

—

0 00O 00 0"
+

. LT i

A

» -

’

Oy Graves Coy rY Lo THE O/Kjr{/
/Dwmfeﬁ— bj his witle + (iht[,;we,r)

- ORNL
Central Files Number
53-12-2

C;py 'No: 5_&10 -

-

MANUAL FOR THE ORACLE

PREPARED BY THE MATHEMATICS PANEL

A. S. Householder, Chief
- J. Moshman, :Ediforvv

B

December 1953

OAK RIDGE NATIONAL LABORATORY
Operated by
CARBIDE AND CARBON CHEMICALS COMPANY
A Division of Union Carbide and Carbon Cotpoﬂ:non
Post Office Box P
Ook Ridge, Tennessee

- -

-

7

3

Sie 9 6 0000000000000 0 09
5 - B X«\ 2 . 3 4 : w i g . ! v : h > - . B 4t rf ‘\\ et
£33 e

T

B

0T TRRETYRERGETON T TR T

7 T———

e

-

y -

Section

~N O bh W N -

CONTENTS

Title

Automatic Digital Computation
Electronic Digital Computers
Basic Operations of the ORACLE

Flow Charts and Coding

Use and Construction of Subroutines
Coding a Complete Routine

Interpretive Subroutines

Author

W. C. Sangren

C. L. Perry

A. S. Householder
J. Moshman

M. R. Arnette

"~ 'N. .M. Dismuke .

C. L. Perry

—

- . . - 3 - -

,
¢

<

FOREWORD

A series of lectures was presented at the Oak Ridge National Laboratory in Junuory\
1953 to acquaint Oak Ridge personnel with the theory and application of high-speed
electronic digital computers, in general, dnd.wifh the ORACLE, in particular.

" In essence, this manual covers the subject matter presented in the lectures. Minor changes
were made to include current information or to adopt such modifications that subsequent
experi‘ence has indicated to be desirable, ‘

In its entirety, the manual should serve to orient those who either formulate problems
for solution on the ORACLE or engage in the progrommmg and coding of problems for solu-
tion, It is hoped that this manuadl wuH prov:de answers to most of the queshons that
might arise-in the minds of potential dsers of the Laboratory's high-speed computing
facilities. EE '

The various sections are being issued sepﬁrately to be ihsertgd in the loose-leaf binder,

This format was adopted for three reasons:

(1) 1t will hasten the availability of some of the sections as théy are processed,

(2) It will enable changes to be made easily.

(3) It will facilitate the addition of new sections that appear o be needed. ,

Although the component parts are credited fo one or two people, much of.the content is
a result of the united effort of all merhbers' of the Mathematics Panel who have liberally
and construcfive!y criticized the material contained herein. = Similar contributions were
made by the Research Participants and ORINS Fellow who worked with the Mathematics

Panel during the period of genesis of this material.

ELECTRONIC DIGITAL COMPUTERS

C. L. Perry

ORNL
Central Files Number

53-12:2

Section 2

2. ELECTRONIC DIGITAL COMPUTERS
- C.'.L. Perry '

The purpose of this chqp;‘er is to present, in a general fashion, a deséripfi'on of aufc'a-
matic digital cdmpufers. In an earlier ch‘apt'er, it was stated that the computing steps
performed by automatic computers are theverlementa'ry arithmetic operations, addition, sub-
traction, multiplication, division, and certain Iogical operations such as the transfer of
information and the stopping of the machfne. Bogically, elecfr_canic digital computers are
computing devices which automatically pérform, by electronic mé_ans, a se‘quence‘of these
arithmetic and logical operations. The éequence of operations depends on the problem to

be solved on the computer. A ftrivial change in a problem parameter, for example, degree

‘of a polynomial or coefficients of a differential equation, does not represent a different

problem; in these cases, the sequence of operational steps does not changes [f the com-
puter is to be used for many different problems, the effort involved in preparing the various

sequences may, over the lifetime of the computer, exceed that of building, operating, and

maintaining the machine. A computing sequence, or program, once evolved may be used:

for many versions of a problem by suitable adjustment of the parameters. Thus electronic
compuférs save human effort in the preparation of problems for computation, as well as in
the computational steps. v '

Electronic computers that can be used without structural alteration for a wide variety of
problems are called‘generalr-purpose computers, Similarly, é§mpufers limited to a small
class of problems are called special-purpose computers. QOak Ridge's ORACLE is a gen?
eral-purpose computer. The SPEC [Special-Purpose Electronic (NEPA) Compm‘er] solves
only systems of linear algebraic equations or problems reducible to that form, ;Many of

the following remarks apply to both general- and special-purpose computers.

HISTORICAL DEVELOPMENT

Although plans for an automatically sequenéed, mechanical, general-purpose ’compuferi
were formulated by C, Babbage in England’ as early as 1835,7 it wos' not until 1944 that
the first automatic computer, called the Aufomqfic‘Sequence-Controllved CaICUlaror, or
Mark I, operated successfully, The design ana construction was started in 1939 ot Endi-
cpf%, New York by the International Business Machines Corporation,
" Mark |, now in operation at Harvard University, was designed by H. Aiken, B. Durfee,
F. Hamilton, and C. Lake. It is an electromechanical device that uses mechanical counters
actuated by a 4-hp motor and electromechanical relays. (The relay was invented by Henry
in 1835.) The automatic sequencing of Mark l's“orifhmeﬁc operations is controlli‘ed by a
punched paper tape. Each row across the mbe indicates a computing step. The paper
tape is placed in the computer so that the first row, indicating the first computing step,

is at the reading, or sensing, station. The computer starts the computation by performing

VEor additional details see D. G. Hartrée, Calculating Instruments and Mdchinés, ‘Urbana, Uni-
versity of lllinois Press, 1944, It is interesting to note that automatic analog computers conceived
by Kelvin in 1876, but designed later, operated successfully before digital computers.

2.1

2.2

the computing step indicated by the first rows The paper tape is then advanced so that
the second row is at the reading station, the second computing step is performed, etc.
The computer continues in this manner until it comes to a row indicating the operation
““stop computing’’ or until the computer is stopped by the operator, Another means that
Mark | has of terminating the computation is a condifl;onal stop, which mdy be verbally
stated as ‘‘stop if the computed number is negative; otherwise, continue computing.”
Provision was made in Mark | for the automatic transfer from the sequence on one tape to
that on oqother so that a special function, say sin x, could be evaluated. This transfer
and other new operations are ‘presenf in computérs of more recent dfesign.2

Mark |, with an addition time of about 14 sec, is slow compared with electronic com-
puters, whose time for additions varies from 0.01 to 0.00005 sec, the latter figure being
the time for computers such as the Whirlwind and the ORACLE. Mark | is being modified
to make it a faster and more versatile computer. '

The ENIAC (Electronic Numerical Integrator and Computer), designed and constructed

during World War I, was the first truly electronic digital computer. Its addition time is

0.0005 second. Now in operation at Aberdeen, Maryland, the ENFAC was completed in
1946 at the University of Pennsylvania.
COMPARISON OF AN AUTOMATIC COMPUTER WITH A HUMAN COMPUTER
AND DESK CALCULATOR

A graphic description of the mechanization of computing can be realized by comparing
automatic computation with desk computer calculation for which machines such as the
Friden, Marchant, or Monroe calculators are used. In usiﬁg a desk calculator, the operﬁtor
inserts in the keyboard a nu’mber that represents numerical data, parameters, or intermedi-g
ate results, He then presses an operation key to add, multiply, subtract, etc. Following
the completion of the indicated computing operation by the desk calculator, the operator
then records the computed number on a sheet of paper as an answer or as an intermediate
result. Alternately, he may leave the number in the calculator as an intermediate result.
The operator then continues to the next computing step.

The computing steps mentioned above are mechanized in the following manner. The

‘numbers used in the calculation are stored in units of the computer synonymously called

storage registers, memory registers, memory cells, or cells. The operations characterized
by the keys in the desk calculator are specified by a numerical code for the computer,

The location, or storage register, of the number to be used in the computing step is also
specified by a number. The electronic, or electromechanical, computer automatically de-
codes the numerical code and performs the indicated computing step. The computer also
automatically sequences itself; that is, after one computing step is performed, the next

one is started. Some computing machines have a stop operation; the computer stops when

2Eor additional detail see A. W, Burks, H. H. Goldstine,and J. von Neumann, Preliminary Dis-
cussion of the Logical Design of an Electronic Computing Instrument, Princeton, Institute for
Advanced Study, 1946, a paper which proposes and describes in detail the features included in
computers of recent design, ‘

it performs the stop operation. Other computers, such as the SPEC, are manually stopped
by the operator. ,

The program, which consists of the numbers and the numerical code for the computing
steps, is read into the computer, and the answers are printed, or read out, via a unit of
the computer called the input-output unit. The storage, or memory, unit consists of a large
number of storage registers. The part of the computer that decodes the operation codes
and sequences the computing steps is called the control unit. The arithmetic unit is the
part of the computer in which the arithmetic operations are performed.

Figure 2.1 is a block diagram which schematically shows the relationships between the
four basic units of automatic computers and the corresponding units in a desk calculator-

human operator combination.

INPUT.-QUTPUT ’ INPUT-OUTPUT UNIT
Conversation . " Numbers
Reading Results
Writing * Instructions

HUMAN COMPUTER CONTROL UNIT.
CV) « (invention)* Timing
CA: Sequencing
DESK CALCULATOR [1€) WORK SHEET ARITHMETIC UNIT STORAGE UNIT
. X X Multiplication Instructions
Multiplication Instructional Headings Division (Numerical Code)
g;\g’s:on Numbers - Addition Numbers
Sub lho‘n .) Subtraction Parameters
ubtraction BOOCKS ON : Comparison*** Initial Values
NUMERICAL METHODS) Intermediate Results
TABLES - Tables
HUMAN CALCULATOR WITH ELECTRONIC DIGITAL COMPUTER

DESK COMPUTER

*An invention by the electronic computer is either a transient (nonrecurring) or a systematic (recurring) error,

**Gate is.the computer terminology for a device used to control the timing of transfer of information, In the symbol ‘é—, :
the arrow through the circle indicates the path for transfer of information. The other arrow indicates the source of the impulse
for the opening or closing of the gate,

***Comparison of two numbers is o trivial operation for a human computer and is not mechanized in desk calculators. The
comparison operation determines which of the following statements is true, A 2 Bor A < B, In the ORACLE, B = 0,

Fig. 2.1. Block Diagram Comparison of Human Calculator with Desk Computer and Electronic:
Digital Computer. '

2.3

2.4

The wires in the computer that form paths for the transfer of information are symbolized.
by lines in the diagram; the arrows indicate the direction of transfer. When information is

transferred from *‘A’’ to *‘B’’, the information is reproduced at B without being erased at A.

MACHINE CODE

The computing steps to be performed by _the computer are specified by a numerical code.

Some of the digits in this code for a single computing step indicate the operation. The .

other digits represent either an address or some other information relative to the operations
The address is a number specifying a particular storage register in which the operand, or
number on which the operation is to be performed, is to be found. An example of a differ-
ent type of relevant information occurs in a shift operation where the number of places to
be shifted forms the address part. The numerical code for one computing step is called

a command, or an order.

For some computing machines, as for the ORACLE and all other very high-speed com-
puting machines, a command consists of two parts. One part of the command specifies
the operation to be performed and is called the instruction; the other part is called the
address, even though it may not actually be an address in the sense described above. The
code for which the command consists .of two parts is called a single-address code. The
code for other machines consists either of three parts, called a two-address code; four
parts, called a three-address code; or five parts, called a four-address code. A two-address
code is used in Mark | and in the ENIAC, Mark IV and the MIDAC use a three-address
code. The SEAC uses a four-address code, There are advantages to each of the above-
mentioned codes. The two-address code has the fewest advantages. The single-address
code is the most flexible. A single-address computer can be used as a three-address
computer by using a technique called interpretive subroutine operation (cf., sec. 7). Single-

address computers require simpler design and fewer parts than do the other computers.

In a single-address computer, a computation, such as the addition of two numbers and

the storage of the sum, requires three commands.

First Command, Clear the accumulator® and transfer the number A, located in M(A),? to
the accumulator. v

Second Command, Add the number B located in M(B) to the number A now in the accumu-
lator, ‘ ,

Third Command. Transfer the result C = A + B from the accumulator to the address
M(C). C is also left in the accumulator. The number previously in M(C) is replaced by C
and the previous contents of M(C) are lost. '

If M(A), M(B), and M(C) are 100, 101, and 102, respectively, the three ORACLE commands
are 24100, 20101, and 5F102. .

3The accumulator is a register in the arithmetic unit which stores sums, products, dividends,
remainders, etc. It serves the same purpose as the upper dial in the Friden calculator or the
middle dial in the Monroe or the Marchant calculator.

AM(A) is the symbol for the address of the storage register which contains A, that is, the memory
location of A.)

In a computer with a three-address code, the computation described above is specified
by one command, for example, 20 100 101:102, if 20 is the code in the three-address opera-
tion for: “Add ‘the numbers in the storage registers specified by the first and second

addresses (100 ond 101) and ploce the result in the storage register specified by the third
address (102),"’ ' ‘

CONTROL UNIT

The control unit in most generol -purpose compufers of recent design contains a register
called the control counters The control counter stores the address of the storage register
containing the next command or pair of commands to be performed, In the ORACLE, two
commands are stored in a single register and are called the left order and right order. The
left order is performed first and is followed by the right order. At the start of a computa-
tion, the contral counter is set to the address of the §’réroge register containing the first
command to be performed.k During the performcnde of the first command or pair of com-

mands, the address in the control counter is automcmcal!y mcreosed. The general-purpose

computers now in opercmon perform from 8 to 100 different operations. In computers with

one-, two-, or three-address codes, at least one of the possible computer operations is an

operation which replaces the address in the control counter by an address which is speci-

fied in the command. o v

In computers with a four-address code, the fourth address is used to indicate the location
of the next command to be performed. Thus, in a four-address computer, the fourth ad-
dress serves as a control counter. In one-, two-, and fhr_.eé-'odd‘ress computers, the com-
mands are performed in sequence. That is, after the com“rjn‘dn'd in address N is performed,
the command in address N‘ + 1'is performed; this process’_is:;"inf_errﬁp’red only. when there is
an operofioh which changes the address in the control counter.

The use of a control counter permits storage of commands: and numbers in the same set
of storage regisfdrs. The Monrobot and Mark IV are examples of computers with two sets

of storage reg‘ister‘s, one for commands and'ano?her for numbers,

Commands are decoded in a part of the control unit ca”ed the funcnon roble. ln addition
to decoding the commands and sequencing the commands the control unit also regulm‘es
the performance of all the other units of the computer. ‘The performance of arithmetic and
nonarithmetic operations by the computer consists of many elementary steps involving the
opening and closing of electronic gates to provide for the transfer of d number from one
location to another. These steps, called subcycles of an operdﬁon, are 6u‘romafico”y
seqqehced by the control unit. Multiplication, for exompié, consists of several shifts and
several additions, as well as the transfer of numbers. .

The complexity of automatic control in computers. has evolved in the following manner:

1. One step operation, or nonautomatic sequencing, is simpr computing by‘ pressing

switches, such as is done by desk calculator corhpb'mtion. Many modern computers, in-

cluding the ORACLE, can operate in this mode either for. englneenng testing of the com-

puter, for checking a program step by step, or for demonstration. The ORACLE can also

2.‘5

2.6

operate in a subcycle mode to test the steps in a computer-operation such ds the shifting

involved in the multiplication operation,

2. Fixed-sequence calculation is the most elemen'rary form. of automatic -sequencing..

The SPEC. is a fixed-sequence computer. Commands are placed in successive storage

registers, such as successive rows on a paper or magnetic tape. The computer performs

. “the commands serially. ‘There is no provision for operations which depend on the value of

computed numbers, as described in the following sections. Furthermore, there is no pro-
vision for skipping computing steps, either in a forward or a bcckw_o.rd direction. In the
SPEC, for example, a sequence of calculations is repeated by starting the sequence again,
and not by skipping back to the beginning from some intermediate point, as is possible in
the ORACLE., _ -

3. Fixed-sequence calculation with a conditional stop provides a modification of the
sequencing of the computer’s operations. The conditional-stop operation terminates fhg
computation if the number in the accumulator has a specified sign. Otherwise, the com-
putation continues with the next command. The conditional stop was the first conditional
command introduced in computers (Mark |) and was the forerunner of other conditional
commands (see paragraph 5 below). The provisions in the desigﬁ of computers for condi-
tional commands and modification of commands are the most significant recent contributions
to the logical design of computers.

4, Fixed-sequenced calculation with automatic subsequenc:ng provides. for the use of

* subsequences of computing steps occurring, frequently in computing, for example, the sub-

sequences for computing the value of a special function. Computing machines like IBM's
SSEC, which was the first electronic digital computer to be retired from compufing, were
designed with a feature which permitted automatic incorborofion of a .subsequénce of com-
puting steps. These subsequences were on paper-tape loops in the SSEC and could be
used as ‘muny times as desired in a computing program. Each time the subsequence was
used, the paper tape moved through its entire loop. ' ’

5. Conditional-sequenced calculation, incorporated in general-purpose computers of re-

cent design, permits branching operations. In a branching operation, the computer takes

the next command to be performed from one of two storage registers, the register chosen -

being determined by a specified condition, such as the s_ign of the number in the accumu-
lator. This type of operation permits a sequence of conﬁpufing steps to be fep_éoféd a num-
ber of times; the number may be computed by the machine itself. S

6. Modification of commands or dh‘eration of the combuting steps by the computer is
possible when commands and numbers are stored in the same set of storage reglsters.
Arithmetic operations may be performed on the numerical code for a computer operahon.
For example, the cpmmand ‘clear the accumulator and transfer the number in register 100
to the accumulator,” with ORACLE code 24100, can bechanged to ‘‘clearthe occumulotor
and transfer the number in register 101 to the accumulator by adding the number 00001 to
the code 24100 to give 24101, The provision for modification of orders makes it p055|ble

to program a calculation with fewer commands. The shorter programs, for computers with
provision for modifying commands as compared with computers without such provision,
require fewer storage registers in the computer, Thus more complicated problems than

would otherwise be possible can be put on a computer which can modify its commands.

ARITHMETIC UNIT

The part of the computer in which the arithmetic operations are performed is called the
arithmetic unit. The arithmetic unit, in most computers, consists of one or two shifting
registers, including the accumulator; one or two buffer registers for the tempbrary storage
of a number during an arithmetic operation, for example, the multiplicand or divisor during
multiplication or division; an adding unit; a complementing unit for changing the sign of a
number; and perhaps a multiplying unit. In all binary computers, multiplication is performed
by successive addition and shifting. The UNIVAC, Mark |, and other decimal computers
have special decimal multiplying units. The SPEC has a high-speed multiplying unit which
finds the product of two decimal digits.

The details of operation of the arithmetic unit depend on the number system used by the

computer. Electronic computers use either the base 10 or thebase 2 number systems [3.75

decimal (base 10) = 11,11 binary (base 2); that is, 3 x 10% + 7 x 10~ +5x10"%2 =1 x 2"

+1%x2% 41 x2°1 +1 %27,
There are many physical devices that can be used to store a binary digit, and they re-
quire only two stable states. In an analog computer, on the other hand, the computing

elements are continuous quantities, such as voltage or length, which may assume one of

an infinite number of possible states in some specified interval. These computing elements

are limited in accuracy by the precision with which the device is constructed and the con-
ditions of operation of the computer; temperature and humidity variation may be very im-
portant, The elements used in digital computers, however, assume only a finite number of
different states; in most electronic computers, the elements assume only two stable states.
In an analog computer, the elements store approximately the correct quantity; the computing
element of a digital computer stores either the correct digit or one that is completely
wrong. Thus, the answers produced by a digital computer operating satisfactorily can be
predicted exactly; the answers produced by an analog computer can be predicted only
approximately.

Some of the bistable elements used in electronic and electromechanical computers and
their_two states are relays (on or off), electronic flip-flops (conducting twin triode with
either one or the other side conducting), magnetic cores (saturated or unsaturated), and
paper tape or cards (hole or no hole)., Several devices developed for sforfng decimal digits
are mechanical counters, multiple-position relays, special-purpose vacuum tubés, and
magnetic-core assemblies. Each such device has ten stable states. Groups of from f&yur to

ten bistable devices have also been used to store a decimal digit.

2.7

2.8

Y

In the SPEC, four bistable elements are used to store a decimal digit. The representa=

tions of the ten decimal digits are:

Decimal Digit : SPEC Representation
0 o011
1 0100
2 . 0101
3 0110
4 om
5 1000
6 1001
7 . 1010
8 1011
9 : 1100

The 0 and 1 represent the two stable states of the bistable elements. The.above scheme
is called the excess-three, or plus-three, coded decimal, The excess-three code is the
binary représentation of the decimal digit plus three.

The simplest computer designs are for computers, like the ORACLE, which use a binary
number system and bistable storage elements. In using an electronic computer with binary
arithmetic, the input numbers and output numbers can be represented in the familiar deci-
mal form. The electronic computer can, as part of the calculation, change the numbers
from a coded decimal form to their binary representations. [n computers yvifh bistable
storage elements, the storage of decimal numbers requires 30% more storage elements than
does storage in binary form. Multiplication and division require more time in a decimal
computer than in a binary computer, unless there is a special decimal-multiplying unit.

In business calculations, it is more convenient to use a decimal computer, In scientific
calculations, where many operations are performed on a few input numbers, it is advisable
to use either a binary computer or a computer with specially designed storage elements for

decimal digits and a special-decimal multiplying unit.

MEMORY UNIT (STORAGE UNIT)

The memory 'is the part of the computer in which the numbers and commands are stored.
Commands are transferred from the memory to the control unit for decoding. Numbers are
transferred from the memory to the arithmetic unit to be used in the calculations. Thus,
the speed of operation of a computer depends on the time required to transfer information
from the memory to the control unit and to the arithmetic unit and the time required to trans-
fer information from the arithmetic unit to the memory. This transfer time is called the
access time, For most computers, the time required to transfer a number from the memory
to the arithmetic, or control, unit is the same as the time required to transfer the number
back from the arithmetic unit to the mémory. ‘

The recent trend has been to design computers with memories that contain a large number

of storage registers and have a low access time. The ORACLE illustrates this trend with

1024 (soon to be expanded to 2048) storage registers and an access time of 10~ second.
Some computers have two types of memories; one is fast, and usually expensive; the other
is slow, usually inexpensive, and capable of storing 10% or more numbers and commands.

The slower memory is called the auxiliary memory. Some relatively simple calculations

require over 104 numbers and 107 computing steps.

A computer has either a static or a dynamic type of memory, In the static type of memory,
all memory registers are stationary; and information can be transferred to or from the memo-
ry at any time. In the dynamic type of memory, the memory cells move with respect to the
information transfer lines; information can be transferred only when the information is in
coincidence with the transfer line. In computers with dynamic storage, it is generally im-
possible to slow down or stop the memory for subcycle checking, The possibility of slow-
ing down or stopping the memory is a significant advantage in computers with static memo-
ries, where subcycle checking can be done, Corﬁputers with dynamic memories are currently
fess expensive and less bulky than computers with static memories, |

The bhysi_cal devices used in computer memory units are:

Static Type ' -

1. mechanical counters

2. relays ‘ ,

3. selectrons (a special-purpose vacuum tube produced by R.CA)

4. electronic flip-flops (expensive and usually only used in the arithmetic unit and control
circuits; the ENIAC, however, has electronic flip-flops_ for its memory) '

5. cathode-ray tubes

6. magnetic cores v

7. crystals

~ Dynamic Type

1. rotating drum with magnetic coating

2. magnetic tape

3. magnetic wire

4. acoustic delay lines

5. paper tape

- 6 punched cgrds

7. photographic film :

' Paper tape, punched cards, and photographic film are not erasable, and thus memories

using these devices are not flexible. The requirements for a flexible memory are:

1. information stored in the memory remains there until needed (availability),

2. information transferred to a memory register replaces the previous information in the
regisfer (erasability), '

3. iinformafion transferred from a memory register also remains in the ‘memory register

(retentivity),

2.9

2,10

Computer memories are further classified as serial or bdra”el.f In g serial memory, the
digits stored in a storage register are transferred one after another, that is, serially. Ina
parallel memory, the digits stored in a storage register are all transferred at the same time,
that is, in parallel, A parallel computer, such as thevORACLE, which stores 40 digits in
a storage register would thus need 40 transfer lines to transfer the information in a storage
register, Parallel computers with static storage are the fastest type of computer. The
timing of operations is less stringent in such.a computer than in a serial computer with
dynamic storage. The control of a parallel computer is less complicated than that of a
serial computer, but the arithmetic unit in a serial computer is smaller than that in a
parallel computer.

" INPUT AND OUTPUT

The program éonsisfing of commands and parameters for a problem is transferred to 1he‘
memory from the inpu'r unit. The answers are transferred from the memory to the output
unit. Since both input and output require transfer to or from the memory, the input and out-
put equipment for a computer is offen a single unit, such as an electric typewri;rer, a
magnetic tape, or a paper tape reading and punching unit.

The control unit controls the operation of the input and output equipment, . Some of the

computer operations are commands for reading information into the memory from 'rhe input

A eqmpmen’r and for reading out from ?he memory to the output equipment.

A problem is started by readlng in the program from the mpuf unit to the memory and is
concluded by readmg out the answers. The input-output equmen? can also be used during
the computations to read in more commands or parameters or to read out intermediate re-

SUIfSQ

CONCLUSION

Digital computers are now being used for many applications other than scientific éombu-
tation. Sears, Roebuck and Company, for example, has developed an automatic digital
computer for inventory application; the Bendix Corporation has constructed digiyi-‘al com-
puter control systems for aircraft control; MIT has constructed a digital computer control
for a milling machine. It is likely that, soon, more digital computers will be used in control
application than in scientific computation. R

The use of digital computers is economical orﬂy in repetitive operations. Thus, if a
large percentage of the steps in a calculation are not repetitive, fhe problem should not be
put on a digital computer. If the prob!em recurs frequently W|'rh only parameter changes,
it should properly be considered as repenhve. »

One of the most sngmflcant advantages for dlgn‘al computers is accuracy, An mcorrecf

answer produced by the electronic computer is usually due to a human error in preparing

the program rather than to an error by the computer. The error frequency for human calcu-
lation is about one error in 500 computing steps. The error frequency for some electronic

computers is about one error in 100,000,000 computing steps.

Techniques have been developed for using the computer to check the computation pro-
gram. Some computers also internally check their own computations. Every electronic
computer should have a check on its power supply, If a transient bower failure occurs
during @ computation, the computation may have to be restarted, In the ORACLE, for
example, the memory would be likely to iose‘dll its information in the event of a power

failures

S 211

g7 TN 0 S

ie B
St
g :
.
9
S -
3 .
& o
.

BASIC OPERATIONS OF THE ORACLE

A, S. Householder

" ORNL

Central Files Number

53-12-2

Section 3

3. BASIC OPERATIONS OF THE ORACLE

A. S. Householder

The ORACLE may be thought of as a connected system of binary elements controlled by
a clock: The toggle or flip-flop is intrinsically binary, since at any moment it sends a
signal over one, but not both, of two outputs. The magnitude of the signal has no logical
significance. It may be said therefore that at any moment the toggle exhibits one of two
possible states according to which output carries the signal. The toggle retains its
state until caused to reverse by an appropriate signal. Such signals may come from other
toggles, from clock pulses, or from combinations of both.

Gates and inverters are devices for combining and reversing signals. Thus an or gate
emits a signal when ‘and only when it receives a signal on at least one of its inputs; an
and gate emits a signal when and only when it receives a signal on both (or all) its inputs;
an inverter emits a signal when and only when it receives none.

On each cathode-ray tube is an array of 1024 locations upon which a recording can be
made and from which an existing recording can be read. Only two types of recordings are
made or recognized. Hence, although the cathode-ray tube is not intrinsically binary in
its operation, it is nevertheless utilized as a set of 1024 binary elements. Therefore, it
may be said that each of the 1024 locations on a given cathode-ray tube is capable of
assuming either of two possible states; thus a phraseclogy that applies equally to toggles
and to locations on a cathode-ray tube is adopted. Likewise, a toggle, or a location, will

be called simply an element.

Either of the possible states of an element may be arbitrarily selected; the state se-

lected may be designated by the symbol ‘0" and the other, by the symbol 1", In this
sense the element always represents either O or 1.

The locations or elements on a cathode-ray tube are arranged into a square array of 32
rows numbered from O through 31 and 32 columns numbered in the same way, and there are

40 tubes. (Actually, there are 80 tubes, besides some spares; but at the present time, for

‘checking purposes, these are used as two sets of 40 and each duplicates the other.) The

fubes are numbered from 0 through 39, Consider the location in the ith row and jth column
of each of the 40 tubes. Let o designate the state of the element on tube 0, a; that on

tube 1, ..., ay, that on tube 39. These 40 elements, occupying corresponding positions

. on the 40 tubes, constitute a memory cell whose state is designated by the 40 binary

digits (ay, a,, + ++, azg)e Such a set of 40 binary digits is called a word. There are
therefore exactly 249 possible words; each word designates a possible state of a memory

cell, and the state of any memory cell represents some word.

lNTERPRETATIONS OF A WORD
Ordinarily, a word has either an operational interpretation or a numerical interpretation.

The numerical interpretation of the word (ag, a;, « v+, Qg is

(3.1 a = -aqy + 227" + ..+ va.392*39 .

3.1

- 32

The arithmetic operations of the machine are designed on the assumption that all numbers
representable by the machine are in this forms A number expressible in the form (3.1) is
called a digital number, Clearly, a digital number is an integral multiple of 2-39, and it
satisfies the inequalities

(3.2) o A <ag 1~ 2%

A

Hence, ~1 is digital, but +1 is not. If a; =1, then a <0; while if a; =0, @ > 0. Hence
o, is called the sign digit. ‘

The operational interpretation of a word will be discussed presently. Besides the
operational interpretation and the numerical interpretation just defined, other interpre-
tations are possible, and these may be operational, numerical, logical, or some com-
bination thereof. In particular, the 40 digits in a word can be grouped into four decades;
also, by proper programming, each decade can be operated upon, in some degree, inde-
pendently of the others in the same word, and the decades can be interchanged and
permuted. For the moment, however, only the ‘‘normal’’ interpretations first named will
be considered.

Any one of the 1024 elements on the face of a cathode-ray tube can be identified by
giving the number i of the row and the number ;j of the column in which it occurs, with the
convention that

i, =0 1, ..., 31 .
The number 7 can always be represented in the binary scale by five binary digits, and the
same is true of the number j. If this is done and the five binary digits representing 7 are
followed by the five binary digits representing j, these ten binary digits constitute adecade
(Vs V41 o » + 4 Vg)e The number
n = V029 + V]28 + ees + V82 + Vg

is the address of the element. This element, together with the 39 elements with the same
address on the other 39 tubes, constitutes a memory cell, and the address of the memory
cell is also 7. . ' ’

Most of the operations of the machine bring a word from a specified memory cell and do
something with it in the arithmetic organ, or else they take a word from some part of the
arithmetic organ and place it in a specified memory cell. Hence, in generdl, a command
consists of two parts: a part representing the operation to be performed (what the arithme-
tic organ is to do with it, or from which part of the arithmetic organ it is to come); and an
address telling whence the word is to come or whither it is to go. The operations are
considerably less than 2'% in number; in fact, they are less than 28, Hence, a decade is
more than adequate for represeﬁting all the machine operations. A word, therefore, can be
used to represent two distinct commands: the first two decades represent one command
and the second two the other command. These are called the left-hand and the right-hand
commands. Of the two decades used to represent any command, the first eight digits of

the first decade represent the operation, and the second decade represents the address.

(When the second bank of 40 tubes is used as additional memory, rather than as a dupli-
cation of the first bank for checking, it will be necessary to consider the last digit of the

first decade also as part of the address.)

: ARITHMETIC UNIT)

There are five registers, designated AY, AL, QY, Q,, and SY, together with P, the
“plusser,” and the complement gates in the arithmetic organ. Associated with SY in
physical construction, though not in function, is the register S , which is not properly a
part of the arithmetic organ. Finally, an essential part of the control unit is the control
counter, which counts from 0to 210 _ 1, inclusive.

When the machine goes into operation, the merﬁory cell, whose address is then in the
control counter, has its contents sent to S, . Words in S are im‘erpre'red operationally by
the machine, and it carries out first the left-hand command; then, if this was not a transfer

(as described below), it executes the right-hand command. Meanwhile, the address in the

control counter is increased by 1. Upon completion of the right-hand command, a signal

is emitted which calls for the next word to be sent to S, . :The next word will be the word
in the memory cell whose address is at this time in the control counter. In normal oper-
ation, fheréfore, the words in consecutive memory cells go to S, one by one; and each
time, the two commands are executed before the next word is called for. It is important to
note that the action which sends a word from one place to another is a copying and not a

transfer. That is, the word remains in the source and is copied into.the destination.

The sequence just described can be broken by one of the transfer commands. An un-

conditional transfer command always causes the control counter to be reset to the address

specified in the address part of the command and causes the word contained in the memory. '

cell having that address to be copied immediately into S, , even when the transfer command
is; itself, a left-hand command. Moreover, the transfer command must specify whether or
not the left-hand command in the new word is to be executed. Thus the command whose
symbol is ““Tr, 25" signifies that the machine is to perform the right-hand command in the
memory cell whose address is 25 and to ignore-the left-hand command in the same word.

In addition to the unconditional transfers,k there are conditional transfers which require
the machine to execute the transfer if and only .if a certain condition is satisfied. If the
condition is not satiéfied, the machine proceeds to the next command. "Finally, there are
two stall orders which require the machine not to transfer but to proceed with the next
command. These, and certain other operations, arése essentially by accident, but they
are useful in some situations, as will be indicated later.

There is no further need to consider SL' since the concern here is primarily with the
operations themselves, Hence, the indices from sY, A , and Q_ will be omitted, and
these registers will be designated simply by S, A, and Q. Table 3.1 indicates which

quantities in an arithmetic computation are received or retained by each of these registers.

By pseudo product is meant the sign digit and the next 39 digits of the product or of the

product increased by 2-40, according to which type of multiplication has been executed.

34

TABLE 3.1, CONTENTS OF REGISTERS

REGISTER
OPERATION :
A Q S
Addition Augend _ . Addend
‘ ~Sum ' :
Subtraction Minuend oo Subtrahend
Difference ' : R '
Division Dividend ‘ Pseudo quotient Divisor
Remainder x 237 : ' '
Multiplication Pseudo product =~ | Multiplicand - Multiplier

Not indicated in Table 3.1 is the fact that the final 39 dig'it:fs‘.v"will be in Q after the multi-
plication.

There is no explicit command for the purpose of taking a word into S or bringing one
from S, since S is used as an auxiliary register to hold a number being used as an operator;
the other registers hold the operan‘d and receive the result of the operation.

The registers A and Q, besides functioning as indicated in Table 3.1, also function as
shifting registers in which cyclic permutations of the digits in a word or in a pair of words
can be effected. Shifting to the right or left corresponds to dividing or multiplying by
powers of 2 when the word represents a number. The facility also provides for certain
logical transformations that differ according to the disposition of the digits at the ends.
The transformations will be considered after the arithmetic operations have been described

in detail.

SUMMATION .

Addition is basic to all operations. It is clear that the sum of two digital numbers is
not necessarily a digital number, Hence, when a program calls for an addition, it is
important to be assured in advance that the sum is digital, which may be very difficult, or
else to have some means for the machine to determine whether the sum is to be digital
and to take appropriate steps if if‘ is nots For this purpose, the A-register is provided
with an_additional element, placed at the left, which makes 41 instead of the usual 40
elements. The extra element is sometimes called the x-toggle. If a_, is used to desig-
nate the state of this element and if Ogs o vs, 0o are ‘Used for the states of the other
elements, the numerical interpretation of the state of.the entire register will be

(3.3) a = -a_,2 + ooy + a12"] + e+ %92“39

A number a representable in this form clearly satisfies the inequalities

(3.4) 2 <ag2-2%

and will be called bidigital, The set (a_,, ay, « ++, a3,) of 41 digits will be called an

A-word, If a_, = a, then

—a_]2 + ay = -0y ,

and a is digital. Hence, a bidigital number is digital if and only if the first two digits
are alike. | ' v '

The algorithm for addition is designed so that the sum of two digital numbers will be
correctly formed in A, whefher.fhe sum is digital or not. But when a nondigital number is
formed in A, that is, one for which a_, v, a,, a special toggle called the “O.F.," or
overflow toggle, is set in the machine. One form of conditional transfer uses as the
condition the state of the O.F. toggle so that it is always possible to introduce a con-
ditional transfer to test whether a given sum is digital or not.

The S and Q registers have 40 elements each, while P has 41. Suppose, now, that the
machine is executing a command ‘‘H, M(8)"’. This requires that a certain number b, stored
in the memory‘cell whose address is M(b), is to be added to the number a (possibly bi-

digital) in A and the result c is to replace a in A, If

(3.5) b= By o+ B2 4 i+ Byy27%
while ‘ ‘
(306) ["‘)/_12 + }/0 + }’12_‘ +> o e + }/392-39 ’
the algorithm performed by P is the following:
Ge + By = V39 + 2vz4 N
, 0Gg + Bag * Y3g = Yag *t 23y
(3.7) _ ceees

i

o0 + By *+ Vg Yo + ¥l .
a_, + B, +_y_’_I =y, +t v, .

The digits y” are the ‘‘carries’’ digits and do not appear in the final result. Each digit,
a, B,y cnd-y', is, of course, a binary digit with a value 0 or 1. It will now be shown
that, as stated above, c is the true sum of @ and b when a is digital whether ¢ is digital
or nots Indeed, it will be shown further that if ¢ is digital it is the true sum whether a is
digital or not, and still further, that although @ and ¢ are both nondigital the result can
still be interpreted. '

To show' this, multiply the first equation through by 2=3%, the next by 2=38, ..., the
next to the last by 29, the last by 2, and sum the results. This gives

. a + b= c o+ Ayl -y, .

Hence if @ + b and ¢ are not equal, they can differ only by +4. It is supposed, first, that
a is digital, without restriction on c (it is necessarily Bidigi’ml!); second, that c is digital
without restriction on a; and third, that neither a nor c is digital. If a is’digital,’ then
(since b is certainly digital), . '

-1

!
ACHIA A
[I R

a
b
-

in AN A

from which .

3.5

3.6

Both inequalities are proper since, in the inequalities being combined, at least one proper
inequality occurs on the left and at least one occurs on the right. Since @ + b and ¢ must
differ by exactly 4 if they are not equal, it follows that they are equal.

If ¢ is digital but a not necessarily so, the conclusion again follows, as can be easily
verifieds Now, suppose that neither @ nor ¢ is digital. Certainly, then, |a| > |b|, and

hence sgn (2 + b) = sgn a. Hence, even in this case, if sgnc=sgna, thenc=a+ 5. In

fact, if sgn @ = sgn ¢ = -1, then
-2 < a < -1,
-1 < o< 1,
1 < == < 2,

and therefore
-2 < a+ b -c <2
so that a + b =c. A similar argument applies to the case sgn @ = sgn ¢ = 1. Only if 2 and
c are both nondigital and sgn ¢ # sgn @ will @ + & £ c.* In that event, it is readi'y verified
that
(3.8) a + b =c + 4 sgn a = c -~ 4 sgn ¢ .
To summarize, if ;
(3.9) oy = v) lay = a) (y_y = a)) =0
then a + & = ¢, and otherwise (3.8) holds.

In normal operation, nondigital numbers are to be avoided; whenever there is doubt about
the digital character of any arithmetic result that is to appear in A, an overflow test should
be introduced and a remedial routine provided. Nevertheless, cases may arise for which
the full flexibility can be utilized. '

There are, altogether, eight summation operations, and the above discussion relates to
the operation ‘‘H, M(b)"’, which calls for the addition of a number b, stored at address
M(b), to the number a presently contained in A. If it is desired merely to have & copied
into A, the command should be “'C, M(?)"'. This, first, causes A to be cleared, and the
operation thereafter proceeds as an ordinary addition in which @ = 0,

For subtractions, the plusser is provided with a set of complement gates. On a command
“C— , M(B)" which first clears A, and on a command "‘H~ , M(%)"' which does not, P
receives through S, not the number b, but the number

b= By o+ BTN+ i+ BI27Y
where each 8/= 1~ .. The replacement of each B; by its complement 3 is effected by
the complement gates. In addition to this replacement, 237 is added. It is readily shown
that 5*+ 273% = —b, Hence, in either case, P receives ~b to be added to the contents of
A, with the result to be copied into A. In the analysis carried out above for addition,
b can be replaced by ~b and the same conclusions will be reached as to the conditions on
the validity- of the algorithm for subtraction. Note that the command ‘‘C— , M(b)" will
cause the O.F. toggle to be set when and only when & = -1, The bidigital number which

goes to A will then, as a result, be ~b = 1, but it is not digital.

The other four summation commands provide for the addition or the subtraction of |b].

The selection of b or of 7+ 2—37

is made at the complement gates according to the sign
of b and the operation (addition or subtraction) to be performed. The command *‘C-m,
M(8)"" will never set the O.F. toggle; the command ‘‘Cm, M(5)"" will set it when and only

when 6 = ~1,

SHIFTS
Before considering multiplication and division, it is necessary to discuss the arithmetic
shifts. Note first that if @ is given by (3.3), then
a = —-a_12>2 + oa_2 + o+ 'a12“ + oeee + %92'39
- - 3 2 -1 -39
= a2 4 a_2° + o 32 4 ap o270 4 e+ a2

= LI .

It follows that

-1 2—40

+nct+a39

The command *'R, 1”’ replaces the number a in A by the number

-1 o
27 = a__12 + oa_, + a02

.

(3.10) " Ra) = ~a_2 + a_; + %2"‘ + o + %82‘39

_ = @271 - 0392“'40 = (a/2)* .
Thus (a/2)*, the pseudo product of @ by 271, is obtained by leaving the initial element
A_, of A fixed, while each remaining element A, assumes the initial state of A, . Let

€ = 2—40

7

and call this the unit round-off error. Then
@3.11) 0 g a2 - @/ g e

More generally, if 0 < p < 40, the command ‘R, p'’ replaces the numbe;r a in A by
(3.12) RAa)

ptl 39

I

- - -p ’ -
a2+ eee + a2 + 027 4 ee. 4 a2

-f _ aa
a2 E(a4o_p + eee + G.392)

(a/2P)

I

and, regarded as a pseudo multiplication, the error satisfies

(3.13) 0 < a2P = (a/2°% < 21 -~ 2°P) € < 26 .

~ The relations (3.13) are valid even when p > 40, since R4%4) has the value.0 for 2 > 0,

and -2-3% for 2 < 0,

The shift counter has six binary places and, hence, runs from 0 to 26 - 1, inclusive.
The command ‘R, p'’, when p > 64, is executed as ‘R, p”"’, where 0<p’<63, p’=p
{mod 64). Normally, a shift of 40 or more places would not be ordered in A qlong,k alfi‘uough,‘
if the number p is computed by the routine, the shift might turn out to be 40 or greater.

The command ‘'R, 0" leaves A as it was and, in that sense, is a stall order. However,
the machine does go through a sequence of operations. The contents of A:L are copied

into AU and then recopied from AY into A+ It could happen that the number in A was

3.7

3.8

nondigital but that the O.F. toggle had been cleared by a transfer command. If so, the
command ‘‘R, 0'" would reset the O.F. toggle.

The commands R, p'’ cause the A register to shift but leave the Q register fixed: The

commands ‘‘Rq, p'’, on the other hand, shift the A and Q registers together as a single-

register. This is useful for performing multiple precision arithmetics Also the command
‘“Rq, 40" is the only single command available for taking a number from A to Q without
going through the memory.’ . '

It is to be noted that (a/2P)* is never less than 4a2~%. Hence, a bias occurs which
could be significant. It would be desirable to remove the bias by adding 2=4° to the
quotient before dropping digits, but this is difficult and expensive in terms of the equip-
ment. By forcing the final digit in the result to have the value 1, the bias is removed,

although the magnitude of the maximum error is not reduced. Thus

(3.14) Rr{a) = —0_42 + a_; + %2‘] o 0372‘38 y 2739

aé" + 2¢(1 - Oqg — a392"1)

= (a/2)*, .
More generally,
(3.5 Rrfla) = a27P + 2e(1 ~ a3y, = a0 270 = vui = ay27F)
= (a/2°7, .

Hence the deviation of the result from true division satisfies

(3.16) -2¢ < a27F - (a/2")*r <21 - 277 e < 2

These relations hold trivially when p = 0, although actually,
(a/20)*r = (a/2% = 4 '
and there is no difference between the commands ‘‘Rr, 0'" and R, 0"', _

A command ‘‘Rqr, p'' is perhaps of no interest, but the circuitry needed for the shifts
already discussed makes the operation available. The operation proceeds by performing
a sequence of p single shifts; each time the shifted result enters A , the final digit in
A takes the value 1 so that 1's appear in the first p ~ 1 positions in Q, as well as in the
last position in A, o _‘ |

The command ‘“Ro, p'’ is used for logical, rather than arithmetic, purposes. When this
command occurs,’a_]' is replaced by 0, and the shift proceeds thereaffer as though a were

positive. Hence
RoPa) = RPla + 2a_‘) .

In particular, Ro%a) = a + 2a_,. The command “‘Roq, p'' shifts A and Q together as a
single register. Like Rrq, the shifts Rog and Rorq are available, but perhaps not useful.

If 2‘.’a is bidigital, the command “‘L, p'’ replaces a by 2z in A.. The O.F. toggle will
be set if and only if?pa is noﬁdiqital. If 2f°a is not even bidigital, the rés‘ulf of the

operation has no simple arithmetic interpretation.

The command ‘‘Lq, p"’ has the same effect on A as does ‘‘L; p’’, but, in addition, the

Q regis'rer. is shifted and A; feeds to Q;4. Note that it is AO and not FA__] which feeds to

Q,o. This is true for all left shifts involving Q. The command “‘L¢, p" clears Q at the

outset and is otherwise identical with ‘L, p'’; “‘Lecq, p'’ clears Q at the outset and is

LR

otherwise identical with “‘Lq, p'’. The command ‘‘Ly, p’’ differs from “‘L, p'’ in that

the setting of Q) is transmitted to A, at each shift; “Laqy, p'’ differs from “‘Lq, p'’inthe

same way; and ‘‘Leqy, p'’ clears Q at the outset and thereafter proceeds as does ‘‘Lqy, p"’s |

It is important to note carefully that on shifts involving Q, A always feeds:into Q from °

Age |
» MULTIPLICATION

In the multiplication process, the command ‘‘M, M(a)"’ causes the number a in hemory
cell M(a) to be copied into S, where it serves as the multiplicand, while the number
held by Q serves as multipliers The command presupposés, therefore, that the multiplier
b has, by specific command ‘'Q, M{b)"" or as a result of a shift, found its way into Q.
The first step performed by the machine as a result of the multiplication command is the
following: The A register is cleared; the contents of P are gated into A if Qo =1, but
not if Qz9 = 0; and the A and Q registers are shifted one place, as in the command
‘‘Rq, 1"". Observe that P has the sum of the number in S (which was a) and the number
in A" (which was 0). If this is thought of as extending the A register on the right by
cdioin‘ing Qq, it can be said that the number 2'1639a is now to be found in this registér
(A, Q) Meanwhile, Q loses Bsg and receives B350 The next 38 steps in the multi-
plication are identical with the first step, except that A is not cleareds That is to say,
after the second step, the further extended register (A, Q,, Q,) contains the number
(2-1B38 + 2'2,339)4, while Q,, loses ;5 and receives ﬁ3'7. After 39 steps, the register
(A, Q,, Qpeese, Q38) contains the number ' '

@78y + 2778, + vut + 27¥By)a = (b + Byla .

The final step is to subtract Bya without shifting. This leaves the complete product in

the extended register consisting of A and elements Qg, + .., Q44 while Q;4 retains the ‘

sign digit B, of the mﬁh‘iplier. The most significant digits of the product are in A, and
this number will be designated (ab)*, Clearly,

(3.17). 0 < ab - (ab)* < 2¢ .

Since the multiplier & must be in Q at the start and the multiplicand @ goes directly from
the memory to S, both are necessarily digital. .If a = b = -1, then (ab)* = ab =1, the result
is nondigital, and the O.F. toggle will be set on the last step. Otherwise, |(a6)*| <1 and
the pseudo product is digital. On each of the first 39 steps when a new partial sum is
formed, the sum goes from P to AY and then down right to A . Theresultin A is always
the product of a digital number, @, by a positive digital number and is therefore digital.
Hence the O.F. toggle cannot be set on any of these steps. On the final step, it can be
set only if a = b = -1, since otherwise the final result is digital. Hence the O.F. toggle

will be set bya multiplication only in the one special case that gives a nondigital product.

3‘9

3.10

Inasmuch as the pseudo product never exceeds the true product, a bias can be intro-
duced. With the command ‘‘Mr, M(a)"', A is cleared, and A, is given the setting 1. There-
after the multiplication proceeds as before. This has the effect of adding 2-1 at the

start, and after 39 shifts this 2= becomes 274% = e, The quantity which now finally

appears in A is denoted by (ab)* , and it satisfies
(3.18) ~& < ab - (ab)*, < € .

Hence the error can be of either sign and cannot exceed € in magnitude.

Even with this type of multiplication there can be no spurious overflow indication, but
this assertion requires separate proof. The most unfavorable case would be that in which
a=5b=1-2"3 But '

(1 = 2739)2 4 2740 1 = 2738 4 2-40 4 2-78

and

(- 2-3%qa - 2"39)]*r =1 -2-3% <1
Hence there is no overflow on the 39th step and none on the last. But the partial sums
are positive and monotonically increasing. Consequently, there can be no overflow on

any intermediate step.

DIVISION

Multiplication proceeds by a series of additions and right shifts, and division proceeds
by a series of subtractions and left shifts. On the command “D, M(b)"’, the number & from
memory cell M(5) is sent to S, where it acts as divisor, while the number a in A is the
dividend. Unfortunct)ely,‘in division, the O.F. foggle can receive a spurious setting even
when the.division is legitimate. Hence if there is doubt about the possibility of carrying
out a legitimate division, the test must be made in advance, and whenever the O.F. toggle
is to be inspected, possible spurious settings must be considered. '

Suppose, first, that |6} > |a]. The genérai procedure is to form consecutive digits of
the quotient in Q,,, beginning with the sign digit y,, and shift left the quotient digits
and the current remainders After 39 shifts, the pseudo quotient will be in Q and the
remainder, multiplied by 237, will be in A. On the left shift, diéits are shifted from Q into
A if the command is ‘‘Dq, M(a)''; otherwise, they are not.

If’sgn (ab) = 1, that is, if a and b have the same sign, then y, = 0, and therefore Q, is
set to 0. Both registers A and Q are now shifted left. The complement gates are set so
that P receives ~b. Thereafter P contains a trial remainder. If PO = SO, that is, if the
sign of the trial remainder agrees with the sign of b, then this is accepted into A, Q39 is
set to 1, and the registers shift. But if Po £5°, Q,, is set to 0, and the shift is performed
with the previous remainder. Hence at every stage the current remainder has the same
sign as b. The process of shifting the remainders to the left is equivalent to the paper-
and-pencil process of shifting the divisor to the right for successive subtracfiohs. At
the final step, 39 shifts have been performed, y, has passed from Q 4 to Q, and A is left

239

with times the remainder.

319 S 0 < 2%

If sgn (ab) = -1, that is, if @ and b have opposite signs, then Yo=1,and Q, is sét to 1.
Moreover, a+ b, contamed in P, is admitted into A, Since, by the initial assumphon
6] > |a|, it follows that sgn (a + &) = sgn b. Division now proceeds as before.

Symbolically, the algorithm can be described as follows: _

' o= a + byg, vq = (ag - By .
Fori=1,2,...,39 form
| | 2, = 2%, -~ b .
Thenfori=1,2,...,38, °

Tier = v Yin = 1 when sgnz,,, = sgnb ,
raer = Ti 4 Yiep = 0 when sgnt,,, # sgnb .

Because 0 is treated as a 'pbsi'rive number, the cases for & > 0 and for b < .0 differ

slightly. In the former case, it can be shown inductively that

i1 < b & |) |
In fact, Bo = 0, and therefore y, = ao. If 0 = ay =y, then by hypothesis 6> a=r, > 0;
if 1 = ay =yg, then @ <0, and therefore b > a + b =7, > 0. Thus the statement is verified
for i = 0, Suppose that 0 2i"ri < b, Then 2irl._< 25, or 2iri ~-b<b, Hence-.2it;+| < b,
Then, if sgn ;4 = sgn b, it f.ollows that 7., =t 2 0, and the conclusiorj follows. If

not, then ., = 2 0, and

0 > 2,y = 2 - b = 2y - b,

or
. b > 217’1.+.| .
Ini either case, (3.19) is verified.
If b < 0, a similar induction shows that

(320)’ f ' C b g 2, <0 .

Alfhough it was ‘assumed for the above argument that |b| >.|al, the steps can be retraced

and the same conclusion reached when a=-|b <0, fhough not when a = \b|

If .
(a/b)* =c =~y + 727 4+ cel 4 v32™Y
it is clear from the way in which the digitalized quotient was formed that
Tgo = @ — cb .
i¥6>0, |f follows from (3.19) that .
0<a- b < 2-39%

Hence _ .

(3.21) 0 < b - (ab) < 2 ;
and if b <0, it follows from (3.20), likewise, that ‘ S
(3.22) . 0 < ab ~ (a/b)* < 2 .

It is to be noted that if a/b happens to be digital (that is, expressible exactly in 39 binary
digits), pseudo division will yleld sfrlc'rly (a/b)* = a/b when b > 0, but (a/b)* =a/b~ 2 39
when & < 0,

3.12

The command “Dr, M(8)"", or "‘Dqr, M(b)"", yields a round-off division which eliminates
the bias but does not reduce the limits of error. . As with the round-off right shift, this
gives a pseudo quotient (a/b)* = c for.which y,45 = 1. Hence for & > 0,

(3.23) -2¢ a/b - (a/b)*r < 2
and for b < 0, ,
(3.24) - 2¢ < a/b - (a/b)*, £ 26 .

A

Table 3.2 lists the complete set of operations of the machine, together with the mnemonic
symbol and the machine code for each, and gives an indication of the significance of the

address digits. Only certain nonarithmetic operations remain to be discussed.

TRANSFER OPERATIONS

Among the transfer commands, the commands ‘‘NTr, ="' and ‘‘NT4, "' instruct the
machine not to transfer to the right or left half of the cell whose address is given. Hence
the address is irrelevant. However, such commands clear the O.F. toggle and are there-
fore not pure stalls. The commands ‘‘Tyr, m'’ and ‘‘Tyf, m'’ are conditional transfers
that require a transfer if the O.F. toggle is set, while ““Tnr, m"’ and *“Tn{, m’’ require
the transfer if it is not set. The ¢ommands “T+r, m'’ and “T+4, m" require transfer
when A_| = 0, that is, when the number in A is >0; ““T~r, m" and “T-4, m" require
transfer when A_, = 1, that is, when the number in A is <0, When the O.F. toggle is set,
it is cleared only by a command of this group, but any one of these commands will clear

the toggle, whether or not a transfer actually takes place.

SUBSTITUTIONS

While entry to A from the memory is effected only indirectly through P by means of a
summation command, Q is entered directly at the command ‘‘Q, M(d)"’, which causes the
number d in the memory cell whose address is M(d) to be copied into Q. This is one of a
total of 33 substitution operations. In the table, the dash indicates that only the first
sexadecimal digit of the machine code is relevant. Each of the other 32 substitutions
consists of copying the digits of any decade or combination of decades from A or any
decade or combination from Q into a specified memory cell. The possible combinations
include the null combination, and this is another stall opercﬁio"n. It is, in fact, the only
true stall, since the null transfer, ‘*‘NTr, ="' or ‘“‘NTA, ="*, will clear the O.F. toggle, and
a shift of zero places may set the O.F. toggle. , |

The mnemonic symbol for a substitution from A consists of four characters corresponding
to the four decades, each character being an ‘‘’’ if the decade is to be copied and a

'0"" if it is not. For substitutions from Q, a is replaced by q.

INPUT-OUTPUT COMMANDS

Thus far, no mention has been made of terminal equipment. This is of two kinds: a

punched paper tape for input and output and magnetic tape for an auxiliary memory. The.

paper tape has rows of five positions across the tape, each position being punched for a

““1"" and not punched for a ““0’'. Four of the five holes are used to represent a single

sexadecimal digit and the fifth is punched to represent a space. A sexadecimal digif,

representing four binary digits, is called a character. Thus each row across the tape

represents. either a character or a space. On reading from tape to° the' machine, the
characters are read from the tape in sequence and enter Q at the right ends As the four
binary dlgt'rs enter Q, the reglsfer is shifted left. The end of a word on the tapeis
marked . by a space, and when a space occurs, fhe word then in Q is copled m’ro the fast
memory. |f the command is Ls, m’’, the word goes to the memory cell whose address is
m, and when this operation is completed, the machine is ready for its next command.
However, the address m is required in the control counter. Hence, ordinarily, the command
“*Ls, m"’ must be a left-hand command, and the right-hand command, must bevo‘ transfer of
control. - Otherwise, when the machine is ready to bring the next pair of commands to S,
it will bring in the word in m+1, since that is the address in the control counter. Similar
remarks apply in all fhe tape orders that use the control counter.

The command “‘Ld, m" Ioads a sequence of words from the paper tape into the mochme.
In executing the command.the address, m, goes to the control counter, and the machine

loads - into Q, in sequence, the characters as they appear on the fape and continues to

load and shift until a single space occurs, At this point, the contents of Q are sent to ‘

memoty cell m, the control- counter steps up one, and the operation repeats. Loading
sfops< when a double space appecr‘s. . Agom the control counter is used and will be set
to m+n after » words have been loaded into the machine. Hence the word in m+n will go
to S, next, unless the load order was on ‘the left with a transfer command on the right.

If it is desired to pﬁnch out only g single word, the word should be placed in Q and the
command *'Pq, -’ givén. The dash signifies that the address is not.psedr in the execution
of the command.‘Hevnce the control coufnter is not affected. For punching out a series of »
words located sequ‘enti‘qlly in the memory, the first word being.at m, the command “P,' m''is
given. The pt)nching must be stopped manﬁdlly‘uf the console at the conclusion of n words,

The ORACLE is to have four magnetic tape drives for the auxiliary memory. Each tape
can store an essentially uh!imifed'amounf of ‘information crrdhged'in ‘blocks of 2¥ words
per block, where v+ =0, 1, 2, The value of v is fixed for each tape throughout a
given computation and-is set by a hand switch at the outset. Readmg ‘from a tape or
wrmng on a tape is done only in one dlrechon, the ‘‘forward’’ direction, and words go

into or come from fhe fast memory in sequence, an integral number of blocks at a time.

-Searching, however, can go in either the forward or the backward direction, again over an
iintegral number of blocks. .If it is desired to read a particular block of information from a -

given tape and then to use that space for writing out information from the ‘mach ine, the '

writing command must be preceded by a command to search back one block so that the

- read-write head can be bréUghf to the start of the block. For both sear’chfngv and for

'readmg and writing, if 7 is the number of blocks, Q must have the number 27 39(n —]) at

the time the command is given (note that the number is 7 — 1 «and not n).

313 -

3.14

Reading and writing require the use of the control counter to locate the destination or

the source of the information in the fast memory. As with paper tape, so it is with mag-

. netic tape ~ the words go through Q, and the machine can do no computation while reading

or writing is in progress. Searching, on the other hand, requires no reference to the
memoryv and no use of Q after the search begins. Hence the control counter is not affected,
and the machine can continue to operate internally while the search proceeds. The
machine will continue while search is in progress unless a read or write is called for
before the search is completed. In this event, the machine idles until the search is at an
end, after which the reading or writing will take place.

It is not possible to read or write with one tape while searching on another or even to
search simultaneously on two tapes. Note that in all cases the identification of the

tape is an essential part of the symbol for a tape command.

BREAKPOINT STOPS °
It has already been mentioned that only eight digits of a decade are utilized for desig-
nating the operation and that the last digit will become a part of the address when the

memory is expanded to 2048 words. The remaining digit is used for a breakpoint stop. In

checking out a routine, it is sometimes convenient to have the machine stop at certain

“critical points in the computation so that the contents of the registers can be examined,

whereas such stops could serve no purpose after the routine is well tested. Consequently,

~if the manual switch that is provided on the machine is set to ‘‘breakpoint stop,’’ the

“machine will stop before executing any order for which toggle number 8 (for a left-hand

‘order) or 28 (for a right-hand order) has the state 1, but if the switch is not set for break-

point stop, this toggle is ignored. For example, the command to copy the number from Q

_into the memory cell whose address is 2B9, in the sexadecimal notation, would appear in

machine code as‘‘7F 2B9”’. However, if the execution of this command is to be interrupted
by a breakpoint stop, the command should be given as ‘‘7F AB9'', If the second memory
bank were in use and the memory cell located there, the command would appear as

"“7F 6B9"’, without breakpoint, and ‘‘7F EB9’’ with breakpoint.

"TABLE 3.2. ORACLE OPERATIONS

SYMBOL CODE

SHIFTS ~ A_
Ro p ~10pt 0 0 0
Ror p 11pT 0 0 O
L p 12 p o ay o4
Ly p Bp o o o
R p l4p a,a,a,
Rr p 15 p a_y a_y oy
Le »p 16 p o, @, a4
Ley p 17p o a, a

Roq p18pf 0 0 0
Rogrp 19pf 0 0 0
Lq P 1A p ay a, o
Lay o 1Bp oy a o
Rg »p ICp' o_y 0_ya_y

Rar p. IDp a_y a_ya_
Leq p° 1Ep a oy o
Leqy p 1F p a, o, a,

TO-’A_I even when p = 0,

RESULT

(IHlustrated for p = 2)

AgeeeAszA35A5

Uy » ¢ g5 O35 I3y
Gy« + o Og5 O |
G veragy 00
ay « e 039 By By
Gg ««+ Ogg U4 Ogy
O e v 05 A]

oy .‘..a390 0
a4..’.a390 0

Qg o+ I35 %36 Y37
O+« G35 o4 |
Oy vus 0y 0 0
Gy e vv O3 By By
% ++* %35 %36 37

Og ¢+ Ogs 036]

a4...a39‘0 0

va4...a.390 0

Q, Q, Q,Q,...Q,,Q,,

By By 62'33“;533 639’,,
- Bo By ﬁzés‘f'ﬁseﬁw

Bo By B, 53 s Bag Bag
Bo B] Bzﬁa . '_"338 559

Bo By B, By e+eBygBig

Bo By By By« BsgBag
00 00...0 0
0 06 00...00

%38 939 Bo By v+« By Byy

1 agoBoBye+BasByy

By, B, 64{35"'%‘ a,
By By ByBsereg o
Q38 g9 Bg By o v« Byg Bay

T g BoBy- e By By

0 0 00 ...ay «
0 0 0 0“‘.a° a

1

1

3,15

. TABLE 3.2 (continued)

SYMBOL CODE . © RESULT

SUMMATION A q
H M@ 20Md) c =a+ dt | Fixed
Hm M@ 21 M(d) c = a+ ldt Fixed
H- M() 22 M(d) c =a-df Fixed
HemM@ 23 M@) Cc=a - |t Fixed
C M@ 24 M(d) o Fixed
Cm M@ 25M@) 1| Fixed
- M@ 26M@ - | ~ Fixed
C-m M(@) 27 M(d) g o Fixed
fUnless (g = a_;) (vp = y_p) (a_y = y_y) # O

PRODUCT

D Md) 3A M@ 2%%(a/d - (a/d)*] (a/d)*
Dq Md) 3B M&) . 2% - @/ (ady
M Md) 3C Md) bd (om extended register)
Me M@ 3D M@ bd + 2749 (on extended register)
Dr M@) 3E M@ 23%a/d ~ (a/d)*] (a/d)*,
DarMd) 3F M@ 2%[a’d - (@V/ar] (a’/dy,

3.16

B -

SYMBOL CODE

TRANSFERS
NTr - 40 -~
e m o Alm
NTE - - 42 -
TL m - 43 m
Ta+r m ' 48 m
T~r m 49 m
T+4 m 4A m
TAm 4B m
Tnr m ‘ 4C m
Tyr m 4D m
Tl m B 4E m
Tyl m 4F m

TABLE 3.2 (continued)

RESULT

Stall
Transfers control to right of m
Stall

Transfers control to left of m

Transfers control to fighf of m whena_, =0
Transfers confroi to right of m when a_ P = 1

Transfers control o left of m when a_{: 0
Transfers control to left of mwhena_, = 1.

Transfers control to right of m when O.F. clear
Transfers control to right of m when O.F. set
Transfers control to left of m when O.F. clear

Transfers control to left of m when O.F. set

NB: When condition fails, control continues to next command. All the transfer oper-

* ations, 'includingiNT, clear O.F. toggle.

3.17

3.18

SYMBOL

CODE

SUBSTITUTIONS

0000 ~

000a M(d)

0000 M(d)
000 M(d)

aoaa M(d)

0000 -

© 000q M()

0040 M(2)
00qq M(d)

qqqq M(@)

Q M@

Stop -

STOP

50 ~
51 M(d)

. 52 M(d)

53 M{@d)

5F M(@)

70 ~

71 M@)
72 M(@)
73 M(@)

7F M(d)

6~ M(d)

TABLE 3.2 (confinuea)

Replaces 3‘30
Replaces §,,
Replaces §,,

Replaces &,

Replaces 3,
Replaces 0,
Replaces §,,

Replaces §,

Machine idles

RESULT |

Stall

Stall

.

B3y
329
BS9

SYMBOL CODE

[iAPER TAPE

P \m E8 m

Pq - EC -
Ld m F8 m
Ls m FC m

MAGNETIC TAPE
MTO m 80 m

MT1 m 81 m

MT2 m 82 m
MT3 m 8 m
TOM m 90 m

TIMm N m

ToMm 92 m
T3M m 9B m
S60 - AOQ -
SH -~ Al-
$f2 ~ A2 -,
Sf3 - AZ-
S0 - /' BO-
Sbl - BI -
Sh2 B2 -
Sb3/ - B3 -

TABLE 3.2 (continued)

RESULT AND COMMENTS

Punch n words beginning with C(m),* Stop punching manually at
the console after » words have been punched.

Load to double space, storing the first word in m.*

Punch C(Q). After the order P or Pq, the ilnformati:yn/Q is zero.

Load to single space; transfers next word on tapesinto location m.*

Contents of Q must be 2=3%(» ~ 1).

Write or record # blocks from memory ontostape #0, beginning with

Clm).*

Write or record n blocks from memory/onto tape #1, beginning with

Clm).*

Write, or record n blocks from mesfiory onto tape #2, beginning with

C(m)&

Write or record » blocks fronf memory onto tape #3, beginning with

C(m).*

m.*

Read = blocksv‘pe #0 into memory, storing the first word in

Read n blocks fréh tape #1 into memory, storing the first word in
* .
m. '

Read 7 blocks from tape #2 into memory, storing the first word in

Read ;}/blocks from tape #3_ into memory, storing the first word in

Seqrch forward » blocks on tape #0.
Search forward » blocks on tape #1.
Search forward n blocks on tape #2.

Search forward » blocks on tape #3.

Search backward n blocks on tape #0.

Search backward 2 blocks on tape #1.
Search backward » blocks on tape #2.
Search backward 7 blocks on tape #3.

*The control counter is used in this order. The order must be a left-hand orderwnless
the next command word appears in the memory cell immediately following the lastcell
affected by the reading or writing. For all the magnetic tape orders, the number of words
per biock must be fixed manually by a selector switch.

3.19

- : : . ; » . - ’ . . <

FLOW CHARTS AND CODING

J. Moshman

ORNL
Central Files Number
53.12-2

Section 4

4. FLOW CHARTS AND CODING
J. Moshman

The coaing or preparation of ‘a problem involves more than the translation from one
language (that of the numerical procedure by which a particular problem is to be solved)
into another (that of the commands which the computing machine understands and can
execute). |In most applications, the machine control will not follow a linear sequence of
orders but will jump forward and backward and repéat some orders mény times, some a few
times. Moreover, in the course of the operation, and depending on interim results of the
operation, certain orders will be modified or even eliminated., It is thus seen that the
relation of the numerical procedure to the machine code is not static, in general, but is
highly dynamic, A specific coded command represents its initial state and, also, all the

modifications that will subsequently be imposed upon it during the course of the operation,
RELATIONSHIP OF A FLOW CHART To THE FINAL CODE

Inasmuch as the coded sequence of a problem is dynamic, an attempt should be made
first to visualize not the initial appearance of the code but its continuing function and its
relkcfi';)nship to the development of the desired solution. In essence, this is the raison
d'etre of the flow chart, The flow chart enables the coder to grasp the interrelationships
of the entire process and to provide accordingly in the code. The flow chart'is a visual
representation of the course of the control as the machine moves through successive stages

in solving a problem,

, LerEAR SEQUENCES AND INDUCTION LOOPS
In simple cases, the control moves linearly through the instructions provided; it never

retraces or alters its step. Such a case is termed a linear sequence and is depicted in

* the flow chart by a simple oriented line or curve, as below,

More efficient than a linear sequence, from the point of view of machine utilization, is

an induction loop, " An induction loop is some sequence of operations that is retraced by .

the control of the machine. Induction loops are of two main varieties,

1. One type may repeat the same procedure some fixed number of times, such as in the
evaluation of the some functional expression for a predetermined number of values. of the
variable. .

2. The other type may repeat the same procedure a variable number of times and permit
the machine to decide, on the basis of a predetermined criterion, whether or not to repeat
the operation again, A typical example is an iterative process that gives successive
approximations to-a function, When convergence to a specified degree has taken place,

the machine control recognizes this and does not retrace the steps again:

4,1

4.2

An induction loop generally has the form depicted below.

g

>

Frequently, a hierarchy of inductive procedures, such as the evaluation of the square
root by successive approximations of a fixed set of variables, is imposed. This is termed
an example of a multiple induction loop in contradistinction to a simple induction loop
which is typified in the figure above, Multiple induction loops have forms chqrac.ferized

by the forms given below.

— : .}

> , >
DECISION BOXES

The configurations which illustrate induction loops are obviously incomplete. The points

of entry into and exit from the loop or loops ‘'should have been indicated. Points of er;fry'
may be set up by the addition of some linear path which joins the loop at some point.
Points of exit, however, depend upon some criterion which the machine examines, Thus
at ‘some stage in the loop, the coding shouldlprovide for a test of this criterion and for a

branching of the path that is dependent on the results of the criterion examination. Such

a point of divergence takes place at a point corresponding in the code to a conditional

transfer of control — the T+, T—, Ty, and Tn orders. On the flow chart, these points are
denoted by a'box with one entering path and two exit paths, Such a box is termed a
decision box; at this point, the machine decides which path to follow. A decision box may
also be used to bifurcate a linear sequence, Examples of decision boxes in the various

senses are;

IN

+
w—y
I S —

The variable upon which the criterion for branching depends should be placed inthe
the decision box. The two exiting paths may then be labeled with the appropriate
criterion. The paths marked + and ~ refer to the sign of the number in the A register, and

“ves'' and “'no’’ refer to the setting of the overflow toggle.

OPERATION BOXES
Up to this point, the discussion has been primarily concerned with logical operations of
the .computer. In the course of a linear sequence or within an induction loop, certain
arithmetic operations are performed, These procedures are indicated in an operation box
which i's distinguished from a decision box by havfng only one path of entry and one exit.
The operation box contains the mathematical form of the expression being evaluated and

the order of numerical calculation, if this is of concern.’

Operation boxes may appear in
the flow diagrams given previously in the manner shown below, The detailed operations
have been omitted, as well as the decision criteria, Complete examples are discussed at

length in other paragraphs of this section.

- =~ IT

SUBSTITUYTION AND ASSERTION BOXES \

Inductive loops contain one-or more inductive variables that may or may not be relevant,
An inductive variable is some index reloted to the number of times the loop has been
fraversed. It is relevant if the crlterlon in the decision box for leavmg the loop is a
function of the inductive variable itself, such as will occur if the loop is traversed a fixed
number of times. An irrelevant inductive variable serves no explicit purpose, but it is
used implicitly to maintain the identity of successive iterations. To indicate the change of
an inductive variable from one value to another, a substitution box is used. A relevant
inductive variable generally requires an operation box to indicate the explicit operation
performed in changing the variable. The operation box is usually unnecessary in an
irrelevant inductive variable. The substitution box is inserted at some point in the flow

diagrom, usually between the decision box and the main inductive operation box, which

logically is the point at which the induction may be said to be repeated for the next value

of the inductive variable., The substitution box has, like the operation box, one arrow
entering and one leaving, but it will be marked with a # symbol to differentiate it from the
operuhon box. .

An asserflon box is used to denote that some variable has been given some new noiahon.
For example, x; may be the ith approximation to some parameter x, If the criterion in the

decision box is such that at the ith iteration the control of the machine will leave the loop,

1 That this is not trivial may be seen by examining the numerical calculations of
x=ab/c when a=2"% 6=2"33 and c=2"7, Iffirst,ais multiplied by &, the product is
2~41, which is rounded by the machine to zero. The quotient, then, of 0 divided by 2-7 is
zero. On the other hand, if first, say, a is divided by c, the quoﬂent is2” , and then the

product of 2=1 and 2-32 gives the correct result, 2=34

4.3

4.4

it will be desired to asserf that x, = x, An assertion box is used to make this statement,

The assertion box, like the substitution box, is for the purpose of logical clarification and

involves no coding. It, too, has one arrow entering and one leaving and is also differenti-

ated from an 'dperqtioﬁ box by a # symbol. In a typical loop, assertion and operation boxes

appear as below; again the detailed contents of each box are omitted. The lower box
marked # is the substitution box for the inductive variable. The right hand box is the

assertion box following the exit from the loop.

INTERVALS OF CONSTANCY ‘
Up to this point, no reference has been made to the memory or storage locations of the

various constants and variables involved in a problem. Constants offer no difficulty. They

are originally placed in some fixed set of memory locations and are not changed in the

course of a problem, Variables, as the term implies, will change, and it is necessary to

keep track of them; as few memory locations as possible are used if the program is large.

A distinction is made between free and bound variables, A free variable is one that is so

treated in the formulation of the problem and then- css|gned a specific value during the
numerical procedure. It '5', in essence, a parameter, Constanfs and free variables are
placed in the fixed sfordge and are not changed. A bound variable successively assumes
a sequence of values in the course of the numerical solution of a pfob‘lem. The value of
a bound variable, or the variable itself, is generally of interest only during a portion of
the entire problem. Bound variables are placed in the variable storage. ‘
In the logical passage 'rhrough the flow chart, the lines between boxes may be regarded
as intervals of constancy. The contents of all storage locations remam' unchanged during

this time. Furthermore, if two lines on the diagram converge at a point, such as point P

in the preceding figure, the interval of constancy should be the scme on both linesof -

ingress as well as the line of egress. An uHernahve statement is that it .is possible to
denote the contents of all variable storage positions by the same symbols, whether first

entering or repeating the inductive loop.

STORAGE BOX ES

The problem of variable storage assignments is materially reduced by the mcluston ofv

storage boxes in the flow chart. A storage box contains the storage or memory assign-

ments of bound variables during an interval of constancy. It is a box connected to the
interval of constancy by a dashed line, for ready reference. It is not coded and does not

logically enter into. the formulation of the problem cmd is thus not placed dlrectly in the

.

_line of flow. Storage boxes inserted in the previous flow chart at each interval of con-

stancy appear as follows:

n

3
|
I
|

For future reference, operation and decision boxes will be given letters and interval of
constancy arabic numerals as above. Storage boxes will refer to a specific interval of

constancy.
) v REMOTE CONNECTIONS
A remote connection indicates that the logical flow of a diagram is interrupted and is to
be resumed at some other point, A fixed remote connection is one which indicates that
the machine control will be sent to only one point, A variable remote connection is one
which indicates that the control may be sent to one of several points. Remote connections
are indicated by circles with Greek letters. If it is a fixed remote connection, one point

~®

of the flow chart will appear as -

and the corresponding point will be :
—

Variable connections will have a Greek letter at the point of convolution prefixed with a

superscript that denotes the number of possible connecting points, such as

AND
AND
O

reSpe_ctively, each having an identifying subscript. The remote connection having the letter

corresponding to

Lol

(&

405

4.6

alpha will be reserved to indicate the beginning of a routine, and the letter omega similarly

will be reserved for the terminal point.

STORAGE TABLE

It is convenient to construct a storage table after the flow chart is completed, The

storage table is a two-way entry table. Each column refers to an interval of constancy

and each row to a storage location, Each cell contains the variable or constant found in
the given storage location in the specified constancy interval. Free variables and con-
stants need be entered only once, for their locations are fixed throughout the problem.

Bound variables change and it can readily be seen from a storage table whether a memory

~location may, at some point,-have its contents changed from one bound variable to another.

STATIC CODING)
After the flow chart is completed and checked to verify that it accomplishes the original

purpose, coding can be started, Static coding is the coding of each individual operation

" and decision box as a separate entity., Memory |ocafioné“muy‘be given interim designa-

tions, such as M1, M2, etc., and may be so carried in the storage table at this point.
Furthermore, it may turn out that the coding of a specific box requires the temporary
storage of intermediate values. This temporary storage may also be denoted by interim

designations, Usually, the same temporary, or local, storage loccflons are available

" anew in the next box to be coded. The static coding is best done by enumerating the

various steps in the linear sequence called for by the operc'non or decision and designated

by the box letter, a period, and then the sequence of integers, each integer corrésponding

to a command.

' DYNAMIC CODING
The final step is to assemble all the static codes and put them in final form. The

dynamic code will have two commands per line. Final storage assignments are made in

the storage table, where variable and temporary storage locations are combined, if pbssi‘- V

ble. References to points of conditional transfer, corresponding fo decision boxes, are
completed with the permanent Jocation. After all orders in a routine are determined, storage
locations for constants and variables are generally assigned ‘locations in the memory
followmg those of the orders. Certain useful constants are frequently placed in the same
storage positions ecch Tlme. The reason for this wnH become ev:dent from the section on

subroutines.

FINAL FORM
All previous comments were based on the assumption that the fnachinebrdersure in
mnemonic symbols and that the constants and variables are in decimal form, References
to memory locations are always in their sexadecimal form, It is fhen necessory to change

all orders and constants to their sexadecimal version.,

In proceeding through a problem, there will undoubtedly come to notice various changes, -

mostly minor, that will increase the efficiency of a code. These may be incorporated in

the code, as indicated, and the flow chart and storage tables may be amended as necessary,
Efficiency should be measured in terms of speed, conservation of space, and effect of

round-off error,

INPUT AND OUTPUT _
No mention has been made of getting a routine into the computer or of the results that
are printed out af the end. These procedures are straightforward and ﬁre covered else-
where, This section is concerned with the transition from the mathematical problem to

the machine code for that problem,

Example 1: : oy =+Va .

It is assumed that 2 is a digital number and its square root is desired. I the event
a < 0, it will be desired to stop the machine; if a = 0, it is known immediately that y = 0;
if a >0, then y = \a is to be placed in memory location 1F1 and the control is to be
transferred to the left-hand order at 2FF, The number a is to be found in memory location
OEA, .

The square root of @, if a >0, will be found by Newton’s iterative approximation, The
basic algorithm is that if y; is the ith approximation to v/a, then the approximation may
be improved at the i + 1 iteration by letting '

@y i,
1) Yisr T 5t 2.

i

Figure 4.1 is a flow chart that will accomplish this purpose. Many other versions are

possible, but it will be instructive to follow the reasoning behind its construction and

possibly try to construct an alternative that is more efficient,

Fig. 4.1. Flow Chart for y = /"

‘ . A C , G H
._’ —>A T2 A * 10 > y-0] LA TRANSFER
S B ™Y =01 X ™7 conTROL TO 2FF
— b =P — 4 |
— ¢, R —~®
STOP |y =2 +270 pp—
J/,%Mf —————— 5
x5 1
/=1
- 6 -
| s A
Ny VYT I 6 ,
F ; M o A
- a —4 P e
y/“(yf-, /—1)2 IR L | 7rre ° .
'4 i‘ g Sl 7’ -7 9 V=Y
1
Y > M S ;=M

4,7

4.8

It will be required that if a > 0 the criterion of convergence is that two successive ap-
proximations to the root are equal to 39 binary digits. If y,, the initial approximation, is
greater, than \/a, it can be shown that, except for round-off errors, each y; will also be

larger than a and also that Yip1 Sv;e Hence, if

(4.2) Vi — Vit 2-40 5 0,
y; is taken ’rc;' be y. Substituting (4,1) in (4.2) gives
Y; a ‘
— t — -y, +27%0 50,
2 ¥ 2y, Vi ¥
a Yi oo
—_— -+ 2740 5 0o,
2, 2%
a L
(4.3) -y, 239 >0,
Y :

and (4.3) can serve as the convergence critefion,

In the preparation of a flow chart involving an inductive loop, it is advisable to commence - -

with the inductive operation, Hence, a start is made with box F. Box E, the decision box

which decides whether the criterion for convergence hds been met, may follow. Next,

the substitution box between boxes E and F may be inserted to indicate that the irrele‘\)an}..

inductive variable is increased by one,
If the convergence criterion is met, the control is transferred to box H and fhe'qssertibn
is made that the last approximation, y , is the desired root., Box D, which contains the

operations necessary to enter the loop, is prepared next. In box D, y, is assumed to'be 1

and y, is computed. Then, before entering the loop for the general case, it is asserted

that 7 takes on the value 1.

With the entry and the exit of the inductive loop completed, it is now poséible to dispose '

of the remainder of the problem. In box A, the decision is made as to whether a is nega-

tive, The symbol ‘‘@ - A’ means that the number z is brought into the A register.

If a is negative, the control proceeds to box B and stops. [f a is non-negative, ~a is

brought into the A register in box C, If —a is positive, a must be zero, since all negative.

values have been screened out, If a = 0, it is necessary to set y = O'iﬁ;b”ox G and to
proceed immediately to box H which transfers the control to'the prespecified position. 1f
a > 0, the procedure control enters the inductive loop. and proceeds to box D which sets
up the initial approximation, ‘

The only bound variable is y,, and it is placed in memory position M1 for the time being.

The storage table may be constructed as ir Fig, 4.2; final memory locations, except for

a and y, are to be fixed later, An arrow indicates that the contents are unchanged but still-

relevant; a tilde indicates irrelevant information. |t is seen, at this point, that 1F1 isnot
relevant until constancy interval 11 and M1 is irrelevant after constancy interval 9. Hence
nothing is lost by using 1F1 as M1, since the information to be placed there never over-

laps in time.

0000000000000 0000000 0

| ME,\;‘ORYV INTERVAL OF CONSTANCY
LocATION| 1 [2 [3 [4] s | 6| 7] 8] of0]nmn
M1 08 B IRV AV (VA VPR BN IP00 I B
M2 2-39 :)
M3 2-1 ?
OEA a %
1F1 VS IV IRV IV BRI N I RN VI IR B
M4 O R N e ~ofalyl o ~ ~

Fig. 4.2, Storage Table fory =.\/a .

At this point, the static coding can be started. The static coding would appear as

Al
.2
B.1
C.1
.2
D.1
2
3
4
E.1
.2
3

At this point, local storage is needed for the quotient a + y. It is placed in M4 and the - :

c
T+()
Stop
C-

C
R
H
acaa
C
D

qaqq

T:+()

. follows, a verbal description following each order.

OEA , a — A '
C.1 ifa20 - C.1
if a <0 stop
OEA - -a - A
61 if =220 - G.1
OEA = a - A
001 a2-!
M3 2714427V =y,
CIFT ¥y = IFI
OEA - a = A
]F] : a+‘yi . |
M4 S a* yi"*M‘i‘

storage table is adjusted to show this. It will be there when the interval of constaricy 7 is

entered. |t would be possible, with dn Lay order, to shift from the Q:fé the A registers,

from there to A,

E.4
S
.6
7

N -

M4
1F1
M2
2FF
M2
001
1F1
1F1

'but this would take much more time than would sending the quotient to the memory and

a+yi - A

2T Y=Y

a+yi—yi+2‘39 .

if C(A) 2 0 - 2FF

3T Vie1 = Via

(a+ Yicn —}’iwl)z—l
vi=laty,_y =y)27 4y,
Y; - 1F1 :

4.9

4‘10

5 T() E1 -El

G.1 aoon IR ' y=0. —*H:? v
- H.T T4 2FF © . Transfer control to 2FF

Before proceeding to the final stages, a few further points are in order. The commands
appearing in lines A.2, C.2, and F.5 dll have pdrenfhfé,sebs'; ,indiéafing the omission of the
specification as to whether the transfer should be to the left- or right-hand order. In G.1
it has been ascertained that the a which is in the A register ié zero, so it may be sent
directly to 1F1 as the value of y. If is unnecessary to store a zero elsewhere, Order E.7
could read T + () H.T,' but that would be wasteful; a transfer could be made directly to
2FF, as shown. _

The next step is the dthmié'céd:i‘ngj, which; W?-:th‘ mnemonic symbols and temporary
memory locations, appears as follows: - \ ‘

001 c " OEA - Ter 002

1002 Stop V : C- 0EA
003 T+r 00B - C . OEA
004 R - 001 H M3
1005 * aong, 1F1 . c OEA
006 D - IR qqqq M4
007 c M4 H- - 1F1
008 H M2 T+d 2FF
009 H- M2 - R 001
00A H | 1F1 waa - - 1F1
00B T 005 aaon 1F1
00C - T . 2FF |

Having seen how long the actual program is, the next few storage positions following
00C may be assigned to store the variable- and fixed storage not otherwise specified.
Thus it may be that ‘ |

) 00D = M2
00E = M3
00F = M4 .

It has been alrecdy agreed that M1 should be 1F1. Finally, all mnemonic symbols and

storage locations may be put in sexadecimal form, as follows:

© Word o Left-chd : Right-Hand
Number © . Order . - Address Order Address
001 24 0EA - 48 002
002 00 - 0000 26 ~ OEA
003 B : TR 2 ~ OEA
004 B) B 20 00E
005 SF . R , 24 OEA

006 - 3A o 1F1 7F O0F

007 ! 00F 22 BRI

008 2 - 00D 4A . 2FF
009 2 oD 14 001
00A 20 1F1 5F IR
00B 4 005 - ~5F 1F1
00C 43 2FF 00 000
00D 00 1000 00 1001 {2-39%}
00E 40 000 00 000 {2~ 1}
00F [00 000 00 000]

Constants 2=39 and 2= are entered in their sexadecimal form. OOF is temporarily filled
in with zeros. The right-hand order at 00C is also irrelevant and similarly completed with

Zeros.

. Example 2: » =+a (]—] 2, .0.0,m) .

As an example of the codmg of a mulhple inductive loop with one relevant and one .

irrelevant inductive variable, the extraction of the square root of a set of n numbers, ay
Aop o ooy @y, is conéidered. The extraction algorithm remains the same as in Example 1.
It is now assumed that a; is already stored in meﬁory location (OEA +; - 1) and that the
desired root y;isto be put in memory location 1F1 4+ — 1; ineachcasej=1,2, ..., n
The number n is specified in advance. If a start is made_wnh j =1, then whenj ==, all

desired roots have been extracted. Alternatively, when either the root of the number in

" OEA +n — 1 has been found or memory position 1F1 + # — 1 has been filled, all roots
have been extracted. Tnus j, OEA +] — 1, or IF1 + j — 1 may serve os the relé\)ont \
inductive variable. It turns out that one of the latter two vorlab!es is preferable in that

it is unnecessary to: separa’fely count fhe] s and so 1F1 +] — 1 shall arbitrarily be used -

A flow chart to accomplish this appears as Fig. 4:3.

The notation used is similar fo that of Example 1, except that y ik will denote the &th -
‘ approxtmaflon toy;=vVa. In the event any a; < 0, it will be desired to stop the machine

at that point. Af the conclusion of the problem, the control is to.be sent to 2FF. The
storage boxes are similar to those in the previous example, except that the various ap-

proximations fo y. are specifically placed in M(y,) The latter symbolism stands for ‘‘the

memory location of y’.." The storage table appears in Fig. 4.4, In M5, (IF1+ 2 = 7) will.

be stored ‘and, as will be noted later, an M6 will be necessary that is originally zero.

The static coding is reproduced below. Boxes A through G are essentially the same as

those in Example 1. However, the addresses of the a; and y; must be changed each time

the outer loop is traversed, The change of address takes place in box l The beta circles

are variable remote connections with two entries and one exit. . The gamma circles are a |

pair of fixed remote connections,

Al C [0EA] ;- A
2 T+() - Gl : ifaz0 - C,1
Bl Stop ' . Stop

4,11

| A c S
o # 1 + 3 410 2 ,
@—>/=1 - g, —>A Mg A, Ty=0 (8
j V2 - |
‘ B
STOP | v O
yjr=2" + g2
72 ma— 5
y #
. k=1
- 6 -
R L —> M{
- g Ik J5)
; — |
| V7 :(m _”’"“) 2 Famy G _, 40739
[‘ | Sk ik
e/ e A v L J;rm.
- k+1—> k |- !
Ve M)
J
@<_ TRANSFER
’ CONTROL TO 2FF |
. \ ’
Ft+/—-1—> M6
, i . H + ! ’ #
(m + o 0-0F +a =D M(g) +1—> M) 2wl /44—
- M) +1—> M) | -
Fig. 4.3. Flow Chart for yi=Va, G=1,2...,7
MEMORY INTERVAL OF CONSTANCY
LOCATION | ¢ 1 2 3 4 5 6 7 8 9 | 0. 1 12 13 4
M2 2-39 3
M3 o2 3
M4 ~ ~ ~ ~ ~ ~ ~ oy, ~ ~ ~ ~ ~ ~ ~
OEA a, ?
OEA + 1 a, 7
6EA+YL—] an)
1F1 ~ ~ ~ ~ ~ Yl Y - Yig=1] Y1 - >
1F1+1 ~ ~ ~ ~ ~ Yo Yar ind Y2 ke Y2 3
Wlen-1 ~ ~ ~ ~ ~ Yo Yok - Ynk-t| Vn —
M5 LA
e 0 LA I L
Fig. 4.4. Storage Table for y; = v a G=12...,n)
4,12

C.1 S o - [0EA] ~a; - A
.2 T +() ' G.1 ifa;20 -G.1
D.1 - c [0EA] a; - A
2 R 001 a2”!
3 H M3 a2"! + 27!
4 aoaa [1F1] Y M)
CE. C [OEA] a; = A
o2 D . [1F1]. ‘1]- * y]'k
3 qq9q M4 a; %y — M
A \C M4 a’.'i“yl.k» - A
S H- ‘ [1F1] a; TV~ Yik ‘
6 H M2 » a; * Yik = Y t 2-3%
7 T+() H1 ifCA) 20 ~H.I
F.l H- M2 @Yy~ Viker
2) R ' 001 (aj * yj,ka-l - yi:k—1)2-1
.3 H [1F1] Vi
4 acaa [1F1] Vi M)
.5 T.() E1 - E.1
G.1 aaaa [1F1] y; =0 - M(y)
H.1 C G.1 G.1 - A
2 000a M6 M(yj) only extracted - M6
.3 C M6 IFl+; -1 -A
A H- M5 (IFl+j~1) =OFl+n=1)
5 T4+() 31 ifC(A) 2 0 = J.1
L1 C M6 CIFT+j -1 S A
.2 H M2 , Fl+7-1+1
3 000a G.1 M0y, — M) in G.1

The next few orders replace all other [1F1] addresses on the right in the same manner.
The dynamic code is necessary to see which will uppec} on the right, However, the next

order will be called 1.4,

A . Le . 014 - shift M(yj) 20 places to left
All iéft—hcnd orders are now replaced, as above, with 0200 order. Then
5 C C.1 Cl-A
6 H M2 C.l+2°%
g 000a C.1 M(a].H) - M(a].) in C.1
and the preceding two comments are again applicable,
) T4 Al - Al
TR I, OFF ~2FF

413

The dynamic coding, still using mnemonic symbols and using the interim storage desig-

nations and brackets about any variable address, is as follows:

001 c , [0EA] = T4r 002
002 Stop i C- [OEA]
003 » Ter 00B c ' [OEA]
004 R - 001 H M3
005 acaa COFN C ~ [0EAl
006 ‘ D [1F1] qqqq M4
007 - C M4 H- [1F1]
008 H M2 T+4 00C
009 H- M2 R 001
00A H [1F1] . ama [IFT
00B Te 005 ac. [1F1]
00C c - 00B 000 M6
00D - C - M6 H- Ms
00E o 2FF C M6
00F H M 000a. 008 -
010 - 000a: 00A 0002 007
on " Le 014 000 00A
012 0400 006 0a00 005
013 c | 002 H M2
014 000c 002 000a 003
015 000c. 005 Le 014
016 0000 001 T4 001
The storage assignments can be ‘ . ’
017 = M2
018 = M3
019 = M4
01A = M5
01B = M6 .

One change was made from the static code, Line J.1 is redundant, Line H.5 might just

as well send the control to 2FF directly instead of through an additional order.:

The final code, after inserting the sexadecimal notation, is as follows:

Word © Left-Hond Right-Hand
Number Order Address Order - Address
001 24 " [0EA] 48 002
002 00 000 26 [OEA]
003 48 008 24 [OEA]
004 14 001 20 018
005 5F [1F1] 24 [0EA]

4.4

006
007
008
009
00A
00B
00C
00D
00E
O0F
010
on
012
013
014
015
016
017
018
019
01A
01B

This routine takes o total of 27 words.

3A
24
20
22

41
24
24
4A
20

.51

16
54
24
51
51
54
00
40
(00

foo

[1F1]
019
017
017

[1F1]
005
00B
01B

2FF

017
00A
014
006
002
002
005
001

000
000
000

{(OF1 + » = 1)2-3%
00

000

7F
22
4A
14
5F

5F

51
22
24
51
51
54
54
20
51
16
43

00

00
00

procedure could reduce the total. Some reduction is possible.

019
[1F1]

00C

001
RIZIA
[1F1]
018
01A

018

00B

007

00A

005

017

003

014

001

001 {2-3%
000 {2~}
000]

000]

It would be instructive to see what altermnate

4.15

USE AND CONSTRUCTION OF SUBROUTINES

M. R. Arnette

ORNL

Central Files Number

53-12.2

Section 5

w+ s -+ . 5. USE AND CONSTRUCTION OF SUBROUTINES

M. R. Arnette

INTRODUCTION

'With more efficient machines, more time available, and more difficult problems being
aﬂempred the task of planning and programming problems needs to be as simple as
possnble. it is therefore important that the routine of coding be made automatic. The
machme should be allowed to do as much translotmg and cssemblmg of the program as

is feasible. One proven way to increase i‘he usefulness of the machme and also to make

coding slmpler for the programmer is to use recdy made programs for evaluahng the more -

common functions, such as the square root, sine, cosine, exponenhal, logarithm, etc.,
which are often needed as subordinate parts of other programs. A routine formed for the
purpqse,ofvsubstitution,jnfo other routines is called a subroutine. A reasonably complete
library of s;uch ‘subroutines can enormously reduce the time and effort spent on coding
a problem and lessen the probability of coding blunders as‘we“, since -the subroutines,
at. least, will be free of mistakes. It is, of course, essential that all the subroutines in

this library be written, machine checked, filed, and.cataloged.

ADVANTAGES OF SUBROUTINES

Subroutines have many advantoges; their use is basic to any high-speed automatic
computing machine. = Although cheap in comparison with machine time, coding time is
also scarce. Since the purpose of a high-speed computing machine is to reduce human
effort, the time of the programmer: should have the higher priority. In an effort to get a
problem into the machine as soon as is feasible, the programmer may have sufficient
reasons for becoming somewhat less efficient concerning the programming of the main
routine if all the subroutines are coded very carefully for economy in both time and
memory space. ’

Since inclusion of all possible operations in the machine as built-in orders is obviously
out of the question, there can be little doubt as to the usefulness of subroutines as coded
and checked orders. A subroutine can be thought of as a group of operations especially

prepared to perform a specific order. In terms of the storage capacity required, a sub-

- routine cannot compare with-g.built-in order, because the orders of the subroutine must

be stored in some group of cells in the memory while it is in use, although the main
program may use that same memory space after the subroutine has been used and if it
is not needed again:in the problem. However, since a subroutine need be stored only
once, it uses less storage than if it were written out and stored in full in several different
places in the memory. From the programmer’'s point of view the subroutine is as easy
to use as a buult-m order and is mcomporabfy easier to use than a sequence which must

be written out in full. each time.

5.1

5.2

As an example, suppose a certain problém calls for the square roots of five different
numbers at various times. To get the square root of only one number increases the code
by approximately 24 orders, or 12 words., Therefore the problem may become very lengthy
if everything is coded in sequence; 120 orders would be required in order to get the square
root of the five numbers. However, if the square root is qsed as a subroutine, the 24
orders which direct the machine to obtain the square root qf a number are placed in the
memory only once and can be located in any group of consecutive cells in the memory.

It is true that two orders, or one word, are required to trar}sfer into the subroutine and

that another extra word is necessary at the beginning of the subroutine; even so, the

five square-root values are now obtained By the use of 34 orders instead of the 120 ordeys

required when the code is written in sequence.

The probability of error is much less when ‘a subroutine is used. If the programmer is

coding in sequence, he must write the 12 words instructing the machine to take a square

root five times and must punch these same orders five times in making the tape. Each:

time this is done, there is a possibility of copying the wrong cell number or punching

the wrong key. Also, -the tape becomes very long, requiring a longer time to get the

program into the machine. Both the ‘time of the mathematician or the programmer and

that of the machine are being wasted by such procedures.

By having an extensive library of these subroutines, together with a workable system
by which selected ones may be combined to form a program for a complete problem, the
work of writing a code for even a complicated problem is greatly reduced. A subroutine

can be written to direct the computer to perform any computational chore; once written

and checked, it can be used almost as easily as an equivalent built-in order, with a

resultant saving in the programmer’s time. Subroutines extend the ‘‘basic’’ operations

1

the machine will perform. D. G, Hartree states:’ ‘‘lt is quite possible for eighty per-cent

of a complete program to be carried out by the use of such library subroutines.’’

DISADVANTAGES OF SUBROUTINES

Subroutines suffer from disadvantages. - In a machine, an addition instruction that deals

only with positive numbers could be made to operate faster than one which must handle

numbers irrespective of sign. Similarly a subroutine that is to cover a great number of

eventualities may often require more memory space than one that is coded for a single

specific problem; subroutines are customarily coded to take care of the most general -

cases, not specific ones. Also, subroutines should be as indépendent of the rest of the.

program as possible.

'D. G. Hartree in Foreword to M. V. Wilkes, D, J, Wheeler, and S; Gill, The Preparation of
Programs for an Electronic Digital Computer, Cambridge, Mass., Addison-Wesley Press, 1951,

CLASS!FICATION OF SUBROUTINES

Subroutmes .can be clossn‘led in several ways. Wilkes, Wheeler, ond Gill2 classlfy_

fhem,os either cpen or closed cnd furthermore dlstmguvlsh between parameters as being
either preset or program. v ‘ ' .

An open subroutine (Fig. 5.1) is the sumpler form; it consists of a sequence of orders
capable of being incorporated as it stands. into the main routine, which is that part of
the code that does not contain a subrouhne. When the last order of an open subrouhne
has been executed, fhe control is sent to the word in the main routme which lmmedmtely
fol!ows the subroutme, and the machine executes the order in this |occhon.

A closed subroutine (Flg 5.2) is called -into use by a specml group of orders in the
main routine. s designed so that lt retums control. fo 'rhe main routine mmedmtely
followmg the order that called it in.

Suppose a prob!am is being programmed ond the need for the square root of a number
is noticed. If the problem calls for the square root of only one number in the whole
program, it would probably be better to include the square root as an open: subroutme,
that is, write it in as a port of the main progrom where it is needed. However, if the
proble_m demands the square root of more than one number, it will save time }and space

to use a cldsed' subroutine, which may be placed anywhere in the memory and entered

‘as many times as required.

An interpretive subroufme is one in which the information is processed according to
a scheme mcorporoted in the subroutine. It is similar in form to'a closed subroutine
but is given another classification because it has a different purpose. For example,

subrouhnes for floating point computation, complex number arnhmeflc, etc., are in-

ferprehve subroutines. In each of these subroutines, the subroutine processes (interprets)

the numbers with a special algebra; for example, (x, y) may be interpreted as x- 2.

2M. V. Wi lkes, D. J. Wheeler, and S. Gill, The Preparation of Programs for an Electronic Digital
Compufer, Chup 3 Combndge, Mass., Addlson-Wesley Press, 1951,

MAIN ROUTINE OPEN SUBROUTINE . MAIN ROUTINE -

% o N
, | o

Fig. 5.1. Schematic Dingrdm of the Insertion of an Open Subroutine in the Routine,

MAIN ROUTINE ’ MAIN ROUTINE CLOSED SUBROUTINE

A A A

TRANSFER TO
B ORDER AND . TRANSFER TO
N SET UP EXIT i A ORDER ;

I l l {

A 8

-

—~—r
PN

Fig. 5.2, Schematic Diugmlﬁ of the Insertion of a Closed Subroutine in the Routine,

5.3

5.4

A special subroutine may be open or closed and is used for certain special purposes.

Special subroutines are not usually included in the main program. One routine is written -

which prints out or punches the contents of a desired location for the purpose of finding

_ a programming error after the foutine has been performed unsuccessfully. Checking,

printing, conversion, assembly, and error-diagnosis subroutines are all classified as
special.

Three sources of trouble which can give rise to incorrect results in the solution of a
problem on a digital computer are (1) errors of a mathematical nature in the numerlcai
method, (2) imperfect operoflon on the part of some of the computing equupment ‘and
(3) mistakes in the program which give incorrect instructions to the computer. The
mistakes made by the programmer, that is, mlstakes in the code itself, are the most

difficult to find. The library should contain several types of specml subrouhnes for
finding these errors. One desirable type would be a delayed print-out of a general nature.

It could be automatically called in by the programmer by inserting a programmed in-

* struction where a part of the instruction word (this would likely be a packed word®) would

indicate the form of printing desired, etc. Errors may be found also by placing break-

points at significant locations in the code to stop the computation and by inserting
subroutines to print out the contents of pertinent cells. At each of these print-outs the

programmer should have a list of the correct answers. |f the answers are correct at this

point, the problem continues, but if they dare incorrect the programmer has the correct

numbers ready to be read in before the routine continues. .After the whole proBIem hos
been checked in this way, the programmer is ready to go back to his desk and make the
necessary changeé. The errors have been localized, so that the worry of finding the
mistakes has been decreased. One great advantage of checking routines: in the manner
just descnbed is that after the routine is checked it can be run wafhout the prmt-oufs
by merely turning off the breakpoint switch. ,

Carr and Gilmore? classify subroutines according to the amount of information that
must be exchanged between the main routine and the subroutine. A subroutine that
requires from the main routine information that can be stored in the A and Q registers
alone is called a zero address or automatic subroutine. A subroutine that requires, in

addition to the. A and Q registers, n cells of information is called an » address subroutine.

CLASSIFICATION OF PARAMETERS

Preset parameters are those that are fixed at the start of a specific main routine and
will be incorporated in the subroutine during the process of input, and are therefore fixed
for the whole of the routine. A program parameter is one which may have a different value

at different points in the main routine. An example of program parameters is in the

3A packed word has several instructions in one storage location. A routine must exist for
unpocking the word.

4). Carr and J. Gilmore, Method of Preparing ‘Subroutines for the Subroufme Library, M-1284,
M.LT. Dlgnal Computer Laboratory, p.-195.

- conversion subroutine D.2 which reads n coded decimal fractions from tape, converts

them to their binary representation, and stores them in consecutive cells in the memory
beginning at cell m. Here n can be any decimal number from 1 to 993 or its sexadecimal
equivalent, 001 to 3E1. In order to enter this subroutine, the operator puts in the A
register a word of the form — [n - 11 — [m) (the dashes representing decades with
irrelevant information) and then sends the control to the first word of the subroutine.
This particular: subroutine is written so that ofter the » words are converted and stored
in the memory the machine idles. The operator is now free to give almost any order; if
the main program requires another group of numbers in a different place in the memory,
a word similar in form to the one just given is put into the A register, and the control
is sent again to the beginning of the subrqﬁfine. This can be repeated as many times

as required. When calculations are to be resumed, the control is sent to the cell which

contains the next order in the main routine.

Goldstine and von Neumann® classify parameter changes in subroutines as being either
of the first kind of of the second kind. C(h"cﬁges: that remain fixed throughout all uses
of the subroutine within one fixed routine or a particular main program are changes of the
first kind. These parameters of the subroutine may be different for another program, but,

after having been set, they remain fixed for each one. Changes of the second kind are

.those which vary in the same subroutine. The parameters of a problem, such as x in

Vx subroutine, will usually change within one substitution and are thus examples of
changes of the second kind. However, the address of the first word of the v/x subroutine
is an example of a change of the first kind. The location of the subroutine in the memory
is arbitrary, but for one main program it need be read in only once; so the entry point
remains fixed throughout the particular program. "Chong’es of the first kind can be made
either by the programmer or by using an assembly or preparatory subroutine and allowing
the machine to make the changes. ‘The main routine which uses the subroutine must make

the changes of the secong kind.. .

Some of the conventions practiced ih'writing a code for the ORACLE are as follows:

| Symbol - Meaning
M(®) : v l v Memory position of b
C(] FC) or C(SOS) Contents of cell 1FC or 508

If only a part of a register or cell is being used, this part should be indicated by Roman
numeral subscripts if it is divided into four parts and by superscripts if it is divided into

two parts; for example, .

Symbol : Meaning

C(]B4|) =B B is the integer represented by the first 10 bits (ag «.. ay)
in cell 1B4 :

5H. H. Goldstine and J. ven Neumann, Planning and Coding Problems for an Electronic Computing
Instrument, Vol. Ill, Part i, Princeton, institute for Advanced Study, 1948.

5.5

5.6

FC(03E“|) =y y is the integer represented by the third 10 bits (a,y ... a,,)
in cell O3E '
C(Aw) =1 {is the integer represented by the last 10 bits (agq « - ag)

in the A register

C(Q“)v =g g is the integer represented by the last 20 bits (q20 c o . Qge) v
in the Q register

[1 o Brackets indicate variable storage; if the initial value is -
irrelevant, indicate by “‘irr.”" in the explanation column
on the work sheet, but indicate the value in the code

[H- 104 [used at the upper left of an order indicates that this is
the beginning of a loop; i.e., this part of the code may
be entered from other than the precedmg order '

T+ 4 085 J Jused at the lower right of an order indicates that this is
: the end of a loop; i.e., it is possible to return to [unless
the iteration is completed
In most ORACLE problems, space will be reserved for special parameters, that is, the
universal constants. It is assumed that cells 000 and 7FB through 7FF are reserved for

—1%, *1*, 2~1.0, -1, and 1%, respectively.

Cell * Machine Code Explanation
000 FFFFF FFFFF R

7EB 00001 00001 e =19 o9
7FC. 40000 00000 - 27ty

7FD ‘ 00000 00000 | 0

7FE | ~ 80000 . 00000 -1
7FF 00000 00001 N 1* = 2-39

Among the various ways of making changes of the second kind are the packing of more

than one piece of information into a single register on entering subroutines, the methods

of entering subroutines, and the exits from subroutines. _

‘In one of the floating point routines, an operation. is perférméd by placing a word, W, of
the form W =M_ M M, M , in the A register and then transferring control to the operation
desired by picking tHe correcf entry. M means M(w) or the memory position of w, where

w is the next order to be performed. Thls order must be a left-hand order in this particular
routine. M, is the memory position in which the result is to be stored, and M, and My
are the memory positions of the operands x and y, respectively. The subroutine will
operate with the values x and y according to the operation chosen, will put the result
z in M(z), and will transfer control to M(w) for the next order. The main routine places
the packed word, W, in the A register; then the subroutine takes over and unpacks it

such that
Mw) —> OID“

M(z) —> 01C,,

Mx) = O0F

M(y) — 00D,

by the following ‘five orders or two and one-half words.

A register contains [M(w) M(z) M(x) M(y)l:

Order

No.

'l“..

Order

000 00D

0000 01C

‘Ro . 00A
000 00F
0a00 01D

Explanation

M(y) —>00D,,

Mz) —> 0IC,,

C(A) = [0 M@) M(z)M(x)]
M(x) —> OOF,,
M(@) — 01D,,

In machine code the two and one-half words are as follows:

5100D
1000A
5401D

Suppose the programmer has the word [M(w) M(z) M(x) M(y)] ’in cell 017 and desires

5401C
5100F
t1

the actual values of w, z, x, and y in cells 110, 111, 112, and]]3, respectively. This

Cell

Left-Hand Right-Hand
Order Address Order Address
()] (1) (1) (v)
C 017
- 0o O n + 2
Ro 00A
0a.0a n+ 4
C [M(z)]
' Q [M(»)]
aaaa 111
' qqqq 113
C M(w)]
Q [M(x)]
aaaq 110 :
9999 112

. can be accomplished by a small six-word routine as follows:

Explanation

C(A) = Mw) M(z) M(x) M(y)
Cln + 2) = CIM=)] Q M(y)]
C(A) = 0 M) M) M(x)
Cln + 4) = CIMw)] QIM(x)]
C(A) = = |

cQ =y

c(mmn = =z

c13) = y .

CA) = w

CQ =«

c(110)
c(112) -

w

X

ENTERING AND LEAVING THE SUBROUTINE

One standard method of entering subroutines is as follows: Assume a square-root

subroutine (11 words long) is stored at address 1E1; that is, the ﬁrsf order is in the

5.7

5.8

left half of cell 1E1. The programmer wishes to find x, where x2 = @, and ‘is at cell 200
in the main routine. He wants to return control to the first word after 200. The pro-
grammer looks at the specification sheet for this subroutine and sees that on entering
he must have the order which transfers control back to the main routine in the first half
of the Q register, and he must have the number a in cell 7F9. The contents of Q' and
A are both irrelevant.
x = v/a will be left in cell 7FA.

If @ has just been icomputed in the main program, it is ih the A or Q register. Assume

that it is in A; ““T +r 201"’ must be stored in the left half of some cell. Then the main

Also, the programmer notes that in this subroutine the answer

routine would be as follows:

The square-root subroutine would first store the exit order and then proceed as follows:

Cell -

1E1

1E2

163
]E4
1E5
1E6

1E7

C1E8

- Cell

200
201

Left-Hand |

Order Address
qq00 1E9
) MO

H M(1/2)
C- 7F9
aaaa 7FA |
[c 7F9
9999 - 7F8

H- 7EA

aaaq

T

Mnemonic Code

7F9

1E1 [Next order of main routine]

Mnemonic Code

~ Right-Hand
Order Address
C 7F9}
R 001
aooa 7FA
T-4 1E6
T 1E9
D 7FA
C 7F8
H- i:Mblﬁ

Q

C(A) = d.%v X.

a v X, =- X.
- 1

MT + r 201 [~)

Explanation

Store exit in lE?

lfa <0, stop
a + 2
2V 4 g+ 2
C(7FA) = x,
C(A) = -a

= 1E6'

x =0 "

Exit to main routine

C(7F8) = (a +)

1

(@ + x;) ~x, + 2737

1E9 [T»+ r 2011 - 1E9' is the last order performed
» by the subroutine
| H MR S e o) - ox
1EA R 001 | @+ x) - x]27"
H TFA x,
1EB aaoa 7FA C(7FA) = x40
| | ™ IE6| Repeat loop

Another method of entering subroutines, the one which is most often used in coding
for the ORACLE, is as follows: Consider the Binary to Decimal Conversion Subroutine
for Fractions. This subroutine requires that the binary representation of the number to
be converted to coded decimal characters be placed in the Q register, and the last word
of the main routine which sends the control to the subroutine must be of the form
(C [xxx] TAI3EO]), where xxx is the cell inwhich this word is stored in the main routine,
and the next address, 3EQ in this case, is the cell in which the first order of the sub-

routine is stored. The first word in the subroutine must be of the form
(H 7FB° 0a00 [3EC]) ,

where C(7FB) = *1*, and the last address is the cell in which the last order performed
by the subroutine is stored. This last order transfers control to the left-hand order in
cell (xxx + 1), which is the next order in the main routine. This particular subroutine
leaves the answer in the A register. The main routine takes over at this point. It may
store the number directly in some particular location, it may make some shifts in prepa-
ration for gdifing before stéring, or it may shift it into the Q register for immediate
punching or whatever the programmer desires. , ,

This manner of entering subroutines is more automatic and is therefore preferred. In
the first example (the square-root subroutine), the exit order had to be stored in some
part by the main routine ond then brought into A or Q, according to the specifications
of the particular subroutine being used, before transfer. was made to the subroutine. The
subroutine then had to store the exit order in the correct location. The minimum re-
quirement using this first method was three orders in the main routine and two in the
subroutine. ‘

In the second example, it also takes five orders to enter and exit the subroutine, but
the pattern is a fixed one. The programmer does not have to remember or look at the
specification sheet to find out if the exit must be a left- or right-hand order and if it is
required to be in A or Q before entering. He must enter the subroutine by a word in the
standard form, and then the subroutine does the rest. FEach subroutine available to the
ORACLE in this form can be considered as an extension of the basic code of the
ORACLE, since the performance of the subroutine requires only one word in the main

routine,

5.9

5.10

RADIX CONVERSION

In order to understand the machine conversion of a number from either decimal repre-
sentation to binary representation or from binary to decimal, it is necessary to know what
the number looks like on the coding sheet, on the punched tape, and in the machine.
Consider the input by means of standard five-hole teletype tape, where four holes are
used to represent numbers in the sexadecimal or base 16 number system by means of a
binary code. A 40-digit b’inary number is then written as a 10-digit sexadecimal number.
Since a sexadecimal digit can be represented by four binary digits, each digit of the code
can be recorded.on. the paper tape by the use of four levels across the width of the tape,
each level being punched or not punched according to whether a 1 or 0 is to be recorded.
The fifth level of the tape is used by the machine for control purposes and is present
only for the space_chcmcfe;. Punched paper tape also contains sprocket holes. which
_cfe smaller than the holes in positions by hys by, by, and by (Fig. 5.3). The sprocket
holes, which are used only for mechanical advance of the paper tape in the tape punch
and tape reader, appear in each row across the tape between positions b, and b,. There
are 10 sprocket holes per inch along the tape. The punched paper tape should have -one

end marked as the beginning to avoid the possibility of reading the tape in the wrong

“direction. All 17 coded characters are illustrated in Fig. 5.3, which is exact size.

RRENEEN

O /75

SPROCKET HOLES 000000000 A
'.'.....v...'.".........'.......
0000, 00000 g

. 00 0O0' 00 000 =— #
000 OO0 O O 00

T

o 2. 6 ‘B A C E Space

™~

~ Fig. 5.3, Représenfufion of Sexadecimal Digits on Teletype Tape.

A positive number is represented in the usual manner, and a negative number as the
complement of its absolute value with respect to 4; therefore o_,, oy = 0 in case of
a positive number, and a_ 1+ % = lin case of a negative number.

Take a very simple example, say +7/8 in binary form,

o 2y 3 4 L

1.2 +1-27%4+1.27°+0.27%4+ . ..0.272% or—+ —+ —+ 0...
2 4 8 '
is represented as .1110 0000 0000 0000 0000

When the number is partitioned into groups of four bits, the resulting dyadic form may

be written as E00 00 00 0 0 0. However, the 40 bits include one place before the

‘ ‘ . . . ‘ . . ' . q. .

ooopo.o.ogooooooooooool

" binary point for the sign and only 39 places after; therefore +7/8 is represented in the

machine by a pulse or no pulse (1 = pu'lse, 0 = no pulse) as follows:
[0.111 0000 0000 0000 0000 0000 0000 0000 0000- 0000] .

On the coding sheef this would be written (70000 00000] and punched on the fope in
binary coded characters would look like Fig. 5.4.

..‘.'..0.‘...,.'....Q/..‘....l.'.‘

T

Fig.;S.ll. Tape Representation of the D'evcimul Fraction +7,

~ —= 000

In reading a word from teletype tape into the memory, the coded characters are read
from the rows on the paper tape. in parallel to the positions g4, g4, 54 934 of Q_ . First,
one character is read so that g5, = by, g5, = by, qgg = by, and g59 =h;. Then the
contents of Q, are shifted left four places, and the next coded character is read into
935 937 938 939+ 1his process continves until a spcic<e» character is reached, at which
time the word in QL is transferred to M(x). This is the procedure when the order Ls M(x)
has been given. [f more than 10 characters precede the space character, then the first
characters read in are lost from the left end of Q, and are not transferred to the memory.

However, if the number +7/8 had not been so easy to write down in its coded sexadecimal

‘characters, the programmer would surely have written the number in coded decimal charac-

ters and allowed the conversion subroutine to put the number in its machine binary form.
In this case, the programmer puts +875000000 on the coding sheet. On the tape the
number will look like Fig. 5.5. This is read into Q, the same as before and the register

will look as follows, where the punches on the tape now are represented by 1’s or pulses

8 5 0 0 0
O
O

S 0 008 00000 HO O E PP OO OSSO EENOCEDS

TTITTL

Fig. 5.5. Coded Decimal Representation of the Decimal Fraction +7}8.

5.11

5.12

and no punch on the tape means a zero or no pulse:

Q,_ :[0.000 1000 0111 0101 0000 0000 0000 0000 0000 0000]
+ 8 7 5 0 0 0 0 0 o0 .

The conversion subroutine ‘takes the number in this form and changes-it to. -
[0.111 0000 0000 0000 000G 0000 'bOOO 0000 0000 0000] ,

and it is ready to be used in the calculation, stored in a particular cell, or used as the

main routine demands.

INPUT PROGRAM

As problems become larger and more complicated, the time Arequired for input of in-
structions from outside into the machine increases. One solution seems to be to let the
machine itself do as much as possible of the routine work in programming, assigning
storage, assembling subroutines, etc. In particular, suitable means for changing pa-
rameters in the subroutine to suit various situations and for orienting the subroutine in

the main program must be provided. The latter are essentially clerical tasks but can

be performed internally by the computing machine just as decimal numbers can be con-.

verted to binary by the machine. The input program is des:gned with these ndeos in
mind. It is not just a read-in program or a stmp!e assembly progmm° It is, ina sense,
a device ‘whereby the language of the outside programmer is translated into the internal
binary language of the machine. Scientists and engineers outside the Mathematics Panel
will not have to learn how the ORACLE works, but only ‘wh‘m“ it can do and how to use
the input program to tell it what is desired. ‘ v '

Thls input routine ossembles the program for a specn‘lc prob!em from component parts
and converts the assembly into machine code. Component parts may be clctssn‘led as
(]) the main’ routine, (2) a subroutine from fhe library, (3) a subroufme written for the
specnflc prob[em or (4) an order or number which WI” be used as a constant or varloble
in component parts 1, 2, or 3. _ ‘ V

With standard five- hole tele‘rype tape as input equipment, orders ccmnot be mserfed
into the machine in mnemonic symbols but. must be put in machine form by the coder or
by the tape-puncher. 'Other necessary conversions can be performed by the input routine.
These include the following: _

1. Conversion of numbers. Numbers may be in machine code or in decimal notation.
A decimal number may be a fraction or an integer. ’

2. Translation of addresses, Command words may have addresses which are absolute
or relative. An absolute address does not depend on a parameter to determine its true
value. It is written as its exact location in the memory. The number may be written in
either decimal or sexadecimal form. A relative address is dependent on the value of
its preset porumefer for its fixed location. It is given by its position number in the
sequence of orders followed by the pertinent relative parameter. For example, the seventh

word in the e—X subroutine is H 2B1 Tn{ 11D2. Here both' addresses are relative.

The first address is the second word in sequence relative to Bl. Bl is the parameter
for storage of the temporaries used; therefore 2B1 refers to the second temporary position
used by this subroutine. The second address is the eleventh word in the sequence
relative to D2, where D2 is the parameter for the subroutine itself. That is, if the pro-
grammer decides to read this subroutine into the memory beginning, for example, at
cell 254 decimal, he sets the parameter D2 equal to 253; then the ielative address 11D2
would become the absolute address 264, or 108 in sexadecimal characters.

3. Assembly of storage. The absolute positions of the program and constants may be
decided just before the tape is punched. ’ ‘

4. Conversion of addresses. The address in a command word may be written in decimal
or sexadecimal notation. «

5. Conversion of subroutines.

6. Input of universal constants.

-Alternatives indicated in conversions 1 and 4 can be specified by one of the five ‘prefix
words, D/0, 1, ..., 4/N. All the descriptive or control words are combination words
of the form X/1/M, where X is either a D or an E, I can be any number from 0 through 9
(or A through F when referring to relative poraﬁ\efers), and M may be either a number,
say N, or a m;mory location, L. The slash indicates a single space on the tape.

Following is a list of the D words with their meaning. The symbols D/5/N through
D/F/N can be used to indicate other special forms' of input words. For example, D/5/N

could be made to refer to hlgh precxsnon conversion, but this has not yet been added.

Symbol ‘ Meaning
D/0/N All N words which follow until the next D word are read into storage di-
' . rectly, without conversion

D/1/N - All N words which follow until the next D word are commands .with decimal
addresses which may be relative or absolute

D/2/N All' N words which follow: until the next D word are commands w:fh ad-
dresses in machine code which may have relotwe addresses

D/3/N All N words which follow until the next D word are decimal mfegérs
D/4/N All N words which follow until the next D word are decimal fractions

To distinguish between alternatives indicated in conversion 2 and to supply the con-
version routine with required information for carrying out conversion 3, directive words
or control combinations are required. Such words are inserted at appropriate points to

supply the necessary information to the input routine. They include the following:

Symbol : Meaning

E/O/L/ Set storage counter (storage counter contains address to which converted
word is sent) to L (decimal); L may be relative or absolute
E/V/L/ Transfer control to left-hand order in cell L, (TZ L), where L may be

relative or absolute

5.13

5.14

E/2/ Set remote connection for storage of converted words on teletype tape |
rather than in the memory; if the words on the input tape are in machine .
sequence, the input routine places no restriction on program length ‘

E/3/ Set remote connection for storage of converted words in memory to
(L, L +1,L+2, ...); this connection is set to store in the memory
when the input routine is loaded . :

E/Kz'/Vl./ Ki runs from AQ through FF; that is, E/AO/V replaces reference ad-
dress A0 = C(395) by V,, ond E/A]/V replaces reference address
C(394) by V,

Words under control of D/1 and D/2 may have relative addresses with respect to a
preset poroméfer. That is, an.address 9Ki means the address, 9 plus the value Ki, where
Ki denotes to the input a particular relative parameter. The values of the relative pa-
rameters are set by directive words of the form E/Ki/V, which means to set the relative
parameter Ki equal to the value V. K can be any letter A through F, and 1 =0, 1, 2,...,
F, making available the possibility of 96 preset parameters-in any program. L, N, and

Ki are decimal.

EXAMPLES OF SUBROUTINES

Subroutines for (1) conversion from binary to decimal representation for frochons,

(2) sin x and cos «, and (3) e=X

are given as examples since they are short and easy
to follow, they show the different approaches to coding a problem, and they are used
in Sec. 6, '‘Coding a Complete Routine.’’

The conversion subroutine, only 13 words long, is the shortest and easiest to write

down directly from the flow diagram, It is also given in sexadecimal characters or in

machine form.

The sine, cosine subroutine is somewhat longer and is written using D1 as the sub-
routine parameter and B2 as the parameter for the temporaries. With the addresses in
this form, the input program will convert the addresses to binary and adjust them ac-
cording to the values given the parameters. The commands must be written in sexa-
decimal characters, such as 5C for quO,'QO for H, etc.

The e=* subroutine is given as an example of the manner of approaching a larger
subroutine. The only difference in looking at the code is that it is about one and one-half
times as long as the one for sin x and cos x. However, the flow diagram is more compli-
cated. There are more choices for the machine to make; so the flow diagram contdins
more double entries and exits. Note that again two parameters are used, D2 for the
subroutine and B1 for the temporaries used by the subroutine.

If a programmer has an even larger problem, the manner of attack would be the one
followed in Sec. 6, where more parameters are used. In further consideration of the same
idea, suppose each box in the flow diagram requires 20 or 30 words per box instead of
1 or 2 words as does the e=%- subroutine. The most efficient approach would be to code
each box in sequence, using a different parameter for each one. By doing this, the

programmer may conveniently change or add to any particular box without changing the

cell numbers in any of the other boxes. The programmer determines the values of the

parameters, which may be either all absolute or one absolute and the others relative to it.

CONVERSION FROM BINARY TO DECIMAL REPRESENTATION FOR FRACTIONS
o ‘ (SUBROUTINE B.4)

The main routine must have the number to be converted to decimal in the Q register.
The next word is then
C lxxx] T4 m or 24 [xxx] 43 m
where xxx is the cell in which this word'is stored, and m is the cell in which is stored the
first word of the conversion subroutine. The conversion subroutine next adds 1 to xxx,
substitutes it in the exit order, ‘converts the number to decimal (changes it to its coded
decimal representation), and leaves the answer in the A register for the main routine to do

whatever the problem demands. A flow chart of the subroutine is found in Fig. 5.6.

A
B .
Substitute ceil Nf:. conf?ini?g Set up tally - c
next order of main routine into
. . counter. Send tally to Ty

subroutine. Store number from ClAaw) = 8

QinT,. STV .

£ D
+ i th = i
Decrease tally: Shift ath (n =14, 2, ..., 9) coded decimal

Change C(T5) by —i* characters left 4 plgces in Q and L? 004
- to get (n — 4)th decimal characters into Qqy.

G H
F
Original ¥ A = Put F in 15% 4 places by Bring coded decimai . Transfer fo
main
Lq 4, CM(~t*), Rq 4. - No. into A. ar
routine

!

Fig. 5.6. Flow Chart for Conversion Subroutine B.4.

Let Nb equal the number in coded binary form and let Nd equal the number in its coded

decimal representation. Then the subroutine written in its mnemonic form is as follows:

Left-Hand Right-Hand T Box

" | olanari
e Order Address Order Address xplanation No.
H M(*1* . | X
m (*1%) 000 m]2} Substitute exit address
m + 1 qaqq T, Ty = Nb |
. : Cm TI‘ ClA) =]Nb] 5
m+ 2 asoa T, C(T,) = |Nb|

C- M(=1%) C(A) = 1*

- 5.15

m+ 3 Le 3 ' ' C(A) = 8*

laada T, = C(Ty) = 8% - C
» (T; = tally counter)
m+ 4 C | T, By nth coded decimal character D
Ro 2} feeds info 936+ 939

n=12...,9; nth coded
m+5 H T, decimal shifted left four
4} places and (n + 1)* into 34
<+« 4gq etc,

: -Remaining part of Nb — T,
agoa T, o ‘
m+7 C T, . E
. (—1*)} Change C(T,) by ~1
m+8 T+r m+ 3 Lc
C) F
' Repeat loop; test for sign of .
m+9 T+4d m+ NN original Nb; if +, Ndisin @, ~ H
Lq 4 5 if =, put “‘F’" in first four G
: places C
m+ 10 C M(=1%) _
Rq 4 Y,
m + 11 T ' , : ' "H
4999 ! c T]} Nd is in A register
m + 12 T4 [xxx + 1] . I
T } Transfer to main routine
lrr. ‘
2FD = T,
2FE = T, Temporaries used
2FF = T,

Assume that this subroutine is stored in cells 2F0 to.2FC; then the code in its coded

sexadecimal characters would appear as follows (the universal constants appearing in

cells 000 and 7FB through 7FF):

Cell Uni\;ersal Constants

000 ‘ FFFFF FFFFF . -1*
7FB ‘ . 00001 00001 **
7FC . 40000 00000 2-1
7FD 00000. 00000 0

7FE V 80000 00000 -1

7FF 00000 00001 1*

5.16

The subroutine appears in cells 2F0 to 2FC:

 2F4.

Cell
2F0

2F1
2F2

2F3

2F5
2F6
2F7
2F8
2F9
2FA
2FB
2FC

Code
207FB 542FC
7F2FD 252FD

"~ 5F2FE 26000

16003 [5F2FF
242FE 10002
202FE 1A004
10001 5F2FE
242FF 20000
482F3| 242FD
4A2FB 1A004
24000 1C004
7F2FD 242FD
43[000] 00000

SUBROUTINE FOR Sin x AND Cos x

As usual, the main routine must enter the subroutine with an order of the form

C [xxx] T4 m ,

where xxx is the cell in which this word is stored, and m is the location of the first word

of the subroutine. Also, this specific subroutine requires that the main routine have the

argument x in the Q register. It leaves the cos x in the A register and the sin x in the

Q register and returns control to the left of cell xxx + 1 for the next order in the main

routine. In case the cosine'is +1, 1 = 239 is left in the A register, since +1 is not

digital. The flow chart appears in Fig. 5.7.

A

Co=0

B

C

|+t ——n

a
Vy=x

n=A

Temporary Storage Used by

1B2
2B2
3B2
4B2
5B2

Up =X/, _y
C=Ch_otu,

n+4t—n
v, = —{x/nlu, _
Sp=8,_2 t Y,

D

\

the Subroutine

- [s]
tcl
[n]
[z, v]

Fig. 5.7. Flow Chart for Sin.x and Cos x Subroutine.

Mnemonic Code

E

cos x —>A
sin x —> Q

-

—{ Tl

Constants in Usual Location

0.

7FB
7FC
7FD
7FE
7FF

—1*
**
-~
0
-1

. +'l*

5.17

5.18

Parameter D1

el Left-Hand
Order Address
1 H 7FB
2 C 7FD“ ;
3 qqqq 182
4 ‘quqq ~ 582v
5 ’er 0
6 C 182
7 Dq 432
8 cam 5B2
9 aaa 382
10 H- 0
1 c- 1B2
12 D 4B2
13 aca - 5B2
4 caom 282
15 T+r 16D
16 T 5D1]
17 H- 7FE

Right-Hond
Order Address
000 '2001}
acoa '3152}

9999 252
c- o”"
e 4B2
—

Mr 582

W 382
C 4B2
foTotale) 4B2
Rq ‘ 39}

m 582
HH 282
C-m 5B2
C 4B2
| c- 382
Tnt 1901}

Explanation

Substitute exit order

C(3B2 = ¢, = 0
C(1B2) = «x
‘C(2B2) = x
B2 = x

COCA) = e

‘ (n + D* = n*

" C(4B2) = n*
CAand Q) = «
x*/n* = x/n
u, = (x/n)vn_'l
C(5B2) = u,

Cn ='C"",2 + un

C(3B2) = C,
C(A) = 7’2*

CA) = n* + 1%
C(4B2) =

*

- —=x* = C(Aand Q

Cex*/n* = ~(x/n)

v, = —(Jc/n)un_~ 1
. C(5B2) = v,

Sn =S % v,
c(2B2) = s
C(A) = - lv,|
lfv, = 0- 16D1
C(A) = n*
Repeat loop

~C = C(A)
C(A) = cosx

(n + 1)*

Box
No.

18 C 0 } 11, put 1-273%in A
. Ro 1
9 Q 82 } CQ = sinx
Stall :
20 T Lexx + 1] | } Return to main routine @
rr.

Error Analysis for Sin x and Cos x Subroutine
Let w, stand for tu_ or tu_ where

w, = (x/nw,_,

U Ly

and the division is nonroundoff. -Let

L 40 "
€, = 2 lwn - w,

Then .

wi = w, = {l/mrwr -)

+ [(x/n)*.— (x_/n)]u_/:l‘_l + (x/n)[w:_" - w, 4

For nonroundoff division,

0 < (x/n) = (x/n)* < 2-3%m - WVn .
Also
lw¥ | £ Ve =D
Hence S
€, < 1+ 2An - Wn! + €,_1/"

Since €, = 0, the above inequality may be evaluated recursively to give

€, £ 2

€3 < 7/3

€, < 11/6

€, < 43/30

In decimal form . _

€, < 2.000000 €, < 2333333
€, < 1.833333 ' - €5 < 1.433333
€, < 1252778 €, < 1181349
€g < 1.148016 . o €, < 1127601
€0 < 1.112765 ‘ €, S 1101161
€1, < 1.091763 €,5 < 1.083982
€14 S 1077422 ‘

5.19

5.20

The residual error is less than the first neglected term, For w, this is less than the

possible roundoff error in the term
lw,gl < 0.05255.2-4° gl < 0.8408 - 2740,
Hence, for the total error (generated and residual), ‘ '
(1 = cosx)* = (1 = cosx)|] < 1.1973.2-3%7
[(sin x)* — sin x| < 1.1402.2-3%7 |
Time .
The minimum time reéuired for the preceding subroufir;aé‘ IS 2.82 msec, qnd the muximpm

time is 22.75 msec.

e~X FOR 0 < X <238 SUBROUTINE ,

This subroutine is entered by having the integral part of X - 2=37 stored.in 1B1 and the
fractional part of X stored in 2B1. Again, the cell number preceding the one containing
the first order of the mdin routine must be in A,, after the completion of the subroutine.

When the control is returned to the main routine, the answer e~X is in A, Figure 5.8

depicts the flow chart.

Mnemonic Code

Tempordry"Storage Used by the Subroutine

1B1 X, - 239
2B1 Xg . N
381 n'*, (n" + n")*, n*, i*
4B1 fWhy
5B1 [u,
6B1 e,
Parameter 92
Cell Left-Hand Right-Hand N B
®" Order Address Order Address xplanation No.
1 H = 7FB A
} Substitute exit
000 33D2 .
2 Q 35D2 | ’ 5
3 H 181 .
. e
’ erereres 351} C3BY) = =
4 C 7FD C(A) = 0
Rog 1 Q) = 1
5 qqqq 4B1 }
C(4B1) = /7
NT . () f

kY

10

1

12

13
14
15
16
17
18
19
20
21
22

23

T

35D2

Mr 2B1
2B1 }

Tnd 11D2
7FE }

oo 5B1
3B1 : } ,

H- 0J
3B1

c 5Bl
4B1

Tyr 13D2
4B81 }

C 31
16D2

[H 7FE
4B1

‘C 3Bl
0 -

oo 3B1
34D2

T-4 18D2
7FD '

T4 34D2
3B1 o

000a 3202
4B1 }

Mr 36D2
4B1

acoo. 5B1
6B1
‘ C-m 4B1
24D2 }

S C 0

1

Tr 3202}

Q) = (|092e -1 C
CAand Q) = XF(I°929>— 1))

C(A) = X logye = n"" + [

. D
fO.F.,, n”" =1, C(A) =f"; C(5B1) = /"
n’* 41X = pt* 4 optt*
C(3BY) = n™* + n"’*
CA) =
C(A) - /,;+ f/ - nlll+ //f/) E
‘1 O.F., go to 13D2"! ‘
F
IfnoO.F.,, n”””=0 and C(4B1) = f"""= "
n"+n” + n")* = n* -H
C(A) — ftrv/(n/rl= -I) G
- C(4B1) = [= f
S CA) = (7 + n7)*
(n"+n” +n”)* = n*
C(3B1) = »n*
n* - 39* L . . H
If n* < 39%, go to 18D2!
lfn > 39% sete=X =0 B
Go to 34D2!
C(A) = n* ' J
n < 39%, insert n for shift in 3202,
; . o K
flog, 2 +2740 =y
C(4B1) = v
C_(531) = _"l =y
C(éB]) = e] =Yy
C(A) = -1y L
. | =N
Ify # 0, go to 24D2 "

Ify =0, mfg. 1 — 2-37

5.21

5.22

24 C- 0 } - 3B N
aaao. 3B1 ‘ ‘
25 C 3B1 } e it . 0
H- 0
2 asaa 3BI C(3B1) = i*
C- 4Bl C(A) = —y
27 Rq ® CAand Q) = -y-2-%°
Dq 3B1 CQ = ~(y/)
28 M 5B1 Vo
: CC(5BY) = u. = (=y/i)u.
SB]} C(SBY) = u; = (-y/ilu;_,)
29 H 6B1 : '
1] COBD = wire = e
30 C-m 5Bl ClA) = —[uil P
T-4 2502 |y, > 0, go to 25D2'
31 C- 6BI | '_ ' Q
H 7FC} u; = 0,67 = —¢; + b+)
32 H 7FC ‘
o C(A) = 27"e~Y = e=X
- Ro (n]} ® co e R
33 T [1 ¢ Return to main routine S .
34 39*

35 log,e -1

36 log, 2
ERROR ANALYSIS FOR e~X SUBROUTINE®
X 2,—§xuog2 o)p e—toge,zixuogz Nep _ 9= o=
(e=X)* = machine evaluation of e=X.

Let n denote integral part of a number and / the corresponding fractional part.
n’+ [= [X,(logye - 1] + X,
n” + f (Xp(logye = 1] + X

// + /II - hll/ + /Iil

Il

70/

n=n"+n"4+n
‘ - /’I’

%2 + [= machine evaluation of (X 1092 e)
y =

[f(IOQe 2)’]r .

The subscript r denotes rounding.

C{A} = —m--
cHBl = xp*
| cteBn =x; : 0€ x=x + X< 2% € x<2%® 0¢ <y
i
8
: c
Xi* (logy e = 1)+ X¥
C{A} + *t* = —(m + {) -~ =a"+f Xellogg e~1) + Xp . n” =1
insert {m +1) in Box S n7¥ 384 =n” 4 f7 (R Y
F/—> 481 h T
No O.F !

__1a7=0 O.F
- A _"“(j)
o]

FY=(n"+ F”) =1 —> 581

@—— A7k 44X = g% 4 p7* s 381

£ A

f”’——)‘45‘

a% —> 384, A

OFL_| n™=t;4+F"—=A

£ (0 4 £ =4 = > 4B
(7’ +n"Y*¥ + ™% = p¥ —> 381, A

K

J

. ~40 L . N

B = f + —

() insert 2 as shift j - 1o 25812 s ,.| __l I i_‘.l Set ¢* = /¥ —> 381
in Box R i= . ’ y>0
D =0 :

&=y —> 6Bt

{7/ +4)* —> /% —3 3B(
:zﬁ) -
r 4

(2= o4

Uy + 6y = 8 —> 6BY

Y

Set €4 =1-2"39 5

S

Go to {m + 1) To ling {m + 1)
left hand order foft .

Q

(O

Fig. 5.8. Flow Chart for e=X Subrodffne;
Hence (e=%)* = 2="(e=Y)* ;
X o (e XM g fenX - 27me Y] 4 [27me Y — (7N,
e~X _ 27me~Y = 2-Me=%P _ 27"e=Y = 2=Me=®?[] - 2=(1=Me-y-9)]
) ~(n~milo 2 - (y-9)].
9= o= [] e (n=m)log, 2 (y.)]‘
2-"e=%(1 - &)

I}

,

that is, let € = —(n — 7log_ 2 — (y = ¢) = —(nlog, 2+y) + (nlog, 2+ ¢) .

mleg, 2+ ¢ = [X +‘XI(|092 e~1) + XF(Iog2‘e - l)] log, 2 ,

nlog 2+y = {X + [X,(log, e - D]+ [Xc(log, e - 1),]r} log, 2 ,

+ [fllog, 2] = flog, 2 ,

5.23

5.24

€ = {X'(1092 e - 1) - [X(log, e - 1)}} log, 2 + {XF(iog2 e - 1)

,A+B+C‘,

~ Xp(logye = 1] } log, 2+ {/log, 2 - [fllog, 2, } =
W xllogye = 1) = [X/flog, e —]|
’099 2 I 2 . . | 2 r »
< X,|(logye = 1) = (logye = 1),| g x,2740 -
5] X (I D - [x,0 0] | D - (
log 2 = l F(Ogge -) ~. F(nge -)rrl §XFI(°g2e"'.) - (0929""])rl
+ |XF(|og2_e =D, - [xlF(lc.g2 e — 1] =<‘\>,<F 2740 4 2740 ¢ 2. 940
Il = If 'og 2 - [/(109 24 l <f log, 2 = fllog, 2|

+ |f(log, 2),'— [fllog, 2| < 2740 4+ 2740,

lel < |Al + B} +[C] < UX, + Dlog, 2 + 202740 < (X, + 3.386) 2740 ,
. 0' ’ ‘ .
2-Me=%(1 = 69| g 271607 -~

® i] '
e’ 2 '?}€|+Iélzeie‘l .

|Z

1

i

-7l

: .
le] < (238 + 3.386)2740 < T 2-36

—(Xﬁl)

12=7e=¥(1 - e9| < 2 (X, + 3.386)274%1 + 0.34)

-X ‘
< 2 Mx, +3.386)2740 < (3.386)274° .

Now
1277 =Y — (e~ X)*| = 27%[e™¥ = (e7M)* < |e7Y - (e™¥)*] .
The estimate of error in computing e~ follows very closely the error analysis for sin x,

1

(1 - cos x).

W, (x/n)Wn__1

wx [(x/n)* w? _ 1]r

n

and the division is nonroundoff. Let.

€, = 240w _—wr .
Then S o)
e =W, = { Us/mywt g, = /m*u)
I (O L 20 | A Y UL R R

For nonroundoff division

;'0 < x/n = (x/n)* < 273%n —)/n

and -

W _ | < Vi = W (log, 271

" so that

(n - 1)

€, < 1 + 2 — (log, =1 4 len_l/n .

Since €, = 0, the above inequality may be evaluated recursively to give

1.1011

, S 1.6932 €5 < 1.3263 €g < 11469 € <
€, < 1.8848 € < 1.2233 g 5 11274 g, < 10918
€, s 15545 e, < L1751 €9 $ WNZ - €, < 1.0840

The residual error is less than the first neglected tem. For W“ it may be seen that

Wl g (0.0855) 2-40

Hence
' 13 = '
e — (e < L 2749 + (00855240 < 097552736 |
i=2
Thus

1.1871. 2736 |

A -

le=X — (e=*)*|

AVAILABLE SUBROUTINES

Although the library of subroutines for the ORACLE is ‘by no means complete at the
present time, it is hoped that eventually it will be comprehensive en;wgh so that coding a
problemb will consist merely in writing a short main routine to combine existing subroutines
in the desired order.

Following' is a list of existing subroutines with a brief description of each. This list
does not ‘include the input routine, which is discussed earlier, or the Bonehead, whichis
discussed in Sec. 7. The Specification Sheet for a particular subroutine in the subroutine

library may be consulted for a complete description.

l. Single-Precision Subroutines _
A. Square Root. The main routine supplies a in the Q register, where x2=gand

*i+1 xxl--:-(xi-—a+xi)+2,f

where the x, are successive approximations to x. The error is less than 2737 and the”

subroutine leaves x in the A register. A o - (13 words)
B. Conversion from Binary to Decimal. Four subroutines exist for the conversion from
binary to decimal representation,
1. This particular subroutine reads a number, or fraction, in coded binary characters
from tape, converts it to decimal, punches out that number in coded decimal characters;

reads the next binary coded number from tape, converts and punches ‘it, etc. (12 words)

5.25

5.26

2. This subroutine takes n consecutive words, in machine form, from the memory be-.
ginning at cell m, converts each to its decimal representation, and punches them out on
tape. A (20 words)

3 This subroutine converts one number from some specified memory position to

its decimal representation and punches it and then returns control to the main routine

again, : (15 words)

4, This subroutine demands ‘that the main routine have the number, or fraction, to: be

converted in the Q register, It converts the number to decnmal leaves it in the A register,

and returns to the next order. in the main routine. _ _ ' ’ (13 words)
C. Sin x qnc:! 1 = Cos x. These }fhree subroutines require that x (=1 <x < 1) be
furnished by the main routine.

3 5 7

_ (sin 2)* = x° % x
s = in —x-¥+§—7+...,,
2 4 6
¢ = (1 - cosx)* = oL +x— - e
: . pl 4! . 6l

1. Without a machine check, the accuracy is

le = (1 = cos x)| < 1.1973.2-37,
|s — sinx| < 1.1402.2737
Sin x and (1 = cos x) are left in the memory. o ' ‘ (15 words)
2. With a machine check, the accuracy is
N , | . " . | Error < 2-35 .
Sln x ond (l — cos x) are |ef'r in specnflc memory positions. | (22 words)
3. On entenng, thus subroutine requnres that the main routine have x in Q register. |t

computes sin. x and 1.— :cos x in the same way as the preceding two subroutines, but it

leaves:sin. x in.the Q register and cos x in the A register. There is no machine check, and

‘the accuracy iis the. same. as that given for subroutine C.1. S (20 words)

D. Conversion from Decimal to Binary; There are three subroutines for conversion of
decimal to binary representation.
1. Coded nine-digit decimal fractions are taken from tape, converted to their binary

representations, and punched out either in ‘sexadecimal characters or in their machine

“code. . - : : : o Co (11 words)

2. A-number, n, of coded decimal fractions are taken from tape, and their b‘inc'ry".repte-

sentations are stored in consecutive cells in the memory beginning at cell .m; n can. be

any number from 1to 3E1 (993) ' ’ . - (24 words)
3. ' Decimal integers are taken from fcpe and converted to their binary representation
x 239, o = - (17 words)
-.E. Exponential. There are three exponential subroutines. - o
1. e*is computed for =1 < x < 0. ~ (12 words)

2, e* s computed for =1 < x < log, 2. 0 < x <log, 2, this subroutine stores

e*~1, = o - + (17 words)
3. 1e;x is computed for 0 < X < 2%8, . (36 words)
F. Logarithmic. Two logarithmic subroutines are in the library,

1. Loge.A is computed, where

log_ A = log_(a-2%) = xlog, 2 + log, A

and
n 1 -1
log. a = 2}, — <a >2i +1. (25 words) -
° 0o Z+1\a+ 1/ ‘
2, Log, N is computed, where
1 -2z O p2ntl
log N = log = =2 ;i — < N < 1;
e ° 1+ z a0 2n + 1 e
1 N
e — ' 1 - N 2 2 o
>z >0 z = = : (20 words)
e + 1 + N 1 N
2 "2

G Polynomials.

1. A polynomial of arbitrary degree is evaluated for an arbitrary number of values of
the argument.

2. This subroutine is used for root reduction for polynomials.

H. Complex Operations. A subroutine is prepared for doing fixed-point complex opera-
tions (addition, subtraction, multiplication, and division).

» Il. Double-Precision Subroutines

A. Operations with Double-Precision . Numbers. This subroutine performs operations
that include complementation, summation, absolute value, multiplication, and division.

B. Double-Precision Extraction of Square Roots. This subroutine uses the pre.ceding
subroutine for double-precusmn operohons on a, given to 78 binary digits, to yield x = \a

accurate to 76 binary places.

lIl. Floating Point Subroutines

A. This is a four-address routine in which all numbers handled are of the form. x=x"s 2)‘,

" where ¥, < |x’| < lorx” =0, and 0 < IM g 511 The number x is stored-in the form
: ces X9 o ‘)/t]\ A,
Slgn Sign
Digit Fraction " Digit Integer

An opero’non is performed by placmg a word W of the form W= M(w) M(z) M(x) M(y) in the
A register and then fransfernng to the operahon desired by plckmg fhe order. Here M(cu)

is the memory posmon of the next order to be performed x and y are operunds, and z is

» the result. (94 words)

5.27

5.28

B. This subroutine is thesame as the one discussed above except that the entry and

exit have been revised. It is entered in the standard way by bringing 24[w ~ 1] into Al,.
and a word, W’, of the form W’ = [op] 4IM(x)] 24IM(y)] into the Q register, and then trans-
ferring control to the fixed location 799'. In the word W’ [op] specifies the operation
as follows:
Operation No. _ Significance
1 | X+ y
X =Yy
PAREE
x Ty
x|+ 1yl
x| = 1]
x|yl
% = |yl

© N O A WN

The 4 oand 24 are fixed, and M(x) una M(y) specify where the subroutine finds the two
operands. The result of the floating point operation performed is left in the A register,
and control is returned to the right-hand order in the following word of the main routine,

Suppose the programmer is at cell 10A in the main routine and desires the product of
two floating point numbers to be stored in cell 13C. Let x be in cell .130 and y in 13];

then the main code would be as follows:

Cell . ‘ Code

109

10A 24 10A 60 M(W")

108 - - 43799 S5F13C

10C '

MW") o @a0sa 24080 (91 vords)

C. This is an entirely different subroutine in that transfer is made into it in the standard
way by bringing 24[c — 1] into A! and transferring to the first order of the subroutine.
Having entered this subroutine, all operations continue to be performed in floating point
until the control is transferred to normal ORACLE operation. This subroutine performs,
in floating point, all the arithmetic operations available on the ORACLE using the standard
ORACLE code. Transfers, both conditional on sign and unconditional, can be performed
within the floating point operations. Conditional transfer on overflow has no meaning in
ciecling with numbers in floating point notation. Transfer out of floating point operations

is occomplished.ﬁy; incorporating a breakpoint in the transfer-out order. (147 words)

IV. Matrices

A. Product of Two Matrices. Each of the three following subroutines assumes that
AB = C, where A is stored by rows, B by columns, and C by rows. Each one uses fixed-
point operations, with the differences being in the methods of scaling.

1. :The transient-scaling subroutine scales all terms when an overflow occurs.(45 words)

2. The semiprecision-scaling subroutine scales the sum after it is formed, and the scale
factor is detemined by the number of times an overflow occurs in the process. Each term
is scaled by this amount. (62 words)

3. The precision-scaling subroutine determines the scale factor in the same way as
the preceding subroutine, but the entire sum, not each term, is scaled. The precision-
scaling subroutine gives the optimum value. (76 words)

B. Inverse of a Matrix. This subroutine obtains the inverse of a matrix, based on the
discussion by von Neumann and Goldstine.” It uses floating point arithmetic. (220 words)

C. Transpose of a Matrix. This subroutine transposes the matrix in the memory and
then puts it on tape, the tape being used only as extra storage. Another subroutine is

planned so that it will read in and out from two magnetic tapes during the calculation

.and therefore will be able to take care of a larger matrix.

V. Determination of Characteristic Values of a Real Symmetric Matrix in Jacobian Form
Given the 27 - 1 numbers required to specify a real symmetric matrix S, where S =0

if |i — j| > 1, the ‘computation of a chain of principal minors of Al — S for different values

.of A is used to obtain each of the » roots of S,

7J. von Neumann and H. H. Goldstine, Bull. Am. Math. Soc. 53, 1021-1099 (1947).

|

5.29

ORNL
Central Files Number
53.12-2

Section 6

CODING A COMPLETE ROUTINE

N. M. Dismuke

6. CODING A COMPLETE ROUTINE
' 'N. M. Dismuke

DESCRIPTION OF THE PROBLEM

The problem to be considered is the calculation of the angular resolution corrections as

a function of the geometry and the cross section of the Nal detector for gamma radiation.

Thévcpmputofion is of .infgresf to experimenters making directional angular correlation
measurements of gamma-gamma cascades. ! -

" In the experiment the Nal detectors are right circular cylinders of height ¢t = 2.54 c¢m
and diameter 2r = 3.81 ¢m. The point source of gamma radiation, S, is placed on the
axes of the cylindrical crystals. The distance » is measured from the source to the front
face of each crystal. The angle between the crystal axes is 6,. This configuration is
illustrated in Fig. 6.1. It is assumed that the gamma radiation detected by the crystal
is directly proportional to (1 — e~7%), where 7 is the absorption cross section of the
crystal material and x is gamma-ray path length in the crystal. Also it is assumed that

there is no radiation loss between the source and the crystals.

lE. D. Klema ond F. K. McGowan, Phys. Rev. 91, 616 (1953).

T
5

CRYSTAL ¢

e
B

9, | CRYSTAL 2

Fig. 6.1. Geometry of the Crystal Detectors.

6.1

6.2

The corrections to be calculated require the evaluation of integrals of the form

Ip = [dQ, d, Pplcos O)(1 ~ & "H{1 - e 272

for £=0, 2, and 4, Subscrip’rs 1 and 2 refer to crystals 1 and 2, respectively, The

.quontmes), and {1, are the solid angles subtended at the source § by the crystal ends;

0 is the angle between two urbltrary radius vectors from the source to each of the crysfols,
and Py(cos 6) is the Legendre polynomial of the first kind of degree £. '

After a series of transformations,? the integral Iy can be written in the form
Iy = 42 P g(cos 00)(]£)‘(]£)2

a

Jp = J‘ 2sinOLF',g/(c{)s a1l - e=T*(2)] 4o
0 .

“where
:'c(a) = x,(a) = tseca for 0 < a < tan—! L . a, .
- - h + t
x(a) = xz(a) = rcsca ~ hseca for a; < a g h:m"l'ilj = a, ,
and
P{cos a =1,
1 2
P,(cos a) = 0 [B(cos)¢ - 11,
1
Pylcos @) = = [35(cos a)* - 30(cos a)? + 3]

Hence, the problem to be coded is the evaluation of the integrals, Jp(b, 7}, for b =7, 10;
£ =0, 2 4 and 7= 0.123, 0.130, 0.150, 0.2, 0.3, 1.0, 2.0, 3.0, 5.0, 10.0, and 40. A

precision of five significant digits is required.

SCALING

Since the arithmetic of the machine requires that numbers be on the interval -1, D,
in most problems some of the parameters or results must be scaled. That is, numbers
which lie outside the range (-1, 1) must be multiplied by factors which will cause the
numbers to be in r;)achine range. For a machine representing numbers in the binary
system, it is usually convenient to scale by powers of 2; for then scaling and unscaling
are accomplished by shifting. Shifting is, of course, much faster than multiplication or
division. .

‘It is possible to avoid scaling by means of interpretive routines. An interpretive

routine, as its name implies, is a routine which will interpret numbers in some prescribed

2M. E. Rose, Phys. Rev. 91, 61.0 (1953).

fashion other than the ordinary ORACLE interpretation. For example, it is possible to
design routines which will perform floating decimal or floating binary point arithmetic,
complex arithmetic, etc.? However, since these routines are built up of ordinary machine
arithmetic, each operation takes longer, by a factor of 10 or more. For problems requiring
real-number arithmetic, in which the range of numbers to be handled can be closely
approximated, interpretive routines are generally unnecessary. In the problem “at hand,
scaling is.simple throughout, and hence a floating point routine is unnecessary.

The integrand of],ﬁ(b, T) has been plotted for a few parameter values in Fig. 6.2.

It is seen that Lﬁ decreases as b or 4 increases; and] 4, increases with increasing 7.

"The maximum value of J 4, approximately 0.04, occurs for b =7, £ =0, and 7= 40. The

minimum value, about 0.004, occurs for b = 10, { =4, and 7 = 0.123. For all parameter
values the integrand of]p(b, ’r) remains less than 0.25. The values of],é(b, T) and
the integrand are seen to be in machine range. The integrand peak comes between a,
and a,. ' . ’

For b =7, a; =0.197 and a, = 0.266; and for b = 10, a, =0.141 and @, = 0.188. For
this range of a, sin a is a monotone increasing function of a with range 0 < sina< 1.
P&(cos a) is a monotone decreasing function and 1 < P,ﬁ(cos a) < 0.6 for the integration

range 0 < a < a,. To keep intermediate results in range, the polynomials are calculated

from the formulas

sina . Pz(c°5 a) = [7 (cos? a sina - sin a)} + (cos?2asina) ,
35 30 3
P4(cos a) = 23(5 cos?a - 6_4> cos? ar + i

The term [1 — e~ ("] is monotone decreasing, and

Og]—e"'r"(a)__<_0for0§a§a2.

Since 0.123 < 7< 40, T values will have to be scaled. Also the values of ¢, 7, and b
are out of machine range. It will be convenient to have these three constants scaled

by the same factor, since their roles in the formulas for x(a) are similar. The ranges of

x(a), sec @, and csc a are

0 < x{@) < 2.6 for 0 < a < 0.27,
I < seca < 1.1 for 0 < a < 0.27 ,

3.8 < esca < 6.7 for 015 < a < 0.27

-

Hence 7, 7, t, and b are adequately scaled by defining

7= 7.2°8

’

3c. L. Perry, Manual for the ORACLE, Section 7,

6.3

030

o
M
!
\ \q LY \J.
e -, g, A SR / P
— 5 Ll | — 7 Mt Y 3
i / o i v/ - 4 \ A
8 i s y h
// 1 o / M/V_ f f\ s / / m . .e
I.lu..lbﬂuzﬂ\l. e o e s s ot o e o oy < o S e e e A N o o et o e e e e !
A —_ \\\\-\1 \.\ D - \.l.\. —1 \\ m
~ / L, / 3
/\\\ w\ //&L A o
- ———j— ———— S —— ————— {o— —— — - l'IIJ-I_IIII-I. e s | — o o— — t— ——— — — — — 3 llnw‘
NN A) N \ d
: . 3
3 \ £
\..OM 4// re) /) 0
3 N o T N o 1
: N8 : N\ |8\ T E
NN N, 5\ o
ONN\L¥ v AN - o
(@] &// . < &/ >
i AN i ¥ NN i
) N\) \
o : o
g o o 2 ° q g o o 2 °
S =] . © S c o S c °
(o) AP)

6.4

r’ r.o2-4 '

It

t’ = t.274,
b = b.274

The values of t“ sec @, 7" csc @, and b sec @ will stay in machine range, and the scaling

‘imposed on x{a) and 7x(a) will be

x(a) 2-4 R

x’(a)

7% *{a)

Tx(a) 2-19

To avoid unnecessary loss of significant digits through overscaling, the 78-digit product

“of T%’(a) will be obtained. Then the integral part of X = Tx(a) will be mulfip!‘ied by

237 and stored in one register, and the most significant 39 digits of the fractional part
of X will be stored in another. The unscaled value of e=% is in machine range and can
easily be evaluated when the integral and fractional parts of X are known. The integrand

can be assembled as

fl@) = sina P{(c'os a) - sina P{(cos @) e"'x(a)

to avoid having to represent 1. Of course, representing 1 by 1 - 2=3% is q satisfactory

alternative, and there are others.

INTEGRATION METHOD

Any integration method will be satisfactory which satisfies the criteria that (1) the

4réquired precision can be obtained in a reasonable length of time and (2) the aléofifhm

is simple to express in machine code. Frequently a simple procedure, requiring many
repetitions, is preferable to a more subtle procedure which cuts down the number of
steps. This is not surprising, since the commands that o machine is able to.corry out
are simple and the most striking ability of a machine is its speed and accuracy.
Simpson's rule satisfies the preceding criteria and will be used to obtain the integrals

14(7, b). In its simplest form, Simpson’s rule is given by?
a A
[P da = —[Ha) + 4a) + fa)l + RO
% 3 .

where

and

4A. S. Householder, Principles of Numerical Analysis, p. 236, New York, McGraw-Hill, 1953,

6.5

6.6

The remainder or error term, R(£), is dominated by the term

AS
— liv)
% v (€

where

Q
A
Uy
fiA

I3}

and

4
(g - .[d ““)] .
a=§

dat

[t was possible to obtain by desk computer an estimate for the upper bound of fI¥) (&),
Using this bound, u, the integration interval A was determined so that the residual error

in Simpson’s rule for 0 < a < a, is

42\ AS 1
=|l—=] —= u < = 1077,
2A/ .90 3
CODING THE PROBLEM

Problem coding is greatly facilitated if a large library of subroutines is available. For
this problem the following subroutines are needed: (1) sin x, cos x for 0 <x <0.3,
(2) e=X for 0 < X £ 110, and (3) conversion of binary fractions to decimal fractions.
Subroutines for Simpson's rule integration are available, but these routines scale the

integral or change the integration interval and hence are more time-consuming than is

necessary for the problem. That is, since integral bounds and interval size can be

predetermined, computation time can be saved by making use of this information in the
code. The Py(cos a) required for this problem are so simple to code that a subroutine
is not even considered. The flow chart, main routine, and storage table are given in
Fig. 6.3 and Appendixes A and B, respectively. The program has been written in relative

code.’
] ERROR ESTIMATE
An upper bound for the magnitude of an error in the computation of a quantity g will be
denoted by E(g). Or precisely, '
' €(g) 2 g - 7l

where g is the true value of the quantity and g is the computed value of the quantity.
€(Mr), E(M), and E(D) are the maximum errors possible in performing the machine orders

Mr, M, and D, Error estimates® for the sina, (1 - cos @) and e~X subroutines show that

S(Sina) = 8(cosa) = 1.2 . 2-—37 ,

SM. R. Arnette, Manual for the ORACLE, Section 5.

L9

A

Read in:
1. Constants
and
Parameters
Main Routine
2.Edit words
Subroutines

0-4

iC —29C
{A—97A
DO —66D0

f—cosa {D1—22D¢1
e . 102 — 36D2
Binary fraction {D3—13D3
to Decimal fraction

sin a,
—-X

13.5 sec, 4 time through
D

Insert A in box G7
Set M{t;) = M(t,) in box F

0.1 msec, 6 times through

Initially relevant variables:
M(A) = Ma) e 2A)"

M[ats] = M[A(ﬁ)] e e (3m)1
M[a,(4,)] = M[a,(n]e(4l\
M[az(/z,J = Mlaz(/‘?} e
M(W) = (gan)tV

Mt

HO
£dit and print

F
Set GO
@=0 Comput
Jé;(h, T)
T=T, A
Increase M () 1,2—6.4 sec

66 times through
0.4 msec, 66 times through

Figo 6

0.13 msec

66 times through

1

h, L, T and J[(ﬁ,r)

Edit 0.45 msec,
Punch 0.5 sec,
66 fimes through

- T

4
Ty

C

Set
h'= bl —>1AF
Alh) = Alh;) —> 4F, 6F
a,=a,(f;)—>2F
az-az(h)—> 3F
Increase M (/4) M[A(h)]
M[o‘ h)], Magh)]
Set £'=0. x-x1~—>A

{.23 msec, 2 times through

C.16 msec . 0.48 msec
€ times through 2 times through
J K
+ p/ AE: , s 1+
L -2 3 h = hy —-—@

AN Ly
MA) +.2 —> M\
A—> A

4.3 msec, 6 times through

3. Flow Chart for the Calculation of the Angular Resolution Corrections.

89

Gt G2 63 Ga
Set Set j = -4 et b —>a Sin a, t=cos a . G5 67
BTy M7} = M(%) a—>Q Subroutine, Sin @ —> 8F | _ -Cc+ %+ Y = cos a —> 9F ()
=0 Sin a —> Q, 28 , cos? a —> {OF
. 1 n box G20 QOut order —> A € =1—cos a—> A, 38

CB = si — .
Sin a o = sin d A ' P

X! =gt x!

S) i G Gi2 G16

G .
2 2 &) Kp¥——> 18
{ Sin a - Py= ‘/Z(cos a sin a~sin ¢) + cos® ¢ sine —> A Sin a. P —> IF a-a x’'=}/cos a —> Q - o
Xpp —ie 28
G

. — Out order to A
40 613 614

. +
x/=r//sin a~ h'/cos a H X1 e

1
Sin a'&={[8(g—g’- cos? a“z—ﬁ)] cos? a + % r sin a—> A *‘

615 Y

Set £ =0 ——> A

625

623
Gi8 Gi9
620 621 su=44af+
e~ X subroutine e~ X e (2F . + A
_x . _x f—> M(F) J—>A ’—— F R+
e —> A f=smaFi-sinu'P1-e — A
_ S+ 8 = o > {SF
627

622 " Tacam
. Set /=0 <) (4F —>6F)

M(F) + 4 —> M{F)

Fig. 6.4. Detailed Flow Chart of Box G (Fig. 6.3).

o G : .

H3
He Shift off .
hift off sign and first decimal digit

Hi i i i i

zmory frac‘ho{n to lDec@oijraf:h:n of .ﬁ(h,r). Decimal word W% A

ggfﬂé -/l:h,z‘;) hj—;?; af:b;ou\‘;ne. Sign plus ning decima W=, Ja 73 Ja /s J5 0000 (decimal form)¥ <)
out order igits o w’ Q
o T —>A W’ = 000 000 4.£ #, #, {decimal form)*

H4
Shift to obtain

H5

WeQ

_ . . ”oe To
@—*— W=hLt Ty jy .. Jg —-| Increase M{W’} in box H3 fox 1
{decimai form)* | : §
Punch W

* In W™, W, and W, the /; indicate decimal digits of J, (A, r)‘10'7; # denotes the decimal digit identifying
the parameter /1 {(# =1 for h = Ay and f =2 for h = hy); £ =0,2,0r 4; ond f4ty is the decimai number Of for
T=1), 02 for T=7,, ... ond {{ for T =T, . The 66 edit words W’ are reod into the machine in Box A,

Fig. 6.5. Detailed Flow-Chaﬁ of Bc;x H (Fig. 6.3).

Ee¥) = 13.27%6
S50 thqt
Elcos?a) = 2E(cosa) + E(M) = 2.53 - 2-37 |

Since E(sin a - P,g) < E(sin a . P4), the error bound for sin CL-P,@ is determined from

the computation of

. 35 30 3

sina.PA-- sina<2% | cos? a acos?a~6_4 +—§ .

Hence
. 3 99 o 2 . -31
E(sina - P =2 v S(cos?a) + (M) | + E(sina) + E(Mr) = 0.543 . 2 .
“Recalling that
, re b’
x" = — -
sina . cosa
it follows that
E(x") = E(sina) + E(cosa) + 28(D)
= 290 . 2% '
. 6.9

6.10

In computing X=X . 2-10 _ 7%’ the 78-digit product is formed, and the integral part
g p

of X and the fractional part of X are stored separately.

€(x) = () - 2’°‘= 2.90 . 2-27 |

and
EeX) = E(X) + Elexp) = 291 .27%
Since
{ = sina-Pp - sina-Py.eX
€ = 26(sina - Pp) + E(™X) + E(M)
= 298 . 2727 |
Now

A
J =_3_(/1 + 4f2 + /3)

is calculated in the form

A A

J =?(f'| + f3) +“§““(4f2) ’

and J p(b, 7). is fhe. sum of the J's over thé integration interval; therefore

A .

g = = 6E(f) + (D) + 26 (W)

and

Q.

3.2-%7
8[];5,(;),7)} = 2—2 €() ="a, [8(/) t] + R

where R is the residual error in Simpson’s rule. The interval was chosen so that

A = 0.002 > 2-°

whence

L
€1t n] < 027(298 - 10777 4 327%°) 4 — 1077
<1078+ Lgeer
3

1
< — 107 ,
2

Since the minimum value of],ﬁ(b‘, 7} is larger than 0.003, the required precision of five

significant digits will be obtained.

The error estimate given: here could be sharpened. Precise error bounds are desirable
for- subroutines, since subroutines will be used many times for problems with varied
precision requirements. However, for a particular problem, the code will be used only
once or a few times, and any error bound which satisfies the problem precision require-
ments is satisfactory. f an error bound indicates that the required precision cannot be
obtained, sharpening the estimates may help, or it may be necessary to plan different

schemes of computation.

TIME ESTIMATES

The time required on the ORACLE to pass each box in the flow chart and the number
of passes through the box during the computation of the problem are indicated on the flow
chért,- Fig. 6.3. Total time estimates are listed in Table 6.1. The problem has been
solved on the UNIVAC, and the actual time required is given in the table. The time
listed for the ORACLE is based on the actual time for the UNIVAC and the relative

maximum and minimum estimates for the two machines.

TABLE 6.1. ‘ COMPARISON dF TIME ESTIMATES ON THE UNIVAC AND THE ORACLE

OPERATION ORACLE. TIME UNIVAC TIME
Computation, sec 80-400 | 500-2800
Read, sec 13 3
Write, sec 3 1.2

Total (range), min -2_1—-7_5; m
Actual total, min ‘ 3.3 18

Planning the problem, including transcribing from physical to computational formulation,
determining the integration method and interval size, making error estimates, and deciding

upon general organization, required about two weeks, that is, ten 8-hr days. This prepa-

ration would be required, of course, for high-speed or desk-machine computation. Coding "

the problem required an additional week. Computation of the problem using a desk com-
puter is roughly the equwaient of 18,000 ten-digit-number multiplications. From 500 to
700 ten-digit multiplications can be made each 8-hr day. Hence, solving the p:;oblem
using a desk computer would require from 25 to 35 days. The following tabulation summa-

rizes the comparison just made.

Operation Desk Computer High-Speed Computer
Problem preparation 2 weeks | 2 weeks
Coding 1 week
. Computation 5-7 weeks 3-15 min
Total time - 7-9 weeks 3 weeks

6.11.

It would probably be more realistic to increase the computation time for desk machines

by a factor of 25 to 50%, because the computation is long and sequential and some repe-

titions and checks would have to be made.-

Register

1'A ‘

"
4A
5A.
6A
A
‘k 8A . |
| 9A
- 10A
11A
"

13A

6:12

C o Ld

Left-Hand

Order -Address
000

'c na
¢ e
anoee 6F
acce 2F
aoo 3F
L 2
H | “2A
Ho 1
C 1B .'
0000 4A
OOOa | 5A
aaac. 13F

AppendixA | _

CODE FOR MAIN ROUTINE

 (Addresses Reldtive to Parameter A)
Right-Hand

Order

~ Ld

0a00

o0 |

Address

)

B
AF} ‘
[3c] }

[4C] }

1B

"

3A

'4A}

27C

" Explanation + Box
ixpcna‘ nroAn‘ N,

" Read in-constants and parame- A

- ters, main routine, edit words, .
and subroutines

Init. rel. T . c .
bz.' = bh"= 1F

Init. rel. -

Ai = A~ 4F

A, = A-6F

Init. rel,

a']—*i2F k

Init. rel.

az——aSF

4 - 1B

A'M(b;ﬂ)v+ 4- M(5,)

M(b,) — 24

lnc.re'use. M(Ai:)

Increase Mla,(5,)]

M(“z) = M(a1) + 1

Set L7 =10

Tg A —--—A

. . Left-Hand Right-Hand Box
“Register < . .
_— Order Address Order Address ~ Explanation- No.
() 14a Too0o 334 lnsertA . D
‘ C 26C } E
S : Set M(7]) = M(7
~15A 0000 17A § = M)
lc 3 F
16A aoaa. 7F Seta =0
" acaa 15F Set] =0
17A 1] . ’
c | s
acaa. SF .
18A C “17A ‘
H 1 © M) + 1 - M(TR)
19A 0a00 17A : _ :
' C 26C Gl

20A L 10
000 73A Set p = p,

21A C 3 } Set / 0
~ awwma wFJ SN TV
@ 22A lc 4 : G2
Setj = =1
14F !
23A C 21A
' H- 0 - :
- M() = M(/,) in box G20
26A L 20 (D = M) in box G0
' 0000 58A
@ 25A lc 77 | G3
H 6F a+ A-a-7F
26A aaaa. 7F . _
Q 7F a-Q
27A C 27A } Go to sin ¢, (1 = cos a)
T4 1D1 subroutine® : ‘
. 28A qqqq 8F sin a— 8F G5
C~ 3B -C = -1 + cosa— A
29A T-1 30A © 1 =C <0, goto (30A)l

C 0 IfC =0, set -C = =1* Gé

(4)The sin a, (I — cos a) subroutine assumes that a is in Q upon entry; and sin a is in Q and
2B, and (1 = cos a) is in A and 3B upon_exit.

6.13

0000000000000 000000000
:

6.14

Register

30A

31A

33A
A
35A

" 36A

@ 37A

38A

39A

40A

- 41A

42A

@ 43A

44A

45A

Left-Hand
Order -Address

My

Mr

T

H-

T+r

2

9F

9F

Al

8F

8F

]Bu'.'f. -

22C

23C

8F
8F -
2F

63A

Right-Hand
Order Address

Mr‘

Tr

He

9F

10F

10F

1B

43A

10F

1B

24C

1B

" 43A

11F

7F

9C

a>oa

Exh!qnatipn Box.

No.

67
cosa=-(3+]/2+'/2

cos a— 9F

cos? a - 10F
Go to A (X is set in 14A)

G9

cos? asina— 1B

24~1sina

‘/_.l(cps

Y(Becos?a~-1)sina=
A s sina =
sin . PzeA

Go to box GH

35.2°¢ - G10

(35 cos? A — 30)

l/8(35 cos? a — 30) - 1B
(35 cos? a~30) - Q

' l/8(35 cos? a - 30) cos? a

3,
S
P, - 1B
P4~—rQ
sin a-P4€A
Go to G11

4

sin a. PO = sin a €A G8
sina-Pp—11F Gl1

fap - A ’) Gl12
' a; - a €A '

a, g q, go to G16

1

prT A - 613

') Left-Hand Right-Hand . _ Box
Register Explanation
. Order Address Order Address No.
. 46A Dr 8F
‘ ‘ qqaq 1B r7/sina- 1B
. A ¢ wF b o A
' . Dr OF
. 48A qqqq 2B b%7cos a- 2B
C 1B
. HA - H- 2B S S xeA
V ~ T-r 62A x"<0goto.GI5
. 50A aaaa. 1B e x’~ 1B Gl4
Q 1B x'- Q ‘
. S1IA M ~ 5F - . ' X’ = 7%" = X.2-10 G17
: Rg 9 Xip27% A 2 pQ
. 52A © o 1B Xpe2-¥ 1B
e 3 0-A .
. 53A Rq 1
qq9q 2B Xpp — 2B
. 54A C 54A
T 1D2 Go to e=X subroutine® »
. 55A acoo. 12F e~X - 12F G19
‘ Q 12F ,
. S6A Mr nr , sina+ Py(cos a)+ e~X
: acca. 1B sin a+ Py (cos a) - 1B
.‘ 57A C 11F . . sina-Py(cos a) »
H~- 1B sin a+ Pg(cos a)
. c(1=e=X) = f
() sea Tama M)l Cf- M, M(f) set in 24A, 61A G2
. C 14F i~ A G21
| 59A T+ 65A ' j >0, then [= f.; go to G23
. L1 0 A G2
60A - agoa 14F ‘ i=0-14F G22
. - C 58A ‘
. (b)The e=% subroutine assumes fh'c_ﬂ upon entry the integral part of X times 2"39 is iﬁ 1B ond
that the fractional part of X is in 2B, Upon exit from the routine e~Xis in A,
6.15

6.16

Register

61A

62A

63A

64A

65A

66A

67A

68A

69A

- 70A

71A
72A
73A
74A
75A |
76A

77A

Left-Hand
Order Address
H 1
T4 25A
T4 58A

| Dr 9F
C ¢F
Rq 2
qaq 1B
Lqy 2
Q 1B
H 18F
Mr 33
H I5F
T W
L | 1 |
- 3F
C 3F
R 1

. Right-Hand
Order Address

.0000 584
C 3
'c 10c
T4 51A
Q 3
Dq - 25C
M TF
aaaa. 2B
C 16F
acooe 3B
H 2B
aaa 15F
Tc 6F
H 7F
T—r 79A
H- 7F
ocas 6F

Box
- No.

Explanation

M) + 1= M(7)

 Goro(¢)= (254),

0=/f~A | G15

Go to G20
Gl6

x’ = t/cos a eQ
Go to G17

G23
0-Q

NE- A Q
(A/8)/(3/4)= A/3

A3~ 1B
A/3 - 4f €A
A/3 . 4f, 2B
A/3-Q

/4 +f3€A

A3 (fy + 1)

8]= A/3(f] + 4/2 + f3)

J+8]~]

J - 15F

Go to @ (set in 20A, 79A)
A-A : G24

a+ 2A

a+ 2A - a,
a+ 2A<a2,got9G26

a+ 2A 2 a, ay - A G25

dz—CL

A= '/2(“2"" a)
A - 6F '

.

ST - Left-Hand Right-Hand - Exolanati Box
" . Register on
<. T Order Address Order Address xprandre No.
\ /3
o 78A C 26C
. Ro. 10
79A 000 73A ' Set i = p, :
| 4 Tc . 18F | ' G26
80A ocaax 16F I3 ~f |

| T4 22A Go to @
81A Stll : | |
@ lc 4F . G27
82A aooo. 6F
Q 15F Jp(h M- Q H1

83A C 83
T4 1D3 Transfer_ to BF - DF
subroutine®
84A L 8 Fyiqisiaisig 0000 = WA H3
Q [M(W*)] 000 000 b'ﬁt]tz = WeQ
M(W? init. rel.

o 2 = . Gos S o ’V‘\

85A Lay 24 | W= bt ty j1isisiaisis €Q H4
Pq Punch result
8A C 84A , | H5
H 1 '
87A 000 84A Increase M(W")
Cc S5F |
88A H- 21C Tl - T
o T BA <7, 9010 (0)
A C 0 =T, =1 A J
e R
90A H 13F ; -2 =4 -4
. T-4 93A 4’ < 2*, go to box L
9IA C IF A= 2, testh” K
9 H- 5C b"— b}
, 924 T-L 2 B <hjgoto @
‘ Stop b’ = b;, stop
s .; (C)The binary-fraction to decimal-fraction subroutine assumes that the binary fraction to be con-
verted is to be found in Q upon entry, The routine leaves the decimal fraction in A upon exit.

' ’

6.18

Register

93A
94A
95A
96A

97A

Left-Hand

Ordef Address Order Address

C 13F
acor 13F
000a 96A
Stall

Tt 14A

Right-Hand

Stall

C

Exolanati ~ Box
xplanation. " No.

A=A

By 1

EEEAC k5

M) + £ = MY

. M) - 96A

MO

A-A

Gofé@ |

~

.

<'ﬁ

)

Appendix B

CONSTANTS AND PROBLEM PARAMETERS

REGISTER . CONTENTS (in symbolic form)
UNIVERSAL CONSTANTS (Absolute Addresses)

0 _p-39

1 2719 4 2739

2 2~

3 0

4 -1

TEMPO'RARY STORAGE (Addresses Relative to Parameter B)

18)

2B

3B

4B — (i'niti‘o“.y irrglevant)

5B

6B

VARIABLE STORAGE (Addresses Relative to Parameter F)

IF b’ A

2F a,

3F a,

4F A(p)

5F T’

6F A

7F a

8F sin a

9F cos a
10F cos? a >— (initially irrelevcr;t)
1F sin a Py(cos a)
12F E=e%
13F 2= 2)*
14F jT==lforf={,

‘ . j7=0forf ={,

15F Ii Jp(b, 7)
16F f
17F f,
18F {4
19F

6.19

'2“ (.
'REGISTER ~ CONTENTS (in symbolic'form) - - .
CONSTANTS (Addresses Relative to Parameter C) . .
c b7 2 .
¢ L Ay =0.002 Sl
i a,(b,) = 0.197 o .
4C - . a,(hy) =0.266 . o
sc - by =10.27% e
6C o ~ Alh,) = 0.002 - .
7C - v . a‘(bz) = 0.14] S A
8C ' a,(b,) = 0.188 | o .
- 9C S r=1905 . 274 T) |
o 1= 254 . 274 . . .
“11C T{ =0.123 . 2°¢ ,
12¢ 75 = 0.130 . 278 . |
13c 74 = 0.150 - 27° 3
14C 7, = 0.200 . 2-¢ SR
15C 7} = 0.300 . 278 .
16C 7¢ = 1.00 . 278 .
17c 7= 2,00 - 27 o
18C T4 = 3.00 . 278
19C 7§ = 5.00 . 27¢ | . ,
20C Ty =10.278 -
21C Ty, =40 - 2% a »
L22c S 35 . 276 @
23C . 30 . 27¢ :
4C - Y .
25 % |
26C [py MTY) 1y O | . ,
27C SR T Tpa, 000
a8C T,a 000 : .
29C . o Tpa 000 3
@
o
6.20 ‘ .
L

