounded by the machine to zero. The quotient, then, of 0 divided by 2- 7 is
zero. On the other hand, if first, say, a is divided by c, the quotient is 2- 1, and then the
product of 2- 1 and 2- 33 gives the correct result, 2-34,

4.3

4.4

it will be desired to assert thatx. = x.An assertion box is used to make this statement.
. t .

The assettionbox, like the substitution bo~, is for the purpose oJ logical clarificdtion and

invo.lves nocodi~g. It, too, has one arroW entering and one leaving and is also differenti.

ated from qnoperation box by a IIsymbol. In a typical loop, assertion and operation boxes

appear as below; again. the detai led contents of each box are omitted. The lower box

marked II is the substitution box for the inductive variable. The right hand box is the

assertion box following the exit from the loop.

'-IP

INTERVALS OF CONSTANCY

Up to this point, no reference has been made to the memory or storage locations of the

various constants and variables involved'in a problem. Constants offer no difficulty. They

are originally placed in. some fixed set of memory locations and are not changed in the

course of a problem. Variables, as the term implies, will change, and iti s necessary to

keep track of them; as. few memory locations as possible are used if the program is Jarge.

A distinction is made between free and bound variables. A free variable is one that is so

treated in the formulation of the problem and then assigned a specific value during the

numerical procedure. It is, in essence, a parameter. Constants and free variables are

placed in the fixed storage and are not changed. A bound variable successively assumes

a sequence of values in the course of the numerical solution of a pro~lem. The value of

a bound vari able, or the variable itself, is generally of i~terest only during a portion of

the entire problem. Bound variables are placed inthe variable storage.

In the logical passage through the flow chart, the lines between boxes. may be regarded

as intervals of constan.cy. The contents of all storage locations remain unchanged during

thi s time. Furthermore, if two I ines on the diagram converge ata point, su~h as point P

in the preceding figure, the interval of constancy should be the sam~on both lines of
. ,

ingress as well as the li.ne of egr~ss. An alternative statement is that'itis possible to

denote the .contents of all variable storage positions by the same symbols, whether first

entering or repeating the inductive loop.

STORAGE BOXES

The problem of variable storage assignments is materially reduced by the inclusion of

storage boxes in the flow chart;. A storage box contains the storage or memory assign

ments of bound variables during an interval of constancy. It is a box ,connected to the

interval of constancy by a dashed line, for ready referenc~. It is not coded and does not

logically enter into. the formulation of the problem andi~ th!Js not placed directly in the

••
• • •
•• • • • • • • • • • • • • .' '. • • •

•

line of flow. Storage boxes inserted in the previous flow chart at each interval of con

stancy appear as follows:

o
I
I
I

A

2

2

B

2

4

o
I
I

5

---0

#0
,------------, I

I
6

For future reference, operation and deci sion boxes wi II be given letters and interval of

constancy arabic numerals as above. Storage boxes will refer to a specific interval of

constancy.

REMOTE CONNECTIONS

A remote connection indicates that the logi cal flow of a di agram is interrupted and is to

be resumed at some other point. A fixed remote connection is one wh ich indicates that

the machine control will be sent to only one point. A variable remote connection is one

which indicates that the control may be sent to one of several points. Remote connections

are indicated by circles with Greek letters. If it is a fixed remote connection, one point

of the flow chart will appear as

---~·0
and the corresponding point wi" be

(j;) ~

Variable connections will have a Greek letter at the point of convolution prefixed with a

superscript that denotes the number of possible connecting points, such as

----~~~~ AND ~ ~
corresponding to

~ ~ .®
~ ~ AND

(8;) ~ ~ (Ii;)

respectively, each having an identifying subscript. The remote connection having the letter

4.5

4.6

alpha will be reserved to indicate the beginning of a routine,and the letter omega similarly'

wi II be reserved for the terminal point.

STORAGE TABLE

It is convenient to construct a storage table after the flow chart is completed. The

'storage table is a two-way entry table. Each column refers to an interval of constancy

and each row to a storage location. Each cell contains the variable or constant found in

the given storage location in the speci fied con stancy interval. Free vari abies and COI)

stants need be entered only once, for their locations are fixed throughout the problem.

Bound variables change and it can readi Jy be seen from a storage table whether a memory

location may, at some point,have its contents changed from one, bound variable to another.

STATIC COOING

After the flow chart is completed and checked to verify that it accomplishes the original

purpose, coding can be started. Static coding is the coding of each individual operation

and decision box as a separate entity. Memory locations may be given interim designa

tions, such as M 1, M2, etc., and may be so carried in the storage table at thi s point.

Furthermore, it may turn out that the coding of a specific box requires the temporary

storage of intermediate values. This temporary storage may also be denoted by interim

designations. Usually, the same temporary, or local, storage 'locations areavai lable

anew in the next box to be coded. The static coding is best done by enumerating the

various steps in the linear sequence called for by the operation or decision and designated

by the box letter, a period, and then the sequence of integers, each integer corr'esponding

to a command.

DYNAMIC CODING

The final step is to assemble all the static codes and put them in final form. The

dynamic code will have two commands per line. Final storage assignments are made in

the storage table, where vari able and temporary storage locations are combined, i'f p~ssi

ble. References to points of conditional transfer, corresponding to deci sion boxes, are

completed with the permanent location. After all orders in a routine are determined, storage

locations for constants and variables are generally assigned locations in the memory

following those of the orders. Certain useful constants are frequently placed in the same

storage positions each time. The reason for thi 5 wi II become evi dent from the section on

subroutines.

FINAL FORM

All previous comments were based on the assumption that' the machine orders ar,e in

mnemonic symbols and that the constants and variables are in decimal form. References

to memory locations are always in their sexadecimal form. It is then necessary to change

all orders and constants to thei r sexadecimal version.

In proceeding through a problem, there wi II undoubtedly come to notice various changes,

mostly minor, that wi II increase the efficiency of a code. These may be incorporated in

• • • .' • • • • • • • • • .' • • • ". • • • •

•

the code,as indicated, and the flowchart and storage tables may be amended as necessary.

Efficiency should be measured in terms of speed, conservation of space, and effect of

round-off error.

INPUT AND OUTPUT

No mention has been made of getting a routine into the computer or of the results that

are printed out at the end. These procedures are straightforwl;lrd and ar~ covered else ..

where. Thi s section is concerned with the transition from the mathematical problem to

the machine code for that problem.

Example 1: y

It is assumed that a is a digital number and its square root is desired. In the event

a < 0, it will be desired to stop the machine; if a "'" 0, it is known immediately that y = OJ

if a > 0, then y Va is to be placed in memory location lFl and the control is to be

transferred to the left .. hand order at 2FF. The number a is to be found in memory location

OEA.

The square root of a, if a > 0, will be found by Newton's iterative approximation. The

basic algorithm is that if Yi IS the .ith approximation to va; then the approximation may

be i,mproved at the i + 1 iteration by letting

Yi a

Yi+l = 2+ 2y.
t

(4. 1)

Figure 4.1 is a flow chart that wi II accompl i sh thi s purpose. Many other versions are

possible, but it will be instructive to follow the reasoning behind its construction and

possibly tty to construct an alternative that is more efficient.

A C
10

6

9

I Yt'~t ~ M11

Fig. 4.1. Flow Chart for Y "'"

11

l,

H

TRANSFER
CONTROL TO 2FF

4.7

4.8

It wi II be required that if a > 0 the criterion of convergence i sthat two successive ap·

proximations to the root are equal to 39 binary digits. If Yo' the ini,tial approximation, is

greater, than y'7i;it can be shown that, except for round-off errors, ,each Yi will also be

larger than a and 01 so that Y i + 1 ~ Y i' Hence, if

(4.2) , Yi+l - Yi + 2- 40 > 0 ,

Y i is taken to be y. Substituting (4~ 1) in (4.2) gives

(4.3)

Yi
-2-+

a
y. + 2- 40 > 0 z I

2Yi

a Yi

2Yi -T+ 2-
40

> 0 ,

a
- y. + 2- 39 > 0 1 I

Yi

and (4.3) can serve as the convergence criterion.

In the preparation ofa flow chart involving an inductive loop, it is advi sable to commence'

the' inductive operation. Hence, a start is made with box F. Box E, the decision box

wh i ch ded des whether the criterion for convergence hcisbeen met, may follow. ,Next,

the substitution box between boxes E and F may be inserted to indicate that the irrelevant

inductive variable is increased byone.

I f the convergence criterion is met, the control is transferred to box H arid the 'assertion

is made that the last approximation, Yi' is the desired root. Box, D, which containsth~

operations necessary to enter the loop, is prepared next. In box D, Yo is assumed to be 1

and Y 1 is computed. Then, before entering 'the loop for the general case, 'it is asserted

that i takes on the value 1.

With the entry and the exit of the inductive loop completed, it is now possible to dispose

of the remainder, of the problem. In box A, the ded sion is made as to whether a is nega

tive. The symbol CIa A" means that the number a is brought into the A register.

If a is negative, the control proceeds to box B and stops. If a is non.;,riegative, -a is

brought into the A register in box C. If -a is positive, a must be zero, since all negative,

values have been screened out. If a = 0, it is necessary to set y = Oin box G and to,

proceed immediately to box H which transfers the control to,the prespeciHed position. If

a > 0, the procedure control enters the inductive loop and proceeds to box D which' sets

up the initial approximation.

The only bound variable is Yi' and it is placed in m~mory position M1 for the time being.

The storage table may be constructed as ir. Fig~ 4.2; final memory locations, except for

a and y, are to be fixed later. An arrow indicates that the contents are unchanged but sti II

relevant; a tilde indicates irrelevant information. It is seen, atthi s point, that 1 F 1 i snot

relevant unti I constancy interval 11 and M 1 is irrelevant after constancy interval 9. Hence

nothing is lost by using lF1 as Ml, since the information to be pla~ed there never over

laps in time.

• .,
•

~

• • • • • • • • • • • • ••
• • • • • • • •

MEMORY INTERVAL OF CONSTANCY

LOCATION 1 2 3 4 ' 5 /6 7 8 9 10 11

M1 "" "" "" "" Yl Yi Yi+l Yi "" ""
M2 2- 39 \

/

M3 2- 1 \ ,
OEA a \

/

1Fl "" "" "" "" "" I';'v "" "" "V "V Y

M4 "" "V "V "" "" "" a!Yi "" "V "V ""

Fig. 4.2. Storage Table for Y =.vcz:
At this point, the static coding can be started. The static coding would appear as

follows, a verbal description following each order.

A.l C OEA a -. A

.2 T+ () C.l if a ~ 0 -. C.l

B.l Stop if a < 0 stop

C.l C- OEA -a -+ A

.2 T + () G.l if -a ~ 0 -+ G.l

D.l C OEA a -+ A

.2 R 001 a2- 1

.3 H M3 2- 1 + a2- 1 = Y 1

.4 a.o.aa 1,Fl Yl -+ lFl
, ,

E. 1 C OEA a-+ A

.2 D lFl a + .y i

.3 qqqq M4 a+Yi -.M4

At this point, local storage is needed for the quotient a + Y iO It is pl~ced in M11. and th'e .

storage table is adjusted to show this. It will be there when the interval of constancy 7 is

entered. It would be possible, with an Lqy order, to shift from the Q to the A registers,

but this would take much more time than would :sending the quotient to the memory and

from there to A.

E.4 C M4 a+Yi -+A

.5 H- lF1 a+Yi-Yi

.6 H M2 a+y._y.+2- 39
I I

.7 T+{ 2FF if C(A) ~ 0 -+ 2FF

F .1 H- M2 a+Yi_l -Yi-l

.2 R 001 (a + y. 1 - y. 1)2- 1 z- l-

.3 H lF1 (~)2- 1 y. = a· y. 1 - y. 1 + y. 1
Z l- t- z-

.4 a.o.aa lFl y. -.lFl z.

4.9

4.10

.5'

G.l

H.l

T ()

a.o.a.cx

E.1

1Ft

2FF

.... E,l
y=O ·lFl

Transfer control to 2F F

Before proceeding to the final stages, a few further points are in orde~. The commands

appearing in lines A.2, C.2, and F.S all have parentheses indicating the omission of the

specification as to whether the transfer shou.ld be to the left- or right-hand order. In G.1

it h as been ascertained that the a wh ich is in the A regi ster is zero, so it may be sent

directly to IF 1 as the value of y. If i.s unnecessary to store a zero elsewhere. Order E.7 .. .

could read T + () H.l, but that would be wasteful; a transfer tould be made directly to

2FF, as shown.

The next step is the dynamiC coqing,whiCh, with mnemonic symbols and t.emporary

memory locations, appears as follows:
\

001 C OEA T + r 002

002 Stop C- OEA

003 T + r OOB C OEA

004 R 001 H M3

005 a.o.o..a 1Fl C OEA

006 D 1F1 qqqq M4

007 C M4. H- 1 Fl

008 H M2. T+{ 2FF

009 H- M2· R 001

OOA H 1 Fl a.o.IJ.J:)., 1 Fl

OOB Tr 005 ao.aa 1 Fl

OOC T{ 2FF

Having seen how long the actual program is, the next few storage posi.tions following

OOC may be assigned to store the var,able~nd fixed storage not otherwise specified.

Thus it may be that

ODD M2

DOE M3

OOF == M4

It has been already agreed that M1 should be 1F1. Finally, all mnemonic symbols and

storage locations may be put in sexadecimalform, as follows:

Word Left-Hand Right-Hand

Number . Order Address Order Address

001 24 OEA 48 002

002 . OQ 000 26 OEA

003 48 OOB 24 OEA

004 14. 001 20 DOE

005 SF lF1 24 OEA

006 3A 1Fl 7F OOF

•

•

007 24 OOF 22 1Fl

008 20 ODD 4A 2FF

009 22 ODD 14 001

OOA 20 1Fl SF 1 Fl

OOB 41 005 SF IF1

DOC 43 2FF 00 000

DOD 00 000 00 001 t2- 391
ODE' 40 000 00 000 {2- 11

OOF [00 000 00 000]

Constants 2- 39 and 2- 1 are entered in their sexadecimal form. OOF is temporarily fjUed

in with zeros. The right-hand order at DOC is also i'rrelevant and similarly completed with

zeros.

Example 2: Y j (j = 1, 2, ..• ,n) •

As an example of the coding of a multiple inductive loop with one relevant and one

irrelevant inductive variable, the extraction of the square root of a set of n numbers, a l'

a 2, ••• ,an' is considered. The extraction algorithm remains the same as in Example 1.

It is now assumed that a j is already stored in memory location (OEA + i ~ 1) and that.the

des ired root y, is to be put in memory location 1 F 1 + i - 1; in each case i = 1, 2, ••• I n.
1

The number n is spec ified in advance. If a start is made with j = 1, then when j = n, all

desired roots have been extracted. Alternatively, when either the root of the number in

OEA + n - 1 has been found or memory position lFl + n- 1 has been filled, all roots

have been extracted. Tnus i, OEA + i ~ 1, or 1 F 1 + i -:- 1 may serve CiS the relevant

inductive variable. It turns out that one of the latter two variables is preferable in that

it is unnecessary to separately count the i's and so 1F1 + j - 1 shall arbitrarily be'·used.

A flow chart to accomplish this appears as Fig. 4.3.

The notation used is similar to that of Example 1, except. that Yjk will denote thekth

approximation to Y j = (af. In the event any a j < 0, it wi II be desired to stopthe mach ine

at that point. At the conclusion oLthe problem, the control i.s to, be sent to 2FF~ The

storage boxes are similar to those in the previous example, except that the various ap

proximations to y. are specifically placed in M(y.). The latter symbol ism stands for "the
J . 1

memory location of y .• " The storage table appears in Fig. 4.4. In MS, (lF1 + n - j) will
-' 1

be stored and, as will be rioted later, an M6 will be necessary that is originally zero.

The static coding is reproduced below. Boxes A through G are essentially the same as

those in Example 1. However, the addrelSses of the a j and y j must be changed each time

the outer J~op is traversed. The change of address takes place in box I. The beta circles

are variable remote connections with two entries and one exit •. The gamma circles are a

pair of fixed remote connections.

A.l

.2

. B.l

C

T + ()

Stop

[OEA]

C.1

a. -+ A
1

if a ~ 0 -+ C.l

Stop

4.11

"-,:,

A C

6

F

Jljk (Jj·,:-1 - Jj', k-') +

6-----1 Yik ~ M{Jj') I
E

o· '/
YjI(~Yjk +

1~~;~1 ~ M(Jj') ~-~ I ___ .. ___ - J
+19

T

I k + 1 --?I> k I... 7

MEMORY
LOCATION 0

M2 2-39

M3 2-1

M4 ""
OEA "I
OEA+ 1 a 2

OEA + n - I an

IFI,

lFI + 1 ""

lFl +n 1 .,..

M5 IFl
+ n - I

M6 0

4.12

1

I Yj,k ~ M(Jj) I
J

TRANSFER
CONTROL TO 2FF .

11Fl+j-j~M61
I H 114 1 . + I

-I(IFI + h 1)-(1 FI +nc')I" 1 .. 1 M(~) + I ~
12 M(Jj') + 1 ~. MUj")

Fig. 4.3. Flow Chart for y. = .ya;(j 1, 2, ••• , n).
J]

INTERVAL OF CONSTANCY

I 2 3 4 5 6 7 8 ·9 10

'" "" "" '" '" "" a/Yjk "" '" '"

'" '" '" "-' >'11 Ylk -)'1,k-l Yl

'" '" '" '" Y21 Y2.\, - Y2,k-1 Y2

'" '" '" '" Ynl· Ynk Yn,k-l Yn

-

Fig. 4.4. Storage Table for y, = y;;:; (j = 1, 2, ••• , n).
J J

11 12

'" ""'

- 1

13

'"

'"

14

\

I

'"
\

,
I

\
I

"I.

I

\
I

I

•

•

. C.1

.2
D.1

.2
.3

.4

E.l

.2

.3

.4

.S

.6

.7
F.l

.2

.3

.4

.S
G.l

H.1

.2

.3

.4

.S
I. 1

.2

.3

c-
T + ()

C

R

H

aao.a

C

D

qqqq

C

H
H

T + ()

H-
R

H

a.aaa

T. ()

aada

C

OOOa
C

H-
T + ()

C

H

OOOa

[OEA1

G.l

[OEA]

001

M3

[lFl]

[OEA1

[1 Fl]

M4

M4

[lFl]

M2

H.1

M2

001

[1 F 1]

[1 Fl1

E.l

[lF1]

G.l

M6

M6

MS
J. 1

M6

M2

G.l

-a A
1

if a. ~ 0 G.l
1 -
..... A

2-1 a.
1

a ,2- 1 + 2- 1
1

Y'1 M(y.)
1 .]

a A
1

a j + Y jk

a. + Y'k M4]]

a, + Y'k· A
1 1

a, + Y'k - Y'k
] ..!..]] -39

a. . y 'k - Y 'k + 2 1 1 1

if C(A) ~ 0 H.l

a j + Yj,k-l - Yj,k-l

(..!..)2- 1 a.· Y'k'l -Y'k 1 1 I. - 1. -

Yjk

Y'k M(y.)
]]

..... E.l

y. "" 0 M(y.)
1 1

G.l A

M(y j) on I y extracted M6

1 Fl + j - 1 A

(lFl + j - 1) - (lFl+n-l)

ifC(A);;; 0 J.l

lFl + j ,- 1 A

1 Fl + j - 1 + 1

M(y j + 1) --t M(y j) in G. 1

The next few orders replace all other [1 F 1] addresses on the ri ght in the same manner.

The dynamic code is necessary to see which will appea~ on the right. However, the next

order will be called 1.4.

.4 Lc 014 . shift M(y j) 20 places to I~ft

All I~ft.hand orders are now replaced, as above, with OaDO order. Then

.S

.6

~7

C

H

OOOa

C.1

M2

C.1

and the preceding two comments are again applicable •

• 8, T {, A.l

J.l 2FF.

C.1 A

C.1 + 2- 39

M(a j +1) M(a;) in C.1

..... A.1

.... 2FF'

4.13

• • The dynamic coding, stHI using mnemonic symbols and using the interim storage desig-

nation s and brackets about any vari able address, is as follows: • 001 C [OEA] T + r 002

002 Stop c- [OEA] • 003 T + r OOB C [OEA]

004 R 001 1-1 M3 • 005 a.aaa [lFl] c [OEA]

006 D [lFl] qqqq M4 • 007 C M4 H- [lFl]

008 H M2 T+t OOC

009 H- M2 R 001 • OOA H [1 Fl] a.aa.a [lFl]

OOB Tr 005 a.aa.a [lFl] • OOC C OOB OOOa M6

OOD C M6 H- M5 • " '

OOE T+t, 2FF c M6

OOF H M2 OOOa OOB • 010 OOOa OOA OOOa 007

011 Lc 014 0000 OOA • 012 o aDO 006 o aDO 005

013 ' C 002 H M2

014 OOOa 002 OOOa 003 • 015 OOOa 005 Lc 014

016 0000 001 Tt 001 • The storage assignments can be

017 = M2 • 018 = M3

019 M4 • 01A = M5

01B = M6

One' change was made from ,the static code. line J.l is redundant~ line H.5 might just • as well send the control. to 2FF directly instead of through an additional order.,

The final code, after insertin~ the sexadecimal notation, is as follows: • Word Left-Hand Right-Hand
Number Order Address Order Address • 001 24 [OEA] 48 002

002 00 000 26 [OEA] • 003 ,48 OOB 24 [OEA]

004 14 001 20 018 • 005 SF [lFl] 24 [OEAl

4.14 • •

006 3A [1Fl] 7F 019
007 24 019 22 [1 Fl]
008 20 017 4A DOC
009 22 017 14 001
OOA 20 [1 Fl] 5F [1 Fl]
OOB 41 005 5F [1 Fl]
DOC 24 OOB 51 OlB
000 24 OlB 22 OlA
ODE 4A 2FF 24 01B
OOF 20 017 51 OOB
010 .51 OOA 51 007
011 16 014 54 OOA
012 54 006 54 005
013 24 002 20 017
014 51 002 51 003
015 51 005 16 014
016 54 001 43 001
017 00 000 00 001 {2-3~
018 40 000 00 000 {2- 11
019 [00 000 00 000]
OlA {(1Fl + n - 1)2-391
alB [00 000 '00 000]

Thi s routine takes a total of 27 words. It would be instructive to see what a Item ate

procedure could reduce the total. Some reduction is possible.

/

4.15

..
..

..
..

..
. ,'

 ..
..

..
..

..
 .

USE AND CONSTRUCTION OF SUBROUTINES

M. R. Arnette

,

ORNl
Central Files Number

53·12.2

Section 5

••
••

••
••

••
••

••
••

••
••

••

•

s. USE AND CONSTRUCTION OF SUBROUTINES

M. R • Arnette

INTRODUCTION

With more efficient machines, more time avai lable, and more difficult problems being

attempted, the task of planning and programming problems needs' to be as simple as

possi b'le. it is therefore imp'ortant that the routine of coding be made automatic. The

m~chine, should be allowed to do as much tra~slating and assembling of the program as

i ~ feasible. One proven way to increase the usefulness of the machine and al so to make

coding simpler for the programmer is to u~e rea'dy-made programs for evaluating the more

common functions, such as the square root, sine; cosine, exponential, logarithm, etc.,

wh ich are often needed as subordinate parts of other programs. A routine formed for the

purpos~ .of substitution ,into other rout,ines is called a subroutine. A reasonably complete

library of suchsubrQutines can enormQusly redu~e the ,time and effort spent on coding

a, pr,obtem and ,lessen the probability of coding blunder;s as well, since ,the subroutines,

at least, wi II be free of mistakes •. It is, of course, essential that all the subroutines in

thi s library be writ,ten, machine checked, filed, and cataloged.

ADVANTAGES OF SUBROUTINES

Subroutines have many advantages; their use is basic to any high-speed automatic

computing machine. Although cheap in comparison with machine time, coding time is

al so scarce. Since the purpose of a high-speed computing machine is to reduce human

effort, the time of the programmer' should have the higher' priority. In an effort to get a

problem into the machine as soon as is feasible, the programmer may have sufficient

reasons for becoming somewhat less efficient concerning the programming of the main

routine if all the subroutines are coded' very carefully for economy in both time and

memory space.

Since inclusion of all possible operations in the machine as bui It-in orders is obviously

out.of the question, there can be little doubt as to the usefulness of subroutines as coded

and checked orders. A subroutine can be thought of as a group of operations especially

prepared to pedorm a specific order. In terms of the storage capacity required, a sub

routine cannot compare wLth--g"bui It-in order, because the orders of the subroutine must

be stored in some group of cells in the memory while it, is in use, although the main

program may use that, same memory space after the subroutine has been used and if it

i snot needed again'. in the problem. However, since a subroutine need be stored only

once, it uses less storage than, if it were written out and stored in full in several different

places in the memory. From the programmer's point of view the subroutine is as easy

to use as a built-in order and is incomparably easier to use than a sequence which must

be written out in full ,each time.

5.1

5.2

As an example, suppose a certai n problem call s for the square roots of five different

numbers at various times. To get the squ.are root of only one number increases the code

by approximately 24 orders, or 12 words. Therefore the problem may become very lengthy

if everything is coded in sequence; 120 orders would be required in order to get the square

root of the five numbers. However, if the square root i s ~sed as a subroutine, the 24

orders which direct the machine to obtain the square root of a number are placed in the

memory only once and can be located in any group of consecutive cell s in the memory.

It is true that two orders, or one word, are required to transfer into the subroutine and

that another extra word is necessary at the beginning of the subroutine; even so, the

five square-root values are now obtained by the use of 34 orders instead of the 120 orders

required when the code is written in sequence.

The probabi I ity of error is much les s when 'a subrouti ne is used. If the programmer is

coding in sequence, he must write the 12 words instructing the machine to take a square

root five times and must punch these same orders five times in making the tape. Each

time this is done, there is a possibility of copying the wrong cell number or punching

the wrong key.' Also, the tape becomes very long, requiring a longer time to get the

program into the machine. Both the ,time of the mathematician or the programmer and

that of the machine are being wasted by such procedures.

By having an extensive library of these subroutines, together with a workable system

by which ·selected ones may be combined to form a program for a complete problem, the

work of writing a code for even a compl icated problem is greatly reduced. A subroutine

can be written to direct the computer to perform any computational chore; once written

and checked, it can be used almost as easi Iy as an equivalent bui It-in order, with a

resu Itant saving in the programmer's time. Subroutines extend the IIbasic," operati9ns

the machine wi II perform. D. G. Hartree states: 1 "It is quite possible for eighty per-cent

of a complete program to be carried out by the use of such library subroutines."

DISADVANTAGES OF SUBROUTINES

Subroutines suffer from disadvantages. In a machine, an addition instruction that deals

only with positive numbers cOl.lld be made to operate faster than one which must handle

numbers irrespective of sign. Simi larly a subroutine that is to cover a great number of·

eventualities may often require more memory space than' one that is coded for a single

specific problem; subroutines are customarily coded to take care of the most general

cases, not specific ones. Also, subroutines should be as ind~pendent of the rest of the

program as possible.

10 • G. Hartree in Foreword to M. V. Wilkes, D. J. Wheeler, and S. Gi II, The Preparation of
Programs for an Electronic Digital Computer, Cambridge, Mass., Addi son-Wesley Press, 1951.

• • .'
• • • • • • • • • • • • • • • • • • •

•

CLASSIFiCATION OF SUBROUTINES

Subroutines ,c(Jn be .c1assified in several ways. Wilkes, Wheeler, and Gill 2 classify.

thel1l.as, either open or closed and furthermore distinguish' between parameters as being

either preset or program.

An open subroutine (Fig. 5.l) is the simpler form; it consists of a sequence of orders

capable of being incorporated as it stands into the main routine, which is that part of

the code that does not contain a s~broutine. When the last order of an open subroutine
• t ' • •

has been executed, the control is sent to the word in the main routine which immediately

follows the sub'rou,tine" and the machine executes the order in this location.

'A clos~d subro";tine (Fig. 5.2) is called into ,use by ~ special group of, orders in the

main routine. It ;is designed so that it returns control to the main routine immediately

following the order that ca,lled it in.

Suppose a ,proble,!, is being pro'grammed and the need for the square root of a number

is noticed. If the problem calls for the square~oot of only one number in the whole

program, it wou Id probably be better to include the' square root as an open subroutine,

that is, write it in as a part of the main program where it is needed. However, if the

problem demands the square root of more than one number, it will save time and space

to use a closed subroutine, which may be placed anywhere in the memory and entered

as many times as required.

An ;nte~pretive subrou;;ne is one in which the information is processed according to

a scheme incorporated in the subroutine. It is simi lar in form to a closed subroutine

but is given. another classification because it has a different purpose. For example,

subroutines for floating point computation, complex number arithmetic, etc., are inM

terpretive subroutines. In each of these subroutines, the subroutine processes (interprets)

the numbers with a special algebra; for example, (x, y) may be interpreted as x .2Y •

2M• V. Wilkes, D. J. Wh~eler, and S. Gill, The Preparation of Programs for an Electronic Digital
Computer, C~ap. 3, Cambridge, Mass., Add ison-Wesley Press, 1951. .

MAIN ROUTINE .. I OPEN SUBROUTINE J MAIN ROUTINE

-~ l -(
Fig. 5.,1. Schematic Diagram of the Insertion of an Open Subroutine in the Routine.

MAIN ROUTINE MAIN ROUTINE CLOSED SUBROUTINE
A v------- ______

r A B

TRANSFER TO
B ORDER AND

~SET UP EXIT I
I -I .. ~

A

Fig. 5.2. Schematic Diagram of the Insertion of a Closed Subroutine in the Routine.

5.3

5.4

A special subroutine may be open or closed and is used for certain special purposes.

Special subroutines are not usually included in the main program. One routine is written

which prints out or punches the contents' of a des ired 'location for the purpose of finding

a programming error after the routine has been performed un~uccessfully. Checki'ng;

printing, conversion, assembly, and error·diagnosis subroutines 'are all classified as

special.

Three sources of trouble which can give rise to incorrect results in the solution of a

problem on a digital computer are (1) errors of a mathematical nature 'in the numerical

method, (2) imperfect operation on the part of some of the computing equipment, and

(3) mistakes in the program which give incorrect 'instructions to the computer. The

mi stakes made by the programmer, that is, mi stakes in the code i,tse If, are the most

difficult to find. The library shou Id contain several types of special subroutines for

finding these errors. One desirable type would be a delayed print-out of a general nature.

It could be automatically called in by the programmer by inserting a" programmed in

struction where a part of the instruction word (this would likely be a packed word3) would

indicate the form of printing desired, etc. Errors may be found 01 so by plac ing break

points at significant ,locations in the code to stop the computation and by inserting

subroutines to print out the contents of pertinent ceil,s. At each of these print-outs the

programmer should have a list of the correct answers. If the answers are' correct'at this

point I the problem continues, but if they eire incorrect the programmer has the correct

numbers', ready to be read in before the routin~ continues •. After the whole probl~m has

been checked' in this way, the programmer is ready to go back to his desk and make the

necessary changes. The errors have been focalized, so that the worry of finding the

mistakes has been decreased. One great advantage of checking routines in the manner

just described is that after the routine is checked it can be run without the print-outs

by merely turning off the breakpoint switch.

Carr and Gilmore4 classify subroutines according to the amount of information that

must be exchanged between 'the main routine and the subroutine. A subroutine that

requires from the main routine information that can be stored in the A and Q registers

alone is called a zero address or automatic subroutine. A subroutine that requires, in

addition to the, A and Q registers, n cells of information is called an n address' subroutine.

CLASSIFICATION OF PARAMETERS

Preset parameters are those that are fixed at the start of a specific main routine and

will be incorporated in the subroutine during the process of input, and are therefore fixed

for the whole of the routine. A program parameter is one which may have a different value

at different points in the main routine. An example of program parameters is in the

3 A packed word has several instructions in one storage location. A routine must exist for
unpacking the word.

4 J. Carr and J. Gilmore, Method of Preparing Subroutines for the Subroutine Library, M.1284,
M.I.T. Digital Computer Laboratory, p. 195.

•

•

, con~ersion subroutine D.2 which reads n coded decimal fractions from tape, conv'erts

them to their binary representation, and stores them in consecutive cell s in the memory

beginning at cell m. 'Here n cali be any decimal number from 1 to 993 or its sexadecimal

equivalent, 001 to 3El. In order to enter this subroutine, the operator puts in the A

regist~r a word of th~ form - [n - 1] - [m] (the dashes representing decades with

irrelevant information) and then sends the control to the first word of the subroutine.

This particular:subroutine is written so that after the n words are converted and stored

in the memory the machine idles. The operator is now free to give almost any order; if

the main program requires, another group of numbers in a different place in the memory,

a word simi lar in form to the one just given is put into the' A register, and the control

is sent again to the beginning of the subroutine. This can be repeated as many times

as requ.ired. When calculations are to be resumed, the control is sent to the cell which

contains the next order in the main routine.

Goldstine and von Neumanns classify parameter changes in, ~ubroutine,s as being either

of the first kind or of the second kind. Changes ,that remain fixed throughout all uses

of the subroutine within one fixed routine or a particular main prc:>gram are changes of the

first kind. These parameters of the subrout ine may be different for ano,ther program, but,

after having been set, they remain fixed for each one~ Changes of the second kind are

,those which vary in the same subroutine. The parameters of a problem, such as x in

Vx subrouHne, wi II usually change within one substitution and are thus examples of

changes of the second kind. However, the address of the first word of the Vx subroutine

is an example of a change of the first kind. The location of the subroutine in the memory

is arbitrary, but for one main program it need be read in only once; so the entry point

remains fixed throughout the particular program. Changes of the first kind can be made

either by the programmer or by using an assembly or preparatory subroutine and allowing

the machine to make the changes. The main routine which uses the subroutine must make

the changes of the second kin'd.
11" •

Some of the conventions practiced in 'writing a code for the ORACLE are as follows:

Symbol Meaning

M(b)

C(1 FC) or C(508)

Memory position of b

,Contents of cell 1 FC or 508

If ~>nly a part of a register or cell i~ :being used, this part should be in,dicated by Roman

numeral subscripts if it is divide:! into four parts ,and by superscripts if it is divided into

two parts; for example,

Symbol

C(1B41) f3
Meaning

f3 is the integer represented by the first 10 bits (a o ' ••• aiJ)
in cell 1 B4

SH. H. Goldstine and J. von Neumann, Planning and Coding Problems for an Electronic Computing
Instrument, Vol. III, Part II, Princeton, Institute for Advonced Study, 1948.

5.5

5.6

C(03E 111) =. Y

C(A
1V

) = {

C(QII) = g

[]

r H- 104

T + { 085J-

y is the integer represented by the' third 10 bits (a 20 ••• a
29

)

in cell 03E

{is the integer represented by the last 10 bits (a30 a
39

)

in the A regi ster

g is the integer represented by the last 20 bits (Q20 Q39)
in the Q register

Brackets indicate variable storage; if the initial value is
irrelevant, indicate by "irr." in the explanation column
on the work sheet, but indicate the value in the code

[used at the upper left of an. order indicates that this is
the beginning of a loop; i.e., this part of the code may
be entered from other than the preceding order

J used at the lower right of an order indicates that th isis
the end of a loop; i.e., itis poss ible to return to runless
the iteration is completed

In most ORACLE problems,· space will be reserved for special parameters, that is, the

universal constants. It is assumed that cells 000 and 7FB through 7FF are reserved for

-1*, *1*,2- 1
i 0, -1, .and 1*, respectively.

Cell Machine Code Explanation

000 FFFFF FFFFF -1* _2~39

7F.B 00001 , 00001 *1* 2- 19 + 2- 39

.7FC. 40000 00000 2- 1 ~ 2

7FD 00000 00000 0

7FE 80000 ' 00000 -1

7FF 00000 00001 1* 2- 39

Among the various ways of making changes of the second kind are the packing of more

than one piece of information into a single register on entering subroutines, the method.s

of entering subroutines, and the exits from subroutines.

In one of the floating point routines, an operation. is performed by placing a word, W, of

the form W = MGt) Mz Mx My, inthe A register and then transferring control to the operation

desired by picking the correct entry. MGt) means M(w}, or the memory position of w, where

w is the next order to be performed. This order must be a left-hand order in this particular

routine. M is the memory position in which the result is to be stored, and M and M z x y

are the memory positions' of the operands x and y, respectively. The subroutine will

operate with the values x and y according to the operation chosen, will put the result

z in M(z), and wi II transfer control to M(w) for the next order. The ma in r.outine places

the packed word, W, in the A register; then the subroutine takes over and unpacks it

such that

M(w) ------701D II

M(z} ----7 OlC'1

• • • ••
• • • • • • • • • • • • • • • • • ••

•

, M(x)~ OOF,v

M(y) ~ OOD,v

by the following five orders or two ando.ne-half words.

A register contains [M{w) M{z) M{x) M(y)]:

Order No.

1 '

2

3

4

5

Order

OOOa OOD

DaDO 01C

'Ro OOA

OODa OOF

DaDO 01 D

Explanation

M{y) -------7' ODD, V

M{z) ~ O1C"

C{A) = [0 M{w) M{z)· M{x)]

M{x) ------7 OOF, V

M{w) ~ 01D
II

In machine code the two and one-half words are as follows:

5100D

1000A

5401D

5401C

5100F

[']

Suppose the programmer has the word [M{w) M{z) M{x) M{y)] in cell 017 and desires

the actual values ofw, z, x, and y in cells 110, 111, 112, and 113,respectively. 'This

can be accomplished by a small six-word routine as follows:

Left:.Hcind Right-Hand

Cell Order Address Order Address Explanation

(I) (II) (III) (IV)

n C 017 C{A) = M(w) M{z) M{x) M{y)

DaDa n + 2 C{n + 2) = C [M{z)] Q [M{y)]

n + , Ro OOA C(A) = 0 M{w) M(z) M{x)

Oa.Oa n + 4 C{n + 4) '= C [M{w)] Q [M{x)]

n + 2 C [M{z)] C{A) = z

Q [M{y)] C{Q) = y

n + 3 aaaa 111 C(111) = z

qqqq 113 C(113) = y.

n + 4 C [M{w)] C{A) = w

Q [M{x)] C{Q) = x

n + 5 aaaa 110 C(110) = w

qqqq 112 C(112) ,= x

ENTERING AND LEAVING THE SUBROUTINE

One standard method of entering subroutines is as follows: Assume a square-root

subroutine (11 words long) is stored at address 1El; that is, the first order is in the

5.7

5.8

left half of celllEl. The programmer wishes to find x, where x 2 =a, and is at cell 200

in the main routine. He wants to return control to the first word after 200. The pro

grammer looks at the specification sheet' for this subroutine and sees that on entering

he must have the order which transfers control back to the main routine iii the first half

of the Q register, and' he must have the number a in cell 7F9. The contents of QII and

A are both irrelevant. AI so, the programmer notes that in thi s subroutine the answer

x = Va wi II be left in cell 7FA.

If a has just been :computed in the main program, it is in the A or Q register. Assume

that it is in Ai "T + r 201" mu st be stored in the left half of some cell. Then the main

routine would be as fonows:

Cell

200

201

aaaa

Tt

Mnemon i c Code

7F9 'Q M(T + r 201 [- ~)

1E1 [Next order of main routine]

The square-root subroutine wou Id fir'st store the exit order and then proceed as follows:

Mnemonic Code

Left-Hand Right-Hand
Explanation Cell·

Order Address Order Address

1E1 qqOO 1E9

7F9 }
Store exit in 1 E9

C

lE2 T - {, M(O) If a < 0, stop

R 001 a ..;.. 2

lE3 ' H M(1/2) 2- 1 + a ..;.. 2

aaaa 7FA C(7FA) = Xl

lE4 C- 7F9 C(A) -a

T - {, 1 E6 ::. lE61

lE5 aaaa 7FA x = 0

T{, lE9 Exit to main routine

lE6 IC 7F9 C(A) a

D 7FA a ..;.. .x.
1

lE7 qqqq 7F8 C(7F8) (a ..;.. x.)
l

C .7F8 C(A) a -;- x.
1

lE8 H- 7FA a ..;.. - X.
l

H- M(-l*) .(.) 2"'" 39 a .. xi' - :x i +

•
• • • • • '.
• • • • • • • • • • • • • • •

•

lE9 [T + r 201] 1 E91 is the last order performed
by the subroutine

H M(-l*) =. (a -;- x.) - X.
I . ~

lEA R 001 [(a x.) - x.]2- 1
z

H 7FA x i +1

lEB aaaa 7FA C(7FA) = x i +1

Ttl lE6J Repeat loop

Another method of entering subroutines, the one which is most often used in coding

for the ORACLE, is as follows: Consider the Binary to Decimal Conversion Subroutine

for Fractions. This subroutine requires that the binary representation of the number to

be converted to coded decimal characters be placed in the Q register, and the last word

of the main routine which sends the control to the subroutine· must be of the form

(C [xxx] T{[3EO]), where xxx is the cell in,which this word is stored· in the main routine,

and the next address, 3EO in this case; is the cell in which the first order of the sub

routine is ·stored •. The first word in the subroutine must be of the form

(H 7FB· OaOO [3EC]) ,

where C(7FB) *1*, and the last address is the cell in which the last order performed

by the subroutine is stored. Thi s last order transfers control to the left-hand order in

cell (xxx + 1), which is the next order in the main routine. Th i s particular subroutine

leaves the anSWer in the A register. The main routine takes over at this point. It may

store the number directly in some particular location, it may make some shifts in prepa

ration for editing before storing, or it may shift it into the Q register for immediate

punch ing or whatever the programmer des ires.

This manner of entering subroutines is more automatic and is therefore preferred. In

the first example (the square-root subroutine), the exit order had to be stored in some

part by the main routine and then brought into A or Q, according to the specifications

of the particular subroutine being used, bef~e transfer. was made to the subroutine. The

subroutine then had to store the exit order in the correct location. The minimum re

quirement using this first method was three orders in the main routine and two in the

subroutine.

In the second example, it al so takes five orders to enter and exit the subrout ine,but

the pattern 'is a fixed one. The programmer does not have to remember or look at the

spec ificat ion sheet to find out if the exit must be a left- or right-hand order and if it is

required to be in A or Q before entering. He must enter the subroutine by a word in the

stan·dard form, and then the subroutine does the rest. Each subrout ine avai lable to the

ORACLE in this form can be considered as an extension of the basic code of the

ORACLE, since the performance of the subroutine requires only one word in the main

routine.

5.9

5.10

RADIX CONVERSION

In order to understand the machine conversion of a number from either decimal repre

sentation to binary representation or from binary to decimal, it is necessary to know what

the number looks like on the coding sheet, on the punched tape, and in the machine.

Consider the input by means of standard ,five-hole teletype tape, where four holes are

used to represent numbers in the sexadecimal or bose 16 number system by means of a

binary code. A 40-digit b'inary number is then written as a 10-digit sexadecimal number.

Since a sexadecimal digit can be represented by four binary digits, each digit of the code

can be ~ecordedon" the paper tape by the use of four levels across the width of the tope,

each level being punched or not punched according to whethe,r a 1 or 0 is to be recorded.

The fifth level of the tope is used by the, machine for control purposes and is present

only for the space character. Punched paper tope also contains sprocket holes

are s~a Iler than the holes in positions h l' h.21 h3 , h 4' andhs (Fig. 5.3). The sprocket

holes, wh ich ,are used, only for mechanical advance of the paper tope in the tape punch

and tape reader, appear in eacn row ,across the tape between positions h3 and h 4' Th~re

are 10 sprocket holes per inch along the tape, The punched paper tape should have ,one

end marked as the beginning to avoid the possibi lity of reading the tape in the wrong

direction. All 17 coded characters are illustrated in Fig. 5.3, wh ich is exact si ze.

3 5 7 9 8 D F

~ ~ ~ ~ ~ ~ j ~
SPROCKET HOLES

0--
000000000 ---

••••••••••••• /II ••••••••••••••••••

0000, 00000 '~
00 00, 00 000 -- 112

o 0 0 0 0 0 0 00 --- III

t t t t t 'f I
o 2, 4 6 . 8 ACE Space

Fig. 5.3. Representation of Sexadecimal Digits on Teletype T~pe.

A positive number is represented in the usual manner, and a negative number as the

complement of its absolute value with respect to 4i therefore a _ l' ao = 0 in cas~ of

a positive number, and a...:. l' ao 1 in case of a negative number.

Take a very simple example, say +71g in binary form,

1 . 2- 1 + 1 . 2 - 2 + 1 . 2- 3 + 0 . 2- 4 + ••• a _ 40 1 1 1
2 or + - + -+ 0 ...

2 4' 8 '

is represented as .1110 0000 0000 0000 0000 • •• •

When the number is partitioned into groups of four bits, the resulting dyadic form may

be written as E a a 0 0 0 0 0 a O. However, the 40 bits include one place before the

•

• • • • • • • • • • • • .'.
• • •
•• • • • • •

binary point for the sign and only 39 places after; therefore +71a is represented in the

machine by a pulse or no pulse (l = pulse, 0 = no pulse) as follows:

[0. 111 0000 0000 0000 0000 0000 0000 0000 0000 0000] .

On the coding sheet this .would be written [70000 00000] and punched on the tape in

binary coded characters would look like Fig. 5.4.

o 0 000

i ~
o
o

o
o
o

o
o
o

7 0 0 0 0 Space

Fig. 5.4. Tape Representation of the Decimal F~action +%.

In reading a word from teletype tape into the memory, the coded characters are read

from the rows on the paper tape. in parallel to the positions q36 q37 q38 q39 of QL' First,

one character is read so that q36 == h4' q37 h3' q38 == b 2, andq39=hl' Then the

contents of QL are .shifted left four places, and the next coded character is read into

q36 q37 q38 q39' This process continues until a sp~ce character is reached, at which

time the word in QL is transferred to M(x). This is the procedure when the order Ls M(x}

has been given. If more than 10 characters precede the space character, then the first

characters read in are lost from the left end of QL and are not transferred to the memory.

However, if the number +7~ had not been so easy to write down in its coded sexadecimal

characters, the programmer would surely have written the number in coded decimal charac

ters and allowed the conversion subroutine to put the number in its machine binary form.

In this case, the programmer puts +875000000 on the coding sheet. On the tape the

number will look like Fig. 5.5. This is read into QL the same as before and the register

will look as follows, where the punches on the tape now are represented by 1's or pulses

e 5 0 0 0

o
o
o

••••••••••••••••••••••••••••••••
00 0
o 0
00 0

+ 7 0 0 0 Space
II
o

Fig. 5.5. Coded Decimal Representation of the Decimal Fraction +'ls.

5.11

5.12

and no punch on the tape means a zero or no pulse:

QL : [0.000 1000 0111 0101 0000 0000 0000 0000 0006 0000]

+ 8 7 5 o a a a a o

The conversion subroutine:takes the number in this form and changes' it to.

[0.111 0000 0000 0000 0000 '0000· 0000 0000 0000 0000] ,

and it is ready to be used in the calculation, stored in a particular cell, or used as the

main routine demands.

INPUT PROGRAM

As problems become larger and more compl icated, the time required for input of in~

structions from outside into the machine increases. One solution seems to be to let the

machine itself do as much as possible of the routine work in programming, assigning

storage, assembl ing subrout ines, etc. In particu lar, su itable means for chang ing pa~

rameters in the subroutine to. suit various situations and for orienting the subroutine in

the main program must be provided. The latter are essentially clerical tasks but can

be performed internally by the computing machine just as decimal numbers can be con

verted to binary by the machine. The input program is designed with these ideas in

mind. It' is n~t just a read-in program or a simple assembly prog~am. It is, in a sense,

a device whereby the language of the outsid~ programmer is translated into the internal

binary language of the machine. Scientists and engineers outside the Mathematics Panel

wi" not have to learn how the ORACLE works, but only what it can do and how to us~

the input program to tell it what is des ired.

This input routine assembles the program for a specific problem from component parts
. . ,',

and converts the assembly into machine code. Component parts may be classified as

(1) the main'routine, (2) a subrouti~e from the library, (3) a subroutine written for the

specific problem, or (4) an order or number which will be used as a constant or variable

in component part s 1, 2, or 3.
. .

With standard five-hole ~eletype tape as input eq~ipment,. orders cannot be inserted

into the mach ine in mnemonic symbol s but. must be put in machine form by the coder. or
, . '

by the tape-puncher. Other necessary conversions can be performed by the input routine.

These include the following:

1. Conversion of numbers. Numbers may be in machine code or in decimal notation.

A decimal number may be a fraction or an integer.

2. Translation of addresses. Command words may have addresses which are absolute

or relative. An absolute address does not depend on a parameter to determine its true

value. It is written as its exaCt location in the memory •. The number may be written in

either decimal or sexadecimal form. A relative address is dependent on the value of

its preset parameter for its fixed location. It is given by its position number in the

sequence of orders followed by the pertinent relative parameter. For example, the seventh

word in the e- x subroutine is H 2B 1 T n{ 11 D2. Here both' addresses are relative.

• • •• • • • • • • • • • • • • • • • •
•• • .:

•

The first address is the second word in sequence relative to B 1. B 1 is the parameter

for storage of the temporaries used"; therefore 2B 1 refers to the second temporary position

used by this "subroutine. The second Qddress is the eleventh word in the sequence

relative to 02, where 02 is the parameter for the subroutine itself. That is, if the pro

grammer decides to read this subroutine into the memory :beginning, for example, at

cell 254 decimal, he sets the parameter D2 equal to 253; then the relative address 11 D2

would become the absolute address 264, or 108 in sexadecimal c:haracters.

3. Assembly of storage. The absolute positions of the program and constants may be

decided just before the tape is punched.

4. Conversion of addresses. The address in a command word may be written in decimal

or sexadec imal notation.

5. Conversion of subroutines.

6. Input of universal constants.

"Alternatives indicated in conversions 1 and 4 can be specified by one of the five "prefix

words", D/O, 1, ••• , 4/N. All the descriptive or control words are combination words

of the form X/l/M, where X is either a 0 or an E, 1 can be any number from 0 through 9

(or A through F when referring to relative parameters), and M may be either a number,

say N, or a memory location, L. The slash indicates a single space on the tape:

Following is a list of the 0 words with their meaning. The symbols D/S/N through

D/F /N can be used to indicate other special forms of input words. For example, D/S/N

cO,uld be made to refer to high.precision conversion, but this has not yet been added.

~ymbol

D/O/N

D/1/N

D/2/N

D/3/N

D/4/N

Meaning

All N words which follow until the next D word are read into storage di
rectly, without conversion

All N words which follow unti I the next D word are commands ,with decimal
addresses w~ich may be relative or absolute

All N words which follow. until the next D word are commands with ad
dresses in machine code which may have relative addresses

All N words which follow unti I the next D word are decimal integers

All N words which follow unti I the next D word are decimal fractions

To distinguish between alternatives indicated in conversion 2 and to supply the con

version routine with requ ired information for carrying out conversion 3, directive words

or control combinations are required. Such words are inserted at appropriate points to

supply the necessary information to the input routine. They include the following:

Symbol

E/O/L/

E/l/L/

Meaning

Set storage counter (storage counter contains address to which converted,
word is sent) to L (decimal); L may be rel,ative or absolute

Transfer control to left-hand order in cell L, (T{L), where L may be
relative or absolute

5.13

5.14

E/21

E/31

E/Ki/V i /

Set remote connection for storage of converted words on teletype tape
rather than in the memorYi if the words on the input tape are in machine
sequence, the input routine places no restriction on program length

Set remote connection for storage of converted words in memory to

(L, L + I, L + 2, ~ ••)ithis connection is set to store in the ,memory
when the input routine is loaded

Ki runs from AO through' FF; that is, E/AO/V1 replaces reference ad

dress AO = C(395) by V l' and E/A IN 2 replac:es reference address
A 1 = C(394) by V 2

Words under control of Oil and 0/2 may have relative addresses 'with respe,ct toa

preset parameter. That is, an, address 9Ki means the addre$s,9 plus the value Ki, where

'Ki denotes to the input a particular relative parameter. The values of the relative pa..;.

rameters are set by directive words of the form ElKiN, which means to set the relative

parameter Ki equal to the value V. K can be any letter A through F, and i = 0, I, 2,' •• '. ,

F I making avai lable, the possibi lity of 96 preset parameters in any program. L, N, and

Ki are decimal.

EXAMPLES OF SUBROUTINES

Subroutines for (1) conversion from binary to decimal representation for fractions,

(2) sin x and cos x, and (3) e-x are given as examples since they are shC!rt and easy

to follow, they show the different approaches to coding a problem, and they are used

in Sec. 6, "Coding a Complete Routine."

The conversion subroutine, only 13 words long, is the shortest and easiest to write

down directly from the flow diagram. It is also given in 'sexadecimal characters or in

machine form.

The sine, cosine subroutine is somewhat longer and is written using 01 as the sub

routine parameter and 62 as the parameter for the temporaries. With the addresses in

this form, the input program wi II convert the addresses to binary and adjust them ac

cording to the values given the parameters. The commands must be written in sexa

decimal characters, such as 5C for aaOO,' 20 for H, etc.

The e-x subroutine is given as an example of the manner of approaching a larger

subroutine. The only difference in looking at the code is that it is about one and one-half

times as long as the one for sin x and cos x. However, the flow diagram is more compl i

cated. There are more choices for the machine to make; so .the flow diagram contains

more double entries and exits. Note that again two parameters are u~ed, 02 for the

subroutine and B 1 for the temporaries used by the subroutine.

If a programmer has an even larger problem, the manner of attack wou Id be the one

followed in Sec. 6, where more parameters are used. In further consideration of the same

idea, suppos~ each box in the flow diagram requires 20 or 30 words per box instead of

1 or 2 words as does the e-x, subroutine. The most efficient approach wou Id be to code

each box in sequence, using a different parameter for each one. By doing this, the

programmer may conveniently change or add to any particular box without changing the

• • • • • • • • • • • • • • • • • ,.
• • • •

•

'.

ceH numbers in any of the other boxes. The programmer determines the values of the

parameters, which may be either all absolute or one absolute and the others relative to it.

CONVERSION FROM BJNARY TO DECIMAL REPRESENTATION FOR FRACTIONS
(SUBROUTINE B.4)

T~e main routine must ha,ve the number to b~ converted to deci mal in the Q register.

The next word is then

C [;Xxx] Tf. m or 24 [xxx] 43 m

where xxx is the cell in which this word is stored, and m is the cell in which is stored the

first word of the conversion subroutine. The conversion subroutine next adds 1 to xxx,

substitutes it in the exit .order, 'converts the number to decimal (changes it to its coded

decimal representation), and leaves the answer in the A regi ster for the main routine to do

whatever the problem demands. A flow chart of the subroutine is found in Fig. 5.6.

A
9

Substitute cell No. containing c
next order of main routine into .. I

Set up tally

counter, Send tally to T3

T1 •

E

Decrease folly:

Change C (T 3) by -1*

F

Original N --;0. A

G

C.(A1Vl = 8

D

Shift nth (n = 1,2, ",,9) coded decimal
characters left 4 places in Q and Lq 004

to get (n -1}th decimal characters into QIV'

Put F in 1st 4 places by I I
Lq 4, C M(-I*), Rq 4, ..

Fig. 5.6. Flow Chart for Conversion Subroutine B.4.'

Let Nb equal the number in coded binary form and let Nd equal the number in its coded

decimal representation. Then the subroutine written in its mnemonic form is as follows:

Left-Hand
Cell

Order Address

m H M{*l*)

m + 1 qqqq Tl

m + 2 aaaa T2

Right-Hand

Order Address

OaDO m + 12}

Cm Tl

c- M(-l*)

Explanation

Substitute exit address

C{T 1) = Nb

C(A) = INbl

C(T 2) = INbl

C{A) = 1*

Box
No.

A

B

5.15

5.16

m + 3 Lc 3 C(A) 8*

r aa.claT 3 C(T 3) = 8* C

m + 4 C T2

Ro

m + 5 H T2

Lq

m ,+ 6 Ro

a.m::w.

m + 7 C T3

H

m + 8 T+r m+3J

C

m + 9 T+-t m+ 11

Lq

m + 10 C M(-1*)

Rq

m + 11 qqqq Tl

C

m + 12 T-t [xxx + 1]

2FD T 1 }

2F E T 2 T emporari es used

2FF T3

2} ,

4}

T,}

M<-I*l}

Tl

4

4

T

Irr. }

(T 3 = tally counter)

nth coded decimal character

feeds into q36 • • • q39

n = 1, 2, ••• , 9; nth coded
ded mal sh i fted I eft four
places and (n + 1)* into q36

• • • q391 etc.

,Remaining part of Nb -+ T 2

Change C(T 3) by - 1 *

D

E

±. C

F
Repeat loop; test for· sign of

original Nb; if +" Nd is in Q; ±. H
if -, put ifF" in first four G
places

H
Nd is in A register

Transfer to main routine

Assume that this subroutine is stored in cells 2FO to 2FCj then the code in its coded

sexadecimal characters would appear as follows (the universal constant~ appearing in

cell s 000 and 7F B through 7F F):

Cell Universal Constants

000 FFFFF FFFFF -1*

7FB 00001 00001 *1*

7FC 40000 00000 2- 1

7FD 00000 00000 0

7FE 80000 00000 -1

7FF 00000 00001 1*

• • • ••
••
• • • • • • • • • • • • • • • • •

•

The subroutine appears in cell s 2FO to 2FC:

Cell Code

2FO 207FB 542FC

2F1 7F2FD 252FD

2F2 5F2FE 26000

2F3 16003 f5F2FF

2F4, 242FE 10002

2F5 202FE 1 A004

2F6 10001 5F2FE

2F7 242FF 20000

2F8 482F3J 242FD

2F9 4A2FB 1 A004

2FA 24000 1C004

2FB 7F2FD 242FD

2FC 43[000] 00000

SUBROUTINE, FOR Sin x AND Cos x

As usual, the main routine must enter the subroutine with an order of the form

C [xxx] T~ m I

where xxx is the cell in which this word is stored, and m is the location of the first word

of the subroutine. Also, this specific subroutine requires that the main routine have the

argument x in the Q register. It leaves the cos x in the A register and the sin x in the

Q register and returns control to the left of cell xxx + 1 for the next order in the main

routine. In case the cosine is +1, 1 ~ 2- 39 is left in the A register, since +1 is not

digital. The flow chart appears in Fig. 5.7.

A

Co = 0
s~ = X

VI = x
n = 1

B

n+1~n

Un = (x/n)vn _ t

Cn = Cn - 2 + un,

c
n+1 ~n

Vn = -(x/n) un - t

Sn = Sn - 2 + Vn

Fig. 5.7. Flow Chart for Sin x and Cos x Subroutine.

Mnemonic Code

Temporary Storage Used by
Constants in Usual Location the Subrouti ne

1B2 x 0 -1*
!

2B2 [S] 7FB *'1*

3B2 Ee] 7FC 2- 1

4B2 En] 7FD 0

5B2 [u, v] 7FE -1

7FF +1*

5.17

•
•

C 0

1}
1 2- 39 . A

18
If 1, put - In

R6

19 Q 2B2

Stall}
C{Q) sin x

20 Tt [xxx + 1]

Irr. }
Return to main routine

Error Analysis for Sin x and Cos.x Subroutine

Let w stand for ±u or ±v where n n n

wn

w*
n

{x/n)wn _ l

[(x/n) * w*]*
n-l

and the division is nonroundoff. ·Let

E 240 lw - w*1 • n n n

Then

w* W
n n { [(x/n)* w*]* - (x/n) * w* } n- 1 n-l

@

-I:" [(x/n)* - {x/n}] w~ _ 1 + {x/n)[w~,:, 1 - w n-'] •

For nonroundoff division,

o ~ (x/n) - (x/n)* ~ 2- 39 (n - l)/n .

Also

IW~_ll ~ l/{n -1)!.

Hence

En ~. 1 + 2(n - 1}/n! + En_l/n •

Since El = 0, the above inequality may be evaluated recursively to gi.ve

E2 ~ 2

E3 ~ 7/3

E4 ~ 11/6

ES ~ 43/30

In decimal form

E2 ~ 2.000000 E3 ~ 2.333333

E4 ~ 1.833333 ES ~ 1.433333

E6 ~ 1.252778 E7 ~ 1.181349

Ea ~ 1. 148016 E9 ~ L127601

E10 ~ 1.112765 Ell ~1.101161

E12 ~ 1.091763 E 13 ~ 1.083982

E14 ~ 1.077422

5.19

5.20

The residual error is less than the first neglected tenn. For w 1s.this is less than the

possible roundoff error in the term

IW161 ~ 0.05255. 2- 40 1W181 ~ 0.8408.2- 40

Hence, for the total error (generated and residual),

1(1 - cos x)* - (1 - cos x)1 < 1.1973. 2- 37

x)* - sin xl < 1.1402. 2- 37 •

Time

The minimum time required for the preceding subroutine is 2.82 msec, and the maximum

time is 22.75 msec.

e-X FOR 0 < X < 238 SUBROUTINE ,= .

This subroutine is entered by having the integral part of X· 2_ 39 stored in 1B1 and the

fractional part of X stored in 2B 1. Again, the cell number preceding the one containing

the first order of the main routine must be in All after the completion of the subroutine.

When the control is returned to the main routine, the answer e- X is in A. Figure 5.8

depicts the flow chart.

Parameter D2
('

Left-Hand
Cell

Order Address

H 7FB

2 Q 35D2

3 H 1B1

4 C 7FD

5 qqqq 4B1

Mnemonic Code

Temporary 'Storage Used by the Subroutine

1B1 X .2-39
I

2B1

3B1

4B1

5B1

6B1

Right-Hand

Order Address

oaOo 33D2}

XF
n '*, (n' + n ")*, n*, i*

I~ I, y

I , U.
I l

e.
l

Substitute exit

Explanation

M 1Bl}
"* I' C(A and Q) = Xf log'2 e = n +

3B1 }
C(3B1) = n'*

a.a.J:J.f:1,

C(A) = 0

Roq C(Q)

NT --- } C(4B 1) f'

Box
No.

A

B

• • .'
• • • • • • • • • • • •
.~

• • • • '.
•

• • e6 Q 3502 C(Q) = (l092 e - 1) C • Mr :t61 C(A and Q) = X F(log 2 e - 1)

7 H 2B1
11D2} C(A) n" + I" • Tnt

X F 1092 e

8 H 7FE

5B1}
I"i C(5Bl) = In

D • If O.F., n" = 1; C(A)
a.a.o.J:1,

9 C 3B1 O} • n'* + 1 * = n'* + n"*
H-

10 QJJ..CJ.lJ., 3B1 C(3B 1) n'* + n"* • C 5B1 C(A) = I"

1 i H 4B1 C(A) = I" + /' = n'" + /''' E • Tyr 13D2 . rf O. F., go to 1302"

. 12 ao.o.a 4B1

381}

F • C
If no O. F., n'" -= 0 and C(4B 1)= /''' I

13 Tt 1602 (n'+ n"+ n"')* = n* H • fH 7FE C(A) = f'''(n''' = 1) G

14 ao.o.a 4B1 . C(4B 1) = I'" = I • C 3B1 C(A) (n' + n ")*

15 H- 0 (n' + n" + n ''') * = n * • ().[1O.f). 3B1 C(3B 1) = n*

16 H- 3402 n* - 39* H • T-t 1802 If n* < 39*, go to 1802'

17 C 7FO If n ~ 39*, set e - X = 0 • Tt 3402 Go to 3402 1

18 C 3B1 C(A) n* J • OOOa 3202 n < 39*, insert n for shift in 3202
1
V

19 Q 4B1

3602}
I log 2 + 2-40 ~ y

K • Mr e

20 ao.o.a 4B1 C(4B 1) y • a.t:J.J:Ja 5Bl C(5B 1) u 1 = y

21 aaaa 6B1 (6B1) = e
1

= y • C-m 4B1 C(A) = -Iyl L

22 T-t 2402

o} If y ~ 0, go to 24021 N • C M

23 Ro

3202}
If y = 0, mfg. 1 - 2- 39 • Tr

• 5.21

•

5.22

24 C- o

25 C 3B1

26 (J.(1(JJX 3B1

27 Rq 39

28 Mr 5B1

,,29 H 6B1

30 C - m 5B1

31

32

33

34

35

36

C- 6B1

H 7FC

T{ []

39*

1092 e -

log 2
e

(J.(1(JJX

H-

C-

Oq

a.o.o.a

(J.(1(JJX

T -{

H

Ro

3Bl}

o }

1* = i* -+ 3B 1

(i + 1)* -+ i*

C(3B1) =" i*

4B 1 C(A):=-y

C(A and Q) = -yo 2- 39

3B 1 C(Q) = -(y/ i)

} C(5Bl) = u, = (-y/i)(u. 1) 5B 1 l z-

6B1 }
C(6 B 1) = u i + e i _ 1 e. z

2502

7FC}

[n] }

"C~A) =
~ "

> 0, go to 25021

Ifu i O,e-Y 1 1
-ei + ~ + ~

C(A) 2-n e-Y e-X

Return to main routine

ERROR ANALYSIS FOR e-X SUBROUTINE 6

e~-.x ' i-1X(l o 92 e)IIP e -I0ge2{X(lo92 e)IFP = 2-77 e-¢ "

(e- X)* machine evaluation of e-X,

Let n denote integral part of a number and I the corresponding fractional part.

n' + f'
n" + I"~

f' + /"
n

[x I (log 2 e - 1) r] +: x I
[X F(l092 e - 1)r]r + X F

'Ii'" + I'"~

n' + n" "+ n'"

/ I'"~

~ + / machine evaluation of (X • log2 e)

y = [j(log 2)r]
e r

6The subscript r denotes rounding_

N

o

p

Q

R

S

•

•

A

CIA) + *1* = -(m + I)-
Insert (m + II in Box S

B

o ~ X= XI + XF < 2 38 ; I';; Xl < 238, 0';; XF <

Xt* (1092 e -0 + Xt*
11' + f'

11'*-3BI
f'--- 4Bl

o
f"= (n"+ fN) - t ---'-;>.5BI
n'* + 4* n.l"* + nH * ---. 3Bi ~ fN + f/ n#/ + f//,/ 'I I'IV v. ",

fN_ A

Q

o.

f'" '" (n N
' + fH') - If........,.. 4Bt

(n' + n"J* + hH"* n* __ 3Bt, A

.I' f 109. 2 + 2-40 -+ 4BI

u.=y -- 5Bt
lS'.=y-- GBt

R

e-Y = -lS'i + 1'2 + 1,-2--+A e-X =2- lI e-Y __ AI .1

Fig. S.8.Flow Chart for e- X Subroutine.

Hence (e-x)* = 2-n (e- Y)* ;

(/+0* -- i*_3BI

(_y~;-39) =

(-f)(UH) '" ui __ 5B4

le-x - (e-x)*1 ~ le- x _~-n e-Y\ + 12-n e-Y _ (e-X)*\ .,

e-X _ 2-ne-Y 2-'rJ e -cP - 2-n e-Y = 2-'rJ e -¢[1 - :l-(n-'rJ)e- CY -¢)]

2 -'rJ e - cP [1 _ e - (n - 'rJ)I 0 9 e 2 - (Y - cP)] .

2-'rJ e -¢(l - et:) ,

that is, let € = -{n - r;)log 2 - (y - ¢) -(n log. 2 + y) + (rdog 2 + ¢) . e e" e

r; log 2 + ¢ e + X 1(l092 e - 1) + X F(l092 e - 1)] 10ge 2 I

n 10ge 2 + y {X + [X1(1092 e - 1») + [X F(1092 e - 1)r]r} 10ge 2

+ [{(log 2)] - I log . 2 ,
err e

5.23

5.24

E {X,(l092 e - 1) - [X,(l092 e - 1)r]} 10ge ,2 + {XF(l092 e - 1)

- [X F(l092 e - 1)r]r} 10ge 2 + {I 10ge 2 - [{(l0ge 2)r]r} A + B + C ,

10ge 2
IX,(1092 e - 1) - [X,(1092'e - 1)r]

;£ XI 1(1092 e - 1) - (1092 e - 1}r l ~ X, 2-40
I

IB,
-I --2 = IX F(1092 e -1) - [X F(l092 e - 1)r] I ~ X F!(l092 e - 1) - (1092 e - l)rl
0g

e
r

+ IX F(l092e - .1)r - [XF(1092 e - 1)r] I ~ X 2- 40 + 2- 40 $; 2. 2-40
" . r ." F . - I

lCi II 10ge 2 - .[f(l0ge 2)r]r l ~ If 10ge 2 - 1(10ge 2)

.+ 1/(10ge 2)r - [f(10ge 2)r]r l ~ 2- 40 + 2- 40
I

1 EI ~,IAI + IBI + lei ~ [(X, + 2) 10ge 2 + 2] 2- 40 ~ (XI + 3.386) 2- 40
I

;. ,·oo! Ii
12-7J e-¢(1 - eE)1 ~ 2- le- 0 •7 .E-;-

1 z •

·_'x ·1 ! !
;£ 2 1"2 ! E] + I EI2 e € I

1
1 EI ~ (238 + 3.386) 2-40 < '4 + 2- 36

I

12- 7J e-¢(1 - efE)1 < 2-<X,+1)(X, + 3.386)2- 40{1+ 0.34)

-x 0 < 2 I(X, + 3.386)2- 40 < (3.386)2- 4 •

Now

2-n e-Y (e:-X)*I 2-n "7 (e . le-:Y - (e-Y)*I •

The estimate of error in computin9 e-Y follows very closely the error analy si s for sin X,

(1 - cos x),

W n (x/n)W n-l

W*
n [(x/n)*w~_l]r

and the division is nonroundoff. Let.

E 24 °1 W - W*! n n n

Then

W*
n ::; {[(x/n)*w~_l]r - (x/n)*w~_l }

+ [(x/n)* ~ (x/n)] W~_l + (x/n)(W~_l - W n-l)'

For nonroundoff division

. 0 ~ x/n - (x/n)* ~ 2,-39 (n - 1)/n

•
• ...

•

and.

IW:_ ,I ~ 1/(n - 1)1 (loge 2)n-l

so that

(n - 1)
En ~ 1 + 2 I (loge 2)n-l + En_lin •

n.

Since El 0, the above inequality may be evaluated recursively. to. give

E2 ~ 1.6932 ES ~ 1.3263 E8 ~ 1.1469 Ell ~ 1.1011

,E3 ~ 1.8848 E6 ~ 1.2233 E9'~ 1.1274' E12 ~ 1.0918

E4 ~ 1.5545 E7 ~ 1.1751 EtO ~ 1.1127 E'3 .~ 1.0840

The residual error is less than the first neglected term. For W 14 it may be seen that

141 ~ (0.0855) 2- 40 •

Hence

Thus

13

le-Y - (e-Y)*I ~ E Ei ' 2-40 + (0.0855) 2-40 ~ 0.9755· 2- 36 •

i=2

le-X - (e-X)*I ~ 1.1871. 2-36 •

AVAILABLE SUBROUTINES

Although the I ibrary of subroutines for the ORACLE is by no means complete at the

present time, it is hoped that eventually itwill beconiprehensive enough so that coding a

problem will consist merely in writing a short main routine to combine existing subroutines

in the desired order.

Following is a list of existing subroutines with a brief description of each. This list

does not include the input routine, which is discussed earli er, or the Bonehead, which 'is

discussed in Sec. 7. The Specification Sheet tor a particular subroutine in the subroutine

I ibrary may be consulted for a complete description.

I. Single.Precision Subroutines,

A. Square Root._ The main routine supplies q. in the Q register, where x 2 ,= a and . , .

x '+ 1 = x. - (x. - a + x.) + 2 ,
'I Z Z I

where the" i are successive approximations to x. The error is less than 2- 39 and the'

subroutine leaves x in the A register. (13 words)

B. Conversion from Binary to Decimal. Four subroutines exist for the conversion from

binary to decimal representation.

1. Thi s parti'cular subroutine reods a number, or fraction, in coded binary characters

from tape, converts it to decimal, punches out that number in coded decimal characters;

reads the next binary coded number from tape, converts and punches it, etc. (12 words)

5.25

5.26

2. This subroutine takes n consecutive words, in machine form, from the memory be-·

ginning at cell m, converts each to its decimal representation, and punches them out on

tape. (20 word~)

3. This subroutine converts one number from some specified memory position to

its decimal representation and punches it and. then returns control to the main routine

again. (15 words)

4. This subroutine 'deinCindsthat the main routine have the number,' or fraction, to' be

converted in the Q register. It converts the number to decimal, leaves it inth~ A regi ster,

and returns to the next order, in the main routine~ (13 words)

C •. Sin·.x and 1 - Cos x. These three subroutines require that x (-1 ~ x < 1) be

furnished by the main routine.

s (sin x)*
x 3 x 5

3! 5!

x 7

+ ... I .
7!

x - -'+

x 2
e (1 _·cos x)*
. 2!

x4 x 6

+ -
4! 6!

1. Without a machine check, the accuracy is

Ie' -(1 -cos x}1 < 1.1973· 2- 37
I

Is - sin xl < 1.1402. 2~37 •

Sin x and (1 - cos x) are left i~the memory.

.2 .. With a f!1ach~ne check, the accuracy. is

Error < 2- 35

Si~ x and (1 ~ cos. x) are left in specific memory positions.
." '. . . '., ..', " . . ~ ., .

(15 words)

(22 words)

3. On entering, this subroutine requires that the main routine have x in Q register. It

c~mp~t.es sin, x and L-.cos x ,in the same ':Nay as the preceding two subrqutir:tes, but it

leaves;sin.x intheQ register,ahdcos x iJ:1 the A register. There is no machine check,an~

. the accuracy :isthe same. as that giv.en for subroutine C. 1. (20 words)

D. Conversion from Decimal to Binary. There are th~ee subroutines for conversion of

decimal to binary representation •.

1. Co'ded nine-digit deCimal fractions: are taken from tape, converte'd' to their ::binary

representations, and punched out either insexadecimal characters or in their machine

- code. ' ('11 words)

.2. ·A· number, n, of coded decimal fractions are taken from tape, and their binarY ,repre

sentations are stored in .consecutive cells in the memory .beginn,ing Crt cellm; n can, be

any num ber from 1 to 3E 1 (993). (24 words)

3. ' Decimal integers are taken from tape and converted to thei.r binary representation

x .2-39•

E,. Exponential. There <;Ire three exponential subroutines.

1. eX is computed for -1 ~ x < o.

(17 words)

(12 words)

•

, . •
~ .. :

• • • • • .". .'
• .' .' • ' • :
• •• • • • • '. • .'

,'2~ eX is computed for -1 ~ x < loge 2. If 0 ~ x < loge 2, this subroutine stores

eX ';;"'1. (17 words)

3.e-X is computed· for 0 ~ X < 238. (36 words)

F.' Logarithmic. Two logarithmic subroutines are in the library.

1. Log A is computed, where e,

log A == log (a. 2X) x log 2 + log A e e . e e
and

n 1 (a - 1)
log a 2 E -- 2i + 1 •

e 0 2i + 1 a + 1

2. Log N is computed, where
e '.

1 - z
log N log
eel + z

e -
- ->z:> 0;
e +

'G. Polynomials.

00 z2n+l

-2 E < N < 1;
n=O 2n + 1 e

l' - N

z 1 + N

N
- - -
2 2

1 N
-+-,
2 2

(25 words)

(20 words)

1. A polynomi af of arbitrary degree is evaluated for an arbitrary numbe'r of values of

the argument.

2. This subroutine is used for root reduction for polynomials .

H. Complex Operations. A subroutine is prepared for doing fixed-point complex opera

tions (addition, subtraction, multipl ication, and divi sion) .

II. Double-Precision Subroutines

A. Operations with Double-Precision, Numbers. This subroutine performs operations

that i nelude complementation, summation, absol ute val ue, multipl ication, and divi sion.

B. Double-Precision Extraction of Square Roots. This subroutine uses the preceding

subroutine for double-precision operations on a, given to 78 binary digits, to yield x = Va
accurate to 76 binary places.

III. Floating Point Subroutine,s

,A. Thi s is (l four-address routine in which all numbers handled are of the form, x = x'. 21
\

where Y2 ~ Ix'i < 1 or x: ' = 0, and 0 ~ ,lAl ~511., The number xis stored'in t~~ form

x~' · xix~ ••• xi9 ';
t,~~

Sign
Digit

Fraction

:Ao \... Al A2' ••• A9

i)
. V

SIgn
. D;" Integer

Ig.t

An operatio~is performed by p lacing a word W C?f the form W = M(ev) M(z) M(x) M(y) in the

A regi ster and then transferring to ~he operation de,sired by picki~g the order. Here M(ev)

(s the memory position of the next order to be performed, x and yare operands, and z is

the result. (94 words)

5.27

5.28

B. This subroutine is the'same as the one discussed above except that the entry and

exit have been revised. It is entered in the standard way by bringing 24[cu - 1] into A',"

and a word, W', of the form W' = [op] 4[M(x)] 24[M(y)] into the Q register, and then trans

ferring control to the fixed location 7991• In the word W~ -[op] specifies the 9peration

as follows:

Operation No. Significance

1 x+y

2 x-y

3 x' • y'

4 x -;- y

5 Ixl +

6

7 , x +

8 x-

The 4 and 24 are fixed, and M(x} and M(y) specify where the subroutine finds the two

operands. The result of the floating point operation performedi sleft in the A register,

and control is returned to the right-hand order in the following word of the main routine.

Suppose the programmer is at cell lOA in the main routine and desires the product of

two floating point numbers to be stored in cell 13C. Let x be in ,cell 130 and yin' 131;

then the main code would be as follows:

Cell Code

. .
109

lOA 24 lOA 60 M(W1

lOB 43799 SF l3C

lOC

,1\

M(W') [3] 4 [130] 24[13 n (91 words)

C. This is an entirely different subroutine in that transfer'is made into it in the standard

way by brin'ging 24[cu' - 1] into AI and transferring to the first order of the subroutine.

Having entered' this subroutine, all operations continue to be performed in floating point

until the control is transferred to normal ORACLE operation. This subroutine performs,

in floating point, all the arithmetic operations available on the ORACL E using the standard

ORACLE code. Transfers, both conditional on sign and unconditional, can be performed

within the floating point operations. Conditional transfer on overflow has no meaning in

deal ing with numbers in floating poin't notation. Transfer out of floating point operations

is accomplished by incorporating a breakpoint in the transfer-out order. (147 words)

•

• • • ••
• • • • • • • • • • • • • • • • • •

I V. Matrices

A. Product of Two Matrices. Each of the three following subroutines assumes that

AS = C, where A is stored by rows, S by columns, and C by rows. Each one uses fixedo

point operations, with the differences being in the methods of scaling •

1. The transient-seal ing subroutine scales all terms when an overflow occurs.(45 words}
~

2. The semiprecision-scaling subroutine scales the sum after it is formed, and the scale

factor is determined by the number of times an overflow occurs in the process. Each term

is scaled by this amount. (62 words)

3. The precision-scaling subroutine determines the scale factor in the same way as

the preceding subroutine, but the entire sum, not each term, is scaled. The precision-

scal ing subroutine gives the optimum val ue. (76 words)

B. Inverse of a Matrix. This subroutine obtains the inverse of a matrix, based on the

. discussion by von Neumann and Goldstine.7 It uses floating point arithmetic. (220 words)

C. Transpose of a Matrix. This subroutine transposes the matrix in the memory and

then puts it on tape, the tape being used only as extra storage. Another subroutine is

planned so that it will read in and out from two magnetic tapes during the calculation

and therefore will be able to take care of a larger matrix.

V. Determination of Characteristic Values of a Real Symmetric Matrix in Jacobian Form

Given the 2n - 1 numbers required to speci fy a real symmetric matri x 5, where s .. = 0
Zl

if Ii - jl > 1, the ·computation of a chain of principal minors of AI - 5 for different values

. of A is used to obtain each of the n roots of 5.

7 J. von Neumann and H. H. Goldstine, Bull. Am. Math. Soc. 53, 1021·1099 (1947).

5.29

••
••

••
••

••
••

••
••

••
••

••
•

w

z i=
:::»
0 I¥

W

Q

)
..:Jt:

I-
;:)

w

E

...I
II)

D
-

O

~

~

0 U

Z

<

C
)

Z

0 0 U

••••••••••••••••••••••

••
••

••
••

••
••

••
••

••
••

•
'.

• .'

6. CODING A COMPLETE ROUTINE

N. M. Di smuke

DESCRIPTION OF THE PROBLEM

The problem to be considered is the calculation o,f the angular resolution corrections as

a fun~tion of the geometry ~nd the cross section of the Nal detector for gamma radiation.

The c~mputation is of interest to experimenters making directional angular correlation

measurements of gamma-gamma cascades. 1

In the experiment the Nal detectors are right circular cylinders of height t == 2.54 cm

and diameter 2r 3.81 cm. The point source of gamma rad iation, S lis placed on the

axes of the cyl indrical crystal s. The di stance his measured from the source to the front

face of each crystal. The angle between the crystal axes is (jo' This configuration is

illustrated in Fig. 6.1. It is assumed that the gamma radiation detected by the crystal

is directly proportional to (l - e-7'x), where T is the absorption cross section of the

crystal material and x is gamma-ray path length in the crystal. Also it is assumed that

there is no radiation loss between the source and the crystal s.

1 E. D. Klema and F. K. McGowan, Phys. Rev. 91, 616 (1953).

z

t

CRYSTAL ,1

x

Fig. 6.1. Geometry of the Crystal Detectors.

6.1

6.2

The corrections to be calculated require the evaluation of integrals of the form

f dill dil2 P-e,(cos e)(1 - e -T1x1)(l - e -T2X 2)

for ~ = 0, 2, and 4. Subscripts 1 arid 2 refer to crystals 1 and 2, respectively. The

quantities ill and 02 are the solid angles subtended at source S by the crystal ends;

e is the angle between two arbitrary radius vectors from the source to each of the crystals;

and P ~(cos e) is the Legendre polynomial of the first kind of degree {.

After a series of transformations,2 the integral l{ can be written in the form

where

x (a)

x (a)

and

l{ 41T2 P~(cos eO)(J{)1{J{)2 •

a 2
== f sin a P {(cbs a)[1 - e- Tx(a)] da

o

r
~ a ~ tan- 1 x 1 (a) t sec a for 0 == a 1 h + t

e= x
2

{a) r csc a - h sec a for Q
1

P o(cos a)

P 2(cos a)

1 ,

1
- [3(cos a)2 - 1] ,
2

r
< a ~ tan- 1 -

h

P 4 (cos a) 8 [35(cos a)4 - 30(cos a)2 + 3] •

Hence, the problem to be coded is the evaluation of the integrals,

a2 '

7), for h = 7, 10;

{ = 0, 2, 4; and T = 0.123, 0.130, 0.150, 0.2, 0.3, 1.0, 2.0, 3.0, 5.0, 10.0, and 40. A

preci sion of five significant digits is required.

SCALING

Since the arithmetic of the machine requires that numbers be on the interval (-1, 1),

in most problems some of the parameters or results must be scaled. That is, numbers

which lie outside the range (-1, 1) must be multiplied by factors which will cause the

numbers to be in machine range. For a machine representing numbers in the binary

system, it is usually convenient to scale by powers of 2; for then seal ing and unsealing

are accompl ished by shifting. Shifting is, of course, much faster than multipl ication or

division.

It is possible to avoid scaling by means of interpretive routines. An interpretive

routine, as its name implies, is a routine which will interpret numbers in some prescribed

2 .
M. E. Rose, Phys. Rev. 91, 610 (1953).

.,

• • • • • • • • • .'
• • • • • • • • • • •

wr·

•

fashion other than the ordinary ORACLE interpretation. For example, it is possible to

design routines which will perform floating decimal or floating binary point arithmetic,

c.ompl~x arithmetic, etc.3 However, since these routines are built up of ordinary machine

arithmetic, each operation takes longer, by a factor of 10 'or more. For problems requiring

real-number arithmetic, in which the range 'of numbers to be handled can be closely

approximated, interpretive routines' are generally unnecessary. In the problem at hand,

scaling is.simple throughout, and hence a fl()ating point routine is unnecessary.

,The integrand of] ;:}h, T} has been plotted for a few parameter values in Fig. 6.2.

. It is seen that] { decreases as h or { increases; and] { increases with increasing T.

The maximum value of] {, approximately 0.04, occurs for h = 7, { = 0, and T = 40. The

minimum value, about 0.004, occurs for h = 10, { =4, and T = 0.123. For all parameter

values the integrand of] {(h, T) remains less tha~ 0.25. The values of] {(h, T) and

the integrand are seen to be in machine range. The integrand peak comes between a1

and a 2 0

For h = 7, a
1

= 0.197 and a2 =0.266; and for h = 10, a 1 = 0.141 and a2 =0.188. For

thi s range of a, sin a is a monotone increasing function of a with range 0 ~ sin a < 1.

P ,e,(cos a} is a monotone decreasing function and 1 ~ P ,e,(cosa} < 0.6 for the integration

range 0 ~ a ~ a
2

0 To keep intermediate results in range, the polynomial s are calculated

from the formulas

sin a· P 2«:os a) [+ (cos2 a sin a - sin a)] + (cos 2 a sin a)

P4(COS a) ~ H 23(~ cos
2

a - :)] cos
2

a}
3

+ -
8

The term [1 - e-7"x(a)] is monotone decreasing, and

o ;£ 1 - e-7"x(a) ;£ o for 0 ;£ a ;£ a
2

•

Since 0.123 ~ T ~ 40, T values wi II have to be scaled. AI so the values of t, r, and h

are out of machine range. It will be convenient to have these three constants scaled

by the same factor, since their roles in the formulas for x(a} are similar. The ranges of

x(a}, sec a, and esc a are

o ;£ x (a) < 2.6 for 0 < a < 0.27,

< sec a < 1.1 for 0 < a < 0.27 ,

3.8 ;£ esc a ;£ 6.7 for 0.15 < a < 0.27 .

Hence T, r, t, and h are adequately scaled by defining

T' T. 2- 6

3e . L. Perry, Manual for the ORACLE, Section 7.

6.3

WI'

0.20

0.15 Icrli :Y' I U \

~ 0.10 1/,1
'+-

0.05 1 JI' '

0.10 0.20 0.30
a

0.25

0.20 1-1 --+----/--

0.15 1 .Mil ' 1\ - I 1 I "

t:I

0.1 0 I § " II. II I I \

0.05 I AI' II ~ II"c: I \ II I

O.tO 0.20 0.30
a

Fig. 6.2. f(a)."" sin a p{ (cos-a) (1 _ e-'Tx(a».

6.4

• • • e
• ,e)

• • • e

• e

• • • • • • • • • •

,
r r • 2- 4

t' :::: t. 2- 4

b' h • 2- 4

The values of t' sec a, r' csc a, and h' sec a will stay in machine range, and the scaling

imposed on x{a) and Tx{a) wi II be

x 2- 4

T'X '(a) Tx{a) 2- 10

To avoid unnecessary loss of significant digits through overscaling, the 78-digit product

of T'.x:'(a) will be obtained. Then the integral part of X Tx(a) will be multiplied by

2"':39 and stored in o~e register, and the most significant 39 digits of the fraction~1 part

of X will be stored in another. The unscaled va lue of e-x is in machine range and can

easily be evaluated when the integral and fractional parts of X are known. The integrand

can be assembled as

sin a P {(cos a) - sin a P {(cos a) e-X(a,)

to avoid having to represent 1. Of course, representing 1 by 1 - 2- 39 is a satisfactory

alternative, and there are others.

INTEGRATION METHOD

Any integration method wi II be satisfactory which satisfies the criteria that the

required precision can be obtained in a reasonable length of time and (2) the algo~ithm

is simple to express in machine code. Frequently a simple procedure, requiring many

repetitions, is preferable to a more subtle procedure which cuts down' the number of

steps. Thi s is not surprising, since the commands that a machine is able to carry out

are simple and the most striking ability of a machine is its speed and accuracy.

Simpson's rule sati sHes the preceding criteria and wi II be used to obtain the integrals

J{(T, h}. In its simplest form, Simpson's rule is given by4

f a,3 tJ.
f(a) do, = - [f(a1J + 4f(a

2
) + f(a

3
)] + R(~

a,1 3

where

0,2 - 0,1 0,3 - 0,2 tJ.

and

0,1 ~ g ;£ 0,3 •

4A• S. Householder, Principles of Numerica/.Analysis, p. 236, New York, McGraw-Hili, 1953.

6.S

6.6

The remainder or error term, R(el, is dominated by the term

where

and

~S f(iv) (e-)
90

a1 ~ e ~ a3

[
d4f(a) 1 ·

f(iv) en . ~ a.=f

It was possible to obtain by desk computer an estimate for the upper bound of f(iv) (e).

Using this bound, u, the integration interval /1 was determined so that the residual error

in Simpson's rule for 0 ;? a ;? a
2

is

R (a 2) /1s
28 90

1
u < - 10- 7

3 ·

CODING THE PROBLEM

Problem coding is greatly faci litated if a large library of subroutines is avai lable. For

thi s problem the followi ng subrout ines are. needed: (1) sin X, cos X for 0 ~ X ;? 0.3,

(2) e-X for 0 ~ X ~ 110, and (3) conversion of binary fractions to decimal fractions.

Subroutines for Simpson's rule integration are avai lable, but these routines scale the

integral or change the integration interval and hence are more time-consuming than is

necessary for the problem. That is, since integral bounds and interval size can be

predetermined, computation time can be saved by making use of this information in the

code. The P-e,(cos a) required for this problem are so simple to code that a subroutine

is not even considered. The flow chart, main routine, and storage table are given in

Fig. 6.3 and Appendixes A and B, respectively. The program has been written in relative

code.S

ERROR ESTIMATE

An upper bound for the magnitude of an error in the computation of a quantity q wi II be

denoted by 2 (q). Or preci sely,

2(q) ~ \q - q\

where q is the true value of the quantity and q is the computed value of the quantity.

2 (Mr), 2 (M), and 2 (D) are the maximum errors possible in performing the machine orders

Mr,M, and D. Error estimates5 for the sin a, (1 - cos a) and e- X subroutines show that

2(sin 2 (cos a) 1.2 . 2- 37 ,

SM. R. Arnette, Manual for the ORACLE, Section 5.

• • • • • • • • • • • • .'
• • • • • • • • •

••••••••••••••••••••••

?'
'"

A

Read in:

o

1. Constants {O -4

and

Parameters 1C 29C

Main Routine 1A - 97A

2.Edit words mo - 6600

Subroutines

sin G, 1 cos a W1- 2201
-x e W2- 3602

Binary fraction W3 - 1303

to Decimal fraction

13.5 sec, 1 time through

Insert A in box G 7

Set M(Tkl = M(T;) in box F

0.1 msec, 6 times through

F

Set

a 0
J 0
T Tk

Increase M (Tk)

GO

Compute

'-!t(h, T)

1.2 6.1 sec
66 times through

0.4 msec, 66 times through

Initially relevant variables:

IVI(h;' M(h;) E (2A)II

M[tdhil] M[6(hi l] E (3A)fI

M[Oi(hil] = M[01(h1l] E (4A)IV:

M[02(hi)] M[02(h1)] E (5A)lV

M(W/) = WO E (84A)IV

4f=

E ~

T1~Tk

HO

Edit and print

h,,.g, T and '!J;(h,Tl

Edit 0.45 msec,
Punch 0.5 sec,
66 times through

0.13 'msec

C

Set

h/ h; ~ w
6(h) 6(hi) ~ 4F, 6F

0i 0 1 (hi) ~ 2F

02=02(h;) 3F

In~rease M (h;', M[6(h;l]
M [01 (hil] , M [02(h;l]

Set 1/= O. A A1--;" A

1.23 msec, 2 times through

0.16 msec

y

0.18 msec
66 times through 6 times through 2 times through

I J K

L

1/+
M (Al M(A)

A~A

4.3 msec, 6 times through

Fig. 6.3. Flow Chart for the Calculation of the Angular Resolution Corrections.

G8

GiS

GH

't2 (cos2 a sin a-sin a) + cos2 a sin a ----;,. A

cos2 a- ~)] cos2 a + 1.} sin <1- A 64 8

G49

12F

'i - sin a . PI" e -x -+ A

Sin <1, I cos <1

Subroutine.
Sin a __ Q, 28

C = • - cos a ---;0.. A. 38

GI2 GIG

X': t'lcos a -- Q

8J=i 4f2+

1- (rj + f3)

J + 8J J 15F

Fig. 6.4. Detailed Flow Chart of Box G (Fig. 6.3).

- c + 't2 + 't2

cos
2

a --

G17

X' 1'" x'

X,p * ----;» I B

XFP 28

Out order to A

G25

G27 G28 # .

~"'="'(h) HJ(hT)-J~ Ji-2 (4F_6F) .l • - box H

'

• • • • :.
• • • • • • • • • • • • • • • • •

so that

HI

H4

Shift to obtain

W Q

W=b.lf1 t2 / 1
(decimal

Punch W

H2

Binary Fraction to Decimal Fraction

Subroutine. Sign plus nine decimal

digits of

~ (b, ,) A

H5

Increase M(W'1 in bax H3

H3

Shift off sign end first decimal digit
of ~ (b, ,J. Decimal ward W//e A

W" = /. /4/5 is 0000 (decimal forml*
W' --;,.

W/ 000 000 b./! tl 12 (decimal form)*

* In W", w', and W, the if indicate decimal digits of {g(b, ,).W-7 ; h denotes the decimal digit identifying

the parameter b (h = 1 for h = hi and h 2 for h = hi<); .L = 0, 2, or 4; and '1 t2 is the decimal number 01 for

, '4' 02 for ,= '2' . .. and 4i far, 'H' The 66 edit wards W / are read into the machine in Box A.

Fig. 6.5. Detailed Flow Chart of Box H (Fig. 6.3).

2 (e-X) 1.3 . 2- 36

2(cos2 a) 22(cos a) + 2 (Mr) 2.53 . 2- 37 •

Since 2(sin a . P,e,) ~ E(sin a· P4), the error bound for sin a· P{, is d~termin~d from

the computation of

sin a· P4
. {[(35 30 sin a 23 cos2 a - cos2 a -

64 . 64 + !}
Hence

2 (sin a . P 4) 23
[:: 2 (cos2 a) + (Mr)] + 2 (sin a) + 2 (Mr) 0.543 . 2- 31 •

Recalling that

r, h'
x'

sin a . cos a

it follows that

2 (x') 2 (sin a) + 2 (cos a) +.22 (D)

2.90 . 2- 37

6.9

6.10

In computing X' X· 2- 10 = T'x', the 78·digit product is formed, and the integral part

of X and the fractional part of X are stored separately.

and

Since

Now

E(x) 2(x'). 2 10 2.90.2- 27

E(e- x)

I

2(f)

2 (X) + 2 (exp) 2.91 . 2- 27 •

. p . p -x
Sin a· {, - Sin a· {,. e

22 (sin a· P{,) + 2 (e- x) + E (Mr)

2.98 . 2- 27 •

J
~

3
+ 4/2 + 13)

is calculated in the form

~ ~
J 3 (1 1 + 13) +"3 (4/2)

and T pCh. T). is the sum of the J's over the integration interval; therefore

~
2(J} = 3 62(/) + 22 (D) + 22(Mr)

and

a2 [3 2- 39
] 2 [J{,(h,T)] 2~ 2(J} = a2 2(f} + .~ + R

where R is the residual error in Simpson's rule. The interval was chosen so that

~ 0.002 > 2- 9

whence

E [J {h,
1 .

< 0.27 (2.98 . 10- 27 + 3.2- 30) + "3 10- 7

1 < 10- 8 + _ 10- 7

3

1
< - 10- 7

2

Since the minimum value of J{,(h~ T) is larger than 0.003, the required precision of fi'(e

significant digits wi II be obtained.

.,

•

• • • .' • • • • • • • • • • • • • • • • • .'

.The error 'estimate given- here could be sharpened. Precise error bounds are desirable

for' subroutines,si rice subroutines 'will be used many times for problems with varied

precision requirements. However, for a particular problem, the code will be used only

once or a few times, and any error bound which satisfies the problem precision require

ments is satisfactory. If an error bound indicates that the required precision cannot be

obtained, sharpening the estimates may help, or it may be necessary to plan different

schemes of computation.

TIME ESTIMATES

The time required on the ORACLE to pass each box in the flowchart and the number

of passes through the box during the computation of the problem are indicated on the flow

chart; Fig. 6.3. Total time ,estimates are listed in Table 6.1. The problem has been

solved on the UNIVAC, and the actual time required is given in the table. The time

I isted for the ORACLE is ba'sed on the actual time for the UNIVAC and the relative

maximum and minimum estimates for the two machines.

TABLE 6.1. COMPARISON OF TIME ESTIMATES ON THE UNIVAC AND THE ORACLE

OPERATION ORACLE. TIME UNIVAC TIME

Computation, sec 80-400 500-2800

Read, sec 13 3

Write, sec 33 1.2

Total (range), min 2.1-7.5 8.4-47

Actual total, min 3.3 18

Planning the problem, including transcribing from physical to computational formulation,

determining the integration method and interval size, making error estimates, and deciding

upon general organization, required about two weeks, that is, ten 8-hr days. This prepa

ration would be required, of course, for high-speed or desk-machine computation. Coding'

the problem required an additional week. Computation of the problem using a desk com

puter is roughly the equivalent of 18,000 ten-digit-number multipl ications. From 500 to

700 ten-digit multipl ications can be made each 8-hr day. Hence, solving the problem

using a desk computer wou,ld require from 25 to 35 days. The following tabulation summa

rizes the comparison just made.

Operation

Problem preparation

Coding

Computation

Total time

Desk Computer

2 weeks

5-7 weeks

7-9 weeks

High-Speed Computer

2 weeks

1 week

3-15 min

3 weeks

6.11.

.1

.' It would probably be more realistic to increase the computation time for desk machines

by a factor of 25 to 50%, because the computation is long and sequential and some repe- ." titions and checks would have to be made.

.' Appendix A

CODE FOR MAIN ROUTINE •
(Addresses Relative to Parameter A) • Register

Left-Hand Right-Hand
Explanation

Box

Order ·Address Order Address No .• • lA . Ld 000

SOD}
Read in ·coristants and parame- A·

Ld .ters, main routine, edit words, .' and subroutines

® 2A fC [lC]

u= }
Init. reI. C • a.o.aIJ.., h~ = h'-+ IF

Z

3A C [2C]

4~}
Init. rei.

a.o.aIJ.., ~. ~ 4F • t

4A a.o.aIJ.., 6F

[3C] }

~. ~ 6F z • C Init. rei.

SA a.JJ.f1{J. 2F

[4C] }

a1 2F

C Init. rei. • 6A a.o.aIJ.., 3F a2 -+ 3F

C

IB} • 7A L 2 *4* 1B

a.o.aIJ.., ••
SA H 2A

2A}

M(h jJ + .4 -+ M(h 2) • o aDO M(h 2) 2A

9A H

OaDO} 3A • Increase M(~.)
. t

lOA C 1B .

4A}
Increase M[a 1(h 1)] • H

llA 000 a 4A I} • H M(a 2) M(a 1) + 1

12A OOOa SA • C 3} Set -e,' = 0
13A a.o.aIJ.., 13F • C 27C T-e, .\1 - - -+ A

6J2 • •

•

Register

o 14A

15A

o
16A

17A

lSA

Left-Hand Right-Hand

Order Address Order Address

r aaOo 33A

'0000 17A

a.o.tJJ:L 7 F

C , [M(r;)l

C . 17A

c

fc

G.a.JJJ:L

G.a.JJJ:L

H

26C}
3

15F

5F}

19A OaDO 17A

20A L 10

21A c 3

o 22A fc 4

23A c 21A

24A L al

CD 25A fC 7F

26A a.o.tJJ:L 7F

27A C 27A

28A qqqq ,SF

29A T~ 30A

C 26C

OaDO 73A

aaaa

ao..aa

H-

OaDO

H

Q

T-t

c-

c

16F}

14F

:A}
6F}
7F

lOl}

3B

o

Explanation

Insert A

Set M(r;) = M(ri)

Seta 0

Set J = 0

Set r' rit

M(rk) + 1 M(rk)

Set Il = III

Set 11 = o.

Set j -1

M(t> = M{f 2) in box G20

a.+ ~ a 7F

a Q

Go to sin a, (1 - cos a)
subroutineG

sin a SF

-c = -1 + cos a A

If -c < 0" go to (30A),

If C = 0, set -C = -1 *

Box
No.

D

E

F

Gl

G2

G3

G5

G6

(a)The sin a, (1 - cos a) subroutine assumes that a is in Q upon entry; and sin a is in Q and

26, and (1 - cos a) is in A and 36 upon. exit.

6.13

• •• Left-Hand Right-Hand
Explanation

Box
Register

Order Addres s No. •• Order Addres s

61A H . 1

0000 58A M(f.) + 1 M(f.)
. Z % • 62A Tt 25A Go to (0= (25A) I

C 3 o = I A G15 • . l

63A T.e 58A Go to G20
rC lOC G16 • 64A Dr 9F x' = t'lcos a EQ

T.e 51A Go to G17 • 65A C 6F G23
Q 3 O Q • 66A Rq 2 W4 A, Q

Dq 25C (W4)/(3/4) = &13 • 67A qqqq 1B W3 1B

M 17F • 68A Lqy 2 tV3 • 412.€A

aaa.a 2B tV3 • 412 2B • 69A Q 1B tV3- Q • C 16F

70A H 18F /1 + 13 EA

0J'10.a 3B •
71A Mr 38 W3 (f1 + 13) • H 2B 8j = tV3 (fl + 4/2 + 13)

72A H 15F J + 8J - J • 0J'10.a 15F J - 15F

73A Tr [IL] Go to 0 (set in 20A, 79A) • .6) rC 6F t:,. A G24

74A L • H 7F a + 2tJ.

75A H- 3F a + 2tJ. - a2 • T -r 79A a + 2tJ. < a21 go to G26

76A C 3F a + 2tJ. ~ a2, a2 A G25 • H- 7F a2 - a

77A R t:,. = %(a2 - a) • 0J'10.a 6F t:,. 6F

6.16 • •

••• ,:. J- '.
~.J

. \ "'_, ~ ~ 'I

',.,.
:.' ! "'" , ':'

......•
-'1

o .. ~ :.
• .;
.:
.' '. .'
.~ .,: .:
•
".' ..;

• 0 !.
, .~:1.

®

Left-Hand Right-Hand
Register

Order Address Order Address
Explanation

78A C 26C

79A DaDO 73A

80A a.aaa 16F '

81A Stall

82A a.aaa 6F

83A C 83A

84A L 8

85A Lqy 24

86A C 84A

87A OOOa 84A

88A H- 21C

89A C o

90A H 13F

91A C 1F

92A T-{ 2A

Ro

Fe

T{

fC

Q

10

18F

22A

4F

lSF

Set f.L = f.L2

13 -+/1

Got00

J-t (h, i) ~ Q

T-t 1D3 Transfer to BF -+ DF
subroutine C

i 1i 2i 3 i 4i si 6 0000 =W"EA
Q [M(W')] 000 000 h-tt 1t 2 = W'EQ

Pq

H

C 5F

T -r lSA

L

T --t 93A

H- 5C

Stop

M(W, init. rei.

W = h-t t 1 t 2 i 1 i 2i 3i 4i si 6 EQ

Punch result

Increase M(W,

T' - T~ 1

T' < T~ l' go to CD
, .' 1* A T = T 11 , - -+

-2*EA

-t' - 2* -t' - {;

-t' < 2*, go to box L

-t' = 2*, test h'

h' h' - 2

h' < h; go to 0
h' = h;, stop

Box
No.

G26

G27

H1

H3

H4

HS

J

K

(C)The binary-fraction to decimal-fraction subroutine assumes that the binary fraction to be con

verted is to be found in Q upon entry. The routine leaves the decimal fraction in A upon exit •

6.17

•
Left-Hand Right .. Hand

Explanation.
Box

Register
Address Order Address No. Order

93A C 13F {'- A

H- 0 {'+ 1* {'

94A a.tJJ:J..a 13F {' - 13F

H 13A M(A1) + {' = M(,\)

95A OOOa 96A M(,\) 96A '

Stall

96A Stall

C [M(,\)] ,\ A

97A T{ 14A Go to (2)

6.18

• • • • • • • • • • • • • • • • • • p.
• • •

REGISTER

o
.1

2

3

4

Appendi~ B

CONSTANTS AND PROBLEM PARAMETERS

CONTENTS (in symbol ic form)

UNIVERSAL CONSTANTS (Absolute Addresses)

_2- 39

2- 19 + 2- 39

2- 1

o
-1

TEMPORARY STORAGE (Addresses Relative to Parameter B)

1B

2B

3B

4B

5B

6B

1F

2F

3F

4F

5F

6F

7F

SF

9F

10F

llF

12F

13F

14F

15F

16F

17F

lSF

19F

(rnitially irrelevant)

VARIABLE STORAGE (Addresses Relative to Parameter F)

h'

a 1

a2
~(h)

T'

~

a

sin a

cos a

cos2 a >- (initially irrelevant)
sin a P {(cos a)

E e -x

{,' = \' '2)*

j' = -1 for 1 = 12 i
j' = 0 for 1 = 13
J i f-e(h, T)

11
12
13

6.19

-6.20

REGISTER CONTENTS (in symb~1 ic· form)

CONSTANTS (Addresses Relative to Parameter C::)

lC

2C

3C

4C

5C

6C

7C

BC
9C

10C

"11C

, l2C

13C

14C

15C

16C

17C

l8C

19C

20C

21C

22C

23C

24C

25C

26C

27C

28C

29C

~ .. , /".

.,.
h; = 7 . 2-4

~(h'l) == 0~OQ2

a , (h'l) == OJ97

a
2

(h
1
) = 0.266

h; = 10 . 2- 4

t1(h 2) = 0.002

a , (h 2
) == 0.141

a
2

(h
2

) = 0.188

,,' = 1.905 . 2- 4 '

t' 2.54 ~ 2- 4

r; == O. 123 . 2- 6

7"; == 0.130 . 2- 6

r; == ~.150 . 2-:-6

r; == 0.200 ". 2- 6

7"; == 0.300 • 2- 6

7"6 = 1.00 . 2- 6
- '

7";, == 2.00 • 2- 6

T~ == 3.00 .2- 6

7; == 5.00 . 2- 6

7{0 == 10 . 2- 6

7; 1 40· 2- 6

35 . 2- 6

30 . 2- 6

=i 8

~ 4

P2 M(r;) iL, 0

T-t A, 00

Tr A2

It ~3
o 0

o 0

